JP5272509B2 - Prepreg, metal foil-clad laminate and printed wiring board - Google Patents

Prepreg, metal foil-clad laminate and printed wiring board Download PDF

Info

Publication number
JP5272509B2
JP5272509B2 JP2008126327A JP2008126327A JP5272509B2 JP 5272509 B2 JP5272509 B2 JP 5272509B2 JP 2008126327 A JP2008126327 A JP 2008126327A JP 2008126327 A JP2008126327 A JP 2008126327A JP 5272509 B2 JP5272509 B2 JP 5272509B2
Authority
JP
Japan
Prior art keywords
resin
prepreg
thermosetting resin
resin composition
clad laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008126327A
Other languages
Japanese (ja)
Other versions
JP2009275086A (en
Inventor
亜季子 川口
真 柳田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008126327A priority Critical patent/JP5272509B2/en
Publication of JP2009275086A publication Critical patent/JP2009275086A/en
Application granted granted Critical
Publication of JP5272509B2 publication Critical patent/JP5272509B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a prepreg exhibiting excellent folding resistance when formed into a printed wiring board, and to provide a metal foil-clad laminate and the printed wiring board obtained by using the prepreg. <P>SOLUTION: The prepreg comprises a fiber base material 10, a first resin layer 11 obtained by impregnating the fiber base material with a first thermosetting resin composition, and one or more resin layers formed on the first resin layer 11 out of a thermosetting resin composition. The first thermosetting resin composition and the second thermosetting resin composition for forming the outmost resin layer 12 of the prepreg in one or more resin layers formed out of the thermosetting resin compositions satisfy the following expression (1): Y [GPa]&lt;X [GPa]&le;3 [GPa] (1) (wherein, X is a modulus of a resin film formed out of the first thermosetting resin composition; and Y is a modulus of a resin film formed out of the second thermosetting resin composition). <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明はプリプレグ、並びにこれを用いた金属箔張積層板及び印刷配線板に関する。   The present invention relates to a prepreg, a metal foil-clad laminate and a printed wiring board using the prepreg.

情報端末電子機器の急速な普及に伴って、電子機器の小型化・薄型化が進んでおり、その中に搭載される印刷配線板についても高密度化・薄型化の要求が高まっている。さらに、携帯電話に代表される電子機器の高機能化により、カメラ等をはじめとした様々な高性能モジュールや高密度印刷配線板間の接続が必要となってきた。   With the rapid spread of information terminal electronic devices, electronic devices are becoming smaller and thinner, and the demand for higher density and thinner printed wiring boards is increasing. Furthermore, with the enhancement of functionality of electronic devices such as mobile phones, it has become necessary to connect various high-performance modules such as cameras and high-density printed wiring boards.

一方、電子部品の実装点数も急激に増加しており、印刷配線板の限られたスペースに多数の電子部品を実装するため、従来の剛直な印刷配線板のみならず自由に折り曲げ可能な柔らかい基板が必要となってきた。折り曲げ可能な印刷配線板としては、ポリイミドを中心とした熱可塑性樹脂フィルムと金属箔との積層体が主に使用されている。しかしながら、熱可塑性樹脂フィルムは従来のガラス布やガラス不織布を含む金属箔張積層板に比べて吸水率が高く、金属箔をエッチングした際や回路加工後の寸法安定性が低いという問題を抱えている。   On the other hand, the number of electronic component mounting points has also increased rapidly, and in order to mount a large number of electronic components in a limited space on a printed wiring board, not only the conventional rigid printed wiring board but also a soft board that can be bent freely Has become necessary. As a bendable printed wiring board, a laminate of a thermoplastic resin film and metal foil mainly using polyimide is mainly used. However, the thermoplastic resin film has a higher water absorption rate than conventional metal foil-clad laminates including glass cloth and glass nonwoven fabric, and has a problem of low dimensional stability when the metal foil is etched or after circuit processing. Yes.

熱可塑性樹脂フィルムの寸法安定性を向上させる手法としては、熱可塑性樹脂にガラス短繊維を配合する方法(特許文献1等参照)や、熱膨張率の異なる複数のポリイミド樹脂層を形成する方法(特許文献2及び3等参照)、金属箔側に低熱膨張率の樹脂層を形成する方法(特許文献4等参照)が知られている。   As a method of improving the dimensional stability of the thermoplastic resin film, a method of blending short glass fibers with a thermoplastic resin (see Patent Document 1 or the like) or a method of forming a plurality of polyimide resin layers having different thermal expansion coefficients ( A method of forming a resin layer having a low coefficient of thermal expansion on the metal foil side (see Patent Documents 2 and 3, etc.) is known.

しかしながら、特許文献1等に記載のガラス短繊維を配合する方法では、熱可塑性樹脂を単独で用いた場合と比べて寸法安定性は高いものの、微細な配線を加工、接続するには未だ寸法安定性が十分でない。また、特許文献2及び3等に記載の熱膨張率の異なる複数のポリイミド樹脂層を形成する方法や、特許文献4等に記載の金属箔側に低熱膨張率の樹脂層を形成する方法でも、吸湿性の低減や寸法安定性の向上には限界があり、今後ますます高密度化する印刷配線板における接続信頼性の低下が懸念されている。   However, the method of blending short glass fibers described in Patent Document 1 and the like has higher dimensional stability than the case where a thermoplastic resin is used alone, but is still dimensionally stable for processing and connecting fine wiring. Sex is not enough. Further, even in a method of forming a plurality of polyimide resin layers having different thermal expansion coefficients described in Patent Documents 2 and 3, etc., and a method of forming a resin layer having a low thermal expansion coefficient on the metal foil side described in Patent Document 4, etc., There is a limit to the reduction of hygroscopicity and the improvement of dimensional stability, and there is a concern that the connection reliability of printed wiring boards that will become increasingly dense in the future will decrease.

これに対して、吸湿性を小さくするとともに、寸法安定性を高くする方法としては、繊維基材に熱硬化性樹脂を含浸させたプリプレグを用い、このプリプレグと金属箔との積層体を折り曲げ可能な印刷配線板として用いる方法がある(例えば、特許文献5参照)。
特開昭49−25499号公報 特開平1−245586号公報 特開平8−250860号公報 特開平5−347461号公報 国際公開第2006/001305号パンフレット
On the other hand, as a method of reducing hygroscopicity and increasing dimensional stability, a prepreg in which a fiber base material is impregnated with a thermosetting resin can be used and a laminate of this prepreg and metal foil can be bent. There is a method of using as a printed wiring board (see, for example, Patent Document 5).
JP 49-25499 A JP-A-1-245586 JP-A-8-250860 JP-A-5-347461 International Publication No. 2006/001305 Pamphlet

しかしながら、上記特許文献5等に記載の従来のプリプレグは、これを用いて印刷配線板を成形した場合における印刷配線板を折り曲げたときの配線の断線の防止について、改善の余地が残されている。   However, the conventional prepreg described in Patent Document 5 and the like has room for improvement in preventing the disconnection of the wiring when the printed wiring board is bent when the printed wiring board is formed using the prepreg. .

そこで本発明は、印刷配線板を成形した際に優れた耐折性を発現するプリプレグ、並びにこれを用いた金属箔張積層板及び印刷配線板を提供することを目的とする。なお、本明細書中において、「優れた耐折性を発現する」とは、プリプレグを用いて印刷配線板を成形した場合において、印刷配線板を折り曲げたときに、配線の断線が十分に防止されることを示す。   Therefore, an object of the present invention is to provide a prepreg that exhibits excellent folding resistance when a printed wiring board is molded, and a metal foil-clad laminate and a printed wiring board using the prepreg. In this specification, “expressing excellent folding resistance” means that when a printed wiring board is formed using a prepreg, the wiring is sufficiently prevented from being broken when the printed wiring board is bent. Indicates that

本発明は、繊維基材と、繊維基材に第1の熱硬化性樹脂組成物を含浸してなる第1の樹脂層と、第1の樹脂層上に設けられ、熱硬化性樹脂組成物から形成された1以上の樹脂層とを備えるプリプレグであって、第1の熱硬化性樹脂組成物と、熱硬化性樹脂組成物から形成された1以上の樹脂層のうちのプリプレグの最表面の樹脂層を形成する第2の熱硬化性樹脂組成物とが、下記式(1)を満たすものであるプリプレグを提供する。
Y[GPa]<X[GPa]≦3[GPa] …(1)
[式中、Xは第1の熱硬化性樹脂組成物から形成される樹脂フィルムの弾性率を示し、Yは第2の熱硬化性樹脂組成物から形成される樹脂フィルムの弾性率を示す。]
The present invention provides a fiber base material, a first resin layer obtained by impregnating the fiber base material with the first thermosetting resin composition, and the thermosetting resin composition provided on the first resin layer. A prepreg comprising one or more resin layers formed from the outermost surface of the prepreg of the first thermosetting resin composition and the one or more resin layers formed from the thermosetting resin composition The 2nd thermosetting resin composition which forms this resin layer provides the prepreg which satisfy | fills following formula (1).
Y [GPa] <X [GPa] ≦ 3 [GPa] (1)
[In formula, X shows the elasticity modulus of the resin film formed from a 1st thermosetting resin composition, Y shows the elasticity modulus of the resin film formed from a 2nd thermosetting resin composition. ]

本発明のプリプレグによれば、印刷配線板を形成した際に優れた耐折性を発現する。本発明のプリプレグにより、優れた耐折性を発現するという効果が得られる理由としては、プリプレグの中心に高弾性率の熱硬化性樹脂組成物から形成された樹脂層を配置し、かつプリプレグの最表面の層に低弾性率の熱硬化性樹脂組成物から形成された樹脂層を配置することで、繊維基材が保護され、耐クラック性が向上したこと等が挙げられる。   According to the prepreg of the present invention, excellent folding resistance is exhibited when a printed wiring board is formed. The reason why the effect of exhibiting excellent folding resistance is obtained by the prepreg of the present invention is that a resin layer formed from a thermosetting resin composition having a high elastic modulus is arranged at the center of the prepreg, and the prepreg By arranging a resin layer formed from a thermosetting resin composition having a low elastic modulus on the outermost surface layer, the fiber base material is protected, and crack resistance is improved.

なお、第1の熱硬化性樹脂組成物及び第2の熱硬化性樹脂組成物は、上記式(1)を満たしていれば、同種の熱硬化性樹脂組成物であっても、異なる種類の熱硬化性樹脂組成物であってもよい。   The first thermosetting resin composition and the second thermosetting resin composition satisfy the above formula (1), even if they are the same kind of thermosetting resin composition, A thermosetting resin composition may be used.

第1の熱硬化性樹脂組成物及び第2の熱硬化性樹脂組成物は、グリシジル基を有する樹脂を含むことが好ましい。これにより、プリプレグの耐熱性がより良好なものとなる。   It is preferable that the first thermosetting resin composition and the second thermosetting resin composition include a resin having a glycidyl group. Thereby, the heat resistance of the prepreg becomes better.

第1の熱硬化性樹脂組成物及び第2の熱硬化性樹脂組成物は、アクリル樹脂を含むことが好ましい。これにより、プリプレグの耐折性がより向上する。   The first thermosetting resin composition and the second thermosetting resin composition preferably include an acrylic resin. Thereby, the folding resistance of a prepreg improves more.

第1の熱硬化性樹脂組成物及び第2の熱硬化性樹脂組成物は、アクリル樹脂に代えて、アミド基を有する樹脂を含むことも好ましい。アミド基を有する樹脂は、ポリアミドイミド樹脂を含むことが好まく、ポリアミドイミド樹脂はシロキサン結合を有することが好ましい。これにより、プリプレグの耐熱性が更に良好なものとなる。   It is also preferable that the first thermosetting resin composition and the second thermosetting resin composition include a resin having an amide group instead of the acrylic resin. The resin having an amide group preferably includes a polyamideimide resin, and the polyamideimide resin preferably has a siloxane bond. Thereby, the heat resistance of the prepreg is further improved.

本発明は、上述のプリプレグを所定枚数積層した積層体を加熱及び加圧して得られる基板と、基板の少なくとも一方面上に設けられた、厚みが0.01〜30μmである金属箔とを備える金属箔張積層板、及び当該金属箔張積層板に回路加工して得られる印刷配線板を提供する。本発明の金属箔張積層板及び印刷配線板は、上記本発明のプリプレグを用いているので、耐折性に優れる。   The present invention includes a substrate obtained by heating and pressing a laminate in which a predetermined number of the above prepregs are laminated, and a metal foil having a thickness of 0.01 to 30 μm provided on at least one surface of the substrate. Provided are a metal foil-clad laminate and a printed wiring board obtained by processing a circuit on the metal foil-clad laminate. Since the metal foil-clad laminate and the printed wiring board of the present invention use the prepreg of the present invention, they are excellent in folding resistance.

本発明によれば、印刷配線板を成形した際に優れた耐折性及び耐クラック性を発現するプリプレグ、並びにこれを用いた金属箔張積層板及び印刷配線板を提供することができる。さらに、本発明の印刷配線板は耐折性に優れるので、本発明の印刷配線板を折り曲げて搭載する筐体に高密度に収納することができる。   According to the present invention, it is possible to provide a prepreg that exhibits excellent folding resistance and crack resistance when a printed wiring board is molded, and a metal foil-clad laminate and a printed wiring board using the prepreg. Furthermore, since the printed wiring board of the present invention is excellent in folding resistance, the printed wiring board of the present invention can be stored in a high density in a housing in which the printed wiring board is folded and mounted.

以下、場合により図面を参照しつつ、本発明の好適な実施形態について詳細に説明するが、本発明は下記実施形態に限定されるものではない。なお、図面中、同一要素には同一符号を付すこととし、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings as the case may be, but the present invention is not limited to the following embodiments. In the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios.

本発明のプリプレグは、繊維基材と、繊維基材に第1の熱硬化性樹脂組成物を含浸してなる第1の樹脂層と、第1の樹脂層上に設けられ、熱硬化性樹脂組成物から形成された1以上の樹脂層とを備える。   The prepreg of the present invention is provided on a fiber substrate, a first resin layer obtained by impregnating the fiber substrate with a first thermosetting resin composition, and a thermosetting resin. And one or more resin layers formed from the composition.

さらに、本発明のプリプレグにおいては、第1の熱硬化性樹脂組成物と、熱硬化性樹脂組成物から形成された1以上の樹脂層のうちのプリプレグの最表面の樹脂層を形成する第2の熱硬化性樹脂組成物とが、下記式(1)を満たす。
Y[GPa]<X[GPa]≦3[GPa] …(1)
[式中、Xは前記第1の熱硬化性樹脂組成物から形成される樹脂フィルムの弾性率を示し、Yは前記第2の熱硬化性樹脂組成物から形成される樹脂フィルムの弾性率を示す。]
Furthermore, in the prepreg of the present invention, the first thermosetting resin composition and the second outermost resin layer of the prepreg among the one or more resin layers formed from the thermosetting resin composition are formed. The thermosetting resin composition satisfies the following formula (1).
Y [GPa] <X [GPa] ≦ 3 [GPa] (1)
[Wherein X represents the elastic modulus of the resin film formed from the first thermosetting resin composition, and Y represents the elastic modulus of the resin film formed from the second thermosetting resin composition. Show. ]

なお、弾性率を測定するための上記樹脂フィルムとしては、例えば、次の方法により作製されるものを用いることができる。すなわち、厚みが18μmの銅箔の上に、第1又は第2の熱硬化性樹脂組成物を乾燥後の樹脂の厚みが50μmになるように塗布し、100〜140℃の乾燥路で滞留時間5分にて加熱乾燥し樹脂付き銅箔を得る。その後、樹脂付き銅箔の樹脂面に厚みが18μmの銅箔の粗化面を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後に、両面銅張積層板の外側の銅箔を両面エッチングしたものを上記樹脂フィルムとして用いることができる。   In addition, as said resin film for measuring an elasticity modulus, what is produced by the following method can be used, for example. That is, on the copper foil having a thickness of 18 μm, the first or second thermosetting resin composition is applied so that the thickness of the resin after drying becomes 50 μm, and the residence time is 100 to 140 ° C. in a drying path. Heat-dry in 5 minutes to obtain a resin-coated copper foil. Thereafter, a roughened surface of a copper foil with a thickness of 18 μm is superimposed on the resin surface of the resin-coated copper foil, and a double-sided copper-clad laminate is produced under a press condition of 170 ° C., 90 minutes, 4.0 MPa, and then double-sided copper-clad laminate What carried out double-sided etching of the copper foil of the outer side of a board can be used as the said resin film.

また、上記樹脂フィルムの弾性率は、例えば、次の方法により測定することができる。すなわち、オートグラフ(島津製作所製、型番AG−100C)を用い、上記樹脂フィルムを80mm×10mmに切断した試験片について弾性率を測定することができる。なお、測定条件は、測定長さ60mm、引張速度5mm/minとすることができる。   Moreover, the elasticity modulus of the said resin film can be measured with the following method, for example. That is, using an autograph (manufactured by Shimadzu Corporation, model number AG-100C), the elastic modulus can be measured for a test piece obtained by cutting the resin film into 80 mm × 10 mm. Measurement conditions can be a measurement length of 60 mm and a tensile speed of 5 mm / min.

ここで、Xは2.5GPa以下であることが好ましい。これにより、プリプレグの耐折性が更に向上する。また、Yは低ければ低いほどよいが、実用上0.01GPa以上であることが好ましい。   Here, X is preferably 2.5 GPa or less. This further improves the folding resistance of the prepreg. Y is preferably as low as possible, but is practically preferably 0.01 GPa or more.

図1は、本発明によるプリプレグの好適な一実施形態を示す概略断面図である。なお、図1のプリプレグは、第1の樹脂層上に設けられた、熱硬化性樹脂組成物から形成された樹脂層が1層である場合に相当するものであるが、第1の樹脂層上に設けられた、熱硬化性樹脂組成物から形成された樹脂層は2層以上であってもよい。   FIG. 1 is a schematic sectional view showing a preferred embodiment of a prepreg according to the present invention. The prepreg in FIG. 1 corresponds to the case where the number of resin layers formed from the thermosetting resin composition provided on the first resin layer is one, but the first resin layer Two or more resin layers formed from the thermosetting resin composition may be provided.

図1に示すプリプレグ100は、繊維基材10と、繊維基材10に第1の熱硬化性樹脂組成物を含浸してなる第1の樹脂層11と、第1の樹脂層11上に設けられ、第2の熱硬化性樹脂組成物から形成された第2の樹脂層12とからなる。なお、プリプレグ100においては、第1の樹脂層11の全面が第2の樹脂層12により覆われているが、第2の樹脂層12は、第1の樹脂層11の一部のみを覆っていてもよい。   A prepreg 100 shown in FIG. 1 is provided on a fiber substrate 10, a first resin layer 11 formed by impregnating the fiber substrate 10 with a first thermosetting resin composition, and the first resin layer 11. And the second resin layer 12 formed from the second thermosetting resin composition. In the prepreg 100, the entire surface of the first resin layer 11 is covered with the second resin layer 12, but the second resin layer 12 covers only a part of the first resin layer 11. May be.

繊維基材10は、金属箔張積層板や多層印刷配線板を製造する際に用いられるものであれば特に制限されないが、通常織布や不織布等が用いられ、織布を用いることが好ましい。繊維基材10の材質としては、例えば、ガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維やアラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維及びこれらの混抄系があり、特にガラス繊維が好ましく用いられる。また、基材の厚さも特に限定されないが、15〜50μmであると耐折性が更に向上する。   Although the fiber base material 10 will not be restrict | limited especially if it is used when manufacturing a metal foil tension laminated board and a multilayer printed wiring board, Usually, a woven fabric, a nonwoven fabric, etc. are used, It is preferable to use a woven fabric. Examples of the material of the fiber base material 10 include inorganic fibers such as glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, aramid, polyether ether ketone, polyether imide, and the like. There are organic fibers such as polyethersulfone, carbon and cellulose, and mixed papers thereof, and glass fibers are particularly preferably used. Moreover, although the thickness of a base material is not specifically limited, Folding resistance further improves that it is 15-50 micrometers.

第1及び第2の熱硬化性樹脂組成物に含まれる熱硬化性樹脂としては、エポキシ樹脂、ポリイミド樹脂、トリアジン樹脂、フェノール樹脂、メラミン樹脂、ポリエステル樹脂、シアネートエステル樹脂、及びこれら樹脂の変性体等の熱硬化性樹脂を含有するものが挙げられる。熱硬化性樹脂としては、グリシジル基を有する樹脂が好ましく、エポキシ樹脂がより好ましい。   Examples of the thermosetting resins contained in the first and second thermosetting resin compositions include epoxy resins, polyimide resins, triazine resins, phenol resins, melamine resins, polyester resins, cyanate ester resins, and modified products of these resins. And the like containing a thermosetting resin. As the thermosetting resin, a resin having a glycidyl group is preferable, and an epoxy resin is more preferable.

エポキシ樹脂としては、例えば、ビスフェノールA、ノボラック型フェノール樹脂、オルトクレゾールノボラック型フェノール樹脂等の多価フェノール又は1,4−ブタンジオール等の多価アルコールと、エピクロルヒドリンとを反応させて得られるポリグリシジルエーテル、フタル酸、ヘキサヒドロフタル酸等の多塩基酸とエピクロルヒドリンとを反応させて得られるポリグリシジルエステル、アミン、アミド又は複素環式窒素塩基を有する化合物のN−グリシジル誘導体、脂環式エポキシ樹脂等が挙げられる。上述の熱硬化性樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。   Examples of the epoxy resin include polyglycidyl obtained by reacting polychlorophenol such as bisphenol A, novolak type phenol resin, orthocresol novolac type phenol resin or polyhydric alcohol such as 1,4-butanediol with epichlorohydrin. N-glycidyl derivatives of compounds having polyglycidyl esters, amines, amides or heterocyclic nitrogen bases obtained by reacting polybasic acids such as ether, phthalic acid and hexahydrophthalic acid with epichlorohydrin, alicyclic epoxy resins Etc. The above-mentioned thermosetting resins may be used alone or in combination of two or more.

第1及び第2の熱硬化性樹脂組成物は、更にアクリル樹脂、又はアミド基を有する樹脂を含有することが好ましい。   The first and second thermosetting resin compositions preferably further contain an acrylic resin or a resin having an amide group.

アクリル樹脂としては、アクリル酸モノマ、メタクリル酸モノマ、アクリロニトリル、グリシジル基を有するアクリルモノマ等を単独もしくはこれらを複数共重合した共重合物からなる樹脂を使用することが可能である。分子量は特に規定されるものではないが、カラムGMHXL(東ソー株式会社製)を3本直結して使用し、THFを溶離液として用いて測定したときに、標準ポリスチレン換算の重量平均分子量で30万〜120万、好ましくは40万〜100万のものが用いられる。アクリル樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。 As the acrylic resin, it is possible to use a resin composed of an acrylic acid monomer, a methacrylic acid monomer, acrylonitrile, an acrylic monomer having a glycidyl group, or a copolymer obtained by copolymerizing a plurality of these. Although the molecular weight is not particularly defined, when three columns GMH XL (manufactured by Tosoh Corporation) are directly connected and measured using THF as an eluent, the weight average molecular weight in terms of standard polystyrene is 30. 10,000 to 1,200,000, preferably 400,000 to 1,000,000 are used. An acrylic resin can be used individually by 1 type or in combination of 2 or more types.

第1及び第2の熱硬化性樹脂組成物における、アクリル樹脂の含有量は、熱硬化性樹脂100質量部に対して15〜70質量部であることが好ましく、20〜60質量部であることがより好ましい。   The content of the acrylic resin in the first and second thermosetting resin compositions is preferably 15 to 70 parts by mass with respect to 100 parts by mass of the thermosetting resin, and 20 to 60 parts by mass. Is more preferable.

アミド基を有する樹脂としては、ポリアミドイミド樹脂が好ましく、シロキサン構造を含む構造を有するシロキサン変性ポリアミドイミド樹脂がより好ましい。このシロキサン変性ポリアミドイミド樹脂は、芳香族環を2個以上有するジアミン及びシロキサンジアミンの混合物と無水トリメリット酸とを反応させて得られるジイミドジカルボン酸を含む混合物と、芳香族ジイソシアネートとを反応させて得られたものであると特に好ましい。アミド基を有する樹脂は、1種を単独で又は2種以上を組み合わせて用いることができる。   As the resin having an amide group, a polyamideimide resin is preferable, and a siloxane-modified polyamideimide resin having a structure including a siloxane structure is more preferable. This siloxane-modified polyamideimide resin is obtained by reacting a mixture containing a diimide dicarboxylic acid obtained by reacting a mixture of a diamine having two or more aromatic rings and a siloxane diamine with trimellitic anhydride, and an aromatic diisocyanate. It is particularly preferable that it is obtained. The resin which has an amide group can be used individually by 1 type or in combination of 2 or more types.

第1及び第2の熱硬化性樹脂組成物における、アミド基を有する樹脂の含有量は、熱硬化性樹脂100質量部に対して50〜90質量部であることが好ましく、60〜80質量部であることがより好ましい。   In the first and second thermosetting resin compositions, the content of the resin having an amide group is preferably 50 to 90 parts by mass, and 60 to 80 parts by mass with respect to 100 parts by mass of the thermosetting resin. It is more preferable that

第1及び第2の熱硬化性樹脂組成物は、更に硬化剤及び/又は硬化促進剤を含有することが好ましい。特に、熱硬化性樹脂としてエポキシ樹脂を含む場合には、硬化剤として、ジシアンジアミド、ジアミノジフェニルメタン、ジアミノジフェニルスルフォン、無水フタル酸、無水ピロメリット酸、フェノールノボラックやクレゾールノボラック等の多官能性フェノール等を、硬化促進剤として、イミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等を好適に用いることができる。硬化剤及び/又は硬化促進剤は、1種を単独で又は2種以上を組み合わせて用いることができる。   It is preferable that the first and second thermosetting resin compositions further contain a curing agent and / or a curing accelerator. In particular, when an epoxy resin is included as the thermosetting resin, polyfunctional phenols such as dicyandiamide, diaminodiphenylmethane, diaminodiphenylsulfone, phthalic anhydride, pyromellitic anhydride, phenol novolac and cresol novolac are used as curing agents. As the curing accelerator, an imidazole compound, an organic phosphorus compound, a tertiary amine, a quaternary ammonium salt, or the like can be suitably used. A hardening | curing agent and / or a hardening accelerator can be used individually by 1 type or in combination of 2 or more types.

第1及び第2の熱硬化性樹脂組成物における硬化剤の含有量は、熱硬化性樹脂100質量部に対して3〜50質量部であることが好ましく、硬化促進剤の含有量は、熱硬化性樹脂100質量部に対して0.001〜5質量部であることが好ましい。   The content of the curing agent in the first and second thermosetting resin compositions is preferably 3 to 50 parts by mass with respect to 100 parts by mass of the thermosetting resin, and the content of the curing accelerator is the heat. It is preferable that it is 0.001-5 mass parts with respect to 100 mass parts of curable resin.

第1及び第2の熱硬化性樹脂組成物は、更に難燃剤、流動調整剤、カップリング剤等を含有していてもよい。   The first and second thermosetting resin compositions may further contain a flame retardant, a flow regulator, a coupling agent, and the like.

難燃剤としては、例えば水酸化アルミニウム、リン含有フィラー、臭素系化合物、リン系化合物、窒素系化合物、水和金属化合物が挙げられる。   Examples of the flame retardant include aluminum hydroxide, phosphorus-containing filler, bromine-based compound, phosphorus-based compound, nitrogen-based compound, and hydrated metal compound.

流動調整剤としては、例えばシリコン系化合物、アクリル系化合物が挙げられる。   Examples of the flow regulator include silicon compounds and acrylic compounds.

カップリング剤としては、例えばビニル系シランカップリング剤、エポキシ系シランカップリング剤、アミノ系シランカップリング剤、メルカプト系シランカップリング剤が挙げられる。   Examples of the coupling agent include a vinyl silane coupling agent, an epoxy silane coupling agent, an amino silane coupling agent, and a mercapto silane coupling agent.

なお、第1及び第2の熱硬化性樹脂組成物は、必要に応じて各種溶剤の溶液としてもよい。溶剤としては、アルコール系、エーテル系、ケトン系、アミド系、芳香族炭化水素系、エステル系、ニトリル系等、上述の成分との反応性が十分に小さいものであればよく、数種類を併用した混合溶剤を用いることもできる。   In addition, the 1st and 2nd thermosetting resin composition is good also as a solution of various solvents as needed. As the solvent, any alcohol-based, ether-based, ketone-based, amide-based, aromatic hydrocarbon-based, ester-based, nitrile-based, or the like may be used as long as the reactivity with the above-described components is sufficiently small. A mixed solvent can also be used.

第1及び第2の熱硬化性樹脂組成物における溶剤の含有量は、熱硬化性樹脂組成物中の固形分及び繊維基材の総量に対して、30〜80質量%とすることが好ましい。   It is preferable that content of the solvent in the 1st and 2nd thermosetting resin composition shall be 30-80 mass% with respect to solid content in a thermosetting resin composition, and the total amount of a fiber base material.

第1の樹脂層11は、第1の熱硬化性樹脂組成物が半硬化(Bステージ化)された状態にあるものであり、第2の樹脂層12は、第2の熱硬化性樹脂組成物が半硬化(Bステージ化)された状態にあるものである。   The first resin layer 11 is in a state where the first thermosetting resin composition is semi-cured (B-staged), and the second resin layer 12 is a second thermosetting resin composition. The product is in a semi-cured (B-stage) state.

第1の樹脂層11の厚さは、繊維基材10の厚さと同じ厚さ、又はそれ以上の厚さであればよいが、繊維基材10の厚さよりも0〜10μm程度厚いことが好ましい。第1の樹脂層11の厚さと繊維基材10との厚さの差が10μmを超えると、耐折性が低下するおそれがある。   Although the thickness of the 1st resin layer 11 should just be the same thickness as the thickness of the fiber base material 10, or the thickness beyond it, it is preferable that it is thick about 0-10 micrometers from the thickness of the fiber base material 10. . If the difference between the thickness of the first resin layer 11 and the fiber base material 10 exceeds 10 μm, the folding resistance may be lowered.

プリプレグ100の厚さは200μm以下であることが望ましい。この厚さが200μmを超えると耐折性が低下するおそれがある。さらに、繊維基材について、両側の樹脂層の厚さに違いがないほうが耐折性が向上する。   The thickness of the prepreg 100 is desirably 200 μm or less. If this thickness exceeds 200 μm, folding resistance may be reduced. Furthermore, the folding resistance of the fiber base material is improved when there is no difference in the thickness of the resin layers on both sides.

なお、本発明に係るプリプレグにおいて、第1の樹脂層上に、熱硬化性樹脂組成物から形成された樹脂層が2層以上形成された場合であっても、第1の樹脂層と、プリプレグの最表面の樹脂層との間に配置される中間樹脂層については特に限定されず、上記式(1)を満たしていればよい。中間樹脂層は、上述した第1及び第2の熱硬化性樹脂組成物と同様の材料から形成することができる。   In the prepreg according to the present invention, even when two or more resin layers formed from the thermosetting resin composition are formed on the first resin layer, the first resin layer and the prepreg The intermediate resin layer disposed between the outermost resin layer and the outermost resin layer is not particularly limited as long as the above formula (1) is satisfied. The intermediate resin layer can be formed from the same material as the first and second thermosetting resin compositions described above.

中間樹脂層を形成する熱硬化性組成物から形成される樹脂フィルムの弾性率は、第1の熱硬化性樹脂組成物から形成される樹脂フィルムの弾性率と同等又はそれよりも小さいことが好ましく、第2の熱硬化性樹脂組成物から形成される樹脂フィルムの弾性率よりも大きいことが好ましい。中間樹脂層が複数ある場合には、第1の樹脂層から、プリプレグの最表面の樹脂層に向かって、上記樹脂フィルムの弾性率が段階的に小さくなることが好ましい。   The elastic modulus of the resin film formed from the thermosetting composition forming the intermediate resin layer is preferably equal to or smaller than the elastic modulus of the resin film formed from the first thermosetting resin composition. The elastic modulus of the resin film formed from the second thermosetting resin composition is preferably larger. When there are a plurality of intermediate resin layers, it is preferable that the elastic modulus of the resin film decreases stepwise from the first resin layer toward the outermost resin layer of the prepreg.

プリプレグ100は、上述の第1及び第2の熱硬化性樹脂組成物を用いて、次のようにして製造することができる。   The prepreg 100 can be manufactured as follows using the above-described first and second thermosetting resin compositions.

まず、第1の熱硬化性樹脂組成物を繊維基材10に含浸し、次いで、第2の熱硬化性樹脂組成物を、第1の熱硬化性樹脂組成物から形成された第1の樹脂層上に塗布し、70〜150℃で、5〜20分加熱することにより、第2の樹脂層を形成し、プリプレグ100が得られる。なお、第1の樹脂層及び第2の樹脂層は、2回の加熱のうちのいずれかで半硬化される。   First, the fiber substrate 10 is impregnated with the first thermosetting resin composition, and then the second thermosetting resin composition is formed from the first thermosetting resin composition. By applying on the layer and heating at 70 to 150 ° C. for 5 to 20 minutes, the second resin layer is formed and the prepreg 100 is obtained. Note that the first resin layer and the second resin layer are semi-cured by one of the two heating operations.

第1の熱硬化性樹脂組成物を繊維基材10に含浸する方法としては、例えば、塗工機により塗布する方法等が挙げられる。   Examples of the method of impregnating the fiber base material 10 with the first thermosetting resin composition include a method of applying with a coating machine.

なお、上述の製造方法において、溶剤を用いた場合には、溶剤が揮発可能な温度以上で乾燥し、使用した溶剤が80質量%以上揮発していることが好ましい。   In the above production method, when a solvent is used, it is preferable that the solvent is dried at a temperature at which the solvent can be volatilized or more, and the used solvent is volatilized by 80% by mass or more.

なお、第1の樹脂層と、プリプレグの最表面の樹脂層との間に配置される中間樹脂層が複数存在するプリプレグは、適宜上述の塗布及び加熱を繰り返すことにより製造することができる。   A prepreg having a plurality of intermediate resin layers disposed between the first resin layer and the outermost resin layer of the prepreg can be manufactured by repeating the above-described application and heating as appropriate.

図2は、本発明による金属箔張積層板の好適な一実施形態を示す部分断面図である。金属箔張積層板200は、複数枚のプリプレグ100を積層した積層体を加熱及び加圧して得られるシート状の基板30と、基板30の両面に密着して設けられた2枚の金属箔20とで構成される。   FIG. 2 is a partial cross-sectional view showing a preferred embodiment of a metal foil-clad laminate according to the present invention. The metal foil-clad laminate 200 includes a sheet-like substrate 30 obtained by heating and pressing a laminate in which a plurality of prepregs 100 are laminated, and two metal foils 20 provided in close contact with both surfaces of the substrate 30. It consists of.

基板30は、複数のプリプレグ100に由来する複数の繊維強化樹脂層3が積層された積層体からなる。金属箔張積層板及び印刷配線板の柔軟性を高めるため、基板30の厚みは10〜200μmであることが好ましい。   The substrate 30 is made of a laminate in which a plurality of fiber reinforced resin layers 3 derived from a plurality of prepregs 100 are laminated. In order to increase the flexibility of the metal foil-clad laminate and the printed wiring board, the thickness of the substrate 30 is preferably 10 to 200 μm.

金属箔張積層板200は、所定枚数(好ましくは6枚以下、より好ましくは2枚以下、特に好ましくは1枚)のプリプレグ100を積層した積層体の両面に金属箔を重ね、これを加熱及び加圧することにより、得られる。このとき、加熱する温度及び圧力は特に限定されないが、加熱する温度は通常80〜250℃(好ましくは130〜230℃)で、圧力は通常0.5〜8.0MPa(好ましくは1.5〜5.0MPa)の範囲である。また、加熱及び加圧には、真空プレスが好適に用いられる。   The metal foil-clad laminate 200 is formed by stacking metal foil on both surfaces of a laminate in which a predetermined number (preferably 6 or less, more preferably 2 or less, particularly preferably 1) of prepregs 100 are laminated, It is obtained by pressurization. At this time, the heating temperature and pressure are not particularly limited, but the heating temperature is usually 80 to 250 ° C. (preferably 130 to 230 ° C.), and the pressure is usually 0.5 to 8.0 MPa (preferably 1.5 to 5.0 MPa). A vacuum press is suitably used for heating and pressurization.

金属箔20としては、例えば、金箔、銅箔、アルミニウム箔が挙げられるが、銅箔が好ましい。金属箔20としては、金属箔張積層板及び印刷配線板の耐折性を向上させるために、厚さ0.01〜30μmのものを使用することが好ましく、厚さ5〜20μmのものを使用することがより好ましい。   Examples of the metal foil 20 include a gold foil, a copper foil, and an aluminum foil, and a copper foil is preferable. As the metal foil 20, in order to improve the folding resistance of the metal foil-clad laminate and the printed wiring board, it is preferable to use the one having a thickness of 0.01 to 30 μm, and the one having a thickness of 5 to 20 μm is used. More preferably.

金属箔張積層板の実施形態は、上記のような態様に限定されない。例えば、1枚のプリプレグ100を用いて、基板を1層の繊維強化樹脂層からなるものとしてもよいし、基板の片側のみに金属箔を設けてもよい。また、金属箔張積層板の金属箔をフォトリソグラフィーや、エッチング等によりパターン化し、回路加工することにより、本発明に係る印刷配線板を得ることもできる。   The embodiment of the metal foil-clad laminate is not limited to the above aspect. For example, using one prepreg 100, the substrate may be composed of one fiber reinforced resin layer, or a metal foil may be provided on only one side of the substrate. Moreover, the printed wiring board which concerns on this invention can also be obtained by patterning the metal foil of a metal foil tension laminated board by photolithography, an etching, etc., and processing a circuit.

図3は、本発明による印刷配線板の好適な一実施形態を示す模式断面図である。図3に示される印刷配線板300は多層印刷配線板であり、貫通孔311に導電体312が充填された絶縁基板310の両側に内層回路313a、bをそれぞれ配してなる内層回路基板315と、その内層回路基板315の両側に設けられた、貫通孔321a、bに導電体322a、bがそれぞれ充填された絶縁基板320a、bと、それら絶縁基板320a、bの外側に形成された回路323a、bと、を備える。   FIG. 3 is a schematic cross-sectional view showing a preferred embodiment of a printed wiring board according to the present invention. A printed wiring board 300 shown in FIG. 3 is a multilayer printed wiring board, and includes an inner layer circuit board 315 formed by arranging inner layer circuits 313a and 313b on both sides of an insulating substrate 310 in which a through hole 311 is filled with a conductor 312. Insulating substrates 320a, b provided on both sides of the inner circuit board 315, with through holes 321a, b filled with conductors 322a, b, respectively, and circuits 323a formed outside the insulating substrates 320a, 320b , B.

印刷配線板300は、例えば以下のようにして形成される。まず内層回路基板315の両側に、本発明によるプリプレグ100を積層し、加熱及び加圧により硬化して絶縁基板320a、bを形成する。次いで、絶縁基板320a、bに貫通孔321a、bを設け、そこに導電体322a、bを充填する。そして、絶縁基板320a、bの外側にパターン化された回路323a、bを形成して印刷配線板300を完成する。   The printed wiring board 300 is formed as follows, for example. First, the prepreg 100 according to the present invention is laminated on both sides of the inner circuit board 315 and cured by heating and pressing to form insulating substrates 320a and 320b. Next, through holes 321a and b are provided in the insulating substrates 320a and 320b, and conductors 322a and b are filled therein. Then, patterned circuits 323a and 323b are formed outside the insulating substrates 320a and 320b, thereby completing the printed wiring board 300.

あるいは、内層回路基板315の両側に、本発明に係るプリプレグ100を積層し、貫通孔321a、bを設け、そこに導電体322a、bを充填する。更に、プリプレグ100の外側に金属箔を積層して、加熱及び加圧を施した後に、金属箔をエッチング等によりパターン化して回路323a、bを形成し、印刷配線板300を完成する。   Alternatively, the prepreg 100 according to the present invention is laminated on both sides of the inner layer circuit board 315, through holes 321a and b are provided, and conductors 322a and b are filled therein. Furthermore, after laminating a metal foil on the outside of the prepreg 100 and applying heat and pressure, the metal foil is patterned by etching or the like to form circuits 323a and b, thereby completing the printed wiring board 300.

金属箔張積層板200及び印刷配線板300は、上記本発明のプリプレグを用いているので、耐折性に優れる。   Since the metal foil-clad laminate 200 and the printed wiring board 300 use the prepreg of the present invention, they have excellent folding resistance.

以下に実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

(シロキサン変性ポリアミドイミド樹脂Aの合成)
環流冷却器を連結したコック付き50mlの水分定量受器、温度計、撹拌器を備えた5リットルのセパラブルフラスコに、芳香族ジアミンとしてBAPP(2,2−ビス[4−(4’−アミノフェノキシ)フェニル]プロパン)(和歌山精化株式会社製)197.0g(0.24mol)とDDS(ジアミノジフェニルスルフォン)(和歌山精化株式会社製)119.2g(0.24mol)、シロキサンジアミンとして反応性シリコ−ンオイルKF8010(信越化学工業株式会社製、アミン当量430)26.4g(0.12mol)、TMA(無水トリメリット酸)(三菱瓦斯化学株式会社製)484.1g(1.26mol)、非プロトン性極性溶媒としてNMP(N−メチルピロリドン)3190gを仕込み、80℃で30分間撹拌した。
その後、水と共沸可能な芳香族炭化水素としてトルエン500mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約21.6ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)(日本ポリウレタン株式会社製)360.4g(0.72mol)を投入し、190℃で2時間反応させた。反応終了後、シロキサン変性ポリアミドイミド樹脂AのNMP溶液(樹脂固形分31.2%)を得た。
(Synthesis of siloxane-modified polyamideimide resin A)
Into a 5 liter separable flask equipped with a faucet with a cock connected to a reflux condenser, a thermometer and a stirrer, BAPP (2,2-bis [4- (4′-amino) as an aromatic diamine was added. Phenoxy) phenyl] propane) (produced by Wakayama Seika Co., Ltd.) 197.0 g (0.24 mol) and DDS (diaminodiphenylsulfone) (produced by Wakayama Seika Co., Ltd.) 119.2 g (0.24 mol), reacted as siloxane diamine Silicone oil KF8010 (manufactured by Shin-Etsu Chemical Co., Ltd., amine equivalent 430) 26.4 g (0.12 mol), TMA (trimellitic anhydride) (manufactured by Mitsubishi Gas Chemical Co., Ltd.) 484.1 g (1.26 mol), Charge 3190 g of NMP (N-methylpyrrolidone) as an aprotic polar solvent and stir at 80 ° C. for 30 minutes did.
Thereafter, 500 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that about 21.6 ml or more of water has accumulated in the moisture determination receiver and that water is no longer being distilled, while removing the distillate that has accumulated in the moisture determination receiver, about 190 The temperature was raised to 0 ° C. to remove toluene. Thereafter, the solution was returned to room temperature, and 360.4 g (0.72 mol) of MDI (4,4′-diphenylmethane diisocyanate) (manufactured by Nippon Polyurethane Co., Ltd.) was added as an aromatic diisocyanate and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of siloxane-modified polyamideimide resin A (resin solid content 31.2%) was obtained.

[配合例1]
以下に示す樹脂組成物をメチルイソブチルケトンに溶解し、樹脂固形分が30wt%になるように調整して、配合例1のワニス(熱硬化性樹脂組成物)を得た。
ビフェニルノボラック型エポキシ樹脂(日本化薬株式会社製、商品名NC−3000H):44質量部
アミノトリアジンノボラックエポキシ樹脂(大日本インキ化学工業株式会社製、商品名LA−3018):11質量部
2−フェニルイミダゾール(JSR株式会社製、商品名G−8009L):0.2質量部
アクリル樹脂(ナガセケムテックス株式会社製):30質量部
[Formulation Example 1]
The resin composition shown below was dissolved in methyl isobutyl ketone and adjusted so that the resin solid content was 30 wt% to obtain a varnish (thermosetting resin composition) of Formulation Example 1.
Biphenyl novolac epoxy resin (Nippon Kayaku Co., Ltd., trade name NC-3000H): 44 parts by mass Aminotriazine novolac epoxy resin (Dainippon Ink Chemical Co., Ltd., trade name LA-3018): 11 parts by mass 2- Phenylimidazole (manufactured by JSR Corporation, trade name G-8809L): 0.2 parts by mass Acrylic resin (manufactured by Nagase ChemteX Corporation): 30 parts by mass

[配合例2]
以下に示す樹脂組成物をメチルイソブチルケトンに溶解し、樹脂固形分が30wt%になるように調整して、配合例2のワニスを得た。
ビフェニルノボラック型エポキシ樹脂(日本化薬株式会社製、商品名NC−3000H):37質量部
アミノトリアジンノボラックエポキシ樹脂(大日本インキ化学工業株式会社製、商品名LA−3018):9質量部
2−フェニルイミダゾール(JSR株式会社製、商品名G−8009L):0.2質量部
アクリル樹脂(ナガセケムテックス株式会社製):40質量部
[Formulation Example 2]
The resin composition shown below was dissolved in methyl isobutyl ketone and adjusted so that the resin solid content was 30 wt%, whereby a varnish of Formulation Example 2 was obtained.
Biphenyl novolac epoxy resin (Nippon Kayaku Co., Ltd., trade name NC-3000H): 37 parts by mass Aminotriazine novolac epoxy resin (Dainippon Ink Chemical Co., Ltd., trade name LA-3018): 9 parts by mass 2- Phenylimidazole (manufactured by JSR Corporation, trade name G-8809L): 0.2 parts by mass Acrylic resin (manufactured by Nagase ChemteX Corporation): 40 parts by mass

[配合例3]
以下に示す樹脂組成物をメチルイソブチルケトンに溶解し、樹脂固形分が30wt%になるように調整して、配合例3のワニスを得た。
ビフェニルノボラック型エポキシ樹脂(日本化薬株式会社製、商品名NC−3000H):33質量部
アミノトリアジンノボラックエポキシ樹脂(大日本インキ化学工業株式会社製、商品名LA−3018):8質量部
2−フェニルイミダゾール(JSR株式会社製、商品名G−8009L):0.2質量部
アクリル樹脂(ナガセケムテックス株式会社製):45質量部
[Composition Example 3]
The resin composition shown below was dissolved in methyl isobutyl ketone and adjusted so that the resin solid content was 30 wt%, whereby a varnish of Formulation Example 3 was obtained.
Biphenyl novolac epoxy resin (Nippon Kayaku Co., Ltd., trade name NC-3000H): 33 parts by mass Aminotriazine novolac epoxy resin (Dainippon Ink Chemical Co., Ltd., trade name LA-3018): 8 parts by mass 2- Phenylimidazole (manufactured by JSR Corporation, trade name G-8809L): 0.2 parts by mass Acrylic resin (manufactured by Nagase ChemteX Corporation): 45 parts by mass

[配合例4]
ポリアミドイミド樹脂(日立化成コーテットサンド株式会社製、商品名CSD40)24.87kg(樹脂固形分28.1質量%)に、サリチルアルデヒド−ノボラック型エポキシ樹脂(日本化薬株式会社製、商品名EPPN502H)2.0kg(樹脂固形分50質量%のメチルエチルケトン溶液)、2官能ナフタレン系エポキシ樹脂(日本化薬株式会社製、商品名HP4032D)3.0kg、ビフェニルアラルキルエポキシ樹脂(日本化薬株式会社製、商品名NC3000)1.0kg(樹脂固形分50質量%のメチルエチルケトン溶液)、及び1−シアノエチル−2−エチル−1−メチルイミダゾール8.0gを配合し、さらにリン含有フィラー(クラリアント社製、商品名OP930)1.0kg、及び水酸化アルミニウム(昭和電工株式会社製、商品名HP360)1.5kgを加えて樹脂が均一になるまで約3時間撹拌した。その後、脱泡のため24時間、室温で静置して、配合例4のワニスを得た。
[Formulation Example 4]
Polyamideimide resin (manufactured by Hitachi Chemical Coated Sand Co., Ltd., trade name CSD40) 24.87 kg (resin solid content 28.1% by mass), salicylaldehyde-novolak type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name EPPN502H) ) 2.0 kg (methyl ethyl ketone solution with a resin solid content of 50% by mass), bifunctional naphthalene epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name HP4032D) 3.0 kg, biphenyl aralkyl epoxy resin (manufactured by Nippon Kayaku Co., Ltd.) Product name NC3000) 1.0 kg (methyl ethyl ketone solution having a resin solid content of 50% by mass) and 8.0 g of 1-cyanoethyl-2-ethyl-1-methylimidazole were added, and further a phosphorus-containing filler (trade name, manufactured by Clariant) OP930) 1.0 kg, and aluminum hydroxide (Showa) Manufactured by Engineering Ltd., trade name HP360) was added to 1.5kg was stirred for about 3 hours until the resin became uniform. Then, it left still at room temperature for 24 hours for defoaming, and the varnish of the mixing example 4 was obtained.

[配合例5]
ポリアミドイミド樹脂(日立化成工業株式会社製、商品名KS7003)23.18kg(樹脂固形分30.2質量%)に、サリチルアルデヒド−ノボラック型エポキシ樹脂(日本化薬株式会社製、商品名EPPN502H)2.0kg(樹脂固形分50質量%のメチルエチルケトン溶液)、2官能ナフタレン系エポキシ樹脂(日本化薬株式会社製、商品名HP4032D)3.0kg、ビフェニルアラルキルエポキシ樹脂(日本化薬株式会社製、商品名NC3000)1.0kg(樹脂固形分50質量%のメチルエチルケトン溶液)、及び1−シアノエチル−2−エチル−1−メチルイミダゾール8.0gを配合し、さらにリン含有フィラー(クラリアント社製、商品名OP930)1.0kg、及び水酸化アルミニウム(昭和電工株式会社製、商品名HP360)1.5kgを加えて樹脂が均一になるまで約3時間撹拌した。その後、脱泡のため24時間、室温で静置して、配合例5のワニスを得た。
[Formulation Example 5]
Polyamideimide resin (manufactured by Hitachi Chemical Co., Ltd., trade name KS7003) 23.18 kg (resin solid content 30.2 mass%), salicylaldehyde-novolak type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name EPPN502H) 2 0.0 kg (methyl ethyl ketone solution having a resin solid content of 50% by mass), bifunctional naphthalenic epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name HP4032D) 3.0 kg, biphenyl aralkyl epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name) NC3000) 1.0 kg (methyl ethyl ketone solution having a resin solid content of 50% by mass) and 8.0 g of 1-cyanoethyl-2-ethyl-1-methylimidazole were added, and a phosphorus-containing filler (trade name OP930, manufactured by Clariant) 1.0kg and aluminum hydroxide (Showa Denko Co., Ltd. Ltd., trade name HP360) was added to 1.5kg was stirred for about 3 hours until the resin became uniform. Then, it left still at room temperature for 24 hours for defoaming, and the varnish of the compounding example 5 was obtained.

[配合例6]
ポリアミドイミド樹脂(日立化成工業株式会社製、商品名KS9900B)22.44kg(樹脂固形分31.2質量%)に、サリチルアルデヒド−ノボラック型エポキシ樹脂(日本化薬株式会社製、商品名EPPN502H)2.0kg(樹脂固形分50質量%のメチルエチルケトン溶液)、2官能ナフタレン系エポキシ樹脂(日本化薬株式会社製、商品名HP4032D)3.0kg、ビフェニルアラルキルエポキシ樹脂(日本化薬株式会社製、商品名NC3000)1.0kg(樹脂固形分50質量%のメチルエチルケトン溶液)、及び1−シアノエチル−2−エチル−1−メチルイミダゾール8.0gを配合し、さらにリン含有フィラー(クラリアント社製、商品名OP930)1.0kg、水酸化アルミニウム(昭和電工株式会社製、商品名HP360)1.5kgを加えて樹脂が均一になるまで約3時間撹拌した。その後、脱泡のため24時間、室温で静置して、配合例6のワニスを得た。
[Composition Example 6]
Polyamideimide resin (manufactured by Hitachi Chemical Co., Ltd., trade name: KS9900B) 22.44 kg (resin solid content: 31.2% by mass), salicylaldehyde-novolak type epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name: EPPN502H) 2 0.0 kg (methyl ethyl ketone solution having a resin solid content of 50% by mass), bifunctional naphthalenic epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name HP4032D) 3.0 kg, biphenyl aralkyl epoxy resin (manufactured by Nippon Kayaku Co., Ltd., trade name) NC3000) 1.0 kg (methyl ethyl ketone solution having a resin solid content of 50% by mass) and 8.0 g of 1-cyanoethyl-2-ethyl-1-methylimidazole were added, and a phosphorus-containing filler (trade name OP930, manufactured by Clariant) 1.0kg, aluminum hydroxide (Showa Denko KK , Trade name HP360) was added to 1.5kg was stirred for about 3 hours until the resin became uniform. Then, it left still at room temperature for 24 hours for defoaming, and the varnish of the mixing example 6 was obtained.

[配合例7]
以下に示す樹脂組成物をプロピレングリコールモノメチルエーテルに溶解し、樹脂固形分が70wt%になるように調整して、配合例7のワニスを得た。
臭素化ビスフェノールA型エポキシ樹脂(エポキシ当量:530):100質量部
ジシアンジアミド:4質量部
イミダゾール(四国化成株式会社製、商品名2E4MZ):0.5質量部
[Formulation Example 7]
The resin composition shown below was dissolved in propylene glycol monomethyl ether and adjusted so that the resin solid content was 70 wt% to obtain a varnish of Formulation Example 7.
Brominated bisphenol A type epoxy resin (epoxy equivalent: 530): 100 parts by mass Dicyandiamide: 4 parts by mass Imidazole (manufactured by Shikoku Kasei Co., Ltd., trade name 2E4MZ): 0.5 parts by mass

[配合例8]
上記シロキサン変性ポリミドイミド樹脂AのNMP溶液2564g(固形分800g)、エポキシ樹脂としてEPPN−502H(日本化薬株式会社製商品名)の50%MEK溶液400g(固形分200g)、2−エチル−4−メチルイミダゾール5%MEK溶液40g(固形分2g)を配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温で静置し配合例8のワニスを得た。
[Formulation Example 8]
2564 g of NMP solution of the above siloxane-modified polyimideimide resin A (solid content: 800 g), 400 g of EPPN-502H (trade name, manufactured by Nippon Kayaku Co., Ltd.) as an epoxy resin, 400 g (solid content: 200 g), 2-ethyl-4- After blending 40 g of methylimidazole 5% MEK solution (solid content 2 g) and stirring for about 1 hour until the resin became uniform, the mixture was allowed to stand for 24 hours at room temperature to obtain a varnish of Formulation Example 8.

(樹脂付き銅箔の作製)
[作製例1]
厚みが18μmの銅箔(日本電解社製、商品名HLA18)の上に、配合例1のワニスを乾燥後の樹脂の厚みが50μmになるように横型塗工機で塗布した。これを、100〜140℃の乾燥炉で滞留時間5分にて加熱乾燥して作製例1の樹脂付き銅箔を作製した。
(Preparation of copper foil with resin)
[Production Example 1]
On a copper foil having a thickness of 18 μm (trade name HLA18, manufactured by Nippon Electrolytic Co., Ltd.), the varnish of Formulation Example 1 was applied with a horizontal coating machine so that the thickness of the resin after drying was 50 μm. This was heat-dried at a residence time of 5 minutes in a drying furnace at 100 to 140 ° C. to produce a resin-coated copper foil of Production Example 1.

[作製例2〜7]
配合例1のワニスに代えて、配合例2〜7のワニスをそれぞれ用いた他は作製例1と同様にして、作製例2〜7の樹脂付き銅箔を作製した。
[Production Examples 2 to 7]
Resin-coated copper foils of Preparation Examples 2 to 7 were prepared in the same manner as Preparation Example 1 except that the varnishes of Formulation Examples 2 to 7 were used instead of the varnish of Formulation Example 1.

(プリプレグの作製)
[実施例1]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例1のワニスを乾燥後の第1の樹脂層の厚みが20μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例2のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例2の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
(Preparation of prepreg)
[Example 1]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) was coated with a vertical coating machine so that the thickness of the first resin layer after drying of the formulation example 1 was 20 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 2 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the both sides of the laminate were laminated together with the resin-side surfaces of the resin-coated copper foil of Production Example 2, and a double-sided copper-clad laminate was produced at 170 ° C. for 90 minutes at 4.0 MPa. Then, what etched copper foil was made into the evaluation board | substrate.

[実施例2]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例1のワニスを乾燥後の第1の樹脂層の厚みが20μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例3のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例3の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Example 2]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) was coated with a vertical coating machine so that the thickness of the first resin layer after drying of the formulation example 1 was 20 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 3 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the resin-side surfaces of the resin-coated copper foil of Production Example 3 were laminated on both sides of the laminate, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[実施例3]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例1のワニスを乾燥後の第1の樹脂層の厚みが30μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例3のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例3の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Example 3]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) was coated with a vertical coating machine so that the thickness of the first resin layer after drying of the formulation example 1 was 30 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 3 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the resin-side surfaces of the resin-coated copper foil of Production Example 3 were laminated on both sides of the laminate, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[実施例4]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例1のワニスを乾燥後の第1の樹脂層の厚みが40μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例3のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例3の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Example 4]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) was applied with a vertical coating machine so that the thickness of the first resin layer after drying of the formulation example 1 was 40 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 3 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the resin-side surfaces of the resin-coated copper foil of Production Example 3 were laminated on both sides of the laminate, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[実施例5]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例2のワニスを乾燥後の第1の樹脂層の厚みが20μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例3のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板のライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例3の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Example 5]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) was coated with a vertical coating machine so that the thickness of the first resin layer after drying of the varnish of Formulation Example 2 was 20 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 3 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on the double-sided copper foil-clad laminate, and the entire surface of the opposite surface was etched. Thereafter, the resin-side surfaces of the resin-coated copper foil of Production Example 3 were laminated on both sides of the laminate, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[実施例6]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例6のワニスを乾燥後の第1の樹脂層の厚みが20μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例3のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例3の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Example 6]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) is coated with a vertical coating machine so that the thickness of the first resin layer after drying of the formulation example 6 is 20 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 3 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the resin-side surfaces of the resin-coated copper foil of Production Example 3 were laminated on both sides of the laminate, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[実施例7]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例4のワニスを乾燥後の第1の樹脂層の厚みが20μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例5のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例5の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Example 7]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) was coated with a vertical coating machine so that the thickness of the first resin layer after drying of the formulation example 4 was 20 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 5 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the resin-side surfaces of the resin-coated copper foil of Preparation Example 5 were laminated together on both sides of the laminate, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[実施例8]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例6のワニスを乾燥後の第1の樹脂層の厚みが20μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例5のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板のライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例5の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Example 8]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) is coated with a vertical coating machine so that the thickness of the first resin layer after drying of the formulation example 6 is 20 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 5 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on the double-sided copper foil-clad laminate, and the entire surface of the opposite surface was etched. Thereafter, the resin-side surfaces of the resin-coated copper foil of Preparation Example 5 were laminated together on both sides of the laminate, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[実施例9]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例8のワニスを乾燥後の第1の樹脂層の厚みが20μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例3のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板のライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例3の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Example 9]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) was coated with a vertical coating machine so that the thickness of the first resin layer after drying of the formulation example 8 was 20 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 3 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on the double-sided copper foil-clad laminate, and the entire surface of the opposite surface was etched. Thereafter, the resin-side surfaces of the resin-coated copper foil of Production Example 3 were laminated on both sides of the laminate, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[比較例1]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例1のワニスを乾燥後のプリプレグ(第1の樹脂層)の厚みが50μmになるように縦型塗工機で塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例1の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Comparative Example 1]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) is coated with a vertical coating machine so that the prepreg (first resin layer) after drying the varnish of Formulation Example 1 has a thickness of 50 μm. , 120 to 150 ° C., and dried by heating in 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the resin-side surfaces of the resin-coated copper foil of Preparation Example 1 were laminated on both sides of the laminate and laminated, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[比較例2]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例7のワニスを乾燥後のプリプレグ(第1の樹脂層)の厚みが50μmになるように縦型塗工機で塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例7の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Comparative Example 2]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) is coated with a vertical coater so that the prepreg (first resin layer) after drying the varnish of Formulation Example 7 has a thickness of 50 μm. , 120 to 150 ° C., and dried by heating in 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the resin-side surfaces of the copper foil with resin of Preparation Example 7 were laminated on both sides of the laminate, and a double-sided copper-clad laminate was produced at 170 ° C. for 90 minutes at 4.0 MPa. Then, what etched copper foil was made into the evaluation board | substrate.

[比較例3]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例7のワニスを乾燥後の第1の樹脂層の厚みが20μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例3のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例3の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Comparative Example 3]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) is coated with a vertical coating machine so that the thickness of the first resin layer after drying of the varnish of Formulation Example 7 is 20 μm. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 3 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the resin-side surfaces of the resin-coated copper foil of Production Example 3 were laminated on both sides of the laminate, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

[比較例4]
ガラスクロスWEX−1027(旭シュエーベル株式会社製、厚み19μm)に、配合例3のワニスを乾燥後の第1の樹脂層の厚みが20μmになるように縦型塗工機で塗布し、70℃〜150℃の乾燥炉で滞留時間1〜5分にて加熱した。その後、配合例1のワニスを乾燥後のプリプレグの厚みが50μmとなるように両面に塗布し、120〜150℃、10分で加熱乾燥し、プリプレグを得た。
このプリプレグの両側の面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。この両面銅箔張積層板の片側の面にライン幅75μm、ライン間スペース75μmの導通パターン回路を作製し、反対側の面は全面をエッチングした。その後、この積層板の両側の面に作製例1の樹脂付き銅箔の樹脂側の面を合わせて積層し、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した後、銅箔をエッチングしたものを評価基板とした。
[Comparative Example 4]
A glass cloth WEX-1027 (manufactured by Asahi Schavel Co., Ltd., thickness 19 μm) is coated with a vertical coating machine so that the thickness of the first resin layer after drying of the formulation example 3 is 20 μm, and 70 ° C. Heated in a drying oven at ˜150 ° C. with a residence time of 1-5 minutes. Thereafter, the varnish of Formulation Example 1 was applied to both sides so that the thickness of the prepreg after drying was 50 μm, and was heat-dried at 120 to 150 ° C. for 10 minutes to obtain a prepreg.
A copper foil having a thickness of 18 μm (trade name: HLA18, manufactured by Nippon Electrolytic Co., Ltd.) was stacked on both sides of the prepreg, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. A conductive pattern circuit having a line width of 75 μm and a space between lines of 75 μm was produced on one surface of the double-sided copper foil-clad laminate, and the entire surface was etched on the opposite surface. Thereafter, the resin-side surfaces of the resin-coated copper foil of Preparation Example 1 were laminated on both sides of the laminate and laminated, and a double-sided copper-clad laminate was produced under 170 ° C., 90 minutes, 4.0 MPa pressing conditions. Then, what etched copper foil was made into the evaluation board | substrate.

(伸び特性(弾性率)測定サンプルの作製)
厚みが18μmの銅箔の上に、配合例1〜7のワニスを乾燥後の樹脂の厚みが50μmになるように横型塗工機で塗布し、100〜140℃の乾燥炉で滞留時間5分にて加熱乾燥して樹脂付き銅箔を得た。その後、樹脂付き銅箔の樹脂面に厚みが18μmの銅箔(日本電解社製、商品名HLA18)の粗化面を重ね、170℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。両面銅張積層板の外側の銅箔は両面エッチングした。
(Preparation of sample for measuring elongation characteristics (elastic modulus))
On a copper foil having a thickness of 18 μm, the varnishes of Formulation Examples 1 to 7 were applied with a horizontal coating machine so that the resin thickness after drying was 50 μm, and the residence time was 5 minutes in a drying furnace at 100 to 140 ° C. And dried with heat to obtain a copper foil with resin. Thereafter, a roughened surface of a copper foil with a thickness of 18 μm (trade name HLA18, manufactured by Nippon Electrolytic Co., Ltd.) is superimposed on the resin surface of the resin-coated copper foil, and double-sided copper-clad lamination is performed at 170 ° C. for 90 minutes and 4.0 MPa pressing conditions. A plate was made. The copper foil outside the double-sided copper-clad laminate was etched on both sides.

(伸び特性(弾性率)の測定)
弾性率はオートグラフ(島津製作所製、型番AG−100C)を用いて測定した。両面銅張積層板の銅箔を両面エッチングした樹脂板を80mm×10mmに切断し、試験片とした。測定条件は、25℃で測定長さ60mm、引張速度5mm/minとした。
(Measurement of elongation characteristics (elastic modulus))
The elastic modulus was measured using an autograph (manufactured by Shimadzu Corporation, model number AG-100C). A resin plate obtained by etching both sides of the copper foil of the double-sided copper-clad laminate was cut into 80 mm × 10 mm to obtain a test piece. The measurement conditions were a measurement length of 60 mm and a tensile speed of 5 mm / min at 25 ° C.

(折り曲げ性(耐折性)の評価(MIT試験))
MIT試験機(東洋精機社製、型番2121011−00)を使用し実施例1〜9及び比較例1〜4の評価基板の折り曲げ性を評価した。曲げの半径は0.38mmに対して加重500g、折り曲げ角度135度、速度175cpm(cycles per minute)の条件で、断線するまでの折り曲げ回数を、それぞれの評価基板について5回評価した。表1では、断線が観察されるまでの折り曲げ回数が最小であった場合の折り曲げ回数、及び最大であった場合の折り曲げ回数をそれぞれ示す。
(Evaluation of bendability (fold resistance) (MIT test))
The bendability of the evaluation substrates of Examples 1 to 9 and Comparative Examples 1 to 4 was evaluated using an MIT testing machine (manufactured by Toyo Seiki Co., Ltd., model number 2101101-00). Under the conditions of a bending radius of 0.38 mm, a load of 500 g, a bending angle of 135 degrees, and a speed of 175 cpm (cycles per minute), the number of bending until disconnection was evaluated five times for each evaluation substrate. Table 1 shows the number of times of folding when the number of times of bending until the disconnection is observed is minimum, and the number of times of bending when it is maximum.

上述の測定及び評価の結果を表1に示す。表1より、実施例1〜9のプリプレグは、比較例1〜4のプリプレグと比較して、いずれの場合も断線するまでの折り曲げ回数が多く、良好な耐折性を有することは明らかである。   The results of the above measurement and evaluation are shown in Table 1. From Table 1, it is clear that the prepregs of Examples 1 to 9 have a good folding resistance and the number of times of bending until the wire breaks in any case as compared with the prepregs of Comparative Examples 1 to 4. .

Figure 0005272509
Figure 0005272509

図1は、本発明によるプリプレグの好適な一実施形態を示す概略断面図である。FIG. 1 is a schematic sectional view showing a preferred embodiment of a prepreg according to the present invention. 図2は、本発明による金属箔張積層板の好適な一実施形態を示す部分断面図である。FIG. 2 is a partial cross-sectional view showing a preferred embodiment of a metal foil-clad laminate according to the present invention. 図3は、本発明による印刷配線板の好適な一実施形態を示す模式断面図である。FIG. 3 is a schematic cross-sectional view showing a preferred embodiment of a printed wiring board according to the present invention.

符号の説明Explanation of symbols

3…繊維強化樹脂層、10…繊維基材、11…第1の樹脂層、12…第2の樹脂層、20…金属箔、30…基板、100…プリプレグ、200…金属箔張積層板、300…印刷回路板、313a、313b、323a、323b…回路、315…内層回路基板、311、321a、321b…貫通孔、312、322a、322b…導電体、310、320a、320b…絶縁基板。
DESCRIPTION OF SYMBOLS 3 ... Fiber reinforced resin layer, 10 ... Fiber base material, 11 ... 1st resin layer, 12 ... 2nd resin layer, 20 ... Metal foil, 30 ... Board | substrate, 100 ... Pre-preg, 200 ... Metal foil tension laminated board, 300 ... printed circuit board, 313a, 313b, 323a, 323b ... circuit, 315 ... inner layer circuit board, 311, 321a, 321b ... through hole, 312, 322a, 322b ... conductor, 310, 320a, 320b ... insulating substrate.

Claims (8)

繊維基材と、
前記繊維基材に第1の熱硬化性樹脂組成物を含浸してなる第1の樹脂層と、
前記第1の樹脂層の全面を覆うようにして設けられ、熱硬化性樹脂組成物から形成された1以上の樹脂層と、を備えるプリプレグであって、
前記第1の熱硬化性樹脂組成物と、前記熱硬化性樹脂組成物から形成された1以上の樹脂層のうちの前記プリプレグの最表面の樹脂層を形成する第2の熱硬化性樹脂組成物とが、下記式(1)を満たすものであるプリプレグ。
Y[GPa]<X[GPa]≦3[GPa] …(1)
[式中、Xは前記第1の熱硬化性樹脂組成物から形成される樹脂フィルムの弾性率を示し、Yは前記第2の熱硬化性樹脂組成物から形成される樹脂フィルムの弾性率を示す。]
A fiber substrate;
A first resin layer formed by impregnating the fiber base material with a first thermosetting resin composition;
A prepreg comprising: one or more resin layers provided to cover the entire surface of the first resin layer and formed from a thermosetting resin composition,
The 2nd thermosetting resin composition which forms the resin layer of the outermost surface of the said prepreg among the 1st thermosetting resin composition and the 1 or more resin layer formed from the said thermosetting resin composition A prepreg that satisfies the following formula (1).
Y [GPa] <X [GPa] ≦ 3 [GPa] (1)
[Wherein X represents the elastic modulus of the resin film formed from the first thermosetting resin composition, and Y represents the elastic modulus of the resin film formed from the second thermosetting resin composition. Show. ]
前記第1の熱硬化性樹脂組成物及び前記第2の熱硬化性樹脂組成物が、グリシジル基を有する樹脂を含む、請求項1記載のプリプレグ。   The prepreg according to claim 1, wherein the first thermosetting resin composition and the second thermosetting resin composition include a resin having a glycidyl group. 前記第1の熱硬化性樹脂組成物及び前記第2の熱硬化性樹脂組成物が、アクリル樹脂を含む、請求項1又は2記載のプリプレグ。   The prepreg according to claim 1 or 2, wherein the first thermosetting resin composition and the second thermosetting resin composition include an acrylic resin. 前記第1の熱硬化性樹脂組成物及び前記第2の熱硬化性樹脂組成物が、アミド基を有する樹脂を含む、請求項1又は2記載のプリプレグ。   The prepreg according to claim 1 or 2, wherein the first thermosetting resin composition and the second thermosetting resin composition include a resin having an amide group. 前記アミド基を有する樹脂がポリアミドイミド樹脂を含む、請求項4記載のプリプレグ。   The prepreg according to claim 4, wherein the resin having an amide group includes a polyamideimide resin. 前記ポリアミドイミド樹脂がシロキサン結合を有する、請求項5記載のプリプレグ。   The prepreg according to claim 5, wherein the polyamideimide resin has a siloxane bond. 請求項1〜6のいずれか一項に記載のプリプレグを所定枚数積層した積層体を加熱及び加圧して得られる基板と、
前記基板の少なくとも一方面上に設けられた、厚みが0.01〜30μmである金属箔と、を備える金属箔張積層板。
A substrate obtained by heating and pressurizing a laminate obtained by laminating a predetermined number of the prepregs according to claim 1;
A metal foil-clad laminate comprising: a metal foil having a thickness of 0.01 to 30 μm provided on at least one surface of the substrate.
請求項7に記載の金属箔張積層板に回路加工して得られる印刷配線板。
A printed wiring board obtained by processing a circuit on the metal foil-clad laminate according to claim 7.
JP2008126327A 2008-05-13 2008-05-13 Prepreg, metal foil-clad laminate and printed wiring board Active JP5272509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008126327A JP5272509B2 (en) 2008-05-13 2008-05-13 Prepreg, metal foil-clad laminate and printed wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008126327A JP5272509B2 (en) 2008-05-13 2008-05-13 Prepreg, metal foil-clad laminate and printed wiring board

Publications (2)

Publication Number Publication Date
JP2009275086A JP2009275086A (en) 2009-11-26
JP5272509B2 true JP5272509B2 (en) 2013-08-28

Family

ID=41440807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008126327A Active JP5272509B2 (en) 2008-05-13 2008-05-13 Prepreg, metal foil-clad laminate and printed wiring board

Country Status (1)

Country Link
JP (1) JP5272509B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640614B2 (en) 2016-07-28 2020-05-05 3M Innovative Properties Company Segmented silicone polyamide block copolymers and articles containing the same
US10865330B2 (en) 2016-07-28 2020-12-15 3M Innovative Properties Company Segmented silicone polyamide block copolymers and articles containing the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552969B2 (en) * 2010-08-31 2014-07-16 住友ベークライト株式会社 Prepreg, substrate and semiconductor device
WO2012114680A1 (en) * 2011-02-21 2012-08-30 パナソニック株式会社 Metal-clad laminate plate and printed wiring plate
JP5895986B2 (en) * 2014-08-11 2016-03-30 日立化成株式会社 Printed wiring boards and metal foil-clad laminates
WO2024075245A1 (en) * 2022-10-06 2024-04-11 株式会社レゾナック Prepreg, laminated plate, printed wiring board, and semiconductor package

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5335963A (en) * 1976-09-14 1978-04-03 Nitto Electric Ind Co Flexible printed circuit substrate
JP3067517B2 (en) * 1994-04-07 2000-07-17 新神戸電機株式会社 Metal foil clad laminate and method for producing the same
JP2001223444A (en) * 2000-02-08 2001-08-17 Fujikura Ltd Flexible printed board and method of manufacturing the same
JP4997690B2 (en) * 2004-08-10 2012-08-08 日立化成工業株式会社 Resin composition, base material with resin, and laminate with conductor layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10640614B2 (en) 2016-07-28 2020-05-05 3M Innovative Properties Company Segmented silicone polyamide block copolymers and articles containing the same
US10865330B2 (en) 2016-07-28 2020-12-15 3M Innovative Properties Company Segmented silicone polyamide block copolymers and articles containing the same

Also Published As

Publication number Publication date
JP2009275086A (en) 2009-11-26

Similar Documents

Publication Publication Date Title
JP4455806B2 (en) Prepreg and laminate
US20120285732A1 (en) Multi-layer wiring board
JP5272509B2 (en) Prepreg, metal foil-clad laminate and printed wiring board
WO2006123783A1 (en) Printed wiring board
JP2006066894A (en) Printed-circuit board
JP4517749B2 (en) Prepreg and metal-clad laminate and printed circuit board using the same
JP4735092B2 (en) Printed circuit board
JP4962001B2 (en) Insulating substrate, substrate with metal foil, and printed wiring board
TWI419621B (en) Printed wiring board and electronic equipment
JP5444825B2 (en) Insulating resin composition, prepreg, metal foil-clad laminate, printed wiring board, and multilayer wiring board
JP4736671B2 (en) Prepreg, metal foil-clad laminate and printed circuit board using these
JP5293075B2 (en) Metal foil-clad laminate and printed wiring board
JP4555985B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP2011176013A (en) Printed circuit board and metal foil plating lamination plate
JP4590982B2 (en) Metal foil with resin
JP2005325203A (en) Prepreg, metal foil-clad laminated plate and printed circuit board obtained using the same
JP2009079200A (en) Prepreg, laminate, and metal foil-clad laminate
JP2004168943A (en) Prepreg having adhesive layer, method for producing metal-clad laminated board and metal-clad laminated board
JP4586424B2 (en) Printed circuit board
JP5241992B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP5895986B2 (en) Printed wiring boards and metal foil-clad laminates
JP4774702B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4378628B2 (en) Prepreg, laminated board and printed circuit board using them
JP2004051910A (en) Resin film and metal-clad laminated sheet
JP4595434B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R151 Written notification of patent or utility model registration

Ref document number: 5272509

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350