JP4378628B2 - Prepreg, laminated board and printed circuit board using them - Google Patents

Prepreg, laminated board and printed circuit board using them Download PDF

Info

Publication number
JP4378628B2
JP4378628B2 JP2004151834A JP2004151834A JP4378628B2 JP 4378628 B2 JP4378628 B2 JP 4378628B2 JP 2004151834 A JP2004151834 A JP 2004151834A JP 2004151834 A JP2004151834 A JP 2004151834A JP 4378628 B2 JP4378628 B2 JP 4378628B2
Authority
JP
Japan
Prior art keywords
resin
group
prepreg
general formula
polyamideimide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004151834A
Other languages
Japanese (ja)
Other versions
JP2005330433A (en
Inventor
一雅 竹内
克之 増田
真 柳田
真樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004151834A priority Critical patent/JP4378628B2/en
Publication of JP2005330433A publication Critical patent/JP2005330433A/en
Application granted granted Critical
Publication of JP4378628B2 publication Critical patent/JP4378628B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はプリプレグ、積層板及びこれらを使用した印刷回路板に関する。   The present invention relates to a prepreg, a laminate, and a printed circuit board using these.

プリント配線板用積層板は、電気絶縁性樹脂組成物をマトリックスとするプリプレグを所定枚数重ね、加熱加圧して一体化したものである。プリント回路をサブトラクティブ法により形成する場合には、金属張積層板が用いられる。この金属張積層板は、プリプレグの表面(片面又は両面)に銅箔などの金属箔を重ねて加熱加圧することにより製造される。電気絶縁性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド−トリアジン樹脂などのような熱硬化性樹脂が汎用され、フッ素樹脂やポリフェニレンエーテル樹脂などのような熱可塑性樹脂が用いられることもある。   The laminate for a printed wiring board is obtained by stacking a predetermined number of prepregs each having an electrically insulating resin composition as a matrix and then heating and pressing to integrate them. When a printed circuit is formed by a subtractive method, a metal-clad laminate is used. This metal-clad laminate is manufactured by stacking a metal foil such as a copper foil on the surface (one side or both sides) of the prepreg and heating and pressing. As the electrically insulating resin, a thermosetting resin such as a phenol resin, an epoxy resin, a polyimide resin, or a bismaleimide-triazine resin is widely used, and a thermoplastic resin such as a fluorine resin or a polyphenylene ether resin is used. There is also.

一方、パーソナルコンピュータや携帯電話等の情報端末機器の普及に伴ってこれらに搭載される印刷回路板は小型化、高密度化が進んでいる。その実装形態はピン挿入型から表面実装型へさらにはプラスチック基板を使用したBGA(ボールグリッドアレイ)に代表されるエリアアレイ型へと進んでいる。BGAのようなベアチップを直接実装する基板ではチップと基板の接続は、熱超音波圧着によるワイヤボンディングで行うのが一般的である。このため、ベアチップを実装する基板は150℃以上の高温にさらされることになり、電気絶縁性樹脂にはある程度の耐熱性が必要となる。   On the other hand, with the spread of information terminal devices such as personal computers and mobile phones, printed circuit boards mounted on them are becoming smaller and higher in density. The mounting form has progressed from a pin insertion type to a surface mounting type and further to an area array type represented by BGA (ball grid array) using a plastic substrate. In a substrate on which a bare chip such as a BGA is directly mounted, the connection between the chip and the substrate is generally performed by wire bonding by thermosonic bonding. For this reason, the substrate on which the bare chip is mounted is exposed to a high temperature of 150 ° C. or higher, and the electrically insulating resin needs a certain degree of heat resistance.

また、環境問題の観点からはんだの鉛フリー化が進み、はんだの溶融温度が高温化しており、基板にはより高い耐熱性が要求されるとともに、材料にもハロゲンフリーの要求が高まり臭素系難燃剤の使用が難しくなってきている。さらに一度実装したチップを外す、いわゆるリペア性も要求される場合があるが、これにはチップ実装時と同程度の熱がかけられるため、基板にはその後、再度チップ実装が施されることになりさらに熱処理が加わることになる。これに伴いリペア性の要求される基板では高温でのサイクル的な耐熱衝撃性も要求され、従来の絶縁性樹脂系では繊維基材と樹脂の間で剥離を起こす場合がある。   In addition, lead-free solder has progressed from the viewpoint of environmental problems, the melting temperature of solder has increased, and higher heat resistance is required for the substrate, and the demand for halogen-free materials has also increased and bromine-based difficulty has increased. The use of flame retardants has become difficult. In addition, there is a case where so-called repairability is required to remove the chip once mounted, but since this is subject to the same level of heat as chip mounting, the substrate is then chip mounted again. In addition, heat treatment will be added. Along with this, a substrate requiring repairability is also required to have a cyclic thermal shock resistance at a high temperature, and in a conventional insulating resin system, peeling may occur between the fiber base material and the resin.

耐熱衝撃性、耐リフロー性、耐クラック性に優れ微細配線形成性を向上するために繊維基材にポリアミドイミドを必須成分とする樹脂組成物を含浸したプリプレグが提案されている(例えば特許文献1を参照)。   A prepreg in which a fiber base material is impregnated with a resin composition containing polyamideimide as an essential component has been proposed in order to have excellent thermal shock resistance, reflow resistance, and crack resistance and to improve fine wiring formation (for example, Patent Document 1). See).

さらに電子機器の小型化、高性能化に伴い限られた空間に部品実装を施された印刷回路板を収納することが必要となってきている。これには複数の印刷回路板を多段に配し相互をワイヤーハーネスやフレキシブル配線板によって接続する方法がとられている。また、ポリイミドをベースとするフレキシブル基板と従来のリジッド基板を多層化したリジッド−フレックス基板が用いられている。
特開2003−55486号公報
Furthermore, with the miniaturization and high performance of electronic devices, it has become necessary to accommodate printed circuit boards with component mounting in a limited space. In this method, a plurality of printed circuit boards are arranged in multiple stages and connected to each other by a wire harness or a flexible wiring board. In addition, a rigid-flex substrate in which a flexible substrate based on polyimide and a conventional rigid substrate are multilayered is used.
JP 2003-55486 A

本発明は、上記従来技術の問題点を解消し、金属箔や繊維基材との接着性に優れ、耐熱性に優れた可とう性の高い樹脂を薄い繊維基材に含浸することで、回路充填性、寸法安定性、耐熱性に優れ、印刷回路板としたときに折り曲げ可能で電子機器の筐体内に高密度に収納可能な印刷回路板及び該印刷回路板を与えるプリプレグ及び積層板を提供するものである。   The present invention eliminates the above-mentioned problems of the prior art, impregnates a thin fiber base material with a highly flexible resin excellent in adhesion to metal foil and fiber base material and excellent in heat resistance. Provided are a printed circuit board that is excellent in fillability, dimensional stability, and heat resistance, can be bent when used as a printed circuit board, and can be stored in a casing of an electronic device at high density, and a prepreg and a laminated board that provide the printed circuit board. To do.

本発明は、次のものに関する。
(1)ポリアミドイミド樹脂とモノグリシジル化合物を反応させて得られた樹脂を含む樹脂組成物を繊維基材に含浸してなるプリプレグ。
(2)ポリアミドイミド樹脂とモノグリシジル化合物を反応させて得られた樹脂が、ポリアミドイミド樹脂のアミド基に対して1〜95モル%のモノグリシジル化合物を反応させて得られた樹脂である項(1)に記載のプリプレグ。
(3)ポリアミドイミド樹脂が、一般式(1)の構造を有するポリアミドイミド樹脂である項(1)又は(2)に記載のプリプレグ。
The present invention relates to the following.
(1) A prepreg obtained by impregnating a fiber base material with a resin composition containing a resin obtained by reacting a polyamideimide resin and a monoglycidyl compound.
(2) The term (resin) obtained by reacting a polyamideimide resin with a monoglycidyl compound is a resin obtained by reacting 1 to 95 mol% of a monoglycidyl compound with respect to the amide group of the polyamideimide resin ( The prepreg as described in 1).
(3) The prepreg according to item (1) or (2), wherein the polyamideimide resin is a polyamideimide resin having a structure of the general formula (1).

Figure 0004378628

(4)ポリアミドイミド樹脂が、一般式(2)の構造を有するポリアミドイミド樹脂である項(1)乃至(3)のいずれかに記載のプリプレグ。
Figure 0004378628

(4) The prepreg according to any one of Items (1) to (3), wherein the polyamideimide resin is a polyamideimide resin having a structure of the general formula (2).

Figure 0004378628

(ここでR,Rは2価のアルキル基、R,R,R,Rは1価のアルキル基又は置換基を有するアルキル基、R,Rは1価の芳香族基又は置換基を有する芳香族基を示し、m、nはそれぞれ0から40の整数で1≦n+m≦50である)
(5)ポリアミドイミド樹脂が、一般式(1c)で表されるジアミン、一般式(1a)または一般式(1b)で表される芳香族環を2個以上有するジアミン及びシロキサンジアミンの混合物と無水トリメリット酸を反応させて得られるジイミドジカルボン酸を含む混合物とジイソシアネート化合物を反応させて得られるポリアミドイミド樹脂である項(1)乃至(4)のいずれかに記載のプリプレグ。
Figure 0004378628

(Where R 1 and R 2 are divalent alkyl groups, R 3 , R 4 , R 7 and R 8 are monovalent alkyl groups or alkyl groups having a substituent, and R 5 and R 6 are monovalent aromatic groups. An aromatic group having an aromatic group or a substituent, and m and n are each an integer of 0 to 40, and 1 ≦ n + m ≦ 50)
(5) Polyamideimide resin is a diamine represented by general formula (1c), a mixture of diamine having two or more aromatic rings represented by general formula (1a) or general formula (1b), and siloxane diamine, and anhydrous The prepreg according to any one of Items (1) to (4), which is a polyamideimide resin obtained by reacting a mixture containing diimidedicarboxylic acid obtained by reacting trimellitic acid with a diisocyanate compound.

Figure 0004378628
Figure 0004378628

Figure 0004378628
Figure 0004378628

Figure 0004378628

(式中、Xは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基、単結合又は下記一般式(2a)又は(2b)で表される2価の基、Yは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基を示し、R、R、Rはそれぞれ独立もしくは同一で水素原子、水酸基、メトキシ基、メチル基、ハロゲン化メチル基を示す。
Figure 0004378628

(Wherein X is an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, a carbonyl group, a single bond, or the following general formula (2a) Or a divalent group represented by (2b), Y is an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, or a carbonyl group. R 1 , R 2 and R 3 are independent or the same and represent a hydrogen atom, a hydroxyl group, a methoxy group, a methyl group or a halogenated methyl group.

Figure 0004378628
Figure 0004378628

Figure 0004378628

但し、Zは、炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基又は単結合である。)
(6)樹脂組成物が、熱硬化性樹脂を含む樹脂組成物である項(1)乃至(5)のいずれかに記載のプリプレグ。
(7)熱硬化性樹脂が、2個以上のグリシジル基を持つエポキシ樹脂であり、かつ樹脂組成物が、硬化促進剤または硬化剤を含有する樹脂組成物である項(6)に記載のプリプレグ。
(8)繊維基材が、厚さ5〜100μmのガラスクロスである項(1)乃至(7)のいずれかに記載のプリプレグ。
(9)項(1)乃至(8)のいずれかに記載のプリプレグを加熱加圧してなる積層板。
(10)項(9)に記載の積層板に回路形成を施して得られる印刷回路板。
Figure 0004378628

However, Z is a C1-C3 aliphatic hydrocarbon group, a C1-C3 halogenated aliphatic hydrocarbon group, a sulfonyl group, an ether group, a carbonyl group, or a single bond. )
(6) The prepreg according to any one of Items (1) to (5), wherein the resin composition is a resin composition containing a thermosetting resin.
(7) The prepreg according to item (6), wherein the thermosetting resin is an epoxy resin having two or more glycidyl groups, and the resin composition is a resin composition containing a curing accelerator or a curing agent. .
(8) The prepreg according to any one of Items (1) to (7), wherein the fiber base material is a glass cloth having a thickness of 5 to 100 μm.
(9) A laminate obtained by heating and pressing the prepreg according to any one of items (1) to (8).
(10) A printed circuit board obtained by forming a circuit on the laminate according to item (9).

本発明におけるプリプレグで得られる積層板及び印刷回路板は任意に折り曲げ可能であり回路充填性、寸法安定性、耐熱性、耐PCT性に優れる。   The laminated board and printed circuit board obtained by the prepreg in the present invention can be arbitrarily bent, and are excellent in circuit filling property, dimensional stability, heat resistance, and PCT resistance.

本発明ではポリアミドイミド樹脂とモノグリシジル化合物を予め反応させ得られた樹脂を使用する。モノグリシジル化合物はポリアミドイミド樹脂のアミド基と反応することによりアミド基間の水素結合に基づく相互作用を低下させ、ポリアミドイミド樹脂の粘度を低下させる。これにより、前記樹脂を使用した本発明のプリプレグの樹脂フロー量が増し、プリプレグの回路充填性が向上する。本発明で用いるモノグリシジル化合物は、特に限定はないが分子構造の嵩高いものが粘度の低下には有効である。モノグリシジル化合物としてはフェニルグリシジルエーテル、2−エチルヘキシルグリシジルエーテル、n−ブチルグリシジルエーテルをはじめエポキシ樹脂の反応性希釈剤として市販されているものを使用することができる。   In the present invention, a resin obtained by reacting a polyamideimide resin and a monoglycidyl compound in advance is used. The monoglycidyl compound reacts with the amide group of the polyamideimide resin, thereby reducing the interaction based on the hydrogen bond between the amide groups, thereby reducing the viscosity of the polyamideimide resin. Thereby, the resin flow amount of the prepreg of the present invention using the resin is increased, and the circuit filling property of the prepreg is improved. The monoglycidyl compound used in the present invention is not particularly limited, but a bulky molecular structure is effective for reducing the viscosity. As the monoglycidyl compound, phenyl glycidyl ether, 2-ethylhexyl glycidyl ether, n-butyl glycidyl ether and those commercially available as reactive diluents for epoxy resins can be used.

これらのモノグリシジル化合物とポリアミドイミド樹脂を反応させることにより樹脂の溶融粘度やワニスの粘度を低下することが可能である。反応させるモノグリシジル化合物の量は、ポリアミドイミド樹脂のアミド基に対して100モル%以下で使用することが好ましく、1〜95モル%がより好ましく、20〜80モル%が特に好ましい。100モル%を超すと作製したプリプレグに、べたつきがみられ、また95モル%より多いとエポキシ樹脂を配合した際にエポキシ樹脂と反応するアミド基が少なくなり熱硬化性樹脂として硬化性が低下する上、未反応のモノグリシジル化合物により耐熱性が低下する。1モル%より少ないと粘度の低下効果が不十分となる。   It is possible to reduce the melt viscosity of the resin and the viscosity of the varnish by reacting these monoglycidyl compounds with the polyamideimide resin. The amount of the monoglycidyl compound to be reacted is preferably 100 mol% or less, more preferably 1 to 95 mol%, particularly preferably 20 to 80 mol%, based on the amide group of the polyamideimide resin. When the amount exceeds 100 mol%, the prepreg produced is sticky, and when it exceeds 95 mol%, the amide group that reacts with the epoxy resin decreases when the epoxy resin is blended, and the curability decreases as a thermosetting resin. In addition, the heat resistance is reduced by the unreacted monoglycidyl compound. If it is less than 1 mol%, the effect of decreasing the viscosity will be insufficient.

ポリアミドイミド樹脂とモノグリシジル化合物の反応は溶液で行う。ポリアミドイミド樹脂がワニスの場合には所定量のモノグリシジル化合物を添加し50〜200℃、好ましくは80〜150℃で反応させる。反応時間は特に限定されないが1時間以上反応させることが好ましい。反応の進行に伴ってポリアミドイミド樹脂ワニスの粘度が低下する。   The reaction between the polyamideimide resin and the monoglycidyl compound is carried out in solution. When the polyamideimide resin is varnish, a predetermined amount of monoglycidyl compound is added and reacted at 50 to 200 ° C, preferably 80 to 150 ° C. Although reaction time is not specifically limited, It is preferable to make it react for 1 hour or more. As the reaction proceeds, the viscosity of the polyamideimide resin varnish decreases.

本発明で用いるポリアミドイミド樹脂は、前記一般式(1)または前記一般式(2)の構造を有するものが好ましい。また本発明で用いるポリアミドイミド樹脂は、前記一般式(1)と前記一般式(2)の構造を両方有していてもよい。前記一般式(1)構造を有するポリアミドイミド樹脂は、ジアミンであるワンダミン(新日本理化株式会社製商品名)等を用い合成することが、可能である。また、前記一般式(2)構造を有するポリアミドイミド樹脂は、シロキサンジアミンを用い合成することが、可能である。   The polyamideimide resin used in the present invention preferably has the structure of the general formula (1) or the general formula (2). Moreover, the polyamideimide resin used in the present invention may have both the structures of the general formula (1) and the general formula (2). The polyamideimide resin having the general formula (1) structure can be synthesized by using wandamine (trade name, manufactured by Shin Nippon Chemical Co., Ltd.) which is a diamine. The polyamideimide resin having the structure of the general formula (2) can be synthesized using siloxane diamine.

これらのポリアミドイミド樹脂は前記一般式(1c)で表されるジアミン、前記一般式(1a)または前記一般式(1b)で表される芳香族環を2個以上有するジアミン(芳香族ジアミン)及びシロキサンジアミンの混合物と無水トリメリット酸を反応させて得られるジイミドジカルボン酸を含む混合物と芳香族ジイソシアネートを反応させて得ることが好ましい。また、本発明で用いられるポリアミドイミド樹脂は、前記一般式(1a)または前記一般式(1b)で表される芳香族環を2個以上有するジアミン(芳香族ジアミン)及びシロキサンジアミンの混合物と無水トリメリット酸を反応させて得られるジイミドジカルボン酸を含む混合物と芳香族ジイソシアネートを反応させて得られるポリアミドイミド樹脂でもかまわない。前記一般式(1c)で表されるジアミンとしては、ワンダミン(新日本理化株式会社製商品名)等が例示できる。   These polyamideimide resins include a diamine represented by the general formula (1c), a diamine (aromatic diamine) having two or more aromatic rings represented by the general formula (1a) or the general formula (1b), and It is preferably obtained by reacting a mixture containing diimide dicarboxylic acid obtained by reacting a mixture of siloxane diamine and trimellitic anhydride with an aromatic diisocyanate. Further, the polyamideimide resin used in the present invention is a mixture of a diamine (aromatic diamine) having two or more aromatic rings represented by the general formula (1a) or the general formula (1b) and a siloxane diamine and anhydrous. A polyamideimide resin obtained by reacting a mixture containing diimidedicarboxylic acid obtained by reacting trimellitic acid with an aromatic diisocyanate may also be used. Examples of the diamine represented by the general formula (1c) include Wandamine (trade name, manufactured by Shin Nippon Rika Co., Ltd.).

さらにポリアミドイミド樹脂は、前記一般式(1c)で表されるジアミンaとそれ以外の前記の芳香族環を2個以上有するジアミン(芳香族ジアミン)、シロキサンジアミンの合計モルbとの混合比率が、a/b=0.1/99.9〜99.9/0.1(モル比)であると好ましく、a/b=10/90〜50/50であると更に好ましく、a/b=20/80〜40/60であるとより一層好ましい。   Furthermore, the polyamideimide resin has a mixing ratio of the diamine a represented by the general formula (1c), a diamine having two or more aromatic rings other than that (aromatic diamine), and a total mole b of siloxane diamine. A / b = 0.1 / 99.9 to 99.9 / 0.1 (molar ratio), more preferably a / b = 10/90 to 50/50, a / b = It is much more preferable that it is 20 / 80-40 / 60.

前記の芳香族ジアミンとしては、例えば2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ジメチルビフェニル−4,4’−ジアミン、2,2’−ビス(トリフルオロメチル)ビフェニル−4,4’−ジアミン、2,6,2’,6’−テトラメチル−4,4’−ジアミン、5,5’−ジメチル−2,2’−スルフォニル−ビフェニル−4,4’−ジアミン、3,3’−ジヒドロキシビフェニル−4,4’−ジアミン、(4,4’−ジアミノ)ジフェニルエーテル、(4,4’−ジアミノ)ジフェニルスルホン、(4,4’−ジアミノ)ベンゾフェノン、(3,3’―ジアミノ)ベンゾフェノン、(4,4’−ジアミノ)ジフェニルメタン、(4,4’−ジアミノ)ジフェニルエーテル、(3,3’―ジアミノ)ジフェニルエーテル等が例示できる。   Examples of the aromatic diamine include 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (3-aminophenoxy) phenyl] sulfone, and bis [4- (4 -Aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] methane, 4,4'-bis (4 -Aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ketone, 1,3-bis (4-aminophenoxy) benzene, 1,4 -Bis (4-aminophenoxy) benzene, 2,2'-dimethylbiphenyl-4,4'-diamine, 2,2'-bis (trif Oromethyl) biphenyl-4,4′-diamine, 2,6,2 ′, 6′-tetramethyl-4,4′-diamine, 5,5′-dimethyl-2,2′-sulfonyl-biphenyl-4,4 '-Diamine, 3,3'-dihydroxybiphenyl-4,4'-diamine, (4,4'-diamino) diphenyl ether, (4,4'-diamino) diphenyl sulfone, (4,4'-diamino) benzophenone, Examples include (3,3′-diamino) benzophenone, (4,4′-diamino) diphenylmethane, (4,4′-diamino) diphenyl ether, (3,3′-diamino) diphenyl ether, and the like.

本発明で使用するシロキサンジアミンとしては、以下の一般式(3)〜(6)ものが挙げられる。   Examples of the siloxane diamine used in the present invention include the following general formulas (3) to (6).

Figure 0004378628
Figure 0004378628

Figure 0004378628
Figure 0004378628

Figure 0004378628
Figure 0004378628

Figure 0004378628
Figure 0004378628

なお、上記一般式(3)で表されるシロキサンジアミンとしては、X−22−161AS(アミン当量450)、X−22−161A(アミン当量900)、X−22−161B(アミン当量1500)(以上、信越化学工業株式会社製商品名)、BY16−853(アミン当量650)、BY16−853B(アミン当量2200)、(以上、東レダウコーニングシリコーン株式会社製商品名)等が例示できる。上記一般式(6)で表されるシロキサンジアミンとしては、X−22−9409(アミン当量700)、X−22−1660B−3(アミン当量2200)(以上、信越化学工業株式会社製商品名)等が例示できる。また、シロキサンジアミンとしては、反応性シリコンオイルKF8010(信越化学工業株式会社製商品名、アミン当量430)が挙げられる。   In addition, as a siloxane diamine represented by the said General formula (3), X-22-161AS (amine equivalent 450), X-22-161A (amine equivalent 900), X-22-161B (amine equivalent 1500) ( As mentioned above, Shin-Etsu Chemical Co., Ltd. product name), BY16-853 (amine equivalent 650), BY16-853B (amine equivalent 2200), (product name manufactured by Toray Dow Corning Silicone Co., Ltd.) and the like can be exemplified. As the siloxane diamine represented by the general formula (6), X-22-9409 (amine equivalent 700), X-22-1660B-3 (amine equivalent 2200) (above, trade name manufactured by Shin-Etsu Chemical Co., Ltd.) Etc. can be illustrated. Examples of the siloxane diamine include reactive silicon oil KF8010 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., amine equivalent 430).

また本発明のポリアミドイミド樹脂の合成には、脂肪族ジアミン類として、下記一般式(7)で表される化合物を用いることができる。   For the synthesis of the polyamideimide resin of the present invention, a compound represented by the following general formula (7) can be used as the aliphatic diamine.

Figure 0004378628
(但し、式中Xはメチレン基、スルホニル基、エーテル基、カルボニル基又は単結合、R及びRはそれぞれ水素原子、アルキル基、フェニル基または置換フェニル基を示し、pは1〜50の整数を示す。)
Figure 0004378628
(Wherein, X represents a methylene group, a sulfonyl group, an ether group, a carbonyl group or a single bond, R 1 and R 2 represent a hydrogen atom, an alkyl group, a phenyl group or a substituted phenyl group, respectively; Indicates an integer.)

及びRの具体例としては、水素原子、炭素数が1〜3のアルキル基、フェニル基、置換フェニル基が好ましく、フェニル基に結合していてもよい置換基としては、炭素数1〜3のアルキル基、ハロゲン原子等が例示できる。 Specific examples of R 1 and R 2 are preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a phenyl group, and a substituted phenyl group. The substituent that may be bonded to the phenyl group is 1 carbon atom. -3 alkyl groups, halogen atoms and the like can be exemplified.

脂肪族ジアミンは、低弾性率及び高Tgの両立の観点から、上記一般式(7)におけるXがエーテル基であることが好ましい。このような脂肪族ジアミンとしては、ジェファーミンD−400(アミン当量400)、ジェファーミンD−2000(アミン当量1000)等(サンテクノケミカル社製商品名)が例示できる。   In the aliphatic diamine, X in the general formula (7) is preferably an ether group from the viewpoint of achieving both low elastic modulus and high Tg. Examples of such aliphatic diamines include Jeffamine D-400 (Amine Equivalent 400), Jeffamine D-2000 (Amine Equivalent 1000), etc. (trade name, manufactured by Sun Techno Chemical Co., Ltd.).

本発明のポリアミドイミドの製造方法に用いるジイソシアネート化合物としては、下記一般式(8)で表される化合物を用いることが好ましい。   As the diisocyanate compound used in the method for producing the polyamideimide of the present invention, a compound represented by the following general formula (8) is preferably used.

Figure 0004378628
Figure 0004378628

前記一般式(8)中、Dは少なくとも1つの芳香環を有する2価の有機基、又は、2価の脂肪族炭化水素基であり、−C64−CH2−C64−で表される基、トリレン基、ナフチレン基、ヘキサメチレン基、2,2,4−トリメチルヘキサメチレン基及びイソホロン基からなる群より選ばれる少なくとも1つの基であることが好ましい。 In the general formula (8), D is a divalent organic group having at least one aromatic ring or a divalent aliphatic hydrocarbon group, and —C 6 H 4 —CH 2 —C 6 H 4 — And at least one group selected from the group consisting of a tolylene group, a naphthylene group, a hexamethylene group, a 2,2,4-trimethylhexamethylene group and an isophorone group.

上記一般式(8)で表されるジイソシアネート化合物としては、脂肪族ジイソシアネート又は芳香族ジイソシアネートを用いることができるが、芳香族ジイソシアネートを用いることが好ましく、両者を併用することが特に好ましい。   As the diisocyanate compound represented by the general formula (8), an aliphatic diisocyanate or an aromatic diisocyanate can be used, but it is preferable to use an aromatic diisocyanate, and it is particularly preferable to use both in combination.

芳香族ジイソシアネートとしては、4,4’−ジフェニルメタンジイソシアネート(MDI)、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ナフタレン−1,5−ジイソシアネート、2,4−トリレンダイマー等が例示でき、MDIを用いることが特に好ましい。芳香族ジイソシアネートとしてMDIを用いることにより、得られるポリアミドイミドの可撓性を向上させることができる。   Examples of aromatic diisocyanates include 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, and 2,4-tolylene dimer. As an example, it is particularly preferable to use MDI. By using MDI as the aromatic diisocyanate, the flexibility of the resulting polyamideimide can be improved.

脂肪族ジイソシアネートとしては、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等が例示できる。   Examples of the aliphatic diisocyanate include hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and isophorone diisocyanate.

芳香族ジイソシアネート及び脂肪族ジイソシアネートを併用する場合は、脂肪族ジイソシアネートを芳香族ジイソシアネートに対して5〜10モル%程度添加することが好ましく、かかる併用により、得られるポリアミドイミド樹脂の耐熱性を更に向上させることができる。   When using an aromatic diisocyanate and an aliphatic diisocyanate in combination, it is preferable to add the aliphatic diisocyanate to about 5 to 10 mol% with respect to the aromatic diisocyanate, and this combination further improves the heat resistance of the resulting polyamideimide resin. Can be made.

本発明で用いる熱硬化性樹脂としては、エポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ビスマレイミド樹脂、トリアジン−ビスマレイミド樹脂、フェノール樹脂等が挙げられ、ポリアミドイミド樹脂100重量部に対し熱硬化性樹脂1〜200重量部を用いることが好ましい。本発明では、熱硬化性樹脂としてエポキシ樹脂を用いることが180℃以下の温度で硬化が可能で、ポリアミドイミド樹脂のアミド基に対して反応して熱的、機械的、電気的特性を向上させるため好ましく、2個以上のグリシジル基を持つエポキシ樹脂とその硬化剤、2個以上のグリシジル基を持つエポキシ樹脂とその硬化促進剤または2個以上のグリシジル基を持つエポキシ樹脂と硬化剤、硬化促進剤を用いることがより好ましい。またグリシジル基は多いほどよく、3個以上であればさらに好ましい。グリシジル基の数により、配合量が異なり、グリシジル基が多いほど配合量が少なくてもよい。   Examples of the thermosetting resin used in the present invention include epoxy resins, polyimide resins, unsaturated polyester resins, polyurethane resins, bismaleimide resins, triazine-bismaleimide resins, phenol resins, and the like. It is preferable to use 1 to 200 parts by weight of a thermosetting resin. In the present invention, using an epoxy resin as a thermosetting resin can be cured at a temperature of 180 ° C. or less, and reacts with an amide group of a polyamide-imide resin to improve thermal, mechanical, and electrical characteristics. Therefore, an epoxy resin having two or more glycidyl groups and a curing agent thereof, an epoxy resin having two or more glycidyl groups and its curing accelerator, or an epoxy resin having two or more glycidyl groups and a curing agent, curing acceleration It is more preferable to use an agent. Further, the more glycidyl groups, the better. The blending amount varies depending on the number of glycidyl groups, and the blending amount may be smaller as the glycidyl group is larger.

本発明では、ポリアミドイミド樹脂100重量部に対し熱硬化性樹脂1〜200重量部用いることが好ましいが、1重量部未満では、耐溶剤性に劣り、また200重量部を超えると未反応の熱硬化性樹脂によりTgが低下し耐熱性が不十分となったり、可撓性が低下するため好ましくない。そのためポリアミドイミド樹脂100重量部に対し熱硬化性樹脂3〜100重量部がより好ましく、更に10〜60重量部が特に好ましい。   In the present invention, it is preferable to use 1 to 200 parts by weight of a thermosetting resin with respect to 100 parts by weight of the polyamideimide resin. However, if it is less than 1 part by weight, the solvent resistance is inferior. The curable resin is not preferable because Tg is lowered and heat resistance becomes insufficient or flexibility is lowered. Therefore, 3-100 weight part of thermosetting resins are more preferable with respect to 100 weight part of polyamideimide resin, and 10-60 weight part is especially more preferable.

エポキシ樹脂としては、ビスフェノールA、ノボラック型フェノール樹脂、オルトクレゾールノボラック型フェノール樹脂等の多価フェノール又は1,4−ブタンジオール等の多価アルコールとエピクロルヒドリンを反応させて得られるポリグリシジルエーテル、フタル酸、ヘキサヒドロフタル酸等の多塩基酸とエピクロルヒドリンを反応させて得られるポリグリシジルエステル、アミン、アミド又は複素環式窒素塩基を有する化合物のN−グリシジル誘導体、脂環式エポキシ樹脂などが挙げられる。   Epoxy resins include polyglycidyl ethers and phthalic acids obtained by reacting polychlorophenols such as bisphenol A, novolak-type phenol resins, ortho-cresol novolac-type phenol resins or polyhydric alcohols such as 1,4-butanediol with epichlorohydrin. And polyglycidyl ester obtained by reacting a polybasic acid such as hexahydrophthalic acid with epichlorohydrin, an N-glycidyl derivative of a compound having an amine, an amide or a heterocyclic nitrogen base, an alicyclic epoxy resin, and the like.

エポキシ樹脂の硬化剤、硬化促進剤は、エポキシ樹脂と反応するもの、または、硬化を促進させるものであれば制限なく、例えば、アミン類、イミダゾール類、多官能フェノール類、酸無水物類等が使用できる。アミン類として、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素等が使用でき、多官能フェノール類としては、ヒドロキノン、レゾルシノール、ビスフェノールA及びこれらのハロゲン化合物、さらにホルムアルデヒドとの縮合物であるノボラック型フェノール樹脂、レゾール型フェノール樹脂などが使用でき、酸無水物類としては、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸等が使用できる。硬化促進剤としては、イミダゾール類としてアルキル基置換イミダゾール、ベンゾイミダゾール等が使用できる。   The curing agent and curing accelerator of the epoxy resin are not limited as long as they react with the epoxy resin or accelerate curing. For example, amines, imidazoles, polyfunctional phenols, acid anhydrides, etc. Can be used. As the amines, dicyandiamide, diaminodiphenylmethane, guanylurea and the like can be used. As the polyfunctional phenols, hydroquinone, resorcinol, bisphenol A and their halogen compounds, and a novolac type phenol resin which is a condensate with formaldehyde, a resol type A phenol resin can be used, and phthalic anhydride, benzophenone tetracarboxylic dianhydride, methyl hymic acid and the like can be used as acid anhydrides. As the curing accelerator, alkyl group-substituted imidazole, benzimidazole and the like can be used as imidazoles.

これらの硬化剤または硬化促進剤の必要な量は、アミン類の場合は、アミンの活性水素の当量と、エポキシ樹脂のエポキシ当量がほぼ等しくなる量が好ましい。硬化促進剤である、イミダゾールの場合は、単純に活性水素との当量比とならず、経験的にエポキシ樹脂100重量部に対して、0.001〜10重量部必要となる。多官能フェノール類や酸無水物類の場合、エポキシ樹脂1当量に対して、フェノール性水酸基やカルボキシル基0.6〜1.2当量必要である。これらの硬化剤または硬化促進剤の量は、少なければ未硬化のエポキシ樹脂が残り、Tg(ガラス転移温度)が低くなり、多すぎると、未反応の硬化剤及び硬化促進剤が残り、絶縁性が低下する。エポキシ樹脂のエポキシ当量は、ポリアミドイミド樹脂のアミド基とも反応することができるので考慮に入れることが好ましい。   In the case of amines, the necessary amounts of these curing agents or curing accelerators are preferably such that the equivalent of the active hydrogen of the amine is approximately equal to the epoxy equivalent of the epoxy resin. In the case of imidazole, which is a curing accelerator, it is not simply an equivalent ratio with active hydrogen, but is empirically required to be 0.001 to 10 parts by weight with respect to 100 parts by weight of the epoxy resin. In the case of polyfunctional phenols and acid anhydrides, 0.6 to 1.2 equivalents of phenolic hydroxyl groups and carboxyl groups are required for 1 equivalent of epoxy resin. If the amount of these curing agents or accelerators is small, uncured epoxy resin remains, and Tg (glass transition temperature) is low. If too large, unreacted curing agent and curing accelerator remain, and insulating properties are maintained. Decreases. The epoxy equivalent of the epoxy resin is preferably taken into account because it can also react with the amide group of the polyamideimide resin.

本発明では、プリプレグ用樹脂組成物を有機溶媒中で混合、溶解、分散して得られるワニスを繊維基材に含浸、乾燥してプリプレグを作製することができる。このような有機溶媒としては、溶解性が得られるものであれば制限するものでなく、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、γ−ブチロラクトン、スルホラン、シクロヘキサノン等が挙げられる。   In the present invention, a prepreg can be prepared by impregnating and drying a varnish obtained by mixing, dissolving and dispersing a resin composition for prepreg in an organic solvent. Such an organic solvent is not limited as long as solubility is obtained, and examples thereof include dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, γ-butyrolactone, sulfolane, and cyclohexanone. It is done.

プリプレグを得るための樹脂組成物は、前記一般式(1)または前記一般式(2)の構造を有するポリアミドイミド樹脂100重量部と熱硬化性樹脂1〜200重量部とを含む樹脂組成物であることが好ましく、これによりワニス溶剤の揮発速度が速く、熱硬化性樹脂の硬化反応を促進しない150℃以下の低温でも残存溶剤分を5重量%以下にすることが可能であり、繊維基材及び銅箔との密着性の良好な積層板を得ることができる。   A resin composition for obtaining a prepreg is a resin composition containing 100 parts by weight of a polyamideimide resin having the structure of the general formula (1) or the general formula (2) and 1 to 200 parts by weight of a thermosetting resin. It is preferable that the volatilization rate of the varnish solvent is high, and the residual solvent content can be reduced to 5% by weight or less even at a low temperature of 150 ° C. or lower which does not promote the curing reaction of the thermosetting resin. And a laminated board with favorable adhesiveness with copper foil can be obtained.

本発明では、樹脂組成物のワニスを繊維基材に含浸させ、乾燥させて、プリプレグを製造する。繊維基材としては、金属箔張積層板や多層印刷回路板を製造する際に用いられるものであれば特に制限されないが、通常織布や不織布等の繊維基材が用いられる。繊維基材の材質としては、ガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維やアラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維等及びこれらの混抄系があり、特にガラス繊維の織布が好ましく用いられる。プリプレグに使用される繊維基材としては、厚みが5〜100μmであることが好ましく、5〜50μmがより好ましい。また厚みが5〜100μmのガラスクロスが特に好適に用いられる。厚みが5〜100μmのガラスクロスを用いることで任意に折り曲げ可能な印刷回路板を得ることができ、製造プロセス上での温度、吸湿等に伴う寸法変化を小さくすることが可能となる。   In the present invention, a fiber base material is impregnated with a varnish of a resin composition and dried to produce a prepreg. Although it will not restrict | limit especially if it is used when manufacturing a metal foil tension laminated board and a multilayer printed circuit board as a fiber base material, Usually fiber base materials, such as a woven fabric and a nonwoven fabric, are used. Examples of the fiber base material include glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, and other inorganic fibers, aramid, polyetheretherketone, polyetherimide, polyether There are organic fibers such as sulfone, carbon, cellulose and the like and mixed papers thereof, and glass fiber woven fabrics are particularly preferably used. As a fiber base material used for a prepreg, it is preferable that thickness is 5-100 micrometers, and 5-50 micrometers is more preferable. A glass cloth having a thickness of 5 to 100 μm is particularly preferably used. By using a glass cloth having a thickness of 5 to 100 μm, it is possible to obtain a printed circuit board that can be bent arbitrarily, and it is possible to reduce dimensional changes associated with temperature, moisture absorption, and the like in the manufacturing process.

プリプレグの製造条件等は特に制限するものではないが,樹脂組成物のワニスに使用した溶剤が80重量%以上揮発していることが好ましい。このため,製造方法や乾燥条件等も制限はなく,乾燥時の温度は80℃〜180℃,時間はワニスのゲル化時間との兼ね合いで特に制限はないまた、ワニスの含浸量は、ワニス樹脂固形分と繊維基材の総量に対して、ワニス樹脂固形分が30〜80重量%になるようにすることが好ましい。   The production conditions of the prepreg are not particularly limited, but it is preferable that the solvent used for the varnish of the resin composition is volatilized by 80% by weight or more. For this reason, there are no restrictions on the production method, drying conditions, etc., the temperature during drying is 80 ° C. to 180 ° C., and the time is not particularly limited in consideration of the gelling time of the varnish. It is preferable that the varnish resin solid content is 30 to 80% by weight based on the total amount of the solid content and the fiber base material.

絶縁板、積層板又は金属箔張積層板の製造方法は次の通りである。本発明におけるプリプレグ又はそれを複数枚積層した積層体に、必要に応じてその片面又は両面に金属箔を重ね、通常150〜280℃、好ましくは180℃〜250℃の範囲の温度で、通常0.5〜20MPa、好ましくは1〜8MPaの範囲の圧力で、加熱加圧成形することにより絶縁板、積層板又は金属箔張積層板を製造することができる。金属箔を使用して金属箔張積層板とすることにより、これに回路加工を施して印刷回路板とすることができる。   The manufacturing method of an insulating board, a laminated board, or a metal foil tension laminated board is as follows. In the present invention, a metal foil is laminated on one or both sides of the prepreg or a laminate obtained by laminating a plurality of the prepregs, if necessary, and usually at a temperature in the range of 150 to 280 ° C, preferably 180 ° C to 250 ° C, usually 0. An insulating plate, a laminated plate, or a metal foil-clad laminate can be produced by heat and pressure molding at a pressure in the range of 5 to 20 MPa, preferably 1 to 8 MPa. By using a metal foil as a metal foil-clad laminate, circuit processing can be applied to this to obtain a printed circuit board.

本発明に用いられる金属箔は、銅箔やアルミニウム箔が一般的に用いられるが、通常積層板に用いられている5〜200μmのものを使用できるが、銅箔が好ましい。また、ニッケル、ニッケル−リン、ニッケル−スズ合金、ニッケル−鉄合金、鉛、鉛−スズ合金等を中間層とし、この両面に0.5〜15μmの銅層と10〜300μmの銅層を設けた3層構造の複合箔あるいはアルミニウムと銅箔を複合した2層構造複合箔を用いることができる。   As the metal foil used in the present invention, a copper foil or an aluminum foil is generally used. A metal foil of 5 to 200 μm which is usually used for a laminate can be used, but a copper foil is preferable. Also, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a 0.5-15 μm copper layer and a 10-300 μm copper layer are provided on both sides. Alternatively, a three-layer composite foil or a two-layer composite foil in which aluminum and copper foil are combined can be used.

また内層回路を形成した印刷回路板に本発明のプリプレグと銅箔をさらに重ねて多層化することが可能である。本発明のプリプレグはポリアミドイミド樹脂の流動性が向上しており、内層回路間の空隙にプリプレグの樹脂が充填され積層した銅箔面も平滑となる。   Further, it is possible to make a multilayer by further overlapping the prepreg of the present invention and a copper foil on a printed circuit board on which an inner layer circuit is formed. In the prepreg of the present invention, the fluidity of the polyamideimide resin is improved, and the copper foil surface in which the gap between the inner layer circuits is filled with the prepreg resin and laminated is also smooth.

以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
(合成例1)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族環を2個以上有するジアミン(芳香族ジアミン)としてDDS(ジアミノジフェニルスルホン)14.9g(0.06mol)、シロキサンジアミンとして反応性シリコンオイルKF−8010(信越化学工業株式会社製商品名、アミン当量430)43.0g(0.05mol)、脂肪族ジアミンとしてジェファーミンD2000(サンテクノケミカル社製商品名、アミン当量1000)72.0g(0.036mol)、前記一般式(1c)で表されるジアミンとしてワンダミン(新日本理化株式会社製商品名)11.3g(0.054mol)、TMA(無水トリメリット酸)80.7g(0.42mol)を非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)613gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)55.1g(0.22mol)を投入し、190℃で2時間反応させた。反応終了後、ポリアミドイミド樹脂のNMP溶液(樹脂固形分29重量%)を得た。
Examples are described below, but the present invention is not limited to these examples.
(Synthesis Example 1)
DDS (diaminodiphenylsulfone) as a diamine (aromatic diamine) having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer ) 14.9 g (0.06 mol), reactive silicone oil KF-8010 (trade name, amine equivalent 430, manufactured by Shin-Etsu Chemical Co., Ltd.) as a siloxane diamine, and Jeffamine D2000 as an aliphatic diamine (Trade name, manufactured by Sun Techno Chemical Co., amine equivalent 1000) 72.0 g (0.036 mol), Wandamine (trade name, manufactured by Shin Nippon Chemical Co., Ltd.) 11.3 g (0. 36) as the diamine represented by the general formula (1c). 054 mol), TMA (trimellitic anhydride) 80.7 g (0.42 mol) Were charged NMP (N-methyl-2-pyrrolidone) 613 g as aprotic polar solvent were stirred at 80 ° C. 30 min. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that approximately 7.2 ml or more of water has accumulated in the moisture determination receiver and that no distillation of water has been observed, while removing the distillate accumulated in the moisture determination receiver, The temperature was raised to 0 ° C. to remove toluene. Then, the solution was returned to room temperature (25 ° C.), 55.1 g (0.22 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin (resin solid content 29% by weight) was obtained.

(合成例2)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族環を2個以上有するジアミン(芳香族ジアミン)としてDDS(ジアミノジフェニルスルホン)14.9g(0.06mol)、シロキサンジアミンとして反応性シリコンオイルX−22−161A(信越化学工業株式会社製商品名、アミン当量900)90.0g(0.05mol)、脂肪族ジアミンとしてジェファーミンD2000(サンテクノケミカル社製商品名、アミン当量1000)72.0g(0.036mol)、前記一般式(1c)で表されるジアミンとしてワンダミン(新日本理化株式会社製商品名)11.3g(0.054mol)、TMA(無水トリメリット酸)80.7g(0.42mol)を非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)561gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)60.1g(0.24mol)を投入し、190℃で2時間反応させた。反応終了後、ポリアミドイミド樹脂のNMP溶液(樹脂固形分35重量%)を得た。
(Synthesis Example 2)
DDS (diaminodiphenylsulfone) as a diamine (aromatic diamine) having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer ) 14.9 g (0.06 mol), reactive silicone oil X-22-161A as a siloxane diamine (trade name, amine equivalent 900, manufactured by Shin-Etsu Chemical Co., Ltd.) 90.0 g (0.05 mol), Jeffer as an aliphatic diamine Min D2000 (trade name, manufactured by Sun Techno Chemical Co., amine equivalent 1000) 72.0 g (0.036 mol), Wandamine (trade name, manufactured by Shin Nippon Rika Co., Ltd.) 11.3 g as the diamine represented by the general formula (1c) ( 0.054 mol), TMA (trimellitic anhydride) 80.7 g (0.42 mo) ) Were charged NMP (N-methyl-2-pyrrolidone) 561 g as aprotic polar solvent were stirred at 80 ° C. 30 min. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that approximately 7.2 ml or more of water has accumulated in the moisture determination receiver and that no distillation of water has been observed, while removing the distillate accumulated in the moisture determination receiver, The temperature was raised to 0 ° C. to remove toluene. Thereafter, the solution was returned to room temperature (25 ° C.), 60.1 g (0.24 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin (resin solid content 35% by weight) was obtained.

(合成例3)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族環を2個以上有するジアミン(芳香族ジアミン)としてBAPP(2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン)73.8g(0.18mol)、シロキサンジアミンとして反応性シリコンオイルX−22−1660B−3(信越化学工業株式会社製商品名、アミン当量2200)88.0g(0.02mol)、TMA(無水トリメリット酸)80.7g(0.42mol)を非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)603gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)60.1g(0.24mol)を投入し、190℃で2時間反応させた。反応終了後、ポリアミドイミド樹脂のNMP溶液(樹脂固形分31重量%)を得た。
(Synthesis Example 3)
BAPP (2,2) as a diamine (aromatic diamine) having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer -Bis [4- (4-aminophenoxy) phenyl] propane) 73.8 g (0.18 mol), reactive silicon oil X-22-1660B-3 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., amine equivalent as siloxane diamine) 2200) 88.0 g (0.02 mol) and TMA (trimellitic anhydride) 80.7 g (0.42 mol) as an aprotic polar solvent were charged with 603 g of NMP (N-methyl-2-pyrrolidone) at 80 ° C. Stir for 30 minutes. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that approximately 7.2 ml or more of water has accumulated in the moisture determination receiver and that no distillation of water has been observed, while removing the distillate accumulated in the moisture determination receiver, The temperature was raised to 0 ° C. to remove toluene. Thereafter, the solution was returned to room temperature (25 ° C.), 60.1 g (0.24 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin (resin solid content 31% by weight) was obtained.

(実施例1)
合成例1のポリアミドイミド樹脂のNMP溶液431.5g(樹脂固形分29重量%)にモノグリシジル化合物として2−エチルヘキシルグリシジルエーテル(EHGE)9.3g(ポリアミドイミド樹脂のアミド基に対する割合:25モル%)を加え100℃で3時間、窒素気流下で撹拌した。その後樹脂を室温(25℃)まで冷却し熱硬化性樹脂としてNC3000(エポキシ樹脂、日本化薬株式会社製商品名)67.2g(樹脂固形分50重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール6.7g(5重量%のジメチルアセトアミド溶液)を配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
Example 1
9.3 g of 2-ethylhexyl glycidyl ether (EHGE) as a monoglycidyl compound as a monoglycidyl compound in 431.5 g of NMP solution of the polyamideimide resin of Synthesis Example 1 (resin solid content 29 wt%): 25 mol% ) And stirred at 100 ° C. for 3 hours under a nitrogen stream. Thereafter, the resin was cooled to room temperature (25 ° C.), and NC3000 (epoxy resin, trade name, manufactured by Nippon Kayaku Co., Ltd.) 67.2 g (dimethylacetamide solution having a resin solid content of 50% by weight), 2-ethyl- After blending 6.7 g of 4-methylimidazole (5% by weight dimethylacetamide solution) and stirring for about 1 hour until the resin became homogeneous, it was allowed to stand at room temperature (25 ° C.) for 24 hours for defoaming. A resin composition varnish was obtained.

(実施例2)
合成例2のポリアミドイミド樹脂のNMP溶液431.8g(樹脂固形分35重量%)にモノグリシジル化合物として2−エチルヘキシルグリシジルエーテル(EHGE)9.3g(ポリアミドイミド樹脂のアミド基に対する割合:25モル%)を加え100℃で3時間、窒素気流下で撹拌した。その後樹脂を室温(25℃)まで冷却し熱硬化性樹脂としてNC3000(エポキシ樹脂、日本化薬株式会社製商品名)80.2g(樹脂固形分50重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール8.0g(5重量%のジメチルアセトアミド溶液)を配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Example 2)
As a monoglycidyl compound, 9.3 g of 2-ethylhexyl glycidyl ether (EHGE) as a monoglycidyl compound (ratio with respect to the amide group of the polyamideimide resin: 25 mol%) ) And stirred at 100 ° C. for 3 hours under a nitrogen stream. Thereafter, the resin was cooled to room temperature (25 ° C.), and NC3000 (epoxy resin, trade name, manufactured by Nippon Kayaku Co., Ltd.) 80.2 g (dimethylacetamide solution having a resin solid content of 50% by weight), 2-ethyl- After blending 8.0 g of 4-methylimidazole (5% by weight dimethylacetamide solution) and stirring for about 1 hour until the resin became homogeneous, it was allowed to stand at room temperature (25 ° C.) for 24 hours for defoaming. A resin composition varnish was obtained.

(実施例3)
合成例3のポリアミドイミド樹脂のNMP溶液436.9g(樹脂固形分31重量%)にモノグリシジル化合物としてフェニルグリシジルエーテル(PGE)15.0g(ポリアミドイミド樹脂のアミド基に対する割合:50モル%)を加え100℃で3時間、窒素気流下で撹拌した。その後樹脂を室温(25℃)まで冷却し熱硬化性樹脂としてNC3000(エポキシ樹脂、日本化薬株式会社製商品名)75.2g(樹脂固形分50重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール7.5g(5重量%のジメチルアセトアミド溶液)を配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Example 3)
As a monoglycidyl compound, 15.0 g of phenylglycidyl ether (PGE) as a monoglycidyl compound (ratio to the amide group of the polyamideimide resin: 50 mol%) was added to 436.9 g of NMP solution of the polyamideimide resin of Synthesis Example 3 (solid content of resin 31% by weight). The mixture was stirred at 100 ° C. for 3 hours under a nitrogen stream. Thereafter, the resin was cooled to room temperature (25 ° C.), and NC3000 (epoxy resin, trade name, manufactured by Nippon Kayaku Co., Ltd.) 75.2 g (dimethylacetamide solution having a resin solid content of 50% by weight), 2-ethyl- After blending 7.5 g of 4-methylimidazole (5% by weight dimethylacetamide solution) and stirring for about 1 hour until the resin became homogeneous, it was allowed to stand at room temperature (25 ° C.) for 24 hours for defoaming. A resin composition varnish was obtained.

(実施例4)
ポリアミドイミド樹脂としてKS6600(日立化成工業株式会社製商品名)のNMP溶液400.0g(樹脂固形分28重量%)にモノグリシジル化合物としてフェニルグリシジルエーテル(PGE)15.0g(ポリアミドイミド樹脂のアミド基に対する割合:50モル%)を加え100℃で3時間、窒素気流下で撹拌した。その後樹脂を室温(25℃)まで冷却し熱硬化性樹脂としてNC3000(エポキシ樹脂、日本化薬株式会社製商品名)63.4g(樹脂固形分50重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール6.3g(5重量%のジメチルアセトアミド溶液)を配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Example 4)
Polyamideimide resin KS6600 (trade name, manufactured by Hitachi Chemical Co., Ltd.) 400.0 g of NMP solution (resin solid content 28% by weight) and monoglycidyl compound 15.0 g of phenylglycidyl ether (PGE) (amide group of polyamideimide resin) The mixture was stirred at 100 ° C. for 3 hours under a nitrogen stream. Thereafter, the resin was cooled to room temperature (25 ° C.) and NC3000 (epoxy resin, trade name, manufactured by Nippon Kayaku Co., Ltd.) as a thermosetting resin 63.4 g (dimethylacetamide solution having a resin solid content of 50% by weight), 2-ethyl- After blending 6.3 g of 4-methylimidazole (5% by weight dimethylacetamide solution) and stirring for about 1 hour until the resin became homogeneous, it was allowed to stand at room temperature (25 ° C.) for 24 hours for defoaming. A resin composition varnish was obtained.

(比較例1)
合成例1のポリアミドイミド樹脂のNMP溶液275.9g(樹脂固形分29重量%)に熱硬化性樹脂としてNC3000(エポキシ樹脂、日本化薬株式会社製商品名)40.0g(樹脂固形重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール4.0g(5重量%のジメチルアセトアミド溶液)を配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Comparative Example 1)
270.0 g of NMP solution of polyamideimide resin of Synthesis Example 1 (resin solid content 29% by weight) and 40.0 g of NC3000 (epoxy resin, Nippon Kayaku Co., Ltd. trade name) as a thermosetting resin Dimethylacetamide solution) and 4.0 g of 2-ethyl-4-methylimidazole (5% by weight dimethylacetamide solution) were mixed and stirred for about 1 hour until the resin became homogeneous, and then for 24 hours at room temperature for defoaming. The resin composition varnish was left standing at (25 ° C.).

(比較例2)
ポリアミドイミド樹脂としてKS6600(日立化成工業(株)製商品名)のNMP溶液285.7g(樹脂固形分28重量%)に熱硬化性樹脂としてNC3000(エポキシ樹脂、日本化薬株式会社製商品名)40.0g(樹脂固形重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール4.0g(5重量%のジメチルアセトアミド溶液)を配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Comparative Example 2)
NMP solution of KS6600 (trade name, manufactured by Hitachi Chemical Co., Ltd.) as a polyamide-imide resin and NC3000 (epoxy resin, product name, manufactured by Nippon Kayaku Co., Ltd.) as a thermosetting resin After 40.0 g (dimethylacetamide solution of resin solid weight%) and 4.0 g of 2-ethyl-4-methylimidazole (5 wt% dimethylacetamide solution) were mixed and stirred for about 1 hour until the resin became homogeneous The resin composition varnish was left to stand at room temperature (25 ° C.) for 24 hours for defoaming.

(プリプレグ及び両面銅張積層板の作製)
実施例1〜4、比較例1、2で作製した樹脂組成物ワニスを厚さ0.028mmのガラスクロス(旭シュエーベル株式会社製商品名1037)に含浸後、150℃で15分加熱、乾燥して樹脂分70重量%のプリプレグを得た。作製したプリプレグの両側に厚さ12μmの電解銅箔(古河電工株式会社製商品名F2−WS−12)を接着面がプリプレグと合わさるようにして重ね、230℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。作製したプリプレグ及び両面銅張積層板を用い以下に示す評価を行った。結果を表1に示した。
(Preparation of prepreg and double-sided copper-clad laminate)
The resin composition varnishes produced in Examples 1 to 4 and Comparative Examples 1 and 2 were impregnated into a glass cloth having a thickness of 0.028 mm (trade name 1037 manufactured by Asahi Schwer, Inc.), then heated and dried at 150 ° C. for 15 minutes. Thus, a prepreg having a resin content of 70% by weight was obtained. A 12 μm thick electrolytic copper foil (trade name F2-WS-12, manufactured by Furukawa Electric Co., Ltd.) is stacked on both sides of the prepared prepreg so that the adhesive surface is aligned with the prepreg, and a press at 230 ° C. for 90 minutes and 4.0 MPa. A double-sided copper-clad laminate was produced under the conditions. The following evaluation was performed using the produced prepreg and double-sided copper-clad laminate. The results are shown in Table 1.

(評価項目)
(1)銅箔引き剥がし強さ
得られた両面銅張積層板の銅箔引き剥がし強さを測定した。
(2)はんだ耐熱性
両面銅張積層板のはんだ耐熱性として、260℃、288℃のはんだ浴に浸漬し、ふくれ、剥がれ等の異常発生までの時間を測定した。
(3)可とう性
銅箔をエッチングにより除去した両面銅張積層板の可とう性(折り曲げ性)を評価した。○:破断なし、×:破断あり。
(4)樹脂フロー量
プリプレグを直径10mmの円形に打ち抜き、それぞれ離型処理した2枚のポリイミドフィルム(ユーピレックス50S宇部興産株式会社製商品名)で挟み230℃、6MPa、5分間の条件でプレスを行った。プレス後のプリプレグの直径3カ所の平均からプレスによるしみ出しの変形量を測定し、樹脂フロー量として評価した。
(5)回路充填性
ライン/スペースが50μm/50μm、75μm/75μm、100μm/100μm、150μm/150μm、200μm/200μmの櫛形パターンを形成した内層回路基板の上に、作製したプリプレグと、厚さ12μmの電解銅箔(古河電工株式会社製F2−WS−12)を接着面がプリプレグと合わさるようにしてそれぞれ重ね、230℃、90分、4.0MPaのプレス条件で多層板を作製した。銅箔をエッチングにより除去し、内層回路間の樹脂の充填性を顕微鏡により観察した。○:内層回路間の空隙なし、×:内層回路間の空隙あり。
(Evaluation item)
(1) Copper foil peeling strength The copper foil peeling strength of the obtained double-sided copper-clad laminate was measured.
(2) Solder heat resistance As the solder heat resistance of the double-sided copper-clad laminate, it was immersed in a solder bath at 260 ° C and 288 ° C, and the time until occurrence of abnormality such as blistering and peeling was measured.
(3) Flexibility The flexibility (foldability) of the double-sided copper-clad laminate from which the copper foil was removed by etching was evaluated. ○: No break, ×: Break
(4) Amount of resin flow The prepreg is punched into a circle with a diameter of 10 mm and sandwiched between two release-treated polyimide films (trade names of Upilex 50S Ube Industries Co., Ltd.) and pressed under conditions of 230 ° C., 6 MPa for 5 minutes. went. The deformation amount of the oozing out by the press was measured from the average of the three diameters of the prepreg after the press and evaluated as the resin flow amount.
(5) Circuit filling property A prepreg produced on an inner circuit board on which a comb pattern having lines / spaces of 50 μm / 50 μm, 75 μm / 75 μm, 100 μm / 100 μm, 150 μm / 150 μm, 200 μm / 200 μm is formed, and a thickness of 12 μm Each of the electrolytic copper foils (F2-WS-12 manufactured by Furukawa Electric Co., Ltd.) was overlapped so that the adhesive surfaces were combined with the prepreg, and a multilayer board was produced under a press condition of 230 ° C., 90 minutes, 4.0 MPa. The copper foil was removed by etching, and the resin filling property between the inner layer circuits was observed with a microscope. ○: No gap between inner layer circuits, ×: There is a gap between inner layer circuits.

Figure 0004378628
Figure 0004378628

実施例1〜4のいずれのプリプレグとの組み合わせでも、銅箔引き剥がし強さは、0.9〜1.2kN/mであった。また260℃及び288℃のはんだ浴に浸漬しはんだ耐熱性を測定した結果、いずれの温度でも5分以上、ふくれ、剥がれ等の異常が見られなかった。実施例1〜4では、可とう性に富み任意に折り曲げることが可能であった。また実施例1〜4では、プリプレグの樹脂フロー量が大きく、櫛形回路間に樹脂が充填されていて、空隙は認められなかった。   The copper foil peel strength was 0.9 to 1.2 kN / m in any combination with the prepregs of Examples 1 to 4. Moreover, as a result of being immersed in the solder bath of 260 degreeC and 288 degreeC and measuring solder heat resistance, abnormality, such as blistering and peeling, was not seen for 5 minutes or more at any temperature. In Examples 1-4, it was rich in flexibility and could be bent arbitrarily. In Examples 1 to 4, the resin flow amount of the prepreg was large, the resin was filled between the comb circuits, and no voids were observed.

それに対し、比較例2では、288℃、60秒でプリプレグのボイドによると思われるふくれが発生した。また可とう性が不十分で、比較例2は折り曲げた際に基材が破断した。プリプレグの樹脂フロー量も小さく、比較例1、2では、櫛形回路間に空隙が多数みられた。


On the other hand, in Comparative Example 2, blistering that appeared to be caused by prepreg voids occurred at 288 ° C. for 60 seconds. Moreover, the flexibility was insufficient, and in Comparative Example 2, the base material was broken when it was bent. The resin flow amount of the prepreg was also small, and in Comparative Examples 1 and 2, many voids were observed between the comb circuits.


Claims (10)

ポリアミドイミド樹脂とモノグリシジル化合物を反応させて得られた樹脂を含む樹脂組成物を繊維基材に含浸してなるプリプレグ。   A prepreg obtained by impregnating a fiber substrate with a resin composition containing a resin obtained by reacting a polyamideimide resin and a monoglycidyl compound. ポリアミドイミド樹脂とモノグリシジル化合物を反応させて得られた樹脂が、ポリアミドイミド樹脂のアミド基に対して1〜95モル%のモノグリシジル化合物を反応させて得られた樹脂である請求項1に記載のプリプレグ。   The resin obtained by reacting the polyamideimide resin and the monoglycidyl compound is a resin obtained by reacting 1 to 95 mol% of the monoglycidyl compound with respect to the amide group of the polyamideimide resin. Prepreg. ポリアミドイミド樹脂が、一般式(1)の構造を有するポリアミドイミド樹脂である請求項1又は2に記載のプリプレグ。
Figure 0004378628
The prepreg according to claim 1 or 2, wherein the polyamideimide resin is a polyamideimide resin having a structure of the general formula (1).
Figure 0004378628
ポリアミドイミド樹脂が、一般式(2)の構造を有するポリアミドイミド樹脂である請求項1乃至3のいずれかに記載のプリプレグ。
Figure 0004378628

(ここでR,Rは2価のアルキル基、R,R,R,Rは1価のアルキル基又は置換基を有するアルキル基、R,Rは1価の芳香族基又は置換基を有する芳香族基を示し、m、nはそれぞれ0から40の整数で1≦n+m≦50である)
The prepreg according to any one of claims 1 to 3, wherein the polyamideimide resin is a polyamideimide resin having a structure of the general formula (2).
Figure 0004378628

(Where R 1 and R 2 are divalent alkyl groups, R 3 , R 4 , R 7 and R 8 are monovalent alkyl groups or alkyl groups having a substituent, and R 5 and R 6 are monovalent aromatic groups. An aromatic group having an aromatic group or a substituent, and m and n are each an integer of 0 to 40, and 1 ≦ n + m ≦ 50)
ポリアミドイミド樹脂が、一般式(1c)で表されるジアミン、一般式(1a)または一般式(1b)で表される芳香族環を2個以上有するジアミン及びシロキサンジアミンの混合物と無水トリメリット酸を反応させて得られるジイミドジカルボン酸を含む混合物とジイソシアネート化合物を反応させて得られるポリアミドイミド樹脂である請求項1乃至4のいずれかに記載のプリプレグ。
Figure 0004378628

Figure 0004378628

Figure 0004378628

(式中、Xは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基、単結合又は下記一般式(2a)又は(2b)で表される2価の基、Yは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基を示し、R、R、Rはそれぞれ独立もしくは同一で水素原子、水酸基、メトキシ基、メチル基、ハロゲン化メチル基を示す。
Figure 0004378628

Figure 0004378628

但し、Zは、炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基又は単結合である。)
Polyamideimide resin is a diamine represented by general formula (1c), a mixture of diamine having two or more aromatic rings represented by general formula (1a) or general formula (1b), and siloxane diamine, and trimellitic anhydride The prepreg according to any one of claims 1 to 4, which is a polyamide-imide resin obtained by reacting a mixture containing diimide dicarboxylic acid obtained by reacting a diisocyanate with a diisocyanate compound.
Figure 0004378628

Figure 0004378628

Figure 0004378628

(Wherein X is an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, a carbonyl group, a single bond, or the following general formula (2a) Or a divalent group represented by (2b), Y is an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, or a carbonyl group. R 1 , R 2 and R 3 are independent or the same and represent a hydrogen atom, a hydroxyl group, a methoxy group, a methyl group or a halogenated methyl group.
Figure 0004378628

Figure 0004378628

However, Z is a C1-C3 aliphatic hydrocarbon group, a C1-C3 halogenated aliphatic hydrocarbon group, a sulfonyl group, an ether group, a carbonyl group, or a single bond. )
樹脂組成物が、熱硬化性樹脂を含む樹脂組成物である請求項1乃至5のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 1 to 5, wherein the resin composition is a resin composition containing a thermosetting resin. 熱硬化性樹脂が、2個以上のグリシジル基を持つエポキシ樹脂であり、かつ樹脂組成物が、硬化促進剤または硬化剤を含有する樹脂組成物である請求項6に記載のプリプレグ。   The prepreg according to claim 6, wherein the thermosetting resin is an epoxy resin having two or more glycidyl groups, and the resin composition is a resin composition containing a curing accelerator or a curing agent. 繊維基材が、厚さ5〜100μmのガラスクロスである請求項1乃至7のいずれかに記載のプリプレグ。   The prepreg according to any one of claims 1 to 7, wherein the fiber base material is a glass cloth having a thickness of 5 to 100 µm. 請求項1乃至8のいずれかに記載のプリプレグを加熱加圧してなる積層板。   A laminate obtained by heating and pressing the prepreg according to claim 1. 請求項9に記載の積層板に回路形成を施して得られる印刷回路板。


A printed circuit board obtained by forming a circuit on the laminate according to claim 9.


JP2004151834A 2004-05-21 2004-05-21 Prepreg, laminated board and printed circuit board using them Active JP4378628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004151834A JP4378628B2 (en) 2004-05-21 2004-05-21 Prepreg, laminated board and printed circuit board using them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004151834A JP4378628B2 (en) 2004-05-21 2004-05-21 Prepreg, laminated board and printed circuit board using them

Publications (2)

Publication Number Publication Date
JP2005330433A JP2005330433A (en) 2005-12-02
JP4378628B2 true JP4378628B2 (en) 2009-12-09

Family

ID=35485315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004151834A Active JP4378628B2 (en) 2004-05-21 2004-05-21 Prepreg, laminated board and printed circuit board using them

Country Status (1)

Country Link
JP (1) JP4378628B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5751085B2 (en) * 2011-08-12 2015-07-22 Dic株式会社 Thermosetting resin composition, white prepreg, white laminate and printed wiring board

Also Published As

Publication number Publication date
JP2005330433A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
JP5958518B2 (en) Resin composition and prepreg using the same, metal foil with resin, adhesive film and metal foil-clad laminate
KR100818470B1 (en) Prepreg, metal-clad laminate and printed circuit board using same
JP4455806B2 (en) Prepreg and laminate
WO2006129560A1 (en) Multi-layer wiring board
JP5573573B2 (en) Resin composition, prepreg, metal foil with resin, adhesive film and metal foil-clad laminate
JP4517749B2 (en) Prepreg and metal-clad laminate and printed circuit board using the same
JP2006066894A (en) Printed-circuit board
JP5056553B2 (en) Metal foil-clad laminate and printed wiring board
JP4735092B2 (en) Printed circuit board
JP5444825B2 (en) Insulating resin composition, prepreg, metal foil-clad laminate, printed wiring board, and multilayer wiring board
JP4736671B2 (en) Prepreg, metal foil-clad laminate and printed circuit board using these
JP4075581B2 (en) Prepreg with adhesive layer, method for producing metal-clad laminate, and metal-clad laminate
JP4378628B2 (en) Prepreg, laminated board and printed circuit board using them
JP2005325203A (en) Prepreg, metal foil-clad laminated plate and printed circuit board obtained using the same
JP4590982B2 (en) Metal foil with resin
JP4555985B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4075580B2 (en) Method for producing prepreg with adhesive layer and prepreg with adhesive layer
JP5241992B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4774702B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP2010037489A (en) Adhesive film, and metal foil with resin
JP4595434B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP2009079200A (en) Prepreg, laminate, and metal foil-clad laminate
JP2005307148A (en) Prepreg and metal foil-adhered lamination plate and printed circuit board using it
JP2005200532A (en) Prepreg and laminate
JP2005325162A (en) Prepreg, metal foil-clad laminated plate and printed circuit board obtained using these

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070323

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4378628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371