JP4590982B2 - Metal foil with resin - Google Patents

Metal foil with resin Download PDF

Info

Publication number
JP4590982B2
JP4590982B2 JP2004246600A JP2004246600A JP4590982B2 JP 4590982 B2 JP4590982 B2 JP 4590982B2 JP 2004246600 A JP2004246600 A JP 2004246600A JP 2004246600 A JP2004246600 A JP 2004246600A JP 4590982 B2 JP4590982 B2 JP 4590982B2
Authority
JP
Japan
Prior art keywords
resin
metal foil
resin composition
examples
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004246600A
Other languages
Japanese (ja)
Other versions
JP2005329694A (en
Inventor
一雅 竹内
希 高野
克之 増田
正史 田中
裕二 大山
佳嗣 松浦
和明 橋本
貴代 北嶋
和仁 小畑
真 柳田
真樹 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004246600A priority Critical patent/JP4590982B2/en
Publication of JP2005329694A publication Critical patent/JP2005329694A/en
Application granted granted Critical
Publication of JP4590982B2 publication Critical patent/JP4590982B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は樹脂付き金属箔に関する。   The present invention relates to a resin-coated metal foil.

プリント配線板用積層板は、電気絶縁性樹脂組成物をマトリックスとするプリプレグと金属箔、または、プリプレグと樹脂付き金属箔を所定枚数重ね、加熱加圧して一体化したものである。プリント回路をサブトラクティブ法により形成する場合には、金属張積層板が用いられる。この金属張積層板は、プリプレグの表面(片面又は両面)に銅箔などの金属箔を重ねたり、プリプレグと樹脂付き金属箔を重ねて加熱加圧することにより製造される。また複数の回路層を備えた多層配線板では内層回路の上部にさらに第二の回路形成用の樹脂及び金属箔を積層し層間接続を施して回路加工することで製造する方法や絶縁性樹脂層を形成した後、無電解めっきと電気めっきにより上部回路層を形成することで製造する方法などがある。第二の回路形成用の樹脂及び金属箔を積層する方法としてはプリプレグと銅箔を同時に積層プレスする方法や銅箔の上にあらかじめ接着性を有する電気絶縁性樹脂層を設けた、いわゆる樹脂付き金属箔を積層する方法が行われている。電気絶縁性樹脂としては、フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド−トリアジン樹脂などのような熱硬化性樹脂が汎用され、フッ素樹脂やポリフェニレンエーテル樹脂などのような熱可塑性樹脂が用いられることもある。   The laminate for a printed wiring board is obtained by stacking a predetermined number of prepregs and metal foils, or prepregs and metal foils with a resin, and integrating them by heating and pressing. When a printed circuit is formed by a subtractive method, a metal-clad laminate is used. This metal-clad laminate is manufactured by stacking a metal foil such as a copper foil on the surface (one side or both sides) of the prepreg, or by heating and pressing a prepreg and a metal foil with resin. In addition, in a multilayer wiring board having a plurality of circuit layers, an insulating resin layer or a method of manufacturing by laminating a resin and metal foil for forming a second circuit on the upper part of the inner layer circuit and performing circuit processing by providing interlayer connection And forming the upper circuit layer by electroless plating and electroplating. As a method of laminating the resin and metal foil for forming the second circuit, a method of laminating and pressing a prepreg and a copper foil at the same time, or providing an electrically insulating resin layer having adhesiveness on the copper foil in advance, so-called with resin A method of laminating metal foils has been performed. As the electrically insulating resin, a thermosetting resin such as a phenol resin, an epoxy resin, a polyimide resin, or a bismaleimide-triazine resin is widely used, and a thermoplastic resin such as a fluorine resin or a polyphenylene ether resin is used. There is also.

一方、パーソナルコンピュータや携帯電話等の情報端末機器の普及に伴ってこれらに搭載される印刷回路板は小型化、高密度化が進んでいる。その実装形態はピン挿入型から表面実装型へさらにはプラスチック基板を使用したBGA(ボールグリッドアレイ)に代表されるエリアアレイ型へと進んでいる。BGAのようなベアチップを直接実装する基板ではチップと基板の接続は、熱超音波圧着によるワイヤボンディングで行うのが一般的である。このため、ベアチップを実装する基板は150℃以上の高温にさらされることになり、電気絶縁性樹脂にはある程度の耐熱性が必要となる。   On the other hand, with the spread of information terminal devices such as personal computers and mobile phones, printed circuit boards mounted on them are becoming smaller and higher in density. The mounting form has progressed from a pin insertion type to a surface mounting type and further to an area array type represented by BGA (ball grid array) using a plastic substrate. In a substrate on which a bare chip such as a BGA is directly mounted, the connection between the chip and the substrate is generally performed by wire bonding by thermosonic bonding. For this reason, the substrate on which the bare chip is mounted is exposed to a high temperature of 150 ° C. or higher, and the electrically insulating resin needs a certain degree of heat resistance.

さらに一度実装したチップを外す、いわゆるリペア性も要求される場合があるが、これにはチップ実装時と同程度の熱がかけられるため、基板にはその後、再度チップ実装が施されることになりさらに熱処理が加わることになる。これに伴いリペア性の要求される基板では高温でのサイクル的な耐熱衝撃性も要求され、従来の絶縁性樹脂系では繊維基材と樹脂の間で剥離を起こす場合がある。   In addition, there is a case where so-called repairability is required to remove the chip once mounted, but since this is subject to the same level of heat as chip mounting, the substrate is then chip mounted again. In addition, heat treatment will be added. Along with this, a substrate requiring repairability is also required to have a cyclic thermal shock resistance at a high temperature, and in a conventional insulating resin system, peeling may occur between the fiber base material and the resin.

耐熱衝撃性、耐リフロー性、耐クラック性に優れ微細配線形成性を向上するために繊維基材にポリアミドイミドを必須成分とする樹脂組成物を含浸したプリプレグが提案されている(例えば特許文献1を参照)。またシリコーン変性ポリイミド樹脂と熱硬化性樹脂からなる樹脂組成物を繊維基材に含浸した耐熱性の基材が提案されている(例えば特許文献2を参照)。   A prepreg in which a fiber base material is impregnated with a resin composition containing polyamideimide as an essential component has been proposed in order to have excellent thermal shock resistance, reflow resistance, and crack resistance and to improve fine wiring formation (for example, Patent Document 1). See). In addition, a heat-resistant base material in which a fiber base material is impregnated with a resin composition composed of a silicone-modified polyimide resin and a thermosetting resin has been proposed (see, for example, Patent Document 2).

さらに電子機器の小型化、高性能化に伴い限られた空間に部品実装を施された印刷回路板を収納することが必要となってきている。これには複数の印刷回路板を多段に配し相互をワイヤーハーネスやフレキシブル配線板によって接続する方法がとられている。また、ポリイミドをベースとするフレキシブル基板と従来のリジッド基板を多層化したリジッド−フレックス基板が用いられている。   Furthermore, with the miniaturization and high performance of electronic devices, it has become necessary to accommodate printed circuit boards with component mounting in a limited space. In this method, a plurality of printed circuit boards are arranged in multiple stages and connected to each other by a wire harness or a flexible wiring board. In addition, a rigid-flex substrate in which a flexible substrate based on polyimide and a conventional rigid substrate are multilayered is used.

特開2003−55486号公報JP 2003-55486 A 特開平8−193139号公報JP-A-8-193139

本発明は、上記従来技術の問題点を解消し、寸法安定性、耐熱性、耐発塵性、耐衝撃性に優れ、任意に折り曲げ可能な樹脂付き金属箔を提供するものである。   The present invention solves the above-mentioned problems of the prior art, and provides a resin-coated metal foil that is excellent in dimensional stability, heat resistance, dust generation resistance, and impact resistance and can be bent arbitrarily.

本発明は、次のものに関する。
1.樹脂組成物を含浸した繊維基材と、金属箔とを積層してなる樹脂付き金属箔であって、該樹脂組成物を硬化した樹脂硬化物の弾性率が、25℃で0.1GPa以上、2.0GPa以下である樹脂付き金属箔。
2.繊維基材が、厚み50μm以下の繊維基材である項1に記載の樹脂付き金属箔。
3.樹脂組成物が、熱硬化性樹脂を含む項1又は2に記載の樹脂付き金属箔。
4.熱硬化性樹脂が、グリシジル基を有する樹脂を含む熱硬化性樹脂である項3に記載の樹脂付き金属箔。
5.樹脂組成物が、アミド基を有する樹脂を含む樹脂組成物である項1乃至4いずれかに記載の樹脂付き金属箔。
6.樹脂組成物が、アクリル樹脂を含む樹脂組成物である項1乃至5いずれかに記載の樹脂付き金属箔。
7.樹脂組成物が、ポリアミック酸を含む樹脂組成物である項1乃至6いずれかに記載の樹脂付き金属箔。
8.項1乃至7いずれかに記載の樹脂付き金属箔であって、金属箔と繊維基材を重ねた状態で、繊維基材側から繊維基材に樹脂組成物を含浸させた後、乾燥して得られる樹脂付き金属箔。
9.項1乃至7いずれかに記載の樹脂付き金属箔であって、金属箔上に樹脂組成物を塗布した後、該樹脂組成物に繊維基材を重ね含浸させ、乾燥して得られる樹脂付き金属箔。
The present invention relates to the following.
1. A metal foil with a resin obtained by laminating a fiber base material impregnated with a resin composition and a metal foil, and an elastic modulus of a cured resin obtained by curing the resin composition is 0.1 GPa or more at 25 ° C., Metal foil with resin which is 2.0 GPa or less.
2. Item 2. The metal foil with resin according to Item 1, wherein the fiber substrate is a fiber substrate having a thickness of 50 μm or less.
3. Item 3. The metal foil with resin according to Item 1 or 2, wherein the resin composition contains a thermosetting resin.
4). Item 4. The resin-attached metal foil according to Item 3, wherein the thermosetting resin is a thermosetting resin containing a resin having a glycidyl group.
5). Item 5. The metal foil with resin according to any one of Items 1 to 4, wherein the resin composition is a resin composition containing a resin having an amide group.
6). Item 6. The resin-attached metal foil according to any one of Items 1 to 5, wherein the resin composition is a resin composition containing an acrylic resin.
7). Item 7. The metal foil with resin according to any one of Items 1 to 6, wherein the resin composition is a resin composition containing polyamic acid.
8). Item 8. The resin-attached metal foil according to any one of Items 1 to 7, wherein the fiber base material is impregnated with the resin composition from the fiber base side in a state where the metal foil and the fiber base material are stacked, and then dried. Obtained metal foil with resin.
9. Item 8. A metal foil with a resin according to any one of items 1 to 7, wherein the resin composition is obtained by applying a resin composition on the metal foil, then impregnating the resin composition with a fiber base material, and drying the resin base material. Foil.

本発明における樹脂付き金属箔は、繊維基材を含んでおり寸法安定性に優れる。繊維基材に含浸する樹脂組成物が該樹脂組成物の樹脂硬化物の室温(25℃)での弾性率として0.1から2.0GPaとなるようにすることで、樹脂付き金属箔を印刷回路板としたときに該印刷回路板に衝撃がかかった場合にも、その衝撃を吸収するため実装後の耐衝撃性が向上する。また繊維基材に含浸する樹脂組成物が該樹脂組成物の硬化物の弾性率として0.1から2.0GPaとするために柔軟な樹脂を含浸するため、加工を行う際の発塵が少ない。また50μm以下の繊維基材を使用することと相まって、印刷回路板は任意の部分で任意の状態に折り曲げ可能であり、該印刷回路板を搭載する筐体に高密度に収納することができる。また一般に乾燥収縮や硬化収縮の大きな樹脂では樹脂付き金属箔を製造する際に樹脂を内側に樹脂付き金属箔がカールする現象がみられるが、本発明では樹脂付き金属箔の製造時に金属箔と樹脂組成物を含ませた繊維基材を同時に積層し乾燥させて製造することによりカールがきわめて低減される。   The metal foil with resin in the present invention includes a fiber base material and is excellent in dimensional stability. The resin composition impregnated into the fiber base is printed with a resin-coated metal foil by setting the resin cured product of the resin composition to have an elastic modulus of 0.1 to 2.0 GPa at room temperature (25 ° C.). Even when an impact is applied to the printed circuit board when it is used as a circuit board, the impact resistance after mounting is improved because the impact is absorbed. In addition, since the resin composition impregnated in the fiber base is impregnated with a flexible resin so that the elastic modulus of the cured product of the resin composition is 0.1 to 2.0 GPa, dust generation during processing is small. . In addition, combined with the use of a fiber substrate of 50 μm or less, the printed circuit board can be bent into an arbitrary state at an arbitrary portion, and can be stored in a high density in a casing on which the printed circuit board is mounted. In general, when a resin-fitted metal foil is produced with a resin having a large drying shrinkage or curing shrinkage, a phenomenon that the resin-fitted metal foil curls inside the resin is seen. Curling is greatly reduced by simultaneously laminating and drying the fiber base material containing the resin composition.

本発明の樹脂付き金属箔は、樹脂組成物を含浸した繊維基材と、金属箔とを積層してなる樹脂付き金属箔であって、該樹脂組成物を硬化した樹脂硬化物の弾性率が、25℃で0.1GPa以上、2.0GPa以下である。本発明の樹脂付き金属箔は、繊維基材を含み吸湿や温度による寸法変化を抑え、基材の寸法安定性を高めている。なお、基材とは、樹脂付き金属箔を硬化したものである。また本発明の樹脂付き金属箔は、半硬化のBステージ状態であることが好ましいが、硬化したCステージ状態でもよい。樹脂硬化物の室温(25℃)での弾性率が、0.1〜2.0GPaの樹脂組成物を使用することで、基材の柔軟性を高め印刷回路板としたときの耐衝撃性を優れたものとしている。   The metal foil with resin of the present invention is a metal foil with resin obtained by laminating a fiber base material impregnated with a resin composition and a metal foil, and the elastic modulus of the cured resin product obtained by curing the resin composition is , At 25 ° C., 0.1 GPa or more and 2.0 GPa or less. The metal foil with resin of the present invention includes a fiber base material, suppresses dimensional changes due to moisture absorption and temperature, and improves the dimensional stability of the base material. In addition, a base material hardens | cures metal foil with resin. The metal foil with resin of the present invention is preferably in a semi-cured B stage state, but may be in a cured C stage state. By using a resin composition having an elastic modulus of 0.1 to 2.0 GPa at room temperature (25 ° C.) of the cured resin product, the impact resistance when a printed circuit board is obtained by increasing the flexibility of the substrate. It is excellent.

該樹脂組成物を硬化した樹脂硬化物の弾性率は、25℃で、0.1GPa以上、2.0GPa以下であり、0.5〜2.0GPaが好ましく、1〜1.5GPaがより好ましい。弾性率が0.1GPa未満では、印刷回路板を製造する際の取り扱いが困難になるという問題があり、2.0GPa超では、耐衝撃性が低く、また任意の折り曲げが困難となる傾向がある。本発明での弾性率は、樹脂組成物を硬化した樹脂板(樹脂硬化物)の動的粘弾性曲線の25℃における弾性率をいう。   The elastic modulus of the cured resin obtained by curing the resin composition is 0.1 GPa or more and 2.0 GPa or less at 25 ° C., preferably 0.5 to 2.0 GPa, more preferably 1 to 1.5 GPa. If the elastic modulus is less than 0.1 GPa, there is a problem that handling at the time of manufacturing a printed circuit board becomes difficult, and if it exceeds 2.0 GPa, impact resistance is low and arbitrary bending tends to be difficult. . The elastic modulus in the present invention refers to the elastic modulus at 25 ° C. of the dynamic viscoelastic curve of the resin plate (resin cured product) obtained by curing the resin composition.

本発明で使用する繊維基材としては、金属箔張り積層板や印刷回路板を製造する際に用いられるものであれば特に制限されないが、通常織布や不織布等の繊維基材が用いられる。繊維基材の材質としては、ガラス、アルミナ、アスベスト、ボロン、シリカアルミナガラス、シリカガラス、チラノ、炭化ケイ素、窒化ケイ素、ジルコニア等の無機繊維やアラミド、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルフォン、カーボン、セルロース等の有機繊維等及びこれらの混抄系があり、特にガラス繊維の織布が好ましく用いられる。   Although it will not restrict | limit especially as a fiber base material used by this invention if it is used when manufacturing a metal foil clad laminated board and a printed circuit board, Usually fiber base materials, such as a woven fabric and a nonwoven fabric, are used. Examples of the fiber base material include glass, alumina, asbestos, boron, silica alumina glass, silica glass, tyrano, silicon carbide, silicon nitride, zirconia, and other inorganic fibers, aramid, polyetheretherketone, polyetherimide, polyether There are organic fibers such as sulfone, carbon, cellulose and the like and mixed papers thereof, and glass fiber woven fabrics are particularly preferably used.

繊維基材としては、50μm以下の繊維基材が好ましいが、5〜50μmがより好ましく、10〜40μmが特に好ましい。また、繊維基材としてガラスクロスが特に好適に用いられる。厚みが50μm以下のガラスクロスを用いることで、本発明の樹脂付き金属箔は柔軟性を持ち、任意に折り曲げることも可能とし、印刷回路板としたときの耐衝撃性をさらに優れたものとできる。   The fiber base material is preferably a fiber base material of 50 μm or less, more preferably 5 to 50 μm, particularly preferably 10 to 40 μm. A glass cloth is particularly preferably used as the fiber base material. By using a glass cloth having a thickness of 50 μm or less, the resin-attached metal foil of the present invention has flexibility, can be arbitrarily bent, and can further improve impact resistance when used as a printed circuit board. .

本発明では、樹脂硬化物の室温(25℃)での弾性率が、0.1〜2.0GPaの樹脂組成物を構成する成分として熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、エポキシ樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、ビスマレイミド樹脂、トリアジン−ビスマレイミド樹脂、フェノール樹脂等が挙げられる。   In this invention, it is preferable that the thermosetting resin is included as a component which the elasticity modulus in room temperature (25 degreeC) of a resin cured material comprises 0.1-2.0 GPa. Examples of the thermosetting resin include epoxy resins, polyimide resins, unsaturated polyester resins, polyurethane resins, bismaleimide resins, triazine-bismaleimide resins, phenol resins, and the like.

本発明では熱硬化性樹脂として、グリシジル基を有する樹脂を含むことが好ましく、エポキシ樹脂を含むことがより好ましい。エポキシ樹脂としては、ビスフェノールA、ノボラック型フェノール樹脂、オルトクレゾールノボラック型フェノール樹脂等の多価フェノール又は1,4−ブタンジオール等の多価アルコールとエピクロルヒドリンを反応させて得られるポリグリシジルエーテル、フタル酸、ヘキサヒドロフタル酸等の多塩基酸とエピクロルヒドリンを反応させて得られるポリグリシジルエステル、アミン、アミド又は複素環式窒素塩基を有する化合物のN−グリシジル誘導体、脂環式エポキシ樹脂などが挙げられる。   In the present invention, the thermosetting resin preferably includes a resin having a glycidyl group, and more preferably includes an epoxy resin. Epoxy resins include polyglycidyl ethers and phthalic acids obtained by reacting polychlorophenols such as bisphenol A, novolak-type phenol resins, ortho-cresol novolac-type phenol resins or polyhydric alcohols such as 1,4-butanediol with epichlorohydrin. And polyglycidyl ester obtained by reacting a polybasic acid such as hexahydrophthalic acid with epichlorohydrin, an N-glycidyl derivative of a compound having an amine, an amide or a heterocyclic nitrogen base, an alicyclic epoxy resin, and the like.

本発明では、熱硬化性樹脂としてエポキシ樹脂を用いることが180℃以下の温度で硬化が可能で、熱的、機械的、電気的特性を向上させるため好ましく、2個以上のグリシジル基を持つエポキシ樹脂とその硬化剤、2個以上のグリシジル基を持つエポキシ樹脂とその硬化促進剤または2個以上のグリシジル基を持つエポキシ樹脂と硬化剤、硬化促進剤を用いることが好ましい。またグリシジル基は多いほどよく、3個以上であればさらに好ましい。グリシジル基の数により、配合量が異なり、グリシジル基が多いほど配合量が少なくてもよい。   In the present invention, it is preferable to use an epoxy resin as a thermosetting resin because it can be cured at a temperature of 180 ° C. or less, and is preferable in order to improve thermal, mechanical, and electrical characteristics, and an epoxy having two or more glycidyl groups. It is preferable to use a resin and its curing agent, an epoxy resin having two or more glycidyl groups and its curing accelerator, or an epoxy resin having two or more glycidyl groups, a curing agent, and a curing accelerator. Further, the more glycidyl groups, the better. The blending amount varies depending on the number of glycidyl groups, and the blending amount may be smaller as the glycidyl group is larger.

エポキシ樹脂の硬化剤、硬化促進剤は、エポキシ樹脂と反応するもの、または、硬化を促進させるものであれば制限なく、例えば、アミン類、イミダゾール類、多官能フェノール類、酸無水物類等が使用できる。アミン類として、ジシアンジアミド、ジアミノジフェニルメタン、グアニル尿素等が使用でき、多官能フェノール類としては、ヒドロキノン、レゾルシノール、ビスフェノールA及びこれらのハロゲン化合物、さらにホルムアルデヒドとの縮合物であるノボラック型フェノール樹脂、レゾール型フェノール樹脂などが使用でき、酸無水物類としては、無水フタル酸、ベンゾフェノンテトラカルボン酸二無水物、メチルハイミック酸等が使用できる。硬化促進剤としては、イミダゾール類としてアルキル基置換イミダゾール、ベンゾイミダゾール等が使用できる。   The curing agent and curing accelerator of the epoxy resin are not limited as long as they react with the epoxy resin or accelerate curing. For example, amines, imidazoles, polyfunctional phenols, acid anhydrides, etc. Can be used. As the amines, dicyandiamide, diaminodiphenylmethane, guanylurea and the like can be used. As the polyfunctional phenols, hydroquinone, resorcinol, bisphenol A and their halogen compounds, and a novolac type phenol resin which is a condensate with formaldehyde, a resol type A phenol resin or the like can be used. As the acid anhydrides, phthalic anhydride, benzophenone tetracarboxylic dianhydride, methyl hymic acid, or the like can be used. As the curing accelerator, alkyl group-substituted imidazole, benzimidazole and the like can be used as imidazoles.

これらの硬化剤または硬化促進剤の必要な量は、アミン類の場合は、アミンの活性水素の当量と、エポキシ樹脂のエポキシ当量がほぼ等しくなる量が好ましい。硬化促進剤である、イミダゾールの場合は、単純に活性水素との当量比とならず、経験的にエポキシ樹脂100重量部に対して、0.001〜10重量部必要となる。多官能フェノール類や酸無水物類の場合、エポキシ樹脂1当量に対して、フェノール性水酸基やカルボキシル基0.6〜1.2当量必要である。これらの硬化剤または硬化促進剤の量は、少なければ未硬化のエポキシ樹脂が残り、Tg(ガラス転移温度)が低くなり、多すぎると、未反応の硬化剤及び硬化促進剤が残り、絶縁性が低下する。   In the case of amines, the necessary amounts of these curing agents or curing accelerators are preferably such that the equivalent of the active hydrogen of the amine is approximately equal to the epoxy equivalent of the epoxy resin. In the case of imidazole, which is a curing accelerator, it is not simply an equivalent ratio with active hydrogen, but is empirically required to be 0.001 to 10 parts by weight per 100 parts by weight of the epoxy resin. In the case of polyfunctional phenols and acid anhydrides, 0.6 to 1.2 equivalents of phenolic hydroxyl groups and carboxyl groups are required for 1 equivalent of epoxy resin. If the amount of these curing agents or accelerators is small, uncured epoxy resin remains, and Tg (glass transition temperature) is low. If too large, unreacted curing agent and curing accelerator remain, and insulating properties are maintained. Decreases.

また本発明に用いる樹脂組成物は、可とう性や耐熱性の向上を目的に高分子量の樹脂成分を含むことも可能である。この目的のための樹脂として、アミド基を有する樹脂やアクリル樹脂、ポリアミック酸を用いることが好ましい。   The resin composition used in the present invention can also contain a high molecular weight resin component for the purpose of improving flexibility and heat resistance. As the resin for this purpose, it is preferable to use a resin having an amide group, an acrylic resin, or a polyamic acid.

本発明で用いるアミド基を有する樹脂としては、ポリアミドイミド樹脂、ポリアミド樹脂、アミドエポキシ樹脂などが挙げられるが、ポリアミドイミド樹脂が好ましい。本発明で用いるポリアミドイミド樹脂としては、シロキサン構造を樹脂中に持ったシロキサン変性ポリアミドイミド樹脂がより好ましく、特に芳香族環を2個以上有するジアミン及びシロキサンジアミンの混合物と無水トリメリット酸を反応させて得られるジイミドジカルボン酸を含む混合物と芳香族ジイソシアネートを反応させて得ることが好ましい。また一分子中にアミド基を10個以上含むポリアミドイミド分子を70モル%以上含むポリアミドイミド樹脂であることが好ましい。その範囲はポリアミドイミド樹脂のGPCから得られるクロマトグラムと別に求めた単位重量中のアミド基のmol数(A)から得ることができる。例えばポリアミドイミド(a)g中に含まれるアミド基のモル数(A)から10×a/Aを一分子中にアミド基を10個含むポリアミドイミド樹脂の分子量(C)としGPCで得られるクロマトグラムの数平均分子量がC以上となる領域が70%以上となることと定義する。アミド基の定量方法はNMR、IR、ヒドロキサム酸−鉄呈色反応法、N−ブロモアミド法などを利用することができる。   Examples of the resin having an amide group used in the present invention include a polyamideimide resin, a polyamide resin, and an amide epoxy resin, and a polyamideimide resin is preferable. As the polyamide-imide resin used in the present invention, a siloxane-modified polyamide-imide resin having a siloxane structure in the resin is more preferable. In particular, a mixture of a diamine having two or more aromatic rings and a siloxane diamine is reacted with trimellitic anhydride. It is preferable to obtain by reacting a mixture containing diimidedicarboxylic acid obtained in this way with an aromatic diisocyanate. Moreover, it is preferable that it is a polyamideimide resin which contains 70 mol% or more of polyamideimide molecules containing 10 or more amide groups in one molecule. The range can be obtained from the number of moles (A) of amide groups in the unit weight obtained separately from the chromatogram obtained from GPC of the polyamideimide resin. For example, the chromatograph obtained by GPC using the number of moles of amide groups contained in the polyamideimide (a) (A) as the molecular weight (C) of 10 × a / A of the polyamideimide resin containing 10 amide groups in one molecule. The region where the number average molecular weight of gram is C or more is defined as 70% or more. NMR, IR, hydroxamic acid-iron coloring reaction method, N-bromoamide method, etc. can be used for the determination method of the amide group.

また、本発明に用いられるポリアミック酸は、シロキサン構造を含有するポリアミック酸であることが好ましく、更に前記ポリアミック酸を閉環させた際に、下記一般式(1)及び一般式(2)の構造を有する樹脂になるポリアミック酸であることがより好ましい。またシロキサン構造を含有するポリアミック酸としては、ジアミンとテトラカルボン酸二無水物の反応により得られるポリアミック酸であることが好ましい。   Further, the polyamic acid used in the present invention is preferably a polyamic acid containing a siloxane structure, and when the polyamic acid is further cyclized, the structures of the following general formulas (1) and (2) are used. It is more preferable that it is a polyamic acid that becomes a resin. The polyamic acid containing a siloxane structure is preferably a polyamic acid obtained by a reaction between a diamine and tetracarboxylic dianhydride.

Figure 0004590982

(式中Arは4価の芳香族基を示し、R及びRは2価の炭化水素基を示し、R〜Rは炭素数1〜6の炭化水素基を示し、nは1〜50の整数を示す)
Figure 0004590982

(In the formula, Ar 1 represents a tetravalent aromatic group, R 1 and R 2 represent a divalent hydrocarbon group, R 3 to R 6 represent a hydrocarbon group having 1 to 6 carbon atoms, and n represents Represents an integer of 1 to 50)

Figure 0004590982

(式中Arは4価の芳香族基を示し、Arは2価の芳香族基を示す)
Figure 0004590982

(In the formula, Ar 1 represents a tetravalent aromatic group, and Ar 2 represents a divalent aromatic group)

本発明で使用するテトラカルボン酸二無水物としては、3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、ピロメリット酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、1,4,5,6−ナフタレンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、3,3,6,7−アントラセンテトラカルボン酸二無水物、1,2,7,8−フェナントレンテトラカルボン酸二無水物、4,4’−(ヘキサフルオロイソプロピリデン)フタル酸二無水物などがあげられる。なおポリイミド樹脂の前駆体であるポリアミック酸にシロキサン構造を導入することにより、樹脂付き金属箔の折り曲げが、よりいっそう容易となる。   Examples of the tetracarboxylic dianhydride used in the present invention include 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride and 3,3 ′, 4,4′-diphenylsulfone tetracarboxylic dianhydride. 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3′-benzophenone tetracarboxylic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic Acid dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic dianhydride, pyromellitic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 1,4 5,6-naphthalenetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic dianhydride, 3,3,6,7-anthracenetetracarboxylic dianhydride, 1,2,7, 8-Fena Tren tetracarboxylic dianhydride, 4,4 '- such as (hexafluoro isopropylidene) phthalic dianhydride and the like. By introducing a siloxane structure into the polyamic acid that is a precursor of the polyimide resin, the metal foil with resin can be bent more easily.

シロキサン構造を樹脂中に持ったシロキサン変性ポリアミドイミド樹脂、あるいはシロキサン構造を含有するポリアミック酸の合成は、芳香族環を有するジアミンaとシロキサンジアミンbの混合比率が、a/b=99.9/0.1〜0/100(モル比)であると好ましく、a/b=95/5〜30/70であると更に好ましく、a/b=90/10〜40/60であるとより一層好ましい。シロキサンジアミンbの混合比率が多くなるとTgが低下する傾向にある。また、少なくなると樹脂付き金属箔を作製する場合に樹脂中に残存するワニス溶剤量が多くなる傾向がある。   In the synthesis of a siloxane-modified polyamideimide resin having a siloxane structure in the resin or a polyamic acid containing a siloxane structure, the mixing ratio of the diamine a having an aromatic ring and the siloxane diamine b is a / b = 99.9 / It is preferably 0.1 to 0/100 (molar ratio), more preferably a / b = 95/5 to 30/70, and even more preferably a / b = 90/10 to 40/60. . When the mixing ratio of siloxane diamine b increases, Tg tends to decrease. Moreover, when it decreases, when producing metal foil with resin, there exists a tendency for the amount of varnish solvent which remains in resin to increase.

芳香族ジアミン(芳香族環を有するジアミン)としては、例えば(3,3’―ジアミノ)ジフェニルエーテル、m−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルプロパン、ベンジジン、4,4’−ジアミノジフェニルスルフィド、4,4’−ジアミノジフェニルスルホン、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノ−p−ターフェニル、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(BAPP)、ビス[4−(3−アミノフェノキシ)フェニル]スルホン、ビス[4−(4−アミノフェノキシ)フェニル]スルホン、2,2−ビス[4−(4−アミノフェノキシ)フェニル]ヘキサフルオロプロパン、ビス[4−(4−アミノフェノキシ)フェニル]メタン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、ビス[4−(4−アミノフェノキシ)フェニル]エーテル、ビス[4−(4−アミノフェノキシ)フェニル]ケトン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、2,2’−ジメチルビフェニル−4,4’−ジアミン、2,2’−ビス(トリフルオロメチル)ビフェニル−4,4’−ジアミン、2,6,2’,6’−テトラメチルビフェニル−4,4’−ジアミン、5,5’−ジメチル−2,2’−スルフォニル−ビフェニル−4,4’−ジアミン、3,3’−ジヒドロキシビフェニル−4,4’−ジアミン、(4,4’−ジアミノ)ベンゾフェノン、(3,3’―ジアミノ)ベンゾフェノン等が例示できる。   Examples of the aromatic diamine (a diamine having an aromatic ring) include (3,3′-diamino) diphenyl ether, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, and 4,4′-diaminodiphenyl. Propane, benzidine, 4,4'-diaminodiphenyl sulfide, 4,4'-diaminodiphenyl sulfone, 3,3'-diaminodiphenyl sulfone, 4,4'-diaminodiphenyl ether, 4,4'-diamino-p-terphenyl 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), bis [4- (3-aminophenoxy) phenyl] sulfone, bis [4- (4-aminophenoxy) phenyl] sulfone, 2,2-bis [4- (4-aminophenoxy) phenyl] hexa Fluoropropane, bis [4- (4-aminophenoxy) phenyl] methane, 4,4′-bis (4-aminophenoxy) biphenyl, bis [4- (4-aminophenoxy) phenyl] ether, bis [4- (4 -Aminophenoxy) phenyl] ketone, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 2,2'-dimethylbiphenyl-4,4'-diamine, 2 , 2′-bis (trifluoromethyl) biphenyl-4,4′-diamine, 2,6,2 ′, 6′-tetramethylbiphenyl-4,4′-diamine, 5,5′-dimethyl-2,2 '-Sulphonyl-biphenyl-4,4'-diamine, 3,3'-dihydroxybiphenyl-4,4'-diamine, (4,4'-diamino) benzophenone (3,3'-diamino) benzophenone and the like.

本発明で使用するシロキサンジアミンとしては、以下の一般式(3)〜(6)ものが挙げられる。なお下記一般式(3)〜(6)のm及びnは、1以上の整数である。   Examples of the siloxane diamine used in the present invention include the following general formulas (3) to (6). In the following general formulas (3) to (6), m and n are integers of 1 or more.

Figure 0004590982
Figure 0004590982

Figure 0004590982
Figure 0004590982

Figure 0004590982
Figure 0004590982

Figure 0004590982
Figure 0004590982

なお、上記一般式(3)で表されるシロキサンジアミンとしては、X−22−161AS(アミン当量450)、X−22−161A(アミン当量840)、X−22−161B(アミン当量1500)(以上、信越化学工業株式会社製商品名)、BY16−853(アミン当量650)、BY16−853B(アミン当量2200)、(以上、東レダウコーニングシリコーン株式会社製商品名)等が例示できる。上記一般式(6)で表されるシロキサンジアミンとしては、X−22−9409(アミン当量700)、X−22−1660B−3(アミン当量2200)(以上、信越化学工業株式会社製商品名)等が例示できる。   In addition, as siloxane diamine represented by the said General formula (3), X-22-161AS (amine equivalent 450), X-22-161A (amine equivalent 840), X-22-161B (amine equivalent 1500) ( As mentioned above, Shin-Etsu Chemical Co., Ltd. product name), BY16-853 (amine equivalent 650), BY16-853B (amine equivalent 2200), (product name manufactured by Toray Dow Corning Silicone Co., Ltd.) and the like can be exemplified. As the siloxane diamine represented by the general formula (6), X-22-9409 (amine equivalent 700), X-22-1660B-3 (amine equivalent 2200) (above, trade name manufactured by Shin-Etsu Chemical Co., Ltd.) Etc. can be illustrated.

またシロキサン構造を樹脂中に持ったシロキサン変性ポリアミドイミド樹脂、あるいはシロキサン構造を含有するポリアミック酸の合成には、下記一般式(7)で表される脂肪族ジアミン類を、単独で用いても良く、芳香族ジアミンと併用しても良い。   In addition, an aliphatic diamine represented by the following general formula (7) may be used alone for the synthesis of a siloxane-modified polyamideimide resin having a siloxane structure in the resin or a polyamic acid containing a siloxane structure. It may be used in combination with an aromatic diamine.

Figure 0004590982
Figure 0004590982

但し、式中Xはメチレン基、スルホニル基、エーテル基、カルボニル基又は単結合、R及びRはそれぞれ水素原子、アルキル基、フェニル基または置換フェニル基を示し、pは1〜50の整数を示す。R及びRの具体例としては、水素原子、炭素数が1〜3のアルキル基、フェニル基、置換フェニル基が好ましく、フェニル基に結合していてもよい置換基としては、炭素数1〜3のアルキル基、ハロゲン原子等が例示できる。脂肪族ジアミンは、低弾性率及び高Tgの両立の観点から、上記一般式(7)におけるXがエーテル基であることが好ましい。このような脂肪族ジアミンとしては、ジェファーミンD−400(アミン当量400)、ジェファーミンD−2000(アミン当量1000)以上サンテクノケミカル社製商品名等が例示できる。 Wherein X is a methylene group, sulfonyl group, ether group, carbonyl group or single bond, R 1 and R 2 are each a hydrogen atom, an alkyl group, a phenyl group or a substituted phenyl group, and p is an integer of 1 to 50 Indicates. Specific examples of R 1 and R 2 are preferably a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a phenyl group, and a substituted phenyl group. The substituent that may be bonded to the phenyl group is 1 carbon atom. -3 alkyl groups, halogen atoms and the like can be exemplified. In the aliphatic diamine, X in the general formula (7) is preferably an ether group from the viewpoint of achieving both low elastic modulus and high Tg. Examples of such aliphatic diamines include Jeffamine D-400 (amine equivalent 400), Jeffamine D-2000 (amine equivalent 1000) or more and trade names of Sun Techno Chemical Co., Ltd.

本発明のポリアミドイミド樹脂の製造方法に用いるジイソシアネートとしては、下記一般式(8)で表される化合物を用いることができる。   As the diisocyanate used in the method for producing the polyamideimide resin of the present invention, a compound represented by the following general formula (8) can be used.

Figure 0004590982
Figure 0004590982

式中、Dは少なくとも1つの芳香環を有する2価の有機基、又は、2価の脂肪族炭化水素基であり、−C64−CH2−C64−で表される基、トリレン基、ナフチレン基、ヘキサメチレン基、2,2,4−トリメチルヘキサメチレン基及びイソホロン基からなる群より選ばれる少なくとも1つの基であることが好ましい。 In the formula, D is a divalent organic group having at least one aromatic ring or a divalent aliphatic hydrocarbon group, and is a group represented by —C 6 H 4 —CH 2 —C 6 H 4 —. And at least one group selected from the group consisting of a tolylene group, a naphthylene group, a hexamethylene group, a 2,2,4-trimethylhexamethylene group and an isophorone group.

上記一般式(8)で表されるジイソシアネートとしては、脂肪族ジイソシアネート又は芳香族ジイソシアネートを用いることができるが、芳香族ジイソシアネートを用いることが好ましく、両者を併用することが特に好ましい。芳香族ジイソシアネートとしては、4,4’−ジフェニルメタンジイソシアネート(MDI)、2,4−トリレンジイソシアネート、2,6−トリレンジイソシアネート、ナフタレン−1,5−ジイソシアネート、2,4−トリレンダイマー等が例示でき、MDIを用いることが特に好ましい。芳香族ジイソシアネートとしてMDIを用いることにより、得られるポリアミドイミド樹脂の可撓性を向上させることができる。   As the diisocyanate represented by the general formula (8), an aliphatic diisocyanate or an aromatic diisocyanate can be used, but it is preferable to use an aromatic diisocyanate, and it is particularly preferable to use both in combination. Examples of aromatic diisocyanates include 4,4′-diphenylmethane diisocyanate (MDI), 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, naphthalene-1,5-diisocyanate, 2,4-tolylene dimer, and the like. As an example, it is particularly preferable to use MDI. By using MDI as the aromatic diisocyanate, the flexibility of the resulting polyamideimide resin can be improved.

脂肪族ジイソシアネートとしては、ヘキサメチレンジイソシアネート、2,2,4−トリメチルヘキサメチレンジイソシアネート、イソホロンジイソシアネート等が例示できる。   Examples of the aliphatic diisocyanate include hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and isophorone diisocyanate.

芳香族ジイソシアネート及び脂肪族ジイソシアネートを併用する場合は、脂肪族ジイソシアネートを芳香族ジイソシアネートに対して5〜10モル%程度添加することが好ましく、かかる併用により、得られるポリアミドイミド樹脂の耐熱性を更に向上させることができる。   When using an aromatic diisocyanate and an aliphatic diisocyanate in combination, it is preferable to add the aliphatic diisocyanate to about 5 to 10 mol% with respect to the aromatic diisocyanate, and this combination further improves the heat resistance of the resulting polyamideimide resin. Can be made.

本発明の樹脂付き金属箔の樹脂組成物に含まれるアクリル樹脂としては、アクリル酸モノマ、メタクリル酸モノマ、アクリロニトリル、グリシジル基を有するアクリルモノマなどの単独もしくはこれらを複数共重合した共重合物を使用することが可能である。分子量は特に規定されるものではないが標準ポリスチレン換算の重量平均分子量で30万〜100万、好ましくは40万〜80万のものが用いられる。これらのアクリル樹脂にエポキシ樹脂、硬化剤、硬化促進剤を適宜加えて使用することが好ましい。なお、アクリル樹脂として、HTR−860−P3(ナガセケムテックス株式会社製商品名、重量平均分子量85万)、HM6−1M50(ナガセケムテックス株式会社製商品名、重量平均分子量50万)などが例示できる。   As the acrylic resin contained in the resin composition of the resin-coated metal foil of the present invention, an acrylic monomer, a methacrylic acid monomer, acrylonitrile, an acrylic monomer having a glycidyl group, or a copolymer obtained by copolymerizing a plurality thereof is used. Is possible. The molecular weight is not particularly specified, but a standard polystyrene equivalent weight average molecular weight of 300,000 to 1,000,000, preferably 400,000 to 800,000 is used. It is preferable to add an epoxy resin, a curing agent, and a curing accelerator as appropriate to these acrylic resins. Examples of acrylic resins include HTR-860-P3 (trade name, manufactured by Nagase ChemteX Corporation, weight average molecular weight 850,000), HM6-1M50 (trade name, manufactured by Nagase ChemteX Corporation, weight average molecular weight 500,000), and the like. it can.

また本発明では、難燃性の向上を目的に添加型の難燃剤を使用することもできる。本発明で使用する添加型の難燃剤としてはリンを含有するフィラーが好ましく、リン含有フィラーとしてはOP930(クラリアント社製商品名、リン含有量23.5重量%)、HCA−HQ(三光株式会社製商品名、リン含有量9.6重量%)、ポリリン酸メラミンPMP−100(リン含有量13.8重量%)PMP−200(リン含有量9.3重量%)PMP−300(リン含有量9.8重量%)以上日産化学株式会社製商品名等が挙げられる。   In the present invention, an additive-type flame retardant can also be used for the purpose of improving flame retardancy. As the additive-type flame retardant used in the present invention, a filler containing phosphorus is preferable. As the phosphorus-containing filler, OP930 (trade name manufactured by Clariant, phosphorus content 23.5% by weight), HCA-HQ (Sanko Co., Ltd.) Product name, phosphorus content 9.6 wt%), melamine polyphosphate PMP-100 (phosphorus content 13.8 wt%) PMP-200 (phosphorus content 9.3 wt%) PMP-300 (phosphorus content) 9.8% by weight) or more, trade names made by Nissan Chemical Co., Ltd. and the like.

本発明の樹脂付き金属箔の金属箔としては、銅箔やアルミニウム箔が一般的に用いられるが、通常積層板に用いられている厚み5〜200μmのものを使用でき、銅箔が好ましい。また、ニッケル、ニッケル−リン、ニッケル−スズ合金、ニッケル−鉄合金、鉛、鉛−スズ合金等を中間層とし、この両面に0.5〜15μmの銅層と10〜300μmの銅層を設けた3層構造の複合箔あるいはアルミニウムと銅箔を複合した2層構造複合箔を用いることができる。   As the metal foil of the resin-attached metal foil of the present invention, a copper foil or an aluminum foil is generally used. However, a metal foil having a thickness of 5 to 200 μm which is usually used for a laminate can be used, and a copper foil is preferable. Also, nickel, nickel-phosphorus, nickel-tin alloy, nickel-iron alloy, lead, lead-tin alloy, etc. are used as intermediate layers, and a 0.5-15 μm copper layer and a 10-300 μm copper layer are provided on both sides. Alternatively, a three-layer composite foil or a two-layer composite foil in which aluminum and copper foil are combined can be used.

本発明では、樹脂組成物に、必要に応じて各種の樹脂や添加剤などを加え、有機溶媒中で混合、溶解、分散して、ワニス状にしても良い。このような有機溶媒としては、溶解性が得られるものであれば制限するものでなく、ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、N−メチル−2−ピロリドン、γ−ブチロラクトン、スルホラン、シクロヘキサノン等が挙げられる。   In the present invention, various resins and additives may be added to the resin composition as necessary, and mixed, dissolved, and dispersed in an organic solvent to form a varnish. Such an organic solvent is not limited as long as solubility is obtained, and examples thereof include dimethylacetamide, dimethylformamide, dimethyl sulfoxide, N-methyl-2-pyrrolidone, γ-butyrolactone, sulfolane, and cyclohexanone. It is done.

本発明の樹脂付き金属箔の製造方法等は特に制限するものではないが,例えば以下の製造方法で、製造してもよい。金属箔の上に繊維基材を重ね、樹脂組成物のワニスを、繊維基材の側から供給して含浸させて塗工する、あるいは金属箔上に樹脂組成物のワニスを所定の厚みに塗布した後、繊維基材を重ねて樹脂組成物のワニスを含浸させた後、乾燥する。なお樹脂組成物のワニスを金属箔上に所定の厚みに塗布する方法としては、通常はギャップの間を被塗工物(金属箔)を通過させるコータが使用でき、そして樹脂組成物のワニス状態の塗膜厚みが、50〜500μmの場合、コンマコータが好ましい。また、また、樹脂組成物のワニスを繊維基材のみに含浸させ、80℃〜180℃の範囲で乾燥させて、プリプレグを製造し、更に金属箔と前記プリプレグを、プリプレグの硬化が進まない範囲、例えば80℃〜120℃の範囲で、加熱加圧し、樹脂付き金属箔を製造してもよい。   Although the manufacturing method of the metal foil with resin of this invention is not restrict | limited in particular, For example, you may manufacture with the following manufacturing methods. The fiber base material is stacked on the metal foil, and the resin composition varnish is supplied from the fiber base material side and impregnated for coating, or the resin composition varnish is applied to the metal foil to a predetermined thickness. Then, the fiber base material is stacked and impregnated with the varnish of the resin composition, and then dried. In addition, as a method of applying the resin composition varnish to a predetermined thickness on the metal foil, a coater that normally allows the object to be coated (metal foil) to pass through the gap can be used, and the varnish state of the resin composition A comma coater is preferable when the thickness of the coating is 50 to 500 μm. In addition, the varnish of the resin composition is impregnated only in the fiber base material, dried in the range of 80 ° C. to 180 ° C. to produce a prepreg, and the metal foil and the prepreg are further cured with the prepreg. For example, you may heat-press in the range of 80 to 120 degreeC, and may manufacture metal foil with resin.

樹脂付き金属箔の製造条件等は特に制限するものではないが,ワニスに使用した有機溶媒が80重量%以上揮発していることが好ましい。このため,製造方法や乾燥条件等も制限はなく,乾燥時の温度は80℃〜180℃,時間はワニスのゲル化時間との兼ね合いで特に制限はない。ワニスの含浸量は、ワニス固形分と基材の総量に対して、ワニス固形分が30〜80重量%になるようにされることが好ましい。なお耐熱性の高いポリアミック酸やポリアミドイミド樹脂にシロキサン構造を持たせたことにより、残存有機溶媒分を少なくすることができ、熱処理の際のボイドの発生や積層工程において有機溶媒揮発によるフクレの発生を防止でき、はんだ耐熱性をより優れたものとすることができる。   The production conditions of the metal foil with resin are not particularly limited, but it is preferable that the organic solvent used for the varnish is volatilized by 80% by weight or more. For this reason, the production method and drying conditions are not limited, the drying temperature is 80 ° C. to 180 ° C., and the time is not particularly limited in view of the gelation time of the varnish. The amount of impregnation of the varnish is preferably 30 to 80% by weight with respect to the total amount of the varnish solid and the base material. In addition, by adding a siloxane structure to polyamic acid and polyamideimide resin with high heat resistance, the remaining organic solvent can be reduced, generating voids during heat treatment, and generating bulges due to organic solvent volatilization during the lamination process. Can be prevented, and the solder heat resistance can be further improved.

本発明の樹脂付き金属箔を用いた金属張積層板の製造方法は、例えば次の通りである。本発明における樹脂付き金属箔に銅箔を重ねるか又は2枚の樹脂付き金属箔を樹脂面が向かい合うようにして積層した積層体を通常150〜280℃、好ましくは180℃〜250℃の範囲の温度で、通常0.5〜20MPa、好ましくは1〜8MPaの範囲の圧力で、加熱加圧成形することにより金属張積層板を製造することができる。金属箔を使用して金属張積層板とすることにより、これに回路加工を施して印刷回路板とすることもできる。また前述したように、本発明の樹脂付き金属箔を加熱処理することでCステージ状態の樹脂付き金属箔とすることができる。加熱処理条件は、例えば、通常150〜280℃、好ましくは180℃〜250℃の範囲の温度で、Cステージ状態の樹脂付き金属箔としてもよい。そしてCステージ状態の樹脂付き金属箔を使用して、これに回路加工を施して印刷回路板とすることもできる。なお、回路加工は、一般的な方法であるサブトラクティブ法やアディティブ法を使用できる。   A method for producing a metal-clad laminate using the resin-coated metal foil of the present invention is, for example, as follows. In the present invention, a laminate in which a copper foil is laminated on a metal foil with resin or two resin foils are laminated so that the resin surfaces face each other is usually 150 to 280 ° C., preferably 180 ° C. to 250 ° C. A metal-clad laminate can be produced by heating and pressing at a temperature of usually 0.5 to 20 MPa, preferably 1 to 8 MPa. By using a metal foil to form a metal-clad laminate, circuit processing can be applied to this to obtain a printed circuit board. As described above, the resin-coated metal foil of the present invention can be heat-treated to form a C-staged resin-coated metal foil. The heat treatment condition may be, for example, a metal foil with a resin in a C-stage state at a temperature in the range of usually 150 to 280 ° C, preferably 180 ° C to 250 ° C. And it is also possible to use a metal foil with a resin in a C-stage state and perform circuit processing on this to obtain a printed circuit board. For circuit processing, a subtractive method and an additive method, which are general methods, can be used.

また樹脂付き金属箔を、別途作製した印刷回路板と積層することで、多層配線板とすることが可能である。このとき樹脂付き金属箔を介して各層の回路どうしを層間接続するには、樹脂付き金属箔に層間接続用の穴をレーザなどによりあらかじめ加工しておき導電ペーストやめっきにより接続する方法や、各回路板の内層回路上にあらかじめ設けた接続用バンプを用いる方法などがあるが、特に限定するものではない。   Moreover, it is possible to make a multilayer wiring board by laminating a resin-coated metal foil with a separately produced printed circuit board. At this time, in order to connect the circuits of each layer through the resin-coated metal foil, the method of connecting the holes for interlayer connection to the resin-coated metal foil with a laser in advance and connecting them with a conductive paste or plating, There is a method of using connection bumps provided in advance on the inner layer circuit of the circuit board, but there is no particular limitation.

以下に実施例を挙げて説明するが、本発明はこれらに限定されるものではない。
(合成例1)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族環を2個以上有するジアミンとしてBAPP(2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン)41.0g(0.50mol)、シロキサンジアミンとして反応性シリコンオイルX−22−9409(信越化学工業株式会社製商品名、アミン当量2200)132.0g(0.50mol)、TMA(無水トリメリット酸)80.7g(0.42mol)を非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)573gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)55.0g(0.22mol)を投入し、190℃で2時間反応させた。反応終了後、ポリアミドイミド樹脂のNMP溶液(樹脂分33重量%)を得た。
Examples are described below, but the present invention is not limited to these examples.
(Synthesis Example 1)
BAPP (2,2-bis [4-) is a diamine having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml water meter with a cock connected to a reflux condenser, a thermometer, and a stirrer. (4-aminophenoxy) phenyl] propane) 41.0 g (0.50 mol), reactive silicone oil X-22-9409 (trade name, amine equivalent 2200, manufactured by Shin-Etsu Chemical Co., Ltd.) as a siloxane diamine 132.0 g (0 .50 mol) and TMA (trimellitic anhydride) 80.7 g (0.42 mol) as an aprotic polar solvent were charged with 573 g of NMP (N-methyl-2-pyrrolidone) and stirred at 80 ° C. for 30 minutes. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that about 7.2 ml or more of water has accumulated in the moisture determination receiver and that no water is being distilled, remove the distillate that has accumulated in the moisture determination receiver, The temperature was raised to 0 ° C. to remove toluene. Thereafter, the solution was returned to room temperature (25 ° C.), and 55.0 g (0.22 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, followed by reaction at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin (resin content 33% by weight) was obtained.

(合成例2)
環流冷却器を連結したコック付き25mlの水分定量受器、温度計、撹拌器を備えた1リットルのセパラブルフラスコに芳香族環を2個以上有するジアミンとしてDDS(ジアミノジフェニルスルホン)14.9g(0.06mol)、シロキサンジアミンとして反応性シリコンオイルKF−8010(信越化学工業株式会社製商品名、アミン当量430)43.0g(0.05mol)、脂肪族ジアミンとしてジェファーミンD2000(サンテクノケミカル社製商品名、アミン当量1000)90.0g(0.045mol)、ジアミンとしてワンダミン(新日本理化株式会社製商品名)11.5g(0.055mol)、TMA(無水トリメリット酸)80.7g(0.42mol)を非プロトン性極性溶媒としてNMP(N−メチル−2−ピロリドン)690gを仕込み、80℃で30分間撹拌した。そして水と共沸可能な芳香族炭化水素としてトルエン150mlを投入してから温度を上げ約160℃で2時間環流させた。水分定量受器に水が約7.2ml以上たまっていること、水の留出が見られなくなっていることを確認し、水分定量受器にたまっている留出液を除去しながら、約190℃まで温度を上げて、トルエンを除去した。その後、溶液を室温(25℃)に戻し、芳香族ジイソシアネートとしてMDI(4,4’−ジフェニルメタンジイソシアネート)55.1g(0.22mol)を投入し、190℃で2時間反応させた。反応終了後、ポリアミドイミド樹脂のNMP溶液(樹脂分28重量%)を得た。
(Synthesis Example 2)
14.9 g of DDS (diaminodiphenylsulfone) as a diamine having two or more aromatic rings in a 1-liter separable flask equipped with a 25 ml moisture meter with a cock connected to a reflux condenser, a thermometer, and a stirrer ( 0.06 mol), reactive silicone oil KF-8010 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., amine equivalent 430) 43.0 g (0.05 mol) as siloxane diamine, and Jeffamine D2000 (manufactured by Sun Techno Chemical Co., Ltd.) as aliphatic diamine Product name, amine equivalent 1000) 90.0 g (0.045 mol), Wandamine (trade name, manufactured by Shin Nippon Chemical Co., Ltd.) 11.5 g (0.055 mol), TMA (trimellitic anhydride) 80.7 g (0 .42 mol) as an aprotic polar solvent, NMP (N-methyl) Were charged 2-pyrrolidone) 690 g, it was stirred at 80 ° C. 30 min. Then, 150 ml of toluene was added as an aromatic hydrocarbon azeotropic with water, and the temperature was raised and refluxed at about 160 ° C. for 2 hours. While confirming that approximately 7.2 ml or more of water has accumulated in the moisture determination receiver and that no distillation of water has been observed, while removing the distillate accumulated in the moisture determination receiver, The temperature was raised to 0 ° C. to remove toluene. Then, the solution was returned to room temperature (25 ° C.), 55.1 g (0.22 mol) of MDI (4,4′-diphenylmethane diisocyanate) was added as an aromatic diisocyanate, and reacted at 190 ° C. for 2 hours. After completion of the reaction, an NMP solution of polyamideimide resin (resin content 28% by weight) was obtained.

(実施例1)
合成例1のシロキサン変性ポリアミドイミド樹脂のNMP溶液全量858g(樹脂固形分33重量%)とエポキシ樹脂としてZX1548−3(東都化成株式会社製商品名)188.0g(樹脂固形分50重量%のジメチルアセトアミド溶液)、1−シアノエチル−2−エチル−1−メチルイミダゾール0.7gを配合し、均一になるまで約1時間撹拌した後、脱泡のため24時間、室温(25℃)で静置して樹脂組成物ワニスとした。
Example 1
858 g of the total amount of NMP solution of the siloxane-modified polyamideimide resin of Synthesis Example 1 (resin solid content 33 wt%) and ZX1548-3 (trade name, manufactured by Tohto Kasei Co., Ltd.) as an epoxy resin 188.0 g (dimethyl resin having a resin solid content of 50 wt%) Acetamide solution) and 0.7 g of 1-cyanoethyl-2-ethyl-1-methylimidazole were mixed and stirred for about 1 hour until uniform, then allowed to stand at room temperature (25 ° C.) for 24 hours for defoaming. To obtain a resin composition varnish.

(実施例2)
合成例2のシロキサン変性ポリアミドイミド樹脂のNMP溶液全量959g(樹脂固形分28重量%)とエポキシ樹脂としてNC3000(日本化薬株式会社製商品名)179.0g(樹脂固形分50重量%のジメチルアセトアミド溶液)、1−シアノエチル−2−フェニルイミダゾール0.2gを配合し、均一になるまで約1時間撹拌した後、リン含有フィラーとしてOP930(クラリアント社製商品名)56gを加えさらに1時間撹拌したのち200メッシュのナイロン布を通し、室温(25℃)で静置して樹脂組成物ワニスとした。
(Example 2)
NMP solution total amount 959g (resin solid content 28 wt%) of siloxane-modified polyamideimide resin of Synthesis Example 2 and NC resin (trade name made by Nippon Kayaku Co., Ltd.) 179.0g as epoxy resin (dimethylacetamide with resin solid content 50 wt%) Solution), 0.2 g of 1-cyanoethyl-2-phenylimidazole was mixed and stirred for about 1 hour until uniform, and then 56 g of OP930 (trade name, manufactured by Clariant) was added as a phosphorus-containing filler, and the mixture was further stirred for 1 hour. A 200-mesh nylon cloth was passed through and allowed to stand at room temperature (25 ° C.) to obtain a resin composition varnish.

(実施例3)
エポキシ樹脂としてEPICLON153(大日本インキ株式会社製商品名)340.0g、硬化剤としてFG−2000(帝人化成株式会社製商品名)181g、硬化促進剤として1−シアノエチル−2−フェニルイミダゾール、1.0gをメチルイソブチルケトン600.0gに溶解した後、アクリル樹脂としてHTR−860−P3(ナガセケムテックス株式会社製商品名:15重量%メチルエチルケトン溶液)287.0gを加えてさらに1時間、撹拌して樹脂組成物ワニスとした。
(Example 3)
340.0 g of EPICLON 153 (trade name, manufactured by Dainippon Ink Co., Ltd.) as an epoxy resin, 181 g of FG-2000 (trade name, manufactured by Teijin Chemicals Ltd.) as a curing agent, 1-cyanoethyl-2-phenylimidazole as a curing accelerator, After dissolving 0 g in 600.0 g of methyl isobutyl ketone, 287.0 g of HTR-860-P3 (trade name: 15 wt% methyl ethyl ketone solution manufactured by Nagase ChemteX Corporation) was added as an acrylic resin, and the mixture was further stirred for 1 hour. A resin composition varnish was obtained.

(実施例4)
エポキシ樹脂としてBREN−S(日本化薬株式会社製商品名)300g、硬化剤としてFG−2000(帝人化成株式会社製商品名)181.0g、硬化促進剤として1−シアノエチル−2−エチル−1−メチルイミダゾール、1.0gをメチルイソブチルケトン600.0gに溶解した後、アクリル樹脂としてHTR−860−P3(ナガセケムテックス株式会社製商品名:15重量%メチルエチルケトン溶液)287.0gを加えてさらに1時間、撹拌して樹脂組成物ワニスとした。
Example 4
300 g of BREN-S (trade name, manufactured by Nippon Kayaku Co., Ltd.) as an epoxy resin, 181.0 g of FG-2000 (trade name, manufactured by Teijin Chemicals Ltd.) as a curing agent, and 1-cyanoethyl-2-ethyl-1 as a curing accelerator -After dissolving 1.0 g of methylimidazole in 600.0 g of methyl isobutyl ketone, 287.0 g of HTR-860-P3 (trade name: 15 wt% methyl ethyl ketone solution manufactured by Nagase ChemteX Corporation) was added as an acrylic resin. The resin composition varnish was stirred for 1 hour.

(実施例5)
1リットルのセパラブルフラスコに3,3’,4,4’−ジフェニルエーテルテトラカルボン酸二無水物(OPDA)31.0g(0.10mol)、NMP(N−メチル−2−ピロリドン)250g、を入れ室温で撹拌した。シロキサンジアミンとして反応性シリコンオイルKF−8010(信越化学工業株式会社製商品名、アミン当量430)34.4g(0.04mol)を滴下ロートを用いて滴下し、この反応溶液を撹拌下で氷冷し、芳香族ジアミンとしてBAPP(2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン)24.6g(0.06mol)添加して室温(25℃)で2時間撹拌してポリアミック酸を得た。これを樹脂組成物ワニスとした。
(Example 5)
In a 1 liter separable flask, 31.0 g (0.10 mol) of 3,3 ′, 4,4′-diphenyl ether tetracarboxylic dianhydride (OPDA) and 250 g of NMP (N-methyl-2-pyrrolidone) were placed. Stir at room temperature. 34.4 g (0.04 mol) of reactive silicone oil KF-8010 (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., amine equivalent 430) was added dropwise as a siloxane diamine using a dropping funnel, and the reaction solution was ice-cooled with stirring. Then, 24.6 g (0.06 mol) of BAPP (2,2-bis [4- (4-aminophenoxy) phenyl] propane) as an aromatic diamine was added and stirred at room temperature (25 ° C.) for 2 hours to obtain a polyamic acid. Got. This was made into the resin composition varnish.

(実施例6)
1リットルのセパラブルフラスコに3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)32.2g(0.10mol)、NMP(N−メチル−2−ピロリドン)300g、を入れ室温で撹拌した。シロキサンジアミンとして反応性シリコンオイルX−22−161B(信越化学工業株式会社製商品名、アミン当量1560)124.8g(0.04mol)を滴下ロートを用いて滴下し、この反応溶液を撹拌下で氷冷し、芳香族ジアミンとしてBAPP(2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン)24.6g(0.06mol)添加して室温(25℃)で2時間撹拌してポリアミック酸を得た。これを樹脂組成物ワニスとした。
(Example 6)
Into a 1 liter separable flask was placed 32.2 g (0.10 mol) of 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride (BTDA) and 300 g of NMP (N-methyl-2-pyrrolidone). Stir at room temperature. Reactive silicon oil X-22-161B (trade name, manufactured by Shin-Etsu Chemical Co., Ltd., amine equivalent 1560) 124.8 g (0.04 mol) as siloxane diamine was dropped using a dropping funnel, and the reaction solution was stirred. Ice-cooled, 24.6 g (0.06 mol) of BAPP (2,2-bis [4- (4-aminophenoxy) phenyl] propane) as an aromatic diamine was added, and the mixture was stirred at room temperature (25 ° C.) for 2 hours. A polyamic acid was obtained. This was made into the resin composition varnish.

(実施例7)
1リットルのセパラブルフラスコに3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)29.4g(0.10mol)、NMP(N−メチル−2−ピロリドン)300g、を入れ室温で撹拌した。シロキサンジアミンとして反応性シリコンオイルX−22−161A(信越化学工業株式会社製商品名、アミン当量900)72.0g(0.04mol)を滴下ロートを用いて滴下し、この反応溶液を撹拌下で氷冷し、芳香族ジアミンとしてBAPP(2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン)24.6g(0.06mol)添加して室温(25℃)で2時間撹拌してポリアミック酸を得た。これを樹脂組成物ワニスとした。
(Example 7)
Into a 1 liter separable flask, 29.4 g (0.10 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) and 300 g of NMP (N-methyl-2-pyrrolidone) were placed. Stir at room temperature. 72.0 g (0.04 mol) of reactive silicone oil X-22-161A (trade name, amine equivalent 900, manufactured by Shin-Etsu Chemical Co., Ltd.) was added dropwise as a siloxane diamine using a dropping funnel, and this reaction solution was stirred. Ice-cooled, 24.6 g (0.06 mol) of BAPP (2,2-bis [4- (4-aminophenoxy) phenyl] propane) as an aromatic diamine was added, and the mixture was stirred at room temperature (25 ° C.) for 2 hours. A polyamic acid was obtained. This was made into the resin composition varnish.

(樹脂付き金属箔の作製)
電解銅箔F2−WS−18(古河電工株式会社製商品名)の上に厚さ20μmのガラスクロス(旭シュエーベル株式会社製商品名1027)を重ね、実施例1〜4で作製した樹脂組成物ワニスを乾燥後の厚みが50μmになるように塗布し、150℃で15分加熱、乾燥して樹脂分70重量%の樹脂付き金属箔(Bステージ状態)を得た。
(Production of metal foil with resin)
A resin composition produced in Examples 1 to 4 by superposing a glass cloth (trade name 1027 manufactured by Asahi Schavel Co., Ltd.) having a thickness of 20 μm on electrolytic copper foil F2-WS-18 (trade name manufactured by Furukawa Electric Co., Ltd.). The varnish was applied so that the thickness after drying was 50 μm, heated at 150 ° C. for 15 minutes, and dried to obtain a metal foil with a resin having a resin content of 70% by weight (B stage state).

また厚さ12μmの電解銅箔(古河電工株式会社製、商品名F2−WS−12)と厚さ28μmのガラスクロス(旭シュエーベル株式会社製、商品名1037)を重ねて、実施例5のポリアミック酸のNMP溶液(樹脂組成物ワニス)を含浸乾燥後の樹脂組成物の厚みが50μmになるように、ガラスクロスに含浸し150℃で15分乾燥し、樹脂付き金属箔(Bステージ状態)を作製した。更にその後250℃の加熱条件で60分処理し、Cステージ状態の樹脂付き金属箔とした。   Further, a 12 μm thick electrolytic copper foil (Furukawa Electric Co., Ltd., trade name F2-WS-12) and a 28 μm thick glass cloth (Asahi Schavel Co., Ltd., trade name 1037) are layered to form a polyamic of Example 5. A glass cloth is impregnated with an acid NMP solution (resin composition varnish) so that the thickness of the resin composition after impregnation and drying is 50 μm, and dried at 150 ° C. for 15 minutes. Produced. Furthermore, it processed for 60 minutes on 250 degreeC heating conditions after that, and was set as the metal foil with a resin of a C stage state.

また厚さ12μmの電解銅箔(古河電工株式会社製、商品名F2−WS−12)と厚さ28μmのガラスクロス(旭シュエーベル株式会社製、商品名1037)を重ねて、実施例6のポリアミック酸のNMP溶液(樹脂組成物ワニス)を含浸乾燥後の樹脂組成物の厚みが40μmになるように、ガラスクロスに含浸し150℃で15分乾燥し、樹脂付き金属箔(Bステージ状態)を作製した。更にその後250℃の加熱条件で60分処理し、Cステージ状態の樹脂付き金属箔とした。   Also, a 12 μm thick electrolytic copper foil (Furukawa Electric Co., Ltd., trade name F2-WS-12) and a 28 μm thick glass cloth (Asahi Schavel Co., Ltd., trade name 1037) are layered to form the polyamic of Example 6. A glass cloth is impregnated with an acid NMP solution (resin composition varnish) so that the thickness of the resin composition after impregnation and drying is 40 μm, and dried at 150 ° C. for 15 minutes. Produced. Furthermore, it processed for 60 minutes on 250 degreeC heating conditions after that, and was set as the metal foil with a resin of a C stage state.

また厚さ12μmの電解銅箔(古河電工株式会社製、商品名F2−WS−12)と厚さ28μmのガラスクロス(旭シュエーベル株式会社製、商品名1037)を重ねて、実施例7のポリアミック酸のNMP溶液(樹脂組成物ワニス)を含浸乾燥後の樹脂組成物の厚みが40μmになるように、ガラスクロスに含浸し150℃で15分乾燥し、樹脂付き金属箔(Bステージ状態)を作製した。更にその後250℃の加熱条件で60分処理し、Cステージ状態の樹脂付き金属箔とした。   Also, a 12 μm thick electrolytic copper foil (Furukawa Electric Co., Ltd., trade name F2-WS-12) and a 28 μm thick glass cloth (Asahi Schavel Co., trade name 1037) are stacked to form the polyamic of Example 7. A glass cloth is impregnated with an acid NMP solution (resin composition varnish) so that the thickness of the resin composition after impregnation and drying is 40 μm, and dried at 150 ° C. for 15 minutes. Produced. Furthermore, it processed for 60 minutes on 250 degreeC heating conditions after that, and was set as the metal foil with a resin of a C stage state.

(両面銅張積層板の作製)
実施例1〜4の樹脂付き金属箔をそれぞれ樹脂面が合わさるようにして重ね、下記表1に示した条件でプレス積層し両面銅張積層板を作製した。
(Production of double-sided copper-clad laminate)
The resin-coated metal foils of Examples 1 to 4 were stacked so that the resin surfaces were aligned, and press-laminated under the conditions shown in Table 1 below to prepare a double-sided copper-clad laminate.

(比較例1)
電解銅箔F2−WS−18の上に実施例1で作製した樹脂組成物ワニスを乾燥後の厚みが50μmになるように塗布し、150℃で15分加熱、乾燥して繊維基材を含まない樹脂分70重量%の樹脂付き金属箔(Bステージ状態)を得た。更に樹脂付き金属箔をそれぞれ樹脂面が合わさるようにして重ね、下記表1に示した条件でプレス積層し両面銅張積層板を作製した。
(Comparative Example 1)
The resin composition varnish produced in Example 1 was applied onto electrolytic copper foil F2-WS-18 so that the thickness after drying was 50 μm, heated at 150 ° C. for 15 minutes, and dried to include a fiber substrate. A resin-added metal foil (B stage state) having a resin content of 70% by weight was obtained. Further, the metal foils with resin were stacked so that the resin surfaces were combined, and press laminated under the conditions shown in Table 1 below to prepare a double-sided copper-clad laminate.

(比較例2)
電解銅箔F2−WS−18の上に実施例1で作製した樹脂組成物ワニスを乾燥後の厚みが50μmになるように塗布し、150℃で15分加熱、乾燥して繊維基材を含まない樹脂分70重量%の樹脂付き金属箔(Bステージ状態)を得た。更に樹脂付き金属箔をそれぞれ樹脂面が合わさるようにして重ね、下記表1に示した条件でプレス積層し両面銅張積層板を作製した。
(Comparative Example 2)
The resin composition varnish produced in Example 1 was applied onto electrolytic copper foil F2-WS-18 so that the thickness after drying was 50 μm, heated at 150 ° C. for 15 minutes, and dried to include a fiber substrate. A resin-added metal foil (B stage state) having a resin content of 70% by weight was obtained. Further, the metal foils with resin were stacked so that the resin surfaces were combined, and press laminated under the conditions shown in Table 1 below to prepare a double-sided copper-clad laminate.

(比較例3)
厚さ12μmの電解銅箔(古河電工株式会社製、商品名F2−WS−12)上に、実施例6のポリアミック酸のNMP溶液(樹脂組成物ワニス)を、乾燥後の厚みが40μmとなるように塗布し、150℃で15分乾燥し、繊維基材を含まない樹脂付き金属箔(Bステージ状態)を作製した。さらに200℃で60分熱硬化処理を行って、繊維基材を含まないCステージ状態の樹脂付き金属箔とした。
(Comparative Example 3)
On the electrolytic copper foil (product name F2-WS-12, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 12 μm, the polyamic acid NMP solution (resin composition varnish) of Example 6 has a thickness after drying of 40 μm. And dried at 150 ° C. for 15 minutes to prepare a metal foil with a resin (B stage state) that does not contain a fiber base material. Furthermore, the thermosetting process was performed at 200 degreeC for 60 minutes, and it was set as the metal foil with resin of the C stage state which does not contain a fiber base material.

Figure 0004590982
Figure 0004590982

(弾性率の測定)
実施例1〜7、比較例1〜3の樹脂組成物を厚さ12μmの電解銅箔(古河電工株式会社製、商品名F2−WS−12)に試料厚みが約50〜100μmになるように塗工し、以下の条件で硬化した。実施例1〜2は、150℃で15分加熱後、230℃で60分加熱、実施例3〜4は、150℃で15分加熱後、180℃で60分加熱、実施例5〜7は、150℃で15分加熱後、250℃で60分加熱、比較例1は、150℃で15分加熱後
230℃で60分加熱、比較例2は、150℃で15分加熱後、180℃で60分加熱、比較例3は、150℃で15分加熱後、250℃で60分加熱した。その後、銅箔をエッチングにより除去して得られた樹脂硬化物を試験用基板とした。この試験用基板を約30mm×5mmに切り出し、UBM社製動的粘弾性測定装置Reogel−E−4000を用い、測定長20mm、測定周波数10Hzの条件で測定を行った。得られた動的粘弾性曲線の25℃の弾性率を測定値とした。結果を表2に示した。
(Measurement of elastic modulus)
The resin compositions of Examples 1 to 7 and Comparative Examples 1 to 3 are placed on an electrolytic copper foil (Furukawa Electric Co., Ltd., trade name F2-WS-12) having a thickness of 12 μm so that the sample thickness is about 50 to 100 μm. It was coated and cured under the following conditions. Examples 1-2 were heated at 150 ° C. for 15 minutes, then heated at 230 ° C. for 60 minutes, Examples 3-4 were heated at 150 ° C. for 15 minutes, then heated at 180 ° C. for 60 minutes, and Examples 5-7 were After heating at 150 ° C. for 15 minutes, heating at 250 ° C. for 60 minutes, Comparative Example 1 is heated at 150 ° C. for 15 minutes and then heated at 230 ° C. for 60 minutes, Comparative Example 2 is heated at 150 ° C. for 15 minutes and then 180 ° C. And Comparative Example 3 was heated at 150 ° C. for 15 minutes and then heated at 250 ° C. for 60 minutes. Thereafter, the cured resin obtained by removing the copper foil by etching was used as a test substrate. This test substrate was cut out to about 30 mm × 5 mm and measured using a dynamic viscoelasticity measuring device Regel-E-4000 manufactured by UBM under the conditions of a measurement length of 20 mm and a measurement frequency of 10 Hz. The elastic modulus at 25 ° C. of the obtained dynamic viscoelastic curve was taken as a measured value. The results are shown in Table 2.

(線熱膨張係数の測定)
実施例1〜4及び比較例1〜2の両面銅張積層板の銅をエッチングにより除去し、試験用基板とした。また実施例5〜7及び比較例3のCステージ状態の樹脂付き金属箔(銅箔)の銅をエッチングにより除去し、試験用基板とした。この試験用基板を5mm×20mmに切り出し、熱機械分析装置(TMA)により引張りモード、昇温速度10℃/分の条件で線熱膨張係数を測定した。結果を表2に示した。
(Measurement of linear thermal expansion coefficient)
The copper of the double-sided copper clad laminates of Examples 1 to 4 and Comparative Examples 1 to 2 was removed by etching to obtain a test substrate. Moreover, the copper of the metal foil with a resin (copper foil) of the C-stage state of Examples 5-7 and Comparative Example 3 was removed by etching to obtain a test substrate. This test substrate was cut out to 5 mm × 20 mm, and the linear thermal expansion coefficient was measured by a thermomechanical analyzer (TMA) under conditions of a tensile mode and a temperature rising rate of 10 ° C./min. The results are shown in Table 2.

(吸湿時の寸法変化率の測定)
実施例1〜4及び比較例1〜2の両面銅張積層板の銅をエッチングにより除去し、試験用基板とした。この試験用基板を105℃で1時間乾燥後250mm×250mmに切り出し、100mm間隔に2mmφのドリルで穴を明け三次元測定装置でドリル穴の中心間距離を測定した。その後プレッシャークッカーを用いて121℃飽和の条件で2時間吸湿させ表面の水分を拭き取ってから再度、三次元測定装置でドリル穴の中心間距離を測定した。吸湿前後のドリル穴の中心間距離から吸湿時の寸法変化率を求めた。結果を表2に示した。
(Measurement of dimensional change during moisture absorption)
The copper of the double-sided copper clad laminates of Examples 1 to 4 and Comparative Examples 1 to 2 was removed by etching to obtain a test substrate. This test substrate was dried at 105 ° C. for 1 hour, cut into 250 mm × 250 mm, drilled with a 2 mmφ drill at 100 mm intervals, and the distance between centers of the drill holes was measured with a three-dimensional measuring device. Then, using a pressure cooker, moisture was absorbed for 2 hours under conditions of 121 ° C. saturation, and the surface moisture was wiped off. Then, the distance between the centers of the drill holes was measured again with a three-dimensional measuring device. The dimensional change rate during moisture absorption was determined from the distance between the centers of the drill holes before and after moisture absorption. The results are shown in Table 2.

(耐衝撃性の評価)
実施例1〜4及び比較例1〜2の両面銅張積層板と、実施例5〜7及び比較例3のCステージ状態の樹脂付き金属箔(銅箔)に通常のドリル加工、めっき、フォトリソ工程により直径0.25mmの接続穴250穴を有するデイジーチェーンパターン4列の印刷回路板を作製し、それぞれの始点と終点をはんだによりリード線で接続し、一列1000穴の導通パターンとして初期の抵抗を測定した。その後、各印刷回路板を所定の筐体に搭載し高さ1.5mから所定の回数落下させ断線の有無、抵抗値を測定した。1000回落下させた後、抵抗値の変化率が、10%以内を○、10%超を×とした。結果を表2に示した。
(Evaluation of impact resistance)
Conventional drilling, plating, photolithography on double-sided copper-clad laminates of Examples 1-4 and Comparative Examples 1-2, and metal foils (copper foils) with resin in the C-stage state of Examples 5-7 and Comparative Example 3 A printed circuit board with four rows of daisy chain patterns having 250 connection holes with a diameter of 0.25 mm is manufactured by the process, and the start point and the end point of each are connected by lead wires with solder, and the initial resistance as a conduction pattern of one row with 1000 holes Was measured. Thereafter, each printed circuit board was mounted in a predetermined housing and dropped a predetermined number of times from a height of 1.5 m, and the presence or absence of disconnection and the resistance value were measured. After dropping 1000 times, the change rate of the resistance value is within 10%, and over 10% is made x. The results are shown in Table 2.

(埋め込み性の評価)
ライン/スペースがそれぞれ50μm/50μm、75μm/75μm、100μm/100μmの櫛形パターンを形成した内層回路板(導体厚み12μm)の上に実施例1〜4及び比較例1〜2の樹脂付き金属箔(銅箔)を、内層回路板の回路面と、樹脂付き金属箔(銅箔)の樹脂面が合わさるようにして重ね、表1に示した条件で積層プレスした。得られた積層板の銅箔をエッチングにより除去し、内層回路板の内層回路への樹脂の埋め込み性を目視により評価した。○:ボイドやかすれなし、×:ボイドやかすれありとした。結果を表2に示した。
(Evaluation of embeddability)
Resin-coated metal foils of Examples 1 to 4 and Comparative Examples 1 to 2 on an inner layer circuit board (conductor thickness: 12 μm) on which comb-shaped patterns having lines / spaces of 50 μm / 50 μm, 75 μm / 75 μm, and 100 μm / 100 μm were formed ( The copper foil was stacked so that the circuit surface of the inner circuit board and the resin surface of the resin-attached metal foil (copper foil) were put together and laminated and pressed under the conditions shown in Table 1. The copper foil of the obtained laminated board was removed by etching, and the embedding property of the resin in the inner layer circuit of the inner layer circuit board was visually evaluated. ○: No voids or blurs, ×: Voids or blurs. The results are shown in Table 2.

(銅箔引き剥がし強さの測定)
実施例1〜4及び比較例1〜2の両面銅張積層板と、実施例5〜7及び比較例3のCステージ状態の樹脂付き金属箔(銅箔)の金属箔接着強度(銅箔引き剥がし強さ)を測定した。結果を表2に示した。
(Measurement of peel strength of copper foil)
Metal foil adhesion strength (copper foil drawing) of double-sided copper-clad laminates of Examples 1 to 4 and Comparative Examples 1 to 2 and metal foils with resin (copper foil) in the C-stage state of Examples 5 to 7 and Comparative Example 3 Peel strength) was measured. The results are shown in Table 2.

(はんだ耐熱性の評価)
実施例1〜4及び比較例1〜2の両面銅張積層板と、実施例5〜7及び比較例3のCステージ状態の樹脂付き金属箔(銅箔)を、260℃、288℃及び300℃のはんだ浴に浸漬し、はんだ耐熱性を評価した。表2には、300℃のはんだ浴に浸漬した際の、ふくれ、剥がれ等の異常が認められるまでの時間を示した。
(Evaluation of solder heat resistance)
The double-sided copper-clad laminates of Examples 1 to 4 and Comparative Examples 1 to 2, and the metal foils with a C-stage resin (copper foil) of Examples 5 to 7 and Comparative Example 3 were 260 ° C., 288 ° C. and 300 ° C. It was immersed in a solder bath at 0 ° C. and the solder heat resistance was evaluated. Table 2 shows the time until abnormalities such as blistering and peeling were observed when immersed in a 300 ° C. solder bath.

(180度折り曲げ性の評価)
実施例1〜4及び比較例1〜2の両面銅張積層板の銅をエッチングにより除去し、試験用基板とした。また実施例5〜7及び比較例3のCステージ状態の樹脂付き金属箔(銅箔)の銅をエッチングにより除去し、試験用基板とした。この試験用基板を直径2mmのガラス棒と、試験用基板の折り曲げ箇所の内側を隙間なく接触させるように180度折り曲げ、試験用基板のクラックや破断の有無を調べた。○:クラックや破断なし、×:クラックや破断ありとした。結果を表2に示した。
(Evaluation of 180 degree bendability)
The copper of the double-sided copper clad laminates of Examples 1 to 4 and Comparative Examples 1 to 2 was removed by etching to obtain a test substrate. Moreover, the copper of the metal foil with a resin (copper foil) of the C-stage state of Examples 5-7 and Comparative Example 3 was removed by etching to obtain a test substrate. This test substrate was bent 180 degrees so that the glass rod having a diameter of 2 mm and the inside of the bent portion of the test substrate were brought into contact with no gap, and the presence or absence of cracks or breakage of the test substrate was examined. ○: No cracks or breakage, ×: Cracks or breakage. The results are shown in Table 2.

(発塵性の評価)
実施例1〜7及び比較例1〜3の樹脂付き金属箔(Bステージ状態)をカッターで所定の大きさに切り出し、樹脂粉の発生の有無を調べた。○:樹脂粉の発生なし、×:樹脂粉の発生ありとした。結果を表2に示した。
(Dust generation evaluation)
The resin-coated metal foils of Examples 1 to 7 and Comparative Examples 1 to 3 (B stage state) were cut into a predetermined size with a cutter, and the presence or absence of generation of resin powder was examined. ○: Resin powder was not generated, and X: Resin powder was generated. The results are shown in Table 2.

(吸水率の測定)
実施例5〜7及び比較例3のCステージ状態の樹脂付き金属箔(銅箔)の銅をエッチングにより除去し、試験用基板とした。この試験用基板をプレッシャークッカーを用いて121℃飽和の条件で2時間吸湿させ、吸水率を求めた。結果を表2に示した。
(Measurement of water absorption)
The copper of the resin-attached metal foil (copper foil) in the C stage state of Examples 5 to 7 and Comparative Example 3 was removed by etching to obtain a test substrate. The test substrate was absorbed for 2 hours under a condition of 121 ° C. saturation using a pressure cooker, and the water absorption was determined. The results are shown in Table 2.

(樹脂付き金属箔のカールの評価)
実施例1〜7及び比較例1〜3の樹脂付き金属箔(Bステージ状態)のカールの状態を評価した。結果を表2に示した。
(Evaluation of curling of metal foil with resin)
The curl state of the metal foil with resin (B stage state) of Examples 1 to 7 and Comparative Examples 1 to 3 was evaluated. The results are shown in Table 2.

Figure 0004590982
Figure 0004590982

実施例1〜7の樹脂組成物ワニスを用いて作製した繊維基材を含む樹脂付き金属箔(Bステージ状態)は、カールなどはみられず外観上の問題もないことがわかった。それに対し比較例1〜3に示したように銅箔に直接、樹脂組成物ワニスを塗工したものは、樹脂面を内側にしてカールがみられ、そのカールも大きかった。   It turned out that the metal foil with a resin (B stage state) containing the fiber base material produced using the resin composition varnish of Examples 1-7 does not have curls or the like and has no problem in appearance. On the other hand, as shown in Comparative Examples 1 to 3, when the resin composition varnish was directly applied to the copper foil, the curl was seen with the resin surface inside, and the curl was also large.

作製した両面銅張積層板及びCステージ状態の樹脂付き金属箔(銅箔)の金属箔接着強度(銅箔引き剥がし強さ)は、いずれも0.9〜1.2kN/mであった。また260℃、288℃及び300℃のはんだ浴に浸漬し、はんだ耐熱性を測定した結果、いずれの温度でも5分以上、ふくれ、剥がれ等の異常が見られなかった。なお、比較例3のCステージ状態の樹脂付き金属箔(銅箔)では、熱硬化処理の際、銅箔を外側にしてカールが生じ、平坦な樹脂付き金属箔(銅箔)は、得られず、はんだ耐熱性の評価は不可であった。なお実施例5〜7の吸水率は、0.88〜0.96重量%であった。そして繊維基材を含まない比較例3では、1.81重量%であった。   Metal foil adhesion strength (copper foil peeling strength) of the prepared double-sided copper-clad laminate and metal foil with a resin in the C-stage state (copper foil) was 0.9 to 1.2 kN / m. Moreover, as a result of immersing in a solder bath of 260 ° C., 288 ° C. and 300 ° C. and measuring solder heat resistance, no abnormality such as blistering or peeling was observed at any temperature for 5 minutes or more. In addition, in the C-staged resin-attached metal foil (copper foil) of Comparative Example 3, curling occurs with the copper foil facing outside during the thermosetting treatment, and a flat resin-attached metal foil (copper foil) is obtained. Therefore, evaluation of solder heat resistance was not possible. In addition, the water absorption of Examples 5-7 was 0.88-0.96 weight%. And in the comparative example 3 which does not contain a fiber base material, it was 1.81 weight%.

実施例1〜7の樹脂組成物を硬化した樹脂硬化物の弾性率は、0.8〜1.5GPaであった。弾性率が、0.8〜1.5GPaの樹脂硬化物(樹脂組成物)を用いた試験用基板の線熱膨張係数は、実施例1〜7では9〜16ppmと小さな値であったが、繊維基材を含まない比較例1及び2では、それぞれ150ppm、300ppmと大きかった。また比較例3では、30ppmであった。また吸湿時の寸法変化率は、実施例1〜4では0.01%〜0.02%と小さな値であったが、比較例1及び2では0.5%、0.2%と大きかった。   The elastic modulus of the cured resin obtained by curing the resin compositions of Examples 1 to 7 was 0.8 to 1.5 GPa. The linear thermal expansion coefficient of the test substrate using a cured resin (resin composition) having an elastic modulus of 0.8 to 1.5 GPa was a small value of 9 to 16 ppm in Examples 1 to 7, In Comparative Examples 1 and 2 that did not include a fiber substrate, they were as large as 150 ppm and 300 ppm, respectively. In Comparative Example 3, it was 30 ppm. Further, the dimensional change rate during moisture absorption was as small as 0.01% to 0.02% in Examples 1 to 4, but was large as 0.5% and 0.2% in Comparative Examples 1 and 2. .

180度の折り曲げを行ったところ、実施例1〜7及び比較例1〜3のいずれもクラックなどを生じずに折り曲げることが可能であった。また樹脂付き金属箔をカッターで所定の大きさに切り出したところ、実施例1〜7及び比較例1〜3のいずれも樹脂粉などの発生はみられなかった。また内層回路の埋め込み性は、実施例1〜4及び比較例1〜2のいずれも良好であった。また耐衝撃性に関しても、実施例1〜7及び比較例1〜2のいずれも、良好であった。なお、比較例3のCステージ状態の樹脂付き金属箔(銅箔)では、熱硬化処理の際、銅箔を外側にしてカールが生じ、平坦な印刷回路板は、得られず、耐衝撃性の評価は不可であった。



When bending was performed at 180 degrees, it was possible to fold all of Examples 1 to 7 and Comparative Examples 1 to 3 without causing cracks or the like. Moreover, when metal foil with resin was cut out to the predetermined | prescribed magnitude | size with the cutter, generation | occurrence | production of resin powder etc. was not seen in any of Examples 1-7 and Comparative Examples 1-3. Further, the embedding property of the inner layer circuit was good in each of Examples 1 to 4 and Comparative Examples 1 and 2. Moreover, also about impact resistance, all of Examples 1-7 and Comparative Examples 1-2 were favorable. In addition, in the C-staged resin-coated metal foil (copper foil) of Comparative Example 3, during the thermosetting treatment, curling occurs with the copper foil facing outside, and a flat printed circuit board cannot be obtained, resulting in impact resistance. Evaluation of was impossible.



Claims (9)

樹脂組成物を含浸した繊維基材と、金属箔とを積層してなる樹脂付き金属箔であって、該樹脂組成物を硬化した樹脂硬化物の弾性率が、25℃で0.1GPa以上、1.5GPa以下である樹脂付き金属箔。 A metal foil with a resin obtained by laminating a fiber base material impregnated with a resin composition and a metal foil, and an elastic modulus of a cured resin obtained by curing the resin composition is 0.1 GPa or more at 25 ° C., Metal foil with resin which is 1.5 GPa or less. 繊維基材が、厚み50μm以下の繊維基材である請求項1に記載の樹脂付き金属箔。   The metal foil with a resin according to claim 1, wherein the fiber substrate is a fiber substrate having a thickness of 50 µm or less. 樹脂組成物が、熱硬化性樹脂を含む樹脂組成物である請求項1又は2に記載の樹脂付き金属箔。   The metal foil with a resin according to claim 1 or 2, wherein the resin composition is a resin composition containing a thermosetting resin. 熱硬化性樹脂が、グリシジル基を有する樹脂を含む熱硬化性樹脂である請求項3に記載の樹脂付き金属箔。   The metal foil with a resin according to claim 3, wherein the thermosetting resin is a thermosetting resin containing a resin having a glycidyl group. 樹脂組成物が、アミド基を有する樹脂を含む樹脂組成物である請求項1乃至4いずれかに記載の樹脂付き金属箔。   The resin-coated metal foil according to any one of claims 1 to 4, wherein the resin composition is a resin composition containing a resin having an amide group. 樹脂組成物が、アクリル樹脂を含む樹脂組成物である請求項1乃至5いずれかに記載の樹脂付き金属箔。   The resin-coated metal foil according to any one of claims 1 to 5, wherein the resin composition is a resin composition containing an acrylic resin. 樹脂組成物が、ポリアミック酸を含む樹脂組成物である請求項1乃至6いずれかに記載の樹脂付き金属箔。   The resin-coated metal foil according to any one of claims 1 to 6, wherein the resin composition is a resin composition containing a polyamic acid. 請求項1乃至7いずれかに記載の樹脂付き金属箔であって、金属箔と繊維基材を重ねた状態で、繊維基材側から繊維基材に樹脂組成物を含浸させた後、乾燥して得られる樹脂付き金属箔。   A metal foil with a resin according to any one of claims 1 to 7, wherein the fiber base material is impregnated with the resin composition from the fiber base side in a state where the metal foil and the fiber base material are stacked, and then dried. Metal foil with resin. 請求項1乃至7いずれかに記載の樹脂付き金属箔であって、金属箔上に樹脂組成物を塗布した後、該樹脂組成物に繊維基材を重ね含浸させ、乾燥して得られる樹脂付き金属箔。   A metal foil with a resin according to any one of claims 1 to 7, wherein the resin composition is applied on the metal foil, and thereafter the resin composition is impregnated with a fiber base material and dried. Metal foil.
JP2004246600A 2004-04-21 2004-08-26 Metal foil with resin Active JP4590982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246600A JP4590982B2 (en) 2004-04-21 2004-08-26 Metal foil with resin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004125492 2004-04-21
JP2004246600A JP4590982B2 (en) 2004-04-21 2004-08-26 Metal foil with resin

Publications (2)

Publication Number Publication Date
JP2005329694A JP2005329694A (en) 2005-12-02
JP4590982B2 true JP4590982B2 (en) 2010-12-01

Family

ID=35484658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246600A Active JP4590982B2 (en) 2004-04-21 2004-08-26 Metal foil with resin

Country Status (1)

Country Link
JP (1) JP4590982B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962001B2 (en) * 2006-04-28 2012-06-27 日立化成工業株式会社 Insulating substrate, substrate with metal foil, and printed wiring board
WO2008126642A1 (en) * 2007-04-10 2008-10-23 Hitachi Chemical Company, Ltd. Metal foil plated laminated board and printed wiring board
WO2008126817A1 (en) * 2007-04-11 2008-10-23 Hitachi Chemical Company, Ltd. Metallic foil-clad laminate plate and printed wiring board
US20200147902A1 (en) 2018-11-08 2020-05-14 The Boeing Company Establishing electronics in composite parts by locating electronics on lay-up mandrels

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544374A (en) * 1977-06-10 1979-01-13 Sumitomo Bakelite Co Method of making base plate for flexible print wiring
JPH08193139A (en) * 1995-01-17 1996-07-30 Nippon Steel Chem Co Ltd Prepreg for printed wiring board and metal-clad laminate using the same
JPH09302313A (en) * 1996-05-09 1997-11-25 Hitachi Chem Co Ltd Metallic foil with adhesive, bonding sheet and multilayered wiring board
JPH11505184A (en) * 1995-05-09 1999-05-18 ザ ダウ ケミカル カンパニー Printed wiring board having polyimide benzoxazole dielectric layer and its manufacture
JPH11177195A (en) * 1997-12-05 1999-07-02 Ube Ind Ltd Flexible printed circuit board and its manufacture
JP2000198969A (en) * 1999-01-07 2000-07-18 Ube Ind Ltd Adhesive-coated aromatic polyimide film, metal-clad laminate, and circuit board
JP2002353583A (en) * 2001-05-23 2002-12-06 Matsushita Electric Works Ltd Resin-attached metal foil and multilayered printed wiring board

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS544374A (en) * 1977-06-10 1979-01-13 Sumitomo Bakelite Co Method of making base plate for flexible print wiring
JPH08193139A (en) * 1995-01-17 1996-07-30 Nippon Steel Chem Co Ltd Prepreg for printed wiring board and metal-clad laminate using the same
JPH11505184A (en) * 1995-05-09 1999-05-18 ザ ダウ ケミカル カンパニー Printed wiring board having polyimide benzoxazole dielectric layer and its manufacture
JPH09302313A (en) * 1996-05-09 1997-11-25 Hitachi Chem Co Ltd Metallic foil with adhesive, bonding sheet and multilayered wiring board
JPH11177195A (en) * 1997-12-05 1999-07-02 Ube Ind Ltd Flexible printed circuit board and its manufacture
JP2000198969A (en) * 1999-01-07 2000-07-18 Ube Ind Ltd Adhesive-coated aromatic polyimide film, metal-clad laminate, and circuit board
JP2002353583A (en) * 2001-05-23 2002-12-06 Matsushita Electric Works Ltd Resin-attached metal foil and multilayered printed wiring board

Also Published As

Publication number Publication date
JP2005329694A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
KR100818470B1 (en) Prepreg, metal-clad laminate and printed circuit board using same
WO2006129560A1 (en) Multi-layer wiring board
JP5124984B2 (en) Printed wiring board
JP5470725B2 (en) Metal foil-clad laminate and printed wiring board
JP2006066894A (en) Printed-circuit board
JP4517749B2 (en) Prepreg and metal-clad laminate and printed circuit board using the same
JP4735092B2 (en) Printed circuit board
JP4962001B2 (en) Insulating substrate, substrate with metal foil, and printed wiring board
JP2009190387A (en) Metallic foil-clad laminate plate and printed wiring board
JP5577837B2 (en) Metal foil-clad laminate, method for producing the same, and printed wiring board using the same
JP5444825B2 (en) Insulating resin composition, prepreg, metal foil-clad laminate, printed wiring board, and multilayer wiring board
JP4590982B2 (en) Metal foil with resin
JP4736671B2 (en) Prepreg, metal foil-clad laminate and printed circuit board using these
JP2008283167A (en) Printed wiring board and electronic apparatus
JP4555985B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP2005325203A (en) Prepreg, metal foil-clad laminated plate and printed circuit board obtained using the same
JP4586424B2 (en) Printed circuit board
JP5241992B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP2009079200A (en) Prepreg, laminate, and metal foil-clad laminate
JP2004168943A (en) Prepreg having adhesive layer, method for producing metal-clad laminated board and metal-clad laminated board
JP4774702B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same
JP2010037489A (en) Adhesive film, and metal foil with resin
JP4378628B2 (en) Prepreg, laminated board and printed circuit board using them
JP2005307148A (en) Prepreg and metal foil-adhered lamination plate and printed circuit board using it
JP4595434B2 (en) Prepreg, and metal foil-clad laminate and printed circuit board obtained using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100422

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100616

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100616

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4590982

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350