JP2005325162A - Prepreg, metal foil-clad laminated plate and printed circuit board obtained using these - Google Patents

Prepreg, metal foil-clad laminated plate and printed circuit board obtained using these Download PDF

Info

Publication number
JP2005325162A
JP2005325162A JP2004142226A JP2004142226A JP2005325162A JP 2005325162 A JP2005325162 A JP 2005325162A JP 2004142226 A JP2004142226 A JP 2004142226A JP 2004142226 A JP2004142226 A JP 2004142226A JP 2005325162 A JP2005325162 A JP 2005325162A
Authority
JP
Japan
Prior art keywords
group
resin
prepreg
general formula
metal foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004142226A
Other languages
Japanese (ja)
Inventor
Kazumasa Takeuchi
一雅 竹内
Katsuyuki Masuda
克之 増田
Makoto Yanagida
真 柳田
Maki Yamaguchi
真樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004142226A priority Critical patent/JP2005325162A/en
Publication of JP2005325162A publication Critical patent/JP2005325162A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed circuit board which is excellent in dimensional stability and heat resistance and can be folded to be highly densely contained in a housing of an electronic apparatus, and a prepreg and a metal foil-clad laminated plate for obtaining the printed circuit board. <P>SOLUTION: The prepreg is obtained by impregnating a fibrous base material with a resin composition comprising a compound having a structure represented by general formula (1) (wherein R<SB>1</SB>is an optionally substituted divalent aliphatic group consisting of C, O and H; and R<SB>2</SB>, R<SB>3</SB>, R<SB>4</SB>and R<SB>5</SB>are each a carbon atom as a part of a cyclic structure or a linear structure constituting the resin). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はプリプレグ及びこれを用いた金属箔張積層板、印刷回路板に関する。   The present invention relates to a prepreg, a metal foil-clad laminate using the prepreg, and a printed circuit board.

プリント配線板用積層板は、電気絶縁性樹脂組成物をマトリックスとするプリプレグを所定枚数重ね、加熱加圧して一体化したものである。プリント回路をサブトラクティブ法により形成する場合には、金属箔張積層板が用いられる。この金属箔張積層板は、プリプレグの表面(片面又は両面)に銅箔などの金属箔を重ねて加熱加圧することにより製造される。電気絶縁性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド−トリアジン樹脂などのような熱硬化性樹脂が汎用され、フッ素樹脂やポリフェニレンエーテル樹脂などのような熱可塑性樹脂が用いられることもある。   The laminate for a printed wiring board is obtained by stacking a predetermined number of prepregs each having an electrically insulating resin composition as a matrix and then heating and pressing to integrate them. When the printed circuit is formed by a subtractive method, a metal foil-clad laminate is used. This metal foil-clad laminate is manufactured by stacking a metal foil such as a copper foil on the surface (one side or both sides) of the prepreg and heating and pressing. As the electrically insulating resin, a thermosetting resin such as a phenol resin, an epoxy resin, a polyimide resin, or a bismaleimide-triazine resin is widely used, and a thermoplastic resin such as a fluorine resin or a polyphenylene ether resin is used. There is also.

一方、パーソナルコンピュータや携帯電話等の情報端末機器の普及に伴ってこれらに搭載される印刷回路板は小型化、高密度化が進んでいる。その実装形態はピン挿入型から表面実装型へさらにはプラスチック基板を使用したBGA(ボールグリッドアレイ)に代表されるエリアアレイ型へと進んでいる。BGAのようなベアチップを直接実装する基板ではチップと基板の接続は、熱超音波圧着によるワイヤボンディングで行うのが一般的である。このため、ベアチップを実装する基板は150℃以上の高温にさらされることになり、電気絶縁性樹脂にはある程度の耐熱性が必要となる。   On the other hand, with the spread of information terminal devices such as personal computers and mobile phones, printed circuit boards mounted on them are becoming smaller and higher in density. The mounting form has progressed from a pin insertion type to a surface mounting type and further to an area array type represented by BGA (ball grid array) using a plastic substrate. In a substrate on which a bare chip such as a BGA is directly mounted, the connection between the chip and the substrate is generally performed by wire bonding by thermosonic bonding. For this reason, the substrate on which the bare chip is mounted is exposed to a high temperature of 150 ° C. or higher, and the electrically insulating resin needs a certain degree of heat resistance.

また、環境問題の観点からはんだの鉛フリー化が進み、はんだの溶融温度が高温化しており、基板にはより高い耐熱性が要求されるとともに、材料にもハロゲンフリーの要求が高まり臭素系難燃剤の使用が難しくなってきている。さらに一度実装したチップを外す、いわゆるリペア性も要求される場合があるが、これにはチップ実装時と同程度の熱がかけられるため、基板にはその後、再度チップ実装が施されることになりさらに熱処理が加わることになる。これに伴いリペア性の要求される基板では高温でのサイクル的な耐熱衝撃性も要求され、従来の絶縁性樹脂系では繊維基材と樹脂の間で剥離を起こす場合がある。   In addition, lead-free solder has progressed from the viewpoint of environmental issues, and the melting temperature of solder has increased. As a result, higher heat resistance is required for the substrate, and the demand for halogen-free materials has increased, making it difficult to use bromine. The use of flame retardants has become difficult. In addition, there is a case where so-called repairability is required to remove the chip once mounted, but since this is subject to the same level of heat as chip mounting, the substrate is then chip mounted again. In addition, heat treatment will be added. Along with this, a substrate requiring repairability is also required to have a cyclic thermal shock resistance at a high temperature, and in a conventional insulating resin system, peeling may occur between the fiber base material and the resin.

耐熱衝撃性、耐リフロー性、耐クラック性に優れ微細配線形成性を向上するために繊維基材にポリアミドイミドを必須成分とする樹脂組成物を含浸したプリプレグが提案されている(例えば特許文献1を参照)。さらに電子機器の小型化、高性能化に伴い限られた空間に部品実装を施された印刷回路板を収納することが必要となってきている。これには複数の印刷回路板を多段に配し相互をワイヤーハーネスやフレキシブル配線板によって接続する方法がとられている。また、ポリイミドをベースとするフレキシブル基板と従来のリジッド基板を多層化したリジッド−フレックス基板が用いられている。
特開2003−55486号公報
A prepreg in which a fiber base material is impregnated with a resin composition containing polyamideimide as an essential component has been proposed in order to have excellent thermal shock resistance, reflow resistance, and crack resistance and to improve fine wiring formation (for example, Patent Document 1). See). Furthermore, with the miniaturization and high performance of electronic devices, it has become necessary to accommodate printed circuit boards with component mounting in a limited space. In this method, a plurality of printed circuit boards are arranged in multiple stages and connected to each other by a wire harness or a flexible wiring board. In addition, a rigid-flex substrate in which a flexible substrate based on polyimide and a conventional rigid substrate are multilayered is used.
JP 2003-55486 A

本発明は、上記従来技術の問題点を解消し、金属箔や繊維基材との接着性に優れ、耐熱性に優れた可とう性の高い樹脂を薄い繊維基材に含浸することで、寸法安定性、耐熱性に優れ、印刷回路板としたときに折り曲げ可能で電子機器の筐体内に高密度に収納可能な印刷回路板及び該印刷回路板を与えるプリプレグ及び金属箔張積層板を提供するものである。   The present invention eliminates the above-mentioned problems of the prior art, impregnates a thin fiber base material with a highly flexible resin excellent in adhesion to metal foil and fiber base material and excellent in heat resistance. Provided are a printed circuit board that is excellent in stability and heat resistance, can be bent when used as a printed circuit board, and can be stored in a high density in a casing of an electronic device, and a prepreg and a metal foil-clad laminate that provide the printed circuit board. Is.

本発明は、次のものに関する。
(1)一般式(1)の構造を有する化合物を含む樹脂組成物を繊維基材に含浸してなるプリプレグ。
The present invention relates to the following.
(1) A prepreg obtained by impregnating a fiber base material with a resin composition containing a compound having the structure of the general formula (1).

Figure 2005325162

(Rは置換基を有していてもよいC、O、Hからなる2価の脂肪族基、R、R、R、Rはそれぞれ、樹脂を構成する環状構造もしくは鎖状構造の一部の炭素原子を示す。)
(2)一般式(1)の構造を有する化合物が、ポリアミドイミド樹脂である項(1)に記載のプリプレグ。
(3)樹脂組成物が熱硬化性樹脂を含む樹脂組成物である項(1)又は(2)に記載のプリプレグ。
(4)繊維基材が厚さ5〜100μmのガラスクロスである項(1)乃至(3)いずれかに記載のプリプレグ。
(5)一般式(1)の構造を有する化合物が、一般式(2)で表されるジアミン、(1a)または(1b)で表される芳香族環を2個以上有するジアミン及びシロキサンジアミンの混合物と無水トリメリット酸を反応させて得られるジイミドジカルボン酸を含む混合物とジイソシアネート化合物を反応させて得られるポリアミドイミド樹脂である項(1)乃至(4)いずれかに記載のプリプレグ。
Figure 2005325162

(R 1 is an optionally substituted divalent aliphatic group composed of C, O, and H, and R 2 , R 3 , R 4 , and R 5 are each a cyclic structure or a chain that constitutes the resin. (Indicates some carbon atoms in the structure.)
(2) The prepreg according to item (1), wherein the compound having the structure of the general formula (1) is a polyamideimide resin.
(3) The prepreg according to item (1) or (2), wherein the resin composition is a resin composition containing a thermosetting resin.
(4) The prepreg according to any one of Items (1) to (3), wherein the fiber base material is a glass cloth having a thickness of 5 to 100 μm.
(5) The compound having the structure of the general formula (1) is a diamine represented by the general formula (2), a diamine having two or more aromatic rings represented by (1a) or (1b), and a siloxane diamine. The prepreg according to any one of Items (1) to (4), which is a polyamideimide resin obtained by reacting a mixture containing diimidedicarboxylic acid obtained by reacting the mixture with trimellitic anhydride and a diisocyanate compound.

Figure 2005325162

(Rは置換基を有していてもよいC、O、Hからなる2価の脂肪族基を示す)
Figure 2005325162

(R 1 represents a divalent aliphatic group consisting of C, O and H which may have a substituent)

Figure 2005325162
Figure 2005325162

Figure 2005325162

(式中、Xは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基、単結合又は下記一般式(2a)又は(2b)で表される2価の基、Yは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基を示し、R1、R2、R3はそれぞれ独立もしくは同一で水素原子、水酸基、メトキシ基、メチル基、ハロゲン化メチル基を示す。
Figure 2005325162

(Wherein X is an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, a carbonyl group, a single bond, or the following general formula (2a) Or a divalent group represented by (2b), Y is an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, or a carbonyl group. R 1 , R 2 and R 3 are independent or the same and each represents a hydrogen atom, a hydroxyl group, a methoxy group, a methyl group or a halogenated methyl group.

Figure 2005325162
Figure 2005325162

Figure 2005325162

但し、Zは、炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基又は単結合である。)
(6)熱硬化性樹脂が、2個以上のグリシジル基を持つエポキシ樹脂であり、かつ樹脂組成物が前記エポキシ樹脂の硬化促進剤または硬化剤を含有する樹脂組成物である項(3)乃至(5)のいずれかに記載のプリプレグ。
(7)項(1)乃至(6)いずれかに記載のプリプレグを所定枚数重ね、その片側または両側に金属箔を配置し、加熱加圧してなる金属箔張積層板。
(8)項(7)に記載の金属箔張積層板を回路加工して得られる印刷回路板。
Figure 2005325162

However, Z is a C1-C3 aliphatic hydrocarbon group, a C1-C3 halogenated aliphatic hydrocarbon group, a sulfonyl group, an ether group, a carbonyl group, or a single bond. )
(6) Items (3) to (3), wherein the thermosetting resin is an epoxy resin having two or more glycidyl groups, and the resin composition is a resin composition containing a curing accelerator or a curing agent for the epoxy resin. The prepreg according to any one of (5).
(7) A metal foil-clad laminate obtained by stacking a predetermined number of the prepregs according to any one of items (1) to (6), placing a metal foil on one side or both sides, and heating and pressing.
(8) A printed circuit board obtained by circuit-processing the metal foil-clad laminate according to item (7).

本発明におけるプリプレグで得られる金属箔張積層板及び印刷回路板は任意に折り曲げ可能であり寸法安定性、耐熱性、耐PCT性に優れる。   The metal foil-clad laminate and printed circuit board obtained by the prepreg in the present invention can be arbitrarily bent and are excellent in dimensional stability, heat resistance and PCT resistance.

本発明のプリプレグは、前記一般式(1)の構造を有する化合物を含む樹脂組成物を繊維基材に含浸してなるプリプレグである。前記一般式(1)の構造を有する化合物としては、ポリアミドイミド樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ビスマレイミド−トリアジン樹脂などが挙げられるが、ポリアミドイミド樹脂が好ましい。特に前記一般式(2)で表されるジアミン、芳香族環を2個以上有するジアミン(芳香族ジアミン)及びシロキサンジアミンの混合物と無水トリメリット酸を反応させて得られるジイミドジカルボン酸を含む混合物と芳香族ジイソシアネートを反応させて得られるポリアミドイミド樹脂がより好ましい。   The prepreg of the present invention is a prepreg formed by impregnating a fiber base material with a resin composition containing a compound having the structure of the general formula (1). Examples of the compound having the structure of the general formula (1) include polyamideimide resin, polyimide resin, bismaleimide resin, bismaleimide-triazine resin, and the like, but polyamideimide resin is preferable. In particular, a mixture containing diimide dicarboxylic acid obtained by reacting a diamine represented by the general formula (2), a diamine having two or more aromatic rings (aromatic diamine) and a siloxane diamine with trimellitic anhydride; Polyamideimide resins obtained by reacting aromatic diisocyanates are more preferred.

一般式(1)の構造を有するポリアミドイミド樹脂の合成は、一般式(2)で表されるジアミンaとそれ以外の芳香族環を2個以上有するジアミン(芳香族ジアミン)、シロキサンジアミンの合計モルbとの混合比率が、a/b=0.1/99.9〜99.9/0.1(モル比)であると好ましく、a/b=5/95〜40/60であると更に好ましく、a/b=10/90〜30/70であるとより一層好ましい。   The synthesis of the polyamideimide resin having the structure of the general formula (1) is the sum of the diamine a represented by the general formula (2) and a diamine having two or more aromatic rings (aromatic diamine) and siloxane diamine. The mixing ratio with mol b is preferably a / b = 0.1 / 99.9 to 99.9 / 0.1 (molar ratio), and a / b = 5/95 to 40/60. More preferably, a / b = 10/90 to 30/70 is even more preferable.

一般式(2)で示されるジアミン(脂肪族ジアミン)としては、ヘキサメチレンジアミン、オクタメチレンジアミン、デカメチレンジアミン、ドデカメチレンジアミン、オクタデカメチレンジアミンなどの直鎖型脂肪族ジアミンや末端アミノ化ポリプロピレングリコールなどが挙げられる。また一般式(2)で示されるジアミン(脂肪族ジアミン)は、低弾性率及び高Tgの両立の観点から、エーテル基を含むことが好ましく末端アミノ化ポリプロピレングリコールが好ましい。末端アミノ化ポリプロピレングリコールとしては、分子量の異なるジェファーミンD−230、D−400、D−2000、D−4000(以上、サンテクノケミカル社商品名)が挙げられる。   Examples of the diamine (aliphatic diamine) represented by the general formula (2) include linear aliphatic diamines such as hexamethylene diamine, octamethylene diamine, decamethylene diamine, dodecamethylene diamine, and octadecamethylene diamine, and terminal aminated polypropylene. And glycols. Moreover, it is preferable that the diamine (aliphatic diamine) shown by General formula (2) contains an ether group from the viewpoint of coexistence of a low elasticity modulus and high Tg, and terminal aminated polypropylene glycol is preferable. Examples of the terminal aminated polypropylene glycol include Jeffamine D-230, D-400, D-2000, and D-4000 having different molecular weights (trade names of Sun Techno Chemical Co., Ltd.).

芳香族ジアミンとしては、例えば2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ジメチルビフェニル−4,4’−ジアミン、2,2’−ビス(トリフルオロメチル)ビフェニル−4,4’−ジアミン、2,6,2’,6’−テトラメチル−4,4’−ジアミン、5,5’−ジメチル−2,2’−スルフォニル−ビフェニル−4,4’−ジアミン、3,3’−ジヒドロキシビフェニル−4,4’−ジアミン、(4,4’−ジアミノ)ジフェニルエーテル、(4,4’−ジアミノ)ジフェニルスルホン、(4,4’−ジアミノ)ベンゾフェノン、(3,3’―ジアミノ)ベンゾフェノン、(4,4’−ジアミノ)ジフェニルメタン、(4,4’−ジアミノ)ジフェニルエーテル、(3,3’―ジアミノ)ジフェニルエーテル等が例示できる。   Examples of the aromatic diamine include 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (3-aminophenoxy) phenyl] sulfone, and bis [4- (4-amino). Phenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, bis [4- (4-aminophenoxy) phenyl] methane, 4,4′-bis (4-amino) Phenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (4-aminophenoxy) phenyl] ketone, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2′-dimethylbiphenyl-4,4′-diamine, 2,2′-bis (trifluoro) Til) biphenyl-4,4′-diamine, 2,6,2 ′, 6′-tetramethyl-4,4′-diamine, 5,5′-dimethyl-2,2′-sulfonyl-biphenyl-4,4 '-Diamine, 3,3'-dihydroxybiphenyl-4,4'-diamine, (4,4'-diamino) diphenyl ether, (4,4'-diamino) diphenyl sulfone, (4,4'-diamino) benzophenone, (3,3′-diamino) benzophenone, (4,4′-diamino) diphenylmethane, (4,4′-diamino) diphenyl ether, (3,3′-diamino) diphenyl ether and the like can be exemplified.

本発明で使用するシロキサンジアミンとしては以下の一般式(3)〜(6)ものが挙げられる。   Examples of the siloxane diamine used in the present invention include the following general formulas (3) to (6).

Figure 2005325162
Figure 2005325162

Figure 2005325162
Figure 2005325162

Figure 2005325162
Figure 2005325162

Figure 2005325162
Figure 2005325162

なお、上記一般式(3)で表されるシロキサンジアミンとしては、X−22−161AS(アミン当量450)、X−22−161A(アミン当量840)、X−22−161B(アミン当量1500)、(以上、信越化学工業株式会社製商品名)、BY16−853(アミン当量650)、BY16−853B(アミン当量2200)、(以上、東レダウコーニングシリコーン株式会社製商品名)等が例示できる。上記一般式(6)で表されるシロキサンジアミンとしては、X−22−9409(アミン当量700)、X−22−1660B−3(アミン当量2200)(以上、信越化学工業株式会社製商品名)等が例示できる。   In addition, as siloxane diamine represented by the said General formula (3), X-22-161AS (amine equivalent 450), X-22-161A (amine equivalent 840), X-22-161B (amine equivalent 1500), (The above is a trade name manufactured by Shin-Etsu Chemical Co., Ltd.), BY16-853 (amine equivalent 650), BY16-853B (amine equivalent 2200), (above, product name manufactured by Toray Dow Corning Silicone Co., Ltd.) and the like. Examples of the siloxane diamine represented by the general formula (6) include X-22-9409 (amine equivalent 700), X-22-1660B-3 (amine equivalent 2200) (above, trade name manufactured by Shin-Etsu Chemical Co., Ltd.). Etc. can be exemplified.

本発明の前記一般式(1)の構造を有する化合物であるポリアミドイミド樹脂の製造方法に用いるジイソシアネートとしては、下記一般式(7)で表される化合物を用いることができる。   As the diisocyanate used in the method for producing a polyamideimide resin, which is a compound having the structure of the general formula (1) of the present invention, a compound represented by the following general formula (7) can be used.

Figure 2005325162
Figure 2005325162

式中、Dは少なくとも1つの芳香環を有する2価の有機基、又は、2価の脂肪族炭化水素基であり、−C64−CH2−C64−で表される基、トリレン基、ナフチレン基、ヘキサメチレン基、2,2,4−トリメチルヘキサメチレン基及びイソホロン基からなる群より選ばれる少なくとも1つの基であることが好ましい。 In the formula, D is a divalent organic group having at least one aromatic ring or a divalent aliphatic hydrocarbon group, and is a group represented by —C 6 H 4 —CH 2 —C 6 H 4 —. And at least one group selected from the group consisting of a tolylene group, a naphthylene group, a hexamethylene group, a 2,2,4-trimethylhexamethylene group and an isophorone group.

上記一般式(7)で表されるジイソシアネートとしては、脂肪族ジイソシアネート又は芳香族ジイソシアネートを用いることができるが、芳香族ジイソシアネートを用いることが好ましく、両者を併用することも可能である。   As the diisocyanate represented by the general formula (7), an aliphatic diisocyanate or an aromatic diisocyanate can be used, but an aromatic diisocyanate is preferably used, and both can be used in combination.

芳香族ジイソシアネートとしては、4,4’−ジフェニルメタンジイソシアネート(MDI)、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ナフタレン−1,5−ジイソシアネート、2,4−トリレンダイマー等が例示でき、MDIを用いることが特に好ましい。芳香族ジイソシアネートとしてMDIを用いることにより、得られるポリアミドイミドの可撓性を向上させることができる。   Examples of aromatic diisocyanates include 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, 2,4-tolylene dimer, and the like. As an example, it is particularly preferable to use MDI. By using MDI as the aromatic diisocyanate, the flexibility of the resulting polyamideimide can be improved.

脂肪族ジイソシアネートとしては、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等が例示できる。   Examples of the aliphatic diisocyanate include hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and isophorone diisocyanate.

芳香族ジイソシアネート及び脂肪族ジイソシアネートを併用する場合は、脂肪族ジイソシアネートを芳香族ジイソシアネートに対して5〜10モル%程度添加することが好ましく、かかる併用により、得られるポリアミドイミド樹脂の耐熱性を更に向上させることができる。   When using an aromatic diisocyanate and an aliphatic diisocyanate in combination, it is preferable to add the aliphatic diisocyanate in an amount of about 5 to 10 mol% with respect to the aromatic diisocyanate. Can be made.

本発明で用いる熱硬化性樹脂としては、エポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ビスマレイミド樹脂、トリアジン−ビスマレイミド樹脂、フェノール樹脂等が挙げられ、前記一般式(1)の構造を有する化合物であるポリアミドイミド樹脂100重量部に対し熱硬化性樹脂1〜200重量部を用いることが好ましい。本発明では、熱硬化性樹脂としてエポキシ樹脂を用いることが180℃以下の温度で硬化が可能で、ポリアミドイミド樹脂のアミド基に対して反応して熱的、機械的、電気的特性を向上させるため好ましく、2個以上のグリシジル基を持つエポキシ樹脂とその硬化剤、2個以上のグリシジル基を持つエポキシ樹脂とその硬化促進剤または2個以上のグリシジル基を持つエポキシ樹脂と硬化剤、硬化促進剤を用いることがより好ましい。またグリシジル基は多いほどよく、3個以上であればさらに好ましい。グリシジル基の数により、配合量が異なり、グリシジル基が多いほど配合量が少なくてもよい。   Examples of the thermosetting resin used in the present invention include an epoxy resin, a polyimide resin, an unsaturated polyester resin, a polyurethane resin, a bismaleimide resin, a triazine-bismaleimide resin, and a phenol resin, and the structure of the general formula (1). It is preferable to use 1 to 200 parts by weight of a thermosetting resin with respect to 100 parts by weight of the polyamide-imide resin which is a compound having the above. In the present invention, using an epoxy resin as a thermosetting resin can be cured at a temperature of 180 ° C. or less, and reacts with an amide group of a polyamide-imide resin to improve thermal, mechanical, and electrical characteristics. Therefore, an epoxy resin having two or more glycidyl groups and a curing agent thereof, an epoxy resin having two or more glycidyl groups and its curing accelerator, or an epoxy resin having two or more glycidyl groups and a curing agent, curing acceleration It is more preferable to use an agent. Further, the more glycidyl groups, the better. The blending amount varies depending on the number of glycidyl groups, and the blending amount may be smaller as the glycidyl group is larger.

本発明では、一般式(1)の構造を有するポリアミドイミド樹脂100重量部に対し熱硬化性樹脂1〜200重量部用いることが好ましいが、1重量部未満では、耐溶剤性に劣り、また200重量部を超えると未反応の熱硬化性樹脂によりTgが低下し耐熱性が不十分となったり、可撓性が低下するため好ましくない。そのためポリアミドイミド樹脂100重量部に対し熱硬化性樹脂3〜100重量部がより好ましく、更に10〜60重量部が特に好ましい。   In the present invention, it is preferable to use 1 to 200 parts by weight of a thermosetting resin with respect to 100 parts by weight of the polyamideimide resin having the structure of the general formula (1). However, if it is less than 1 part by weight, the solvent resistance is inferior. Exceeding parts by weight is not preferable because Tg is lowered by the unreacted thermosetting resin, heat resistance becomes insufficient, and flexibility is lowered. Therefore, 3-100 weight part of thermosetting resins are more preferable with respect to 100 weight part of polyamideimide resin, and 10-60 weight part is especially more preferable.

エポキシ樹脂としては、ビスフェノールA、ノボラック型フェノール樹脂、オルトクレゾールノボラック型フェノール樹脂等の多価フェノール又は1,4−ブタンジオール等の多価アルコールとエピクロルヒドリンを反応させて得られるポリグリシジルエーテル、フタル酸、ヘキサヒドロフタル酸等の多塩基酸とエピクロルヒドリンを反応させて得られるポリグリシジルエステル、アミン、アミド又は複素環式窒素塩基を有する化合物のN−グリシジル誘導体、脂環式エポキシ樹脂などが挙げられる。   Epoxy resins include polyglycidyl ethers and phthalic acids obtained by reacting polychlorophenols such as bisphenol A, novolac phenol resins, orthocresol novolac phenol resins or polyhydric alcohols such as 1,4-butanediol with epichlorohydrin. And polyglycidyl ester obtained by reacting a polybasic acid such as hexahydrophthalic acid with epichlorohydrin, an N-glycidyl derivative of a compound having an amine, an amide or a heterocyclic nitrogen base, an alicyclic epoxy resin, and the like.

エポキシ樹脂の硬化剤、硬化促進剤は、エポキシ樹脂と反応するもの、または、硬化を促進させるものであれば制限なく、例えば、アミン類、イミダゾール類、多官能フェノール類、酸無水物類等が使用できる。アミン類として、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素等が使用でき、多官能フェノール類としては、ヒドロキノン、レゾルシノール、ビスフェノールA及びこれらのハロゲン化合物、さらにホルムアルデヒドとの縮合物であるノボラック型フェノール樹脂、レゾール型フェノール樹脂などが使用でき、酸無水物類としては、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸等が使用できる。硬化促進剤としては、イミダゾール類としてアルキル基置換イミダゾール、ベンゾイミダゾール等が使用できる。   The curing agent and curing accelerator of the epoxy resin are not limited as long as they react with the epoxy resin or accelerate curing. For example, amines, imidazoles, polyfunctional phenols, acid anhydrides, etc. Can be used. As amines, dicyandiamide, diaminodiphenylmethane, guanylurea, etc. can be used. As polyfunctional phenols, hydroquinone, resorcinol, bisphenol A and their halogen compounds, and novolak-type phenol resins that are condensates with formaldehyde, resole type A phenol resin or the like can be used. As the acid anhydrides, phthalic anhydride, benzophenone tetracarboxylic dianhydride, methyl hymic acid, or the like can be used. As the curing accelerator, alkyl group-substituted imidazole, benzimidazole and the like can be used as imidazoles.

これらの硬化剤または硬化促進剤の必要な量は、アミン類の場合は、アミンの活性水素の当量と、エポキシ樹脂のエポキシ当量がほぼ等しくなる量が好ましい。硬化促進剤である、イミダゾールの場合は、単純に活性水素との当量比とならず、経験的にエポキシ樹脂100重量部に対して、0.001〜10重量部必要となる。多官能フェノール類や酸無水物類の場合、エポキシ樹脂1当量に対して、フェノール性水酸基やカルボキシル基0.6〜1.2当量必要である。これらの硬化剤または硬化促進剤の量は、少なければ未硬化のエポキシ樹脂が残り、Tg(ガラス転移温度)が低くなり、多すぎると、未反応の硬化剤及び硬化促進剤が残り、絶縁性が低下する。エポキシ樹脂のエポキシ当量は、ポリアミドイミド樹脂のアミド基とも反応することができるので考慮に入れることが好ましい。   In the case of amines, the necessary amounts of these curing agents or curing accelerators are preferably such that the equivalent of the active hydrogen of the amine is approximately equal to the epoxy equivalent of the epoxy resin. In the case of imidazole, which is a curing accelerator, it is not simply an equivalent ratio with active hydrogen, but is empirically required to be 0.001 to 10 parts by weight per 100 parts by weight of the epoxy resin. In the case of polyfunctional phenols and acid anhydrides, 0.6 to 1.2 equivalents of phenolic hydroxyl groups and carboxyl groups are required for 1 equivalent of epoxy resin. If the amount of these curing agents or accelerators is small, uncured epoxy resin remains, and Tg (glass transition temperature) is low. If too large, unreacted curing agent and curing accelerator remain, and insulating properties are maintained. Decreases. The epoxy equivalent of the epoxy resin is preferably taken into account because it can also react with the amide group of the polyamideimide resin.

本発明では、プリプレグ用樹脂組成物を有機溶媒中で混合、溶解、分散して得られるワニスを繊維基材に含浸、乾燥してプリプレグを作製することができる。このような有機溶媒としては、溶解性が得られるものであれば制限するものでなく、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、γ−ブチロラクトン、スルホラン、シクロヘキサノン等が挙げられる。   In the present invention, a prepreg can be prepared by impregnating and drying a varnish obtained by mixing, dissolving and dispersing a resin composition for prepreg in an organic solvent. Such an organic solvent is not limited as long as solubility is obtained, and examples thereof include dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, γ-butyrolactone, sulfolane, and cyclohexanone. It is done.

プリプレグを得るための樹脂組成物は、一般式(1)の構造を有するポリアミドイミド樹脂100重量部と熱硬化性樹脂1〜200重量部とを含む樹脂組成物あることが好ましく、これによりワニス溶剤の揮発速度が速く、熱硬化性樹脂の硬化反応を促進しない150℃以下の低温でも残存溶剤分を5重量%以下にすることが可能であり、繊維基材及び銅箔との密着性の良好な金属箔張積層板を得ることができる。   The resin composition for obtaining the prepreg is preferably a resin composition containing 100 parts by weight of a polyamideimide resin having a structure of the general formula (1) and 1 to 200 parts by weight of a thermosetting resin, whereby a varnish solvent The volatilization rate of the resin is high, and the residual solvent content can be reduced to 5% by weight or less even at a low temperature of 150 ° C. or less, which does not promote the curing reaction of the thermosetting resin, and has good adhesion to the fiber substrate and copper foil. A metal foil-clad laminate can be obtained.

本発明では、樹脂組成物のワニスを繊維基材に含浸させ、乾燥させて、プリプレグを製造する。繊維基材としては、金属箔張り積層板や多層印刷回路板を製造する際に用いられるものであれば特に制限されないが、通常織布や不織布等の繊維基材が用いられる。繊維基材の材質としては、ガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維やアラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維等及びこれらの混抄系があり、特にガラス繊維の織布が好ましく用いられる。プリプレグに使用される繊維基材としては、厚みが5〜100μmであることが好ましく、5〜50μmがより好ましい。また厚みが5〜100μmのガラスクロスが特に好適に用いられる。厚みが5〜100μmのガラスクロスを用いることで任意に折り曲げ可能な印刷回路板を得ることができ、製造プロセス上での温度、吸湿等に伴う寸法変化を小さくすることが可能となる。   In the present invention, a fiber base material is impregnated with a varnish of a resin composition and dried to produce a prepreg. Although it will not restrict | limit especially if it is used when manufacturing a metal foil clad laminated board and a multilayer printed circuit board as a fiber base material, Usually fiber base materials, such as a woven fabric and a nonwoven fabric, are used. Examples of the fiber base material include glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, and other inorganic fibers, aramid, polyetheretherketone, polyetherimide, polyether There are organic fibers such as sulfone, carbon, cellulose and the like and mixed papers thereof, and glass fiber woven fabrics are particularly preferably used. As a fiber base material used for a prepreg, it is preferable that thickness is 5-100 micrometers, and 5-50 micrometers is more preferable. A glass cloth having a thickness of 5 to 100 μm is particularly preferably used. By using a glass cloth having a thickness of 5 to 100 μm, it is possible to obtain a printed circuit board that can be bent arbitrarily, and it is possible to reduce dimensional changes associated with temperature, moisture absorption, and the like in the manufacturing process.

プリプレグの製造条件等は特に制限するものではないが,樹脂組成物のワニスに使用した溶剤が80重量%以上揮発していることが好ましい。このため,製造方法や乾燥条件等も制限はなく,乾燥時の温度は80℃〜180℃,時間はワニスのゲル化時間との兼ね合いで特に制限はないまた、ワニスの含浸量は、ワニス樹脂固形分と繊維基材の総量に対して、ワニス樹脂固形分が30〜80重量%になるようにすることが好ましい。   The production conditions of the prepreg are not particularly limited, but it is preferable that the solvent used for the varnish of the resin composition is volatilized by 80% by weight or more. For this reason, there are no restrictions on the production method, drying conditions, etc., the temperature during drying is 80 ° C. to 180 ° C., and the time is not particularly limited in consideration of the gelling time of the varnish. The solid content of the varnish resin is preferably 30 to 80% by weight based on the total amount of the solid content and the fiber base material.

絶縁板、積層板又は金属箔張積層板の製造方法は次の通りである。本発明におけるプリプレグ又はそれを複数枚積層した積層体に、必要に応じてその片面又は両面に金属箔を重ね、通常150〜280℃、好ましくは180℃〜250℃の範囲の温度で、通常0.5〜20MPa、好ましくは1〜8MPaの範囲の圧力で、加熱加圧成形することにより絶縁板、積層体又は金属箔張積層板を製造することができる。金属箔を使用して金属箔張積層板とすることにより、これに回路加工を施して印刷回路板とすることができる。   The manufacturing method of an insulating board, a laminated board, or a metal foil tension laminated board is as follows. In the present invention, a metal foil is laminated on one or both sides of the prepreg or a laminate obtained by laminating a plurality of the prepregs, if necessary, and usually at a temperature in the range of 150 to 280 ° C, preferably 180 ° C to 250 ° C, usually 0. An insulating plate, a laminate or a metal foil-clad laminate can be produced by heat and pressure molding at a pressure in the range of 5 to 20 MPa, preferably 1 to 8 MPa. By using a metal foil as a metal foil-clad laminate, circuit processing can be applied to this to obtain a printed circuit board.

本発明に用いられる金属箔は、銅箔やアルミニウム箔が一般的に用いられるが、通常積層板に用いられている5〜200μmのものを使用できるが、銅箔が好ましい。また、ニッケル、ニッケル−リン、ニッケル−スズ合金、ニッケル−鉄合金、鉛、鉛−スズ合金等を中間層とし、この両面に0.5〜15μmの銅層と10〜300μmの銅層を設けた3層構造の複合箔あるいはアルミニウムと銅箔を複合した2層構造複合箔を用いることができる。   As the metal foil used in the present invention, a copper foil or an aluminum foil is generally used. A metal foil of 5 to 200 μm which is usually used for a laminate can be used, but a copper foil is preferable. Also, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a 0.5-15 μm copper layer and a 10-300 μm copper layer are provided on both sides. Alternatively, a three-layer composite foil or a two-layer composite foil in which aluminum and copper foil are combined can be used.

以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
(合成例1)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族環を2個以上有するジアミンとしてBAPP(2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン)61.58g(0.15mol)、一般式(2)で表されるジアミンとしてジェファーミンD2000(サンテクノケミカル社製商品名、アミン当量1000)100.0g(0.05mol)、TMA(無水トリメリット酸)80.68g(0.42mol)を非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)562gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)60.1g(0.24mol)を投入し、190℃で2時間反応させた。反応終了後、一般式(1)の構造を有するポリアミドイミド樹脂のNMP溶液を得た。
Examples are described below, but the present invention is not limited to these examples.
(Synthesis Example 1)
BAPP (2,2-bis [4-) is a diamine having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer. (4-aminophenoxy) phenyl] propane) 61.58 g (0.15 mol), Jeffamine D2000 (trade name, amine equivalent 1000, manufactured by Sun Techno Chemical Co.) as a diamine represented by the general formula (2) 100.0 g (0 0.05 mol) and TMA (trimellitic anhydride) 80.68 g (0.42 mol) as an aprotic polar solvent were charged with 562 g of NMP (N-methyl-2-pyrrolidone) and stirred at 80 ° C. for 30 minutes. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that approximately 7.2 ml or more of water has accumulated in the moisture determination receiver and that no distillation of water has been observed, while removing the distillate accumulated in the moisture determination receiver, The temperature was raised to 0 ° C. to remove toluene. Thereafter, the solution was returned to room temperature (25 ° C.), 60.1 g (0.24 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin having the structure of the general formula (1) was obtained.

(合成例2)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族環を2個以上有するジアミンとしてBAPP(2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン)49.26g(0.12mol)、一般式(2)で表されるジアミンとしてジェファーミンD400(サンテクノケミカル社製商品名、アミン当量200)32.0g(0.08mol)、TMA(無水トリメリット酸)80.68g(0.42mol)を非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)472gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)60.1g(0.24mol)を投入し、190℃で2時間反応させた。反応終了後、一般式(1)の構造を有するポリアミドイミド樹脂のNMP溶液を得た。
(Synthesis Example 2)
BAPP (2,2-bis [4-) is a diamine having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer. 49.26 g (0.12 mol) of (4-aminophenoxy) phenyl] propane), 32.0 g (0 of Jeffamine D400 (trade name, amine equivalent 200 manufactured by Sun Techno Chemical Co., Ltd.) as the diamine represented by the general formula (2) 0.08 mol) and TMA (trimellitic anhydride) 80.68 g (0.42 mol) as an aprotic polar solvent were charged with 472 g of NMP (N-methyl-2-pyrrolidone) and stirred at 80 ° C. for 30 minutes. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that approximately 7.2 ml or more of water has accumulated in the moisture determination receiver and that no distillation of water has been observed, while removing the distillate accumulated in the moisture determination receiver, The temperature was raised to 0 ° C. to remove toluene. Thereafter, the solution was returned to room temperature (25 ° C.), 60.1 g (0.24 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin having the structure of the general formula (1) was obtained.

(合成例3)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族環を2個以上有するジアミンとしてDDS(ジアミノジフェニルスルホン)29.76g(0.12mol)、シロキサンジアミンとして反応性シリコンオイルKF−8010(信越化学工業株式会社製商品名、アミン当量450)36.0g(0.04mol)、一般式(2)で表されるジアミンとしてジェファーミンD2000(サンテクノケミカル社製商品名、アミン当量1000)80.0g(0.04mol)、TMA(無水トリメリット酸)80.7g(0.42mol)を非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)609gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)60.1g(0.24mol)を投入し、190℃で2時間反応させた。反応終了後、一般式(1)の構造を有するポリアミドイミド樹脂のNMP溶液を得た。
(Synthesis Example 3)
29.76 g of DDS (diaminodiphenylsulfone) as a diamine having two or more aromatic rings in a 1 liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer and a stirrer 0.12 mol), reactive silicone oil KF-8010 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., amine equivalent 450) as siloxane diamine, 36.0 g (0.04 mol), Jeffer as diamine represented by general formula (2) NMP (N-methyl) using 80.0 g (0.04 mol) of Min D2000 (trade name, amine equivalent 1000, manufactured by Sun Techno Chemical Co., Ltd.) and 80.7 g (0.42 mol) of TMA (trimellitic anhydride) as an aprotic polar solvent -2-pyrrolidone) 609 g was charged and stirred at 80 ° C. for 30 minutes. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that approximately 7.2 ml or more of water has accumulated in the moisture determination receiver and that no distillation of water has been observed, while removing the distillate accumulated in the moisture determination receiver, The temperature was raised to 0 ° C. to remove toluene. Thereafter, the solution was returned to room temperature (25 ° C.), 60.1 g (0.24 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin having the structure of the general formula (1) was obtained.

(合成例4)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族環を2個以上有するジアミンとしてBAPP(2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン)49.26g(0.12mol)、シロキサンジアミンとして反応性シリコンオイルKF−8010(信越化学工業株式会社製商品名、アミン当量450)27.0g(0.03mol)、一般式(2)で表されるジアミンとしてジェファーミンD2000(サンテクノケミカル社製商品名、アミン当量1000)100.0g(0.05mol)、TMA(無水トリメリット酸)80.68g(0.42mol)を非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)740gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)60.07g(0.24mol)を投入し、190℃で2時間反応させた。反応終了後、一般式(1)の構造を有するポリアミドイミド樹脂のNMP溶液を得た。
(Synthesis Example 4)
BAPP (2,2-bis [4-) is a diamine having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer. (4-Aminophenoxy) phenyl] propane) 49.26 g (0.12 mol), reactive silicone oil KF-8010 (trade name, amine equivalent 450, manufactured by Shin-Etsu Chemical Co., Ltd.) as a siloxane diamine 27.0 g (0.03 mol) ), As a diamine represented by the general formula (2), Jeffamine D2000 (trade name, amine equivalent 1000, manufactured by Sun Techno Chemical Co., Ltd.) 100.0 g (0.05 mol), TMA (trimellitic anhydride) 80.68 g (0. 42 mol) is used as an aprotic polar solvent and 740 g of NMP (N-methyl-2-pyrrolidone) is prepared. Look, and the mixture was stirred at 80 ℃ 30 minutes. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that approximately 7.2 ml or more of water has accumulated in the moisture determination receiver and that no distillation of water has been observed, while removing the distillate accumulated in the moisture determination receiver, The temperature was raised to 0 ° C. to remove toluene. Thereafter, the solution was returned to room temperature (25 ° C.), 60.07 g (0.24 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin having the structure of the general formula (1) was obtained.

(実施例1)
合成例1のポリアミドイミド樹脂のNMP溶液228.6g(樹脂固形分35重量%)と熱硬化性樹脂としてNC3000H(エポキシ樹脂、日本化薬株式会社製商品名)40.0g(樹脂固形分50重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール0.2gを配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Example 1)
228.6 g of NMP solution of polyamideimide resin of Synthesis Example 1 (resin solid content 35 wt%) and NC3000H (epoxy resin, Nippon Kayaku Co., Ltd. trade name) 40.0 g (resin solid content 50 wt%) as thermosetting resin % Dimethylacetamide solution) and 0.2 g of 2-ethyl-4-methylimidazole, and the mixture was stirred for about 1 hour until the resin became homogeneous, and then allowed to stand at room temperature (25 ° C.) for 24 hours for defoaming. Thus, a resin composition varnish was obtained.

(実施例2)
合成例2のポリアミドイミド樹脂のNMP溶液250.0g(樹脂固形分32重量%)と熱硬化性樹脂としてNC3000H(エポキシ樹脂、日本化薬株式会社製商品名)40.0g(樹脂固形分50重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール0.2gを配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Example 2)
250.0 g of NMP solution of polyamideimide resin of Synthesis Example 2 (resin solid content 32 wt%) and NC 3000H (epoxy resin, Nippon Kayaku Co., Ltd. trade name) 40.0 g (resin solid content 50 wt%) as thermosetting resin % Dimethylacetamide solution) and 0.2 g of 2-ethyl-4-methylimidazole, and the mixture was stirred for about 1 hour until the resin became homogeneous, and then allowed to stand at room temperature (25 ° C.) for 24 hours for defoaming. Thus, a resin composition varnish was obtained.

(実施例3)
合成例3のポリアミドイミド樹脂のNMP溶液250.0g(樹脂固形分32重量%)と熱硬化性樹脂としてNC3000H(エポキシ樹脂、日本化薬株式会社製商品名)40.0g(樹脂固形分50重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール0.2gを配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
(Example 3)
250.0 g of NMP solution of polyamideimide resin of Synthesis Example 3 (resin solid content 32 wt%) and NC 3000H (epoxy resin, Nippon Kayaku Co., Ltd. trade name) 40.0 g (resin solid content 50 wt%) as thermosetting resin % Dimethylacetamide solution) and 0.2 g of 2-ethyl-4-methylimidazole, and the mixture was stirred for about 1 hour until the resin became homogeneous, and then allowed to stand at room temperature (25 ° C.) for 24 hours for defoaming. Thus, a resin composition varnish was obtained.

(実施例4)
合成例4のポリアミドイミド樹脂のNMP溶液266.7g(樹脂固形分30重量%)と熱硬化性樹脂としてNC3000H(エポキシ樹脂、日本化薬株式会社製商品名)40.0g(樹脂固形分50重量%のジメチルアセトアミド溶液)、2−エチル−4−メチルイミダゾール0.2gを配合し、樹脂が均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
Example 4
266.7 g of NMP solution of polyamideimide resin of Synthesis Example 4 (resin solid content 30 wt%) and NC3000H (epoxy resin, trade name of Nippon Kayaku Co., Ltd.) as thermosetting resin 40.0 g (resin solid content 50 wt%) % Dimethylacetamide solution) and 0.2 g of 2-ethyl-4-methylimidazole, and the mixture was stirred for about 1 hour until the resin became homogeneous, and then allowed to stand at room temperature (25 ° C.) for 24 hours for defoaming. Thus, a resin composition varnish was obtained.

(比較例1)
合成例1のポリアミドイミド樹脂の代わりに、一般式(1)の構造を含まないポリアミドイミド樹脂としてKS6000(日立化成工業株式会社製商品名)を285.7g(樹脂固形分28重量%)を用いた以外は実施例1と同様にして樹脂組成物ワニスを作製した。
(Comparative Example 1)
Instead of the polyamide-imide resin of Synthesis Example 1, 285.7 g (resin solid content 28% by weight) of KS6000 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is used as the polyamide-imide resin not including the structure of the general formula (1). A resin composition varnish was prepared in the same manner as in Example 1 except that.

(比較例2)
合成例1のポリアミドイミド樹脂の代わりに、一般式(1)の構造を含まないポリアミドイミドとしてKS6000(日立化成工業株式会社製商品名)を285.7g(樹脂固形分28重量%)を用い、かつ熱硬化性樹脂としてNC3000Hの代わりにYDE205(脂肪族エポキシ樹脂、ジャパンエポキシレジン株式会社製商品名)を用いた以外は実施例1と同様にして樹脂組成物ワニスを作製した。
(Comparative Example 2)
Instead of the polyamideimide resin of Synthesis Example 1, 285.7 g (resin solid content 28% by weight) of KS6000 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is used as a polyamideimide not including the structure of the general formula (1). And the resin composition varnish was produced like Example 1 except having used YDE205 (aliphatic epoxy resin, Japan Epoxy Resin Co., Ltd. brand name) instead of NC3000H as a thermosetting resin.

(プリプレグ及び金属箔張積層板の作製)
実施例1〜4及び比較例1、2で作製した樹脂組成物ワニスを厚さ0.028mmのガラスクロス(旭シュエーベル株式会社製商品名1037)に含浸後、150℃で15分加熱、乾燥して樹脂分70重量%のプリプレグを得た。
(Preparation of prepreg and metal foil-clad laminate)
The resin composition varnishes produced in Examples 1 to 4 and Comparative Examples 1 and 2 were impregnated into a glass cloth having a thickness of 0.028 mm (trade name 1037 manufactured by Asahi Schwer, Inc.), then heated at 150 ° C. for 15 minutes and dried. Thus, a prepreg having a resin content of 70% by weight was obtained.

このプリプレグの両側に厚さ12μmの電解銅箔(古河電工株式会社製商品名F2−WS−12)を接着面がプリプレグと合わさるようにして重ね、230℃、90分、4.0MPaのプレス条件で両面銅張積層板を作製した。作製した両面銅張積層板を用い以下に示す評価を行った。   An electrolytic copper foil (trade name: F2-WS-12, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 12 μm is stacked on both sides of this prepreg so that the adhesive surface is aligned with the prepreg, and 230 ° C., 90 minutes, 4.0 MPa pressing conditions A double-sided copper-clad laminate was prepared. The evaluation shown below was performed using the produced double-sided copper-clad laminate.

(評価項目)
(1)得られた両面銅張積層板の銅箔引き剥がし強さを測定した。
(2)はんだ耐熱性として、260℃、288℃及び300℃のはんだ浴に浸漬し、ふくれ、剥がれ等の異常発生までの時間を測定した。
(3)銅箔をエッチングにより除去した両面銅張積層板を折り曲げ、可とう性を評価した。○:破断なし、×:破断あり。
(4)耐湿性として、片面の銅箔をエッチングにより除去し、121℃飽和条件の吸湿処理を1時間施してから260℃のはんだバスに20秒浸漬し、膨れやはがれ等の異常の有無を観察した。○:異常なし、×:異常あり。結果を表1に示した。
(Evaluation item)
(1) The copper foil peeling strength of the obtained double-sided copper-clad laminate was measured.
(2) As solder heat resistance, it was immersed in a solder bath at 260 ° C., 288 ° C. and 300 ° C., and the time until occurrence of abnormalities such as blistering and peeling was measured.
(3) The double-sided copper-clad laminate from which the copper foil was removed by etching was bent and evaluated for flexibility. ○: No break, ×: Break
(4) As moisture resistance, the copper foil on one side is removed by etching, subjected to moisture absorption treatment at 121 ° C. saturation condition for 1 hour, and then immersed in a solder bath at 260 ° C. for 20 seconds to check for abnormalities such as swelling and peeling. Observed. ○: No abnormality, ×: Abnormal. The results are shown in Table 1.

Figure 2005325162
Figure 2005325162

実施例1〜4のいずれのプリプレグとの組み合わせでも、銅箔引き剥がし強さは、1.1〜1.2kN/mであった。また260℃、288℃及び300℃のはんだ浴に浸漬しはんだ耐熱性を測定した結果、いずれの温度でも5分以上、ふくれ、剥がれ等の異常が見られなかった。銅箔をエッチングにより除去した両面銅張積層板は、実施例1〜4では可とう性に富み任意に折り曲げることが可能であった。耐湿性としては、膨れやはがれ等の異常はみられなかった。   In combination with any prepreg of Examples 1 to 4, the copper foil peel strength was 1.1 to 1.2 kN / m. Moreover, as a result of immersing in a solder bath of 260 ° C., 288 ° C., and 300 ° C. and measuring the solder heat resistance, no abnormality such as blistering or peeling was observed at any temperature for 5 minutes or more. The double-sided copper-clad laminate from which the copper foil was removed by etching was rich in flexibility in Examples 1 to 4, and could be arbitrarily bent. As the moisture resistance, no abnormality such as swelling or peeling was observed.

それに対し、比較例の両面銅張積層板は可とう性が不十分で、比較例1は折り曲げた際に基材が破断し、比較例2では樹脂とガラスクロスにクラックが入った。耐湿性としては、比較例1、2とも銅箔と基材の間に膨れが発生した。


On the other hand, the double-sided copper clad laminate of the comparative example was insufficient in flexibility. In Comparative Example 1, the base material was broken when bent, and in Comparative Example 2, the resin and the glass cloth were cracked. In terms of moisture resistance, in Comparative Examples 1 and 2, swelling occurred between the copper foil and the base material.


Claims (8)

一般式(1)の構造を有する化合物を含む樹脂組成物を繊維基材に含浸してなるプリプレグ。
Figure 2005325162

(Rは置換基を有していてもよいC、O、Hからなる2価の脂肪族基、R、R、R、Rはそれぞれ、樹脂を構成する環状構造もしくは鎖状構造の一部の炭素原子を示す。)
A prepreg obtained by impregnating a fiber base material with a resin composition containing a compound having the structure of the general formula (1).
Figure 2005325162

(R 1 is an optionally substituted divalent aliphatic group composed of C, O, and H, and R 2 , R 3 , R 4 , and R 5 are each a cyclic structure or a chain that constitutes the resin. (Indicates some carbon atoms in the structure.)
一般式(1)の構造を有する化合物が、ポリアミドイミド樹脂である請求項1に記載のプリプレグ。   The prepreg according to claim 1, wherein the compound having the structure of the general formula (1) is a polyamideimide resin. 樹脂組成物が、熱硬化性樹脂を含む樹脂組成物である請求項1又は2に記載のプリプレグ。   The prepreg according to claim 1 or 2, wherein the resin composition is a resin composition containing a thermosetting resin. 繊維基材が、厚さ5〜100μmのガラスクロスである請求項1乃至3いずれかに記載のプリプレグ。   The prepreg according to any one of claims 1 to 3, wherein the fiber base material is a glass cloth having a thickness of 5 to 100 µm. 一般式(1)の構造を有する化合物が、一般式(2)で表されるジアミン、(1a)または(1b)で表される芳香族環を2個以上有するジアミン及びシロキサンジアミンの混合物と無水トリメリット酸を反応させて得られるジイミドジカルボン酸を含む混合物とジイソシアネート化合物を反応させて得られるポリアミドイミド樹脂である請求項1乃至4いずれかに記載のプリプレグ。
Figure 2005325162

(Rは置換基を有していてもよいC、O、Hからなる2価の脂肪族基を示す)
Figure 2005325162

Figure 2005325162

(式中、Xは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基、単結合又は下記一般式(2a)又は(2b)で表される2価の基、Yは炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基を示し、R1、R2、R3はそれぞれ独立もしくは同一で水素原子、水酸基、メトキシ基、メチル基、ハロゲン化メチル基を示す。
Figure 2005325162

Figure 2005325162

但し、Zは、炭素数1〜3の脂肪族炭化水素基、炭素数1〜3のハロゲン化脂肪族炭化水素基、スルホニル基、エーテル基、カルボニル基又は単結合である。)
The compound having the structure of the general formula (1) is a diamine represented by the general formula (2), a mixture of a diamine having two or more aromatic rings represented by (1a) or (1b) and a siloxane diamine and anhydrous The prepreg according to any one of claims 1 to 4, which is a polyamide-imide resin obtained by reacting a mixture containing diimide dicarboxylic acid obtained by reacting trimellitic acid with a diisocyanate compound.
Figure 2005325162

(R 1 represents a divalent aliphatic group consisting of C, O and H which may have a substituent)
Figure 2005325162

Figure 2005325162

(Wherein X is an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, a carbonyl group, a single bond, or the following general formula (2a) Or a divalent group represented by (2b), Y is an aliphatic hydrocarbon group having 1 to 3 carbon atoms, a halogenated aliphatic hydrocarbon group having 1 to 3 carbon atoms, a sulfonyl group, an ether group, or a carbonyl group. R 1 , R 2 and R 3 are independent or the same and each represents a hydrogen atom, a hydroxyl group, a methoxy group, a methyl group or a halogenated methyl group.
Figure 2005325162

Figure 2005325162

However, Z is a C1-C3 aliphatic hydrocarbon group, a C1-C3 halogenated aliphatic hydrocarbon group, a sulfonyl group, an ether group, a carbonyl group, or a single bond. )
熱硬化性樹脂が、2個以上のグリシジル基を持つエポキシ樹脂であり、かつ樹脂組成物が前記エポキシ樹脂の硬化促進剤または硬化剤を含有する樹脂組成物である請求項3乃至5のいずれかに記載のプリプレグ。   6. The thermosetting resin is an epoxy resin having two or more glycidyl groups, and the resin composition is a resin composition containing a curing accelerator or a curing agent for the epoxy resin. The prepreg described in 1. 請求項1乃至6いずれかに記載のプリプレグを所定枚数重ね、その片側または両側に金属箔を配置し、加熱加圧してなる金属箔張積層板。   A metal foil-clad laminate obtained by stacking a predetermined number of the prepregs according to any one of claims 1 to 6, arranging a metal foil on one side or both sides thereof, and heating and pressing. 請求項7に記載の金属箔張積層板に回路形成を施して得られる印刷回路板。


A printed circuit board obtained by forming a circuit on the metal foil-clad laminate according to claim 7.


JP2004142226A 2004-05-12 2004-05-12 Prepreg, metal foil-clad laminated plate and printed circuit board obtained using these Pending JP2005325162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004142226A JP2005325162A (en) 2004-05-12 2004-05-12 Prepreg, metal foil-clad laminated plate and printed circuit board obtained using these

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004142226A JP2005325162A (en) 2004-05-12 2004-05-12 Prepreg, metal foil-clad laminated plate and printed circuit board obtained using these

Publications (1)

Publication Number Publication Date
JP2005325162A true JP2005325162A (en) 2005-11-24

Family

ID=35471764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004142226A Pending JP2005325162A (en) 2004-05-12 2004-05-12 Prepreg, metal foil-clad laminated plate and printed circuit board obtained using these

Country Status (1)

Country Link
JP (1) JP2005325162A (en)

Similar Documents

Publication Publication Date Title
KR100818470B1 (en) Prepreg, metal-clad laminate and printed circuit board using same
TWI450651B (en) Multilayer wiring board
JP5124984B2 (en) Printed wiring board
JP2006066894A (en) Printed-circuit board
JP4517749B2 (en) Prepreg and metal-clad laminate and printed circuit board using the same
JP5056553B2 (en) Metal foil-clad laminate and printed wiring board
JP4735092B2 (en) Printed circuit board
JP4962001B2 (en) Insulating substrate, substrate with metal foil, and printed wiring board
JP5444825B2 (en) Insulating resin composition, prepreg, metal foil-clad laminate, printed wiring board, and multilayer wiring board
JP4736671B2 (en) Prepreg, metal foil-clad laminate and printed circuit board using these
JP2005325203A (en) Prepreg, metal foil-clad laminated plate and printed circuit board obtained using the same
JP4555985B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4590982B2 (en) Metal foil with resin
JP5018011B2 (en) Metal foil-laminated laminate, resin-coated metal foil and multilayer printed wiring board
JP5241992B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4378628B2 (en) Prepreg, laminated board and printed circuit board using them
JP4774702B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP4586424B2 (en) Printed circuit board
JP2010037489A (en) Adhesive film, and metal foil with resin
JP4595434B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP2009079200A (en) Prepreg, laminate, and metal foil-clad laminate
JP2005325162A (en) Prepreg, metal foil-clad laminated plate and printed circuit board obtained using these
JP2005200532A (en) Prepreg and laminate
JP2012169680A (en) Printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070316

A977 Report on retrieval

Effective date: 20090805

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20090820

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091210