JP5279351B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP5279351B2
JP5279351B2 JP2008148314A JP2008148314A JP5279351B2 JP 5279351 B2 JP5279351 B2 JP 5279351B2 JP 2008148314 A JP2008148314 A JP 2008148314A JP 2008148314 A JP2008148314 A JP 2008148314A JP 5279351 B2 JP5279351 B2 JP 5279351B2
Authority
JP
Japan
Prior art keywords
pulse
pulse width
correction
image
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008148314A
Other languages
English (en)
Other versions
JP2009292058A (ja
Inventor
利幸 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008148314A priority Critical patent/JP5279351B2/ja
Publication of JP2009292058A publication Critical patent/JP2009292058A/ja
Application granted granted Critical
Publication of JP5279351B2 publication Critical patent/JP5279351B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laser Beam Printer (AREA)

Description

本発明は、画像形成装置における露光部のパルス駆動方法に関し、特に、注目画素及びその近接画素の画像データ列の状況に応じて注目画素における駆動信号のパルス幅を適正に制御し、所望の出力光パルスを感光体上へ走査して画像を形成する画像形成装に関するものである。
従来より感光体をラスタスキャンにより走査して潜像を形成する際に、レーザビーム出力を温度変化に対して安定化するようにした画像形成装置が知られている。例えば、特許文献1には、レーザ露光方式の画像形成装置におけるパルス幅補正の技術が提案されている。このような画像形成装置では、レーザビーム出力をレーザ近傍で1水平走査に1度検出し、この検出信号をレーザ駆動回路にフィードバックし、レーザビーム強度を制御してレーザ出力が設定値と常に等しくなるように制御している。このような制御は、オートパワーコントロール(APC)と呼ばれている。
また、APC回路には光出力検出回路の検出信号をレーザのLED発光領域電流(バイアス電流)へフィードバックするものとレーザ発光領域電流(動作電流)へフィードバックするものが知られている。
上記APC回路では、図9に示すように、レーザ温度変化による電流−光出力カーブの平行シフトについて制御可能である。図9は、レーザ電流と光出力の関係を示す図である。レーザバイアス電流制御の場合、レーザ温度変化によるレーザ発光領域の電流−光出力の傾きが減少することによりバイアス電流値がLED発光領域からレーザ発光領域へと移行し、記録信号を入力しなくても記録媒体への記録がなされてしまう。このため、複写画像のトナーカブリが発生してしまう。そこで、温度変化によりバイアス電流を可変としてもバイアス電流値がレーザ発光領域へ移行しないようにバイアス電流の設定値にマージンを設け、バイアス電流IBIASとレーザ発光閾値電流Ithとの差分をレーザ温度に応じて変化させている。
また、APC回路では、レーザ動作電流へフィードバックする場合、記録信号のON時のLED発光領域を経てレーザ発光領域へ移行する。また、記録信号のOFF時にはレーザ発光領域を経てLED発光領域へ移行する。このためにレーザビーム出力の立上り、立下り時間が長くなってしまう。
図10は、レーザ発光制御部を示す図である。図10において、2は、入力される画像入力データを示す。3は、画像入力データに基づいて、駆動パルス8を出力する画像データ変換部を示す。14は、画像データ変換部4から出力された駆動パルス8に従ってレーザ11を駆動する駆動回路を示す。10は、レーザ駆動ブロックを示す。
図11は、レーザ駆動電流パルス波形及びレーザ発光パルス波形を示す図である。図11では、図10に示す画像データ変換部4から出力された記録信号ON、OFFを受けて駆動回路14がレーザ11に供給するレーザ駆動電流パルス波形と、レーザ11によるレーザ発光パルス波形を示している。図11に示すように、レーザ発光パルス波形は、発光閾値電流を越えたレーザ駆動電流パルス波形にほぼ従う。そのため、記録信号のON、OFFに対応した駆動電流パルスの立上り、立下り等の特性が変化すると発光パルス波形もそれに従って変化し、レーザビーム強度が変化することになる。
また、レーザチップ内部においてはさらに注入されたキャリアによる誘導放出、光共振によるレーザ発振に至る過程での発光遅延及び注入停止によるレーザ発振の停止に至る過程での消灯遅延といった現象も存在する。したがって、さらにパルス幅が縮小及び時間遅延したものとなる。
このように、レーザ温度変化により閾値電流Ithが変化することでレーザ発光に寄与するところのレーザ駆動電流パルス波形の特に立上り、立下り遅延特性が変化してしまう。したがって、APCを行っているにもかかわらず、記録信号により変調されたビーム強度(光振幅及び光パルス幅)が変化するという問題が生じる。光量変動(ビーム強度変動)は特に、記録信号周波数に対してレーザ駆動パルス幅が非常に短い場合に顕著となり、このようなAPC回路は高密度、高階調画像記録には適さないという問題点になる。
以上は主に十分孤立したパルスにおける問題といえるが、画像濃度をレーザパルスのPWMによって表現する場合、高濃度領域、即ち、レーザのオフ時間が小さい領域のパルスでは考慮する必要がなかった。しかし、パルス間での相互作用において問題が生じてしまう。
図12は、1画素又は連続する複数の画素で形成する1つのスクリーンドットに対するレーザ駆動信号と出力光パルスとの関係を示す図である。駆動パルスは、画像データに応じて低濃度部では小幅で設定され、高濃度に従って大幅で設定される。図12に示すように、低濃度における出力光パルスについては上述のようなメカニズムによって細りぎみとなる。これに対し高濃度部では直前の駆動信号消灯タイミングに対して今回の駆動信号点灯タイミングが近接してくるにつれ、レーザチップ内部の残留活性キャリアの存在に起因し、駆動信号点灯タイミングに対する、出力光パルスの発光(点灯)遅延量が急激に減少する。そのため、前回の出力光パルスと今回の出力光パルスがより接近し、ついには連続化してしまうことになる。
図13は、パルス幅とレーザ光量の関係を示す図である。横軸は駆動パルスのパルス幅を示す。縦軸はレーザ光量(ビーム強度)を示す。なお、図13では出力光パルスの幅又はパルスの積分値を示す。1301は、1画素又は連続する複数の画素で形成する1つのスクリーンドットの周期を示す。また、1302は、図12を用いて説明したように、駆動パルスの比率が一定以上になるとレーザの光出力パルスが連続発光となり、一定値に飽和する様子を示す。
このような問題を解決するために、従来から低濃度部でパルス幅が短い領域(パルス細り領域)では駆動信号のパルス幅を長くし、また高濃度部でオフパルスが埋まってしまう領域(パルス太り領域)では駆動信号のパルス幅を短くする補正が提案されている。例えば、図13に示すように、入力画像データ00Hに対する駆動信号のパルス幅をレーザ光量がリニアに変化し始める部分に設定し、FFHに対する駆動信号のパルス幅をレーザ光量が飽和する直前となるように設定する。これを実現するための具体的な構成例とし、特許文献1には、三角波の基準信号と入力画像データに応じたアナログ電圧値との比較によるPWMシステムに対する補正方法が提案されている。
特許3245205号公報
しかしながら、従来技術においては、以下に記載する問題がある。例えば、上述のような補正方法では、イメージ部の階調安定制御の面では効果があるものの、細線等のグラフィックオブジェクトや小ポイントの文字の線幅を画像情報どおりに書き込みする能力が低下してしまう。つまり、1画素又は連続する複数の画素で形成する1つのスクリーンドットの周期に対して上述のような補正方法でパルス幅の補正を行ってレーザ駆動を行う場合に、1画素又はスクリーンドット周期程度の幅の線画を書き込むと、その線画はパルス幅補正によって本来の幅よりも幅の狭い出力光パルスで画像書き込みが行われてしまう。
また、上述のようなパルス幅に関連する問題を解決する方法として、より高解像度化し、1画素単位のPWM変調数を軽減するシステム、例えば2400dpiの2値システムのような構成も考えられる。しかし、このようなシステムであっても、印刷速度が高速化すれば、1画素当たりの駆動時間は小さくなるため、上述のようなパルス細りや、パルス太りの影響が発生してしまう。
図14A乃至図14Eは、2値システムにおける線画形成時の原画像、駆動パルス及び光出力の関係を示す図である。図14Aの1401は、主走査4画素の幅を縦線がそれぞれ12画素の空間をもって連続的に隣接した画像データを示している。1402は、画像データ1401のうち1つの走査ラインについてみた画像データを示す。1403は、生成された駆動パルスである。1404は、駆動パルス1403によって駆動されたレーザ素子の出力光パルスである。
ここでは、1画素の走査時間を2.5nsとする。これに対し、4画素分のパルスを生成し、レーザ素子に信号を伝達させた場合、5nsの発光遅延により2画素分程度の発光遅延が生じる。一方、消灯については2.5nsの消灯遅延により1画素分程度の消灯遅延が生じている。結果として、パルスの幅が(発光遅延−消灯遅延)分、2.5ns、1画素程度分だけ細って発生する。つまりこの状態では4画素の幅のラインがそれより細くドラム上に書き込まれることになる。
これに対し、特許文献1では、16画素を1つのパルス周期とするPWMパルス幅補正システムを用いることでこの線画に対しては補正が可能となる。つまり、図13における横軸の“画素の最大パルス幅”を16画素分として考え、入力画像データを(4/16)*FFHとして考えることによって4画素分の出力パルス幅が得られるようになる。より具体的には、1405に示すように、パルス幅を大きくすることで1406に示す本来の4画素分のパルスを生成することが可能となる。
図14Bは、図14Aよりもさらに線画の間隔が小さくなった場合を示す。1407は、4画素幅のラインが8画素のオフを間に入れて連続的に並んだ画像データを示している。1408、1409は、図14Aと同じ量のパルス幅補正を行った場合の駆動パルス、出力光パルスを示す。この場合、そもそものPWMシステムの基本周期が先の16画素周期から12画素に変動してしまったため、補正システムそのものが実際には有効に機能しない。例えば、その部分だけ12画素周期を基本とするPWMシステムに変更し、さらにそれに応じたPWMパルス補正値に切り替える必要がある。特許文献1のようなアナログPWMシステムの場合、図15に示すように、基本クロックの周期に対応した基準三角波を生成し、その出力に対しゲイン及びオフセット調整をした上でコンパレータの基準比較入力とする。一方で、画像データの値をD−A変換した値をもう一方のコンパレータ入力とすることで所望のパルスが生成される。したがって、16画素から12画素周期に切り替えるためには基準クロックを16画素周期から12画周期へ局部的に切り替えることが必要になる。しかし、基本クロックを複数用意し切り替えることはそれほど困難なことではないが、それを受けて安定した三角波を生成することや、必要に応じてゲイン、オフセットも瞬時に正確で安定した状態に切り替えて生成することは大変難しい。
図14Cは、さらにライン間の間隔が小さくなった場合を示す。1410は、4画素幅のラインが4画素のオフを間に入れて連続的に並んだ画像データを示す。この場合、PWMシステムの基準クロックの周期をさらに8画素周期に局部的に切り替える必要がある。さらに、オフ期間が小さくなっために発光遅延量がそれまでの5ns(2画素相当)から3.75ns(1.5画素相当)に変化し、上記と同じパルス幅補正量では逆に出力光パルスが2.5ns、0.5画素相当だけ過補正されてしまう状況になっている。1411、1412は、図14Aと同じ量のパルス幅補正を行った場合の駆動パルス、出力光パルスを示す。
図14D及び図14Eは、さらにライン間の間隔が小さくなった場合を示す。図14Dでは、発光遅延と消灯遅延が同じ値になるため、仮に1414、1415に示すように図14Aと同じ量のパルス幅補正を行った場合、出力光パルス幅が5画素程度まで太ってしまう。また、図14Eでは、発光遅延がさらに急激に低減し、ほとんどゼロになってしまい、仮に1417、1418に示すように図14Aと同じ量のパルス幅補正を行った場合、ほとんど連続発光状態になってしまう。
これは図13に示す1302の領域に相当し、僅かな入力パルスの変動により大きなレーザ強度変動を引き起こしてしまう領域にかかり始めた状態である。領域1302は、このような理由からも通常、イメージ部の階調制御としては使用しない領域であり、使用するためにはより精密なゲイン及びオフセット調整量が必要となり、上述での問題ともあわせ、実現は非常に困難である。
本発明は、上述の問題に鑑みて成されたものであり、出力光パルスの全濃度域でのリニアリティを確保するとともに、線画、文字等における線幅の再現性を向上させた画像形成装置を提供することを目的とする。
本発明は、例えば、像担持体と、該像担持体に対して露光し、静電潜像を形成させる露光手段とを備える画像形成装置であって、画像形成の対象となる画像データを入力する入力手段と、入力された画像データに従って前記露光手段を駆動するための駆動パルスを生成するパルス生成手段と、生成された前記駆動パルスのオフ期間であるパルス間隔を検知する検知手段と、検知された前記パルス間隔に応じて、前記露光手段による点灯遅延及び消灯遅延を解消するように、前記駆動パルスのパルス幅を補正するパルス幅補正手段とを備え、前記パルス幅補正手段は、検知された前記パルス間隔が予め定められた閾値より大きい場合に、前記駆動パルスの立ち下がりのタイミングを予め定められた時間だけ遅延させ、検知された前記パルス間隔が予め定められた閾値より小さい場合に、前記駆動パルスの立ち下がりのタイミングを前記予め定められた時間だけ遅延させるとともに、該立ち下がりのタイミングを遅延させることによって発生する過補正分の遅延を前記駆動パルスの立ち上がりのタイミングを遅延させることにより解消することを特徴とする。
本発明は、例えば、出力光パルスの全濃度域でのリニアリティを確保するとともに、線画、文字等における線幅の再現性を向上させた画像形成装置を提供できる。
以下に本発明の一実施形態を示す。以下で説明される個別の実施形態は、本発明の上位概念、中位概念及び下位概念など種々の概念を理解するために役立つであろう。また、本発明の技術的範囲は、特許請求の範囲によって確定されるのであって、以下の個別の実施形態によって限定されるわけではない。
<第1の実施形態>
以下では、図1乃至図5を参照して、第1の実施形態について説明する。図1は、第1の実施形態に係る駆動パルスのタイミング補正量とパルス間隔の関係を示す図である。
図1において、横軸は、現在、パルス生成しようとする注目画素に対し、それ以前の至近のパルスがどれだけ離れて消灯されたかを示す。つまり、前回の駆動パルスが立ち下がってから今回の駆動パルスが立ち上がるまでのパルス間隔を示す。以下では、この間隔を駆動パルスのオフ期間又はパルス間隔と称する。また、縦軸は、パルス生成ブロックに対し、標準的な駆動パルス点灯タイミング、消灯タイミングに対してどれだけ補正をすべきかを示す。本実施形態では、図1に示す関係を定義したテーブルを後述するパルス生成部又は記憶部に保存する。
図2Aは、第1の実施形態に係る画像形成装置の構成例を示す図である。ここでは、主に本発明に関するコンポーネントについて説明を記載する。したがって、本発明は他のコンポーネントを含んで構成されてもよい。
画像形成装置200は、制御部201、露光部202、感光体203、記録材カセット204、定着器205及び記憶部206を備える。制御部201は、画像形成装置200の各コンポーネントを統括的に制御する。制御部201の詳細については、図2Bを用いて後述する。露光部202は、制御部201から入力された駆動信号に応じて像担持体である感光体203に対して露光し、当該感光体203上に形成する画像の静電潜像を形成する。感光体203上に形成された静電潜像は、トナーにより現像化され、記録材カセット204から搬送されてくる記録材に対して転写される。その後、トナー像が転写された記録材は、定着器205に搬送される。定着器205は、加熱及び加圧することにより、トナー像を記録材に定着させる。その後、記録材は、画像形成装置200の機外へ排出される。また、記憶部206には、制御部201が画像形成装置200を制御するためのプログラムや設定値等が記憶されている。また、図1に示す駆動パルスの補正量とパルス間隔との関係を定義したテーブルを記憶する。
図2Bは、第1の実施形態に係る制御部の構成例を示す図である。ここでは、主に本発明に関するブロックについて説明を記載する。したがって、本発明は他のブロックを含んで構成されてもよい。
制御部201は、本発明を実現するために、パルス生成部211、パルスオフ期間カウンタ212、画像データ入力部213及び画像クロック生成部214を備える。
画像データ入力部213は、画像形成の対象となる画像データを入力する。画像データ入力部213は、例えば、形成する画像に従って2400dpiの2値の画像データを、パルス生成部211及びパルスオフ期間カウンタ212に入力する。画像クロック生成部214は、パルス生成手段として機能し、画像の書込タイミングを調整するための画像クロックを、パルス生成部211及びパルスオフ期間カウンタ212に入力する。ここでは、例えば、1画素周期が2.5nsである画像クロックが採用される。パルスオフ期間カウンタ212は、画像データ及び画像クロックが入力され、パルス生成部211に対してパルスオフ期間を入力する。
パルス生成部211は、パルスを生成する注目画素に対し、画像データ、画像クロック及び駆動パルスタイミング補正量を決定するためのパルスのオフ期間(パルス間隔)が入力され、補正した駆動信号のパルスを生成する。また、パルス生成部211は、記憶部206に記憶されたパルス幅の補正量とパルス間隔とを定義したテーブルから、パルス間隔に応じた補正量を取得し、駆動パルスのパルス幅を補正してもよい。したがって、パルス生成部211は、パルス幅補正手段の一例である。パルス生成部211で生成されたパルスは、露光部202に入力される。パルス生成部211は、入力される画像クロックに対して、PLL方式などの方式により内部で4倍から16倍程度に周波数逓倍させた同期クロックを基準クロックとして、画像データに基づいて所定幅のパルスを出力する。このように、本実施形態におけるパルス生成部211は、デジタル回路において比較的簡便な構成として実現できる。
しかし、パルスの補正分解能は逓倍した値で制約を受ける。例えば、4逓倍クロックベースの場合は1画素の1/4単位での補正となる。また、高分解能の補正を行う場合には、画像クロックやそれを数倍程度逓倍したクロックを多段の遅延デバイス等により複数の遅延エッジを生成し、当該エッジの選択制御によって、より高分解能のパルスを出力する出力器などが適用されてもよい。
図3A乃至図3Eは、第1の実施形態に係る2値システムにおける線画形成時の入力画像データ、補正後の駆動パルス及び光出力の関係を示す図である。ここでは、上述したように、入力画像データを2400dpiの2値とし、1画素周期を2.5nsとする。
図3Aの301は、画像入力として4画素幅の縦ラインが12画素の空間をもって連続的に隣接した画像データを示している。302は、画像データ301のうち1つの走査ラインについてみた画像データを示す。303は、パルス生成部211によって生成された駆動パルスである。304は、駆動パルス303によって駆動された露光部202からの出力光パルスを示す。
本実施形態では、パルスのオフ期間が7画素(閾値)以上存在する場合の孤立駆動パルスに対する出力光パルスの点灯(発光)遅延は2画素相当(5ns)となり、消灯遅延は1画素相当(2.5ns)になると想定する。したがって、パルス生成部211は、パルスのオフ期間が7画素以上の場合、駆動パルス303のパルス幅を、入力画像データに対して1画素相当(2.5ns)増加させる。ここで、パルス生成部211は、パルス幅を増加させる補正方法として、駆動パルス303の点灯タイミングを前方化するか又は消灯タイミングを後方化する補正を行ってもよい。また、それらを組み合わせた補正を行ってもよい。ここで、点灯タイミングの前方化とは、パルスの立ち上がりを遅延させる補正をいう。一方、消灯タイミングの後方化とは、パルスの立ち下がりを遅延させる補正をいう。
本実施形態では、孤立パルスの状態において、点灯パルスタイミングの補正流量はゼロとし、その際のパルス細り量(点灯遅延時間−消灯遅延時間)を全て、消灯パルスタイミングの後方化により補正する。
図3Bの305は、画像入力として4画素幅の縦ラインが8画素の空間をもって連続的に隣接した画像データを示している。また、306は、パルス生成部211によって生成された駆動パルスである。307は、駆動パルス306によって駆動された露光部202からの出力光パルスを示す。
この場合、まだパルスのオフ期間が7画素以上あるため、各駆動パルス306は孤立パルスと同等とみることができる。したがって、図3Aと同じく、点灯遅延は2画素相当(5ns)と推定され、消灯遅延は1画素相当(2.5ns)と推定される。つまり、画像データ305に対し、1画素相当分のパルス幅補正を行えばよい。本実施形態では、点灯パルスタイミングの補正をゼロとし、消灯パルスタイミングに対して1画素分の後方化の補正を行う。
図3Cの308は、画像入力として4画素幅の縦ラインが3画素の空間をもって連続的に隣接した画像データを示している。309、311は、パルス生成部211によって生成された駆動パルスである。310、312は、駆動パルス309、311によって駆動された露光部202からの出力光パルスを示す。
この場合、パルスのオフ期間が7画素以上ないため、各駆動パルスは孤立パルスと同等とみることができず、主に点灯遅延量が孤立状態時に対して縮小する。したがって、図3Aと同様の方法で補正を行った駆動パルス309の場合、出力光パルスが310のようになり、0.5画素相当だけ過補正されてしまう。
そこで、本実施形態では、図1に示すように点灯遅延量の縮小が0.5画素相当であるため、駆動パルス311のように、消灯パルスタイミングを予め定められた1画素分の時間だけ遅延させる一方で、消灯タイミングの過補正分を解消するように、点灯パルスタイミングを0.5画素分の時間だけ遅延させる。これにより、出力光パルス312は入力画像データと同様に4画素相当のパルス幅となる。
図3Dの313は、画像入力として4画素幅の縦ラインが2画素の空間をもって連続的に隣接した画像データを示している。314は、パルス生成部211によって生成された駆動パルスである。315は、駆動パルス313によって駆動された露光部202からの出力光パルスを示す。
この場合、図3Cと同様に、各駆動パルス314は孤立パルスと同等とみることができず、点灯遅延量が孤立状態時に対してさらに縮小する。本実施形態では、図1に示すように点灯遅延量の縮小が1画素相当である。即ち、図3Cの場合、点灯遅延と消灯遅延の量が同等となり、駆動パルス314の幅と出力光パルス315の幅が同一になる。したがって、消灯パルスタイミングを予め定められた1画素分の時間だけの遅延させる一方で、点灯パルスタイミングを1画素分に相当する時間だけ遅延させる。これにより、出力光パルス315は入力画像データと同様に4画素相当のパルス幅となる。
図3Eの316は、画像入力として4画素幅の空間をもって連続的に隣接した画像データを示している。317、319は、パルス生成部211によって生成された駆動パルスである。318、320は、駆動パルス317、319によって駆動された露光部202からの出力光パルスを示す。
この場合、各駆動パルスは孤立パルスと同等とみることができず、点灯遅延量が孤立状態時に対してさらに急激に縮小する。したがて、図3Aと同様の方法で補正を行った駆動パルス317の場合、出力光パルスが318のようになり、連続点灯状態になってしまう。
そこで、本実施形態では、図1に示すように、点灯遅延量の縮小が1.5画素相当であるため、消灯遅延の量の1画素との差として0.5画素分、駆動パルス319を入力画像データに対して縮小する。これにより、画像データ316と出力光パルス320の幅を同一にする。つまり、消灯パルスタイミングを予め定められた1画素分に相当する時間だけ遅延させる一方で、点灯パルスタイミングを1.5画素分に相当する時間だけ遅延させる。これにより、出力光パルス320は入力画像データと同様に4画素相当のパルス幅となる。
なお、連続する画素の場合、消灯タイミングに対する補正が実際に作用するのは一番最後の画素になる。上述の例の場合、1から3画素目までに対しても消灯タイミングに対する補正が発生するが、後続する画素もONであるため実質的には作用しないことになる。
このように、本実施形態では、駆動パルスを補正するために、孤立状態のパルスにおける光出力細り分を全て消灯タイミングに帰すようにし、点灯タイミングに対する補正はゼロからスタートさせる。また、パルスが近接してきた場合も消灯タイミングは常に、点灯遅延時間−消灯遅延時間を保持する一方で、点灯タイミングを近接量に応じて徐々に後方化させる補正を行う。消灯遅延量はパルス近接量に対して一般に比較的独立性が強いため、画像としては右側(消灯側)エッジがよく揃ったものとなる。左側(点灯側)は、補正テーブルが正確であればあるほど理想的に揃ったものとなる。
図4は、図1の変形例を示す図である。パルス生成部211の構成上の観点から、図4に示すように、消灯タイミングを常に補正値ゼロとし、点灯タイミングを孤立領域で消灯遅延時間−点灯遅延時間だけ標準タイミングから早めるか又は遅延させる補正方法を適用してもよい。この場合、図4に示すように、パルス間隔(近接量)が補正ゼロ点に相当する閾値(ここでは2画素となる。)を下回ると、標準タイミングを遅延させ、パルスを細らせる。一方、パルス間隔が上記閾値を超えると、標準タイミングを早めて、パルスを太らせる。この場合も、消灯タイミングに対する補正値を一定化しているため、右側サイドが比較的安定した画像となり、左側サイドは補正値の正確性に依存する。
単に、出力光パルスの幅だけを一定化させるためだけであれば、点灯パルスタイミングに対する補正と消灯パルスタイミングに対する補正の和として作用させることも可能である。
ただし、出力光パルスの位置についても常に入力画像と一定の位相関係(位置関係)を確保するためには、補正後の点灯遅延量、消灯遅延量、又はその両方に対し、一定化を図るようなパルス幅の補正を行うことが望ましい。上述の構成は消灯側に対する遅延量は近接量に対しほぼ一定であるような光パルススイッチング特性(パルス生成部及び点灯素子の特性の和)であることを前提に構成している。しかし、近接量に応じて消灯遅延量も変動するような場合は、駆動パルスの点灯タイミング、消灯タイミングの両方に対しその補正量を適正値に動かしてもよい。
図5は、第1の実施形態に係るパルス生成部の構成例を示すブロック図である。パルス生成部211は、駆動パルス間隔検知部501、パルス幅LUT(ルックアップテーブル)502及びモジュレータ503を備える。
駆動パルス間隔検知部501は、画像入力データ列を検知し、現在の注目画素から遡って何画素スペースがあるのかをカウントするブロックである。本実施形態に係る駆動パルス間隔検知部501は、処理結果を4bitで出力し、現在の注目画素データ1bitとあわせ、5bitがパルス幅LUT502に入力される。パルス幅LUT502は、入力した5bitをパルス幅4bitとパルス重心4bitの8bitデータに変換する。モジュレータ503は、このLUTからの出力8bitを受け、所望のパルスを生成する。
以上説明したように、本実施形態に係る画像形成装置は、静電潜像を形成するための露光部の駆動パルスのパルス幅を、当該駆動パルスのオフ期間であるパルス間隔に応じて、当該露光部の点灯遅延及び消灯遅延を解消するように補正する。また、本画像形成装置は、パルス幅を補正する際に、駆動パルスの立ち上がり又は立ち下がりの一方の補正量を固定し、他方の補正量を調整することが望ましい。このように補正することで、出力光パルスの全濃度領域において、リニアリティを確保するとともに、線画、文字等における線幅の再現性を向上することができる。また、駆動パルスの立ち上がり又は立ち下がりの一方の補正量を固定しているため、駆動パルスを生成する回路を簡易化することができる。
<第2の実施形態>
次に、図6を参照して、第2の実施形態について説明する。第1の実施形態では、入力画像データとして、2400dpiの2値のデータを想定していたが、本実施形態では、多値のデータを想定する。
図6は、第2の実施形態に係るパルス生成部の構成例を示すブロック図である。ここでは、図5と同様の構成については、同一の番号を付し、説明を省略する。また、ここでは、多値の画像データを想定し、具体的には、600dpi、パルス幅8bit、パルス重心位置2bitのシステムを想定している。本実施形態では、第1の実施形態と比較して、解像度を低下させ、画像クロックも比較的低い場合を想定し、駆動パルスと駆動パルスの点灯遅延、消灯遅延についての相互作用は前の画素パルスの消灯タイミングのみに関係して発生することとする。
本実施形態に係るパルス生成部600は、駆動パルス間隔検知部501、補正演算回路601、パルス幅/位置LUT602及びモジュレータ503を備える。駆動パルス間隔検知部501は、前画素のパルスデータ8+2bitを参照し、その消灯タイミングと今回の画素の左端までのスペース量を算出する。図6に示す位置2bitは、本実施形態において、パルスを画素内で左に寄せる、中央に重心をもつ、右側に寄せるといったことを表す。例えば、前画素が左寄せで128/255の場合、255−128=127のスペースが存在し、この値が出力される。また、中央重心で128/155の場合、(255−128)/2=63.5のスペースとなるが、小数点を扱わないシステムの場合、小数は右側又は左側のいずれかに振り分けられることになる。本実施形態では、右側に振り分けられることとすると、64のスペースとなる。また右寄せの場合、スペースはゼロとなる。
補正演算回路601は、今回の画像データ8+2bitと駆動パルス間隔検知部501からの出力に基づいて、補正後の入力画像データを生成する。今回の画素が右寄せであれば、駆動パルス間隔検知部501からの出力そのものがスペースとなり、そのスペース量におけるパルス幅補正値を、スペース量と補正量の関係を示すテーブル(図1又は図4を多値にしたもの。)から求める。求めたパルス幅補正値は、今回の入力データのパルス幅8bitに加算される。
今回の画素が中央又は左寄せであれば、今回の画素による左側のスペースを同様に算出し駆動パルス間隔検知部501からの出力にそれを加えたものがスペースとなる。これを同様に補正量をテーブルから参照し、今回の画素の幅データに加算する。以上により、多値データのシステムにおいても本発明を適用することによって適正なパルス幅が得られるようになる。
<第3の実施形態>
次に、図7及び図8を参照して、第3の実施形態について説明する。本実施形態では、多値データのシステムであって、イメージ部において連続するパルスにおけるパルス幅の比率で濃度階調を表現する場合を想定する。この場合、パルス幅補正にはさらに階調部とそれ以外といった場合わけも必要となる。
図7は、第3の実施形態に係る駆動パルス幅と出力光パルス幅との関係を示す図である。横軸は駆動パルス幅を示し、縦軸は出力光パルス幅を示す。図7では、1画素単位の連続するパルスのオンデューティで階調制御を行うような場合の駆動パルス幅と出力光パルス幅との関係を示す。駆動パルスが小さい間は点灯遅延のため出力光パルスはほとんどでない。その後、ゆるやかにパルス幅が増えはじめ、駆動パルスの増加がそのまま出力光パルスの増加となるリニア領域を迎える。さらに、駆動パルス幅を増やしていくと、パルスとパルスとが近接し、点灯遅延が急速に減少するため、駆動パルスの増加量よりも出力光パルス幅の増加量の方が大きい領域となる。そして、最後には、駆動パルスとしてはパルスオフの期間があるにもかかわらず、出力光パルスが連続点灯してしまう領域となる。
このような場合、出力画像濃度の連続性を確保するため、リニア領域のみに入力画像データ00−FFHを割り当てるようなパルス幅補正を行う。しかし、線画や文字のようにラインとラインの幅がある程度確保される場合に、この補正を行うと、1画素の最大出力光パルス幅は本来の1画素の長さよりも短くなってしまい、現画像に忠実な画像書き込みができなくなってしまう。
本実施形態では、この問題を解決するため、階調部(イメージ部)とそれ以外を像域信号等により識別し、パルス幅補正量を切り替えるようにする。図8は、第3の実施形態に係るパルス生成部の構成例を示すブロック図である。ここでは、図6と同様の構成については、同一の番号を付し、説明を省略する。
パルス生成部800は、図6に示すパルス生成部600に対して、像域判別部801が追加されている。像域判別部801は、入力画像データが2値のデータであるか、又は、多値のデータであるかを判別し、判別結果を1bitの識別信号として補正演算回路601及びパルス幅/位置LUT602に出力する。また、入力される画像データに基づいて、自己判別する構成でもよい。この識別信号が階調部を示す値であれば、補正演算回路601の機能が無効とされ、LUTでは階調部専用のLUTが参照される。図7における、リニアリティ部を00−FFとするようなパルス幅補正を行うLUTを参照する。一方、階調部以外の場合は補正演算回路601が有効とされ、階調部以外用のLUTが参照される。隣接パルスとの隣接量に応じ、図7に示すE、D、ABで示す一点鎖線でのような点灯特性となるLUTを用いる。ただし、これらはすべて単純な平行シフト関係の特性であり、入力=出力の単純なLUTを1つ用意すれば、補正演算回路601の出力のみで実現することができる。
ただし、孤立パルス相当のスペース間隔がある場合にはパルスの立ち上がりにリニアリティの低い部分があるため、孤立パルス相当識別信号をLUTに入力することが望ましい。したがって、図7における“より詳細な非階調部00−FFパルス幅AB”のような関係を示すテーブルを別に参照できるようにすればより正確な補正が可能となる。
なお、パルス幅補正により255を超える場合があるが、後段のモジュレータがこの桁上がり分を再現できる場合には問題ない。しかし、そうでない場合は、桁上がり分のパルス幅データを次の画素に伝達(加算)するロジックが別途必要になる。また、パルスが桁上がりした場合でも次画素がそれと重なるような画像入力信号になっている場合には実際には出力光パルス全体としては補正を行わない。
第1の実施形態に係る駆動パルスのタイミング補正量とパルス間隔との関係を示す図である。 第1の実施形態に係る画像形成装置の構成例を示す図である。 第1の実施形態に係る制御部の構成例を示す図である。 第1の実施形態に係る2値システムにおける線画形成時の入力画像データ、補正後の駆動パルス及び光出力の関係を示す図である。 図1の変形例を示す図である。 第1の実施形態に係るパルス生成部の構成例を示すブロック図である。 第2の実施形態に係るパルス生成部の構成例を示すブロック図である。 第3の実施形態に係る駆動パルス幅と出力光パルス幅との関係を示す図である。 第3の実施形態に係るパルス生成部の構成例を示すブロック図である。 レーザ電流と光出力の関係を示す図である。 レーザ発光制御部を示す図である。 レーザ駆動電流パルス波形及びレーザ発光パルス波形を示す図である。 1画素又は連続する複数の画素で形成する1つのスクリーンドットに対するレーザ駆動信号と出力光パルスの関係を示す図である。 パルス幅とレーザ光量の関係を示す図である。 2値システムにおける線画形成時の原画像、駆動パルス及び光出力の関係を示す図である。 アナログ方式のPWM変調システムを示す図である。
符号の説明
200:画像形成装置
201:制御部
202:露光部
203:感光体
204:記録材カセット
205:定着器
206:記憶部
211:パルス生成部
212:パルスオフ期間カウンタ
213:画像データ入力部
214:画像クロック生成部

Claims (3)

  1. 像担持体と、該像担持体に対して露光し、静電潜像を形成させる露光手段とを備える画像形成装置であって、
    画像形成の対象となる画像データを入力する入力手段と、
    入力された画像データに従って前記露光手段を駆動するための駆動パルスを生成するパルス生成手段と、
    生成された前記駆動パルスのオフ期間であるパルス間隔を検知する検知手段と、
    検知された前記パルス間隔に応じて、前記露光手段による点灯遅延及び消灯遅延を解消するように、前記駆動パルスのパルス幅を補正するパルス幅補正手段と
    を備え、
    前記パルス幅補正手段は、
    検知された前記パルス間隔が予め定められた閾値より大きい場合に、前記駆動パルスの立ち下がりのタイミングを予め定められた時間だけ遅延させ、
    検知された前記パルス間隔が予め定められた閾値より小さい場合に、前記駆動パルスの立ち下がりのタイミングを前記予め定められた時間だけ遅延させるとともに、該立ち下がりのタイミングを遅延させることによって発生する過補正分の遅延を前記駆動パルスの立ち上がりのタイミングを遅延させることにより解消することを特徴とする画像形成装置。
  2. 前記パルス間隔と前記パルス幅の補正量との関係を定義したテーブルを記憶する記憶手段をさらに備え、
    前記パルス幅補正手段は、
    検知された前記パルス間隔に応じた補正量を前記テーブルから取得し、前記駆動パルスのパルス幅を補正することを特徴とする請求項に記載の画像形成装置。
  3. 前記画像データが、2値のデータであるか、多値のデータであるかを判別する判別手段をさらに備え、
    前記パルス幅補正手段は、
    前記判別手段によって判別された判別結果に基づいて、前記駆動パルスのパルス幅を補正することを特徴とする請求項1又は2に記載の画像形成装置。
JP2008148314A 2008-06-05 2008-06-05 画像形成装置 Expired - Fee Related JP5279351B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008148314A JP5279351B2 (ja) 2008-06-05 2008-06-05 画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008148314A JP5279351B2 (ja) 2008-06-05 2008-06-05 画像形成装置

Publications (2)

Publication Number Publication Date
JP2009292058A JP2009292058A (ja) 2009-12-17
JP5279351B2 true JP5279351B2 (ja) 2013-09-04

Family

ID=41540702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008148314A Expired - Fee Related JP5279351B2 (ja) 2008-06-05 2008-06-05 画像形成装置

Country Status (1)

Country Link
JP (1) JP5279351B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6304159B2 (ja) * 2015-07-23 2018-04-04 コニカミノルタ株式会社 画像形成装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4393361B2 (ja) * 2004-11-30 2010-01-06 キヤノン株式会社 画像形成装置及び画像形成方法、プログラム
JP4926587B2 (ja) * 2005-07-29 2012-05-09 キヤノン株式会社 半導体レーザ駆動制御装置

Also Published As

Publication number Publication date
JP2009292058A (ja) 2009-12-17

Similar Documents

Publication Publication Date Title
US8896648B2 (en) Laser driving unit and image forming apparatus
EP1439619B1 (en) Semiconductor laser drive apparatus, optical write apparatus, imaging apparatus, and semiconductor laser drive method
US7443413B2 (en) Laser diode modulator and method of controlling laser diode modulator
US8144177B2 (en) Image formation apparatus and image formation method
JP2008279738A (ja) 光走査装置、画像形成装置及び制御方法
JP6953808B2 (ja) 光源制御装置及び画像形成装置
JP3245205B2 (ja) 画像形成装置
JP5279351B2 (ja) 画像形成装置
JP5080953B2 (ja) 光書き込み装置及び画像形成装置
US9807279B2 (en) Image forming apparatus
JP2008284854A (ja) 光ビーム走査装置および画像形成装置
JP2004354986A (ja) 画像形成方法および装置
US20050030435A1 (en) Image forming method and apparatus
JP2002002015A (ja) 画像形成における同期信号発生方法及びその装置
JP5207601B2 (ja) 半導体レーザ駆動装置
JP2002292929A (ja) 画像形成装置、画像形成方法、画像形成方法をコンピュータに実行させるプログラム、およびそのプログラムを記録したコンピュータ読み取り可能な記録媒体
JPH1142815A (ja) レーザ画像露光装置
JP2005153366A (ja) パルス幅変調信号生成装置及びそれを備えた画像形成装置
US5206664A (en) Recording apparatus using semiconductor laser
JP2000203080A (ja) 画像形成装置
JPS63293062A (ja) 像形成装置
US4969047A (en) Processor for detecting the number of bit times in portions of a binary video signal to produce a corresponding number of width adjustable dot pulses
JP4181833B2 (ja) 画像形成装置およびそのレーザ走査長補正方法
JP2003205640A (ja) 発光素子駆動装置
EP0989736A1 (en) Method and device for controlling a laser having a threshold current level

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130422

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R151 Written notification of patent or utility model registration

Ref document number: 5279351

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees