JP5260693B2 - リソグラフィ装置およびリソグラフィ装置を用いたデバイス製造方法 - Google Patents

リソグラフィ装置およびリソグラフィ装置を用いたデバイス製造方法 Download PDF

Info

Publication number
JP5260693B2
JP5260693B2 JP2011039323A JP2011039323A JP5260693B2 JP 5260693 B2 JP5260693 B2 JP 5260693B2 JP 2011039323 A JP2011039323 A JP 2011039323A JP 2011039323 A JP2011039323 A JP 2011039323A JP 5260693 B2 JP5260693 B2 JP 5260693B2
Authority
JP
Japan
Prior art keywords
liquid
gas outlet
substrate
droplet
outlet openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011039323A
Other languages
English (en)
Other versions
JP2011187954A (ja
Inventor
ウィルヘルムス ルイス ラファール レイモンド
リーペン ミケル
ヘンドリクス マフダレナ コルティー ロヒール
ジョセフ メイエルス ラルフ
エヴァンゲリスタ ファブリツィオ
Original Assignee
エーエスエムエル ネザーランズ ビー.ブイ.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エーエスエムエル ネザーランズ ビー.ブイ. filed Critical エーエスエムエル ネザーランズ ビー.ブイ.
Publication of JP2011187954A publication Critical patent/JP2011187954A/ja
Application granted granted Critical
Publication of JP5260693B2 publication Critical patent/JP5260693B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B27/00Photographic printing apparatus
    • G03B27/32Projection printing apparatus, e.g. enlarger, copying camera
    • G03B27/52Details

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、リソグラフィ装置およびリソグラフィ装置を用いたデバイス製造方法に関する。
リソグラフィ装置は、所望のパターンを基板の目標部分、通常は基板の目標部分に転写する機械である。リソグラフィ装置は例えば集積回路(IC)の製造に用いられる。この場合、例えばマスクまたはレチクルとも称されるパターニングデバイスが、集積回路の各層に対応した回路パターンを形成するために使用される。このパターンが基板(例えばシリコンウェーハ)の(例えばダイの一部、あるいは一つまたは複数のダイからなる)目標部分に転写される。パターン転写は典型的には基板に形成された放射感応性材料(レジスト)層への結像による。一般に一枚の基板にはネットワーク状に隣接する一群の目標部分が含まれ、これらは連続的に露光される。公知のリソグラフィ装置にはいわゆるステッパとスキャナとがある。ステッパにおいては、目標部分にパターン全体が一度に露光されるようにして各目標部分は照射を受ける。スキャナにおいては、所与の方向(スキャン方向)に放射ビームによりパターンを走査するとともに基板をスキャン方向に平行または逆平行に走査するようにして各目標部分は照射を受ける。パターニングデバイスから基板へのパターン転写は、基板にパターンをインプリントすることによっても可能である。
リソグラフィ投影装置において基板を液体に浸すことが提案されている。この液体は比較的高い屈折率をもつ液体であり、例えば水である。投影系の最終素子と基板との間の空間が液体で満たされる。一実施形態では、液体は蒸留水であるが、その他の液体も使用可能である。本発明の一実施形態は液体に言及して説明しているが、その他の流体、特に濡れ性流体、非圧縮性流体、及び/または屈折率が空気より高い、望ましくは屈折率が水より高い流体が適切なこともある。気体を除く流体が特に好ましい。その真意は、露光放射は液体中で波長が短くなるので、より小さい形状の結像が可能となるということである(液体の効果は、システムの有効開口数(NA)を大きくし、焦点深度も大きくすることとみなすこともできる。)。別の液浸液も提案されている。固体粒子(例えば石英)で懸濁している水や、ナノ粒子(例えば最大寸法10nm以下)で懸濁している液体である。懸濁粒子はその液体の屈折率と同程度の屈折率を有していてもよいし、そうでなくてもよい。その他に適切な液体として炭化水素もある。例えば芳香族、フッ化炭化水素、または水溶液がある。
基板を、または基板と基板テーブルとを液体の浴槽に浸すこと(例えば米国特許第4,509,852号参照)は、走査露光中に加速されなければならない大きな液体があることを意味する。これには、追加のモータまたはさらに強力なモータが必要であり、液体中の乱流が望ましくない予測不能な効果を引き起こすことがある。
液浸装置では、液体ハンドリングシステム、デバイス構造または装置によって液浸流体が取り扱われる。一実施形態では、液体ハンドリング構造が液浸流体を供給してもよく、したがって流体供給システムであってもよい。一実施形態では、液体ハンドリング構造が少なくとも部分的に液浸流体を閉じ込めてもよく、このため流体閉じ込めシステムであってもよい。一実施形態では、液体ハンドリング構造が液浸流体に対するバリアを提供してもよく、このため流体閉じ込め構造などのバリア部材であってもよい。一実施形態では、液体ハンドリング構造が、例えば液浸流体の流れおよび/または位置の制御を補助するために、気流を生成または使用してもよい。気流がシールを形成して液浸流体を閉じ込めてもよく、そのため、液体ハンドリング構造がシール部材と呼ばれてもよい。このようなシール部材が流体閉じ込め構造であってもよい。一実施形態では、液浸流体として液浸液を使用する。上記記載に関連して、流体に関して定義される特徴に対するこのパラグラフ内の言及は、液体に関して定義される特徴を含むものと理解されてもよい。
液浸リソグラフィでは、露光中の基板または基板を支持する基盤テーブル上の空間から液体の一部が失われることがある。失われた液体が欠陥リスクを引き起こすことがある。例えば、基板または基板テーブルなどの表面上に存在し、例えば液体のメニスカスである空間内の液体と後で衝突することになる液滴が、空間内の気泡などの気体の容積を形成する原因となることがある。気泡は、基板の目標部分に向けられた結像放射と干渉し、基板上の結像パターンに影響を及ぼすことがある。
例えば、このようなまたは他の結像欠陥のリスクを低減するかまたは排除することが望ましい。スループットを維持または増大することが望ましいこともある。
一態様によると、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造と、液滴コントローラの半径方向内側から液滴コントローラの半径方向外側に液浸液の液滴を通過させ、液滴コントローラの半径方向外側から液滴コントローラの半径方向内側への液滴の通過を防止するように構成された、空間の半径方向外側の液滴コントローラと、を備える液浸リソグラフィ装置が提供される。
一態様によると、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造と、対向面に向けて気流の向きを変えるように構成された、空間の半径方向外側の複数の細長いガス出口開口と、を備え、対向面の走査方向で観察するとき、および/または走査方向と直交する方向で観察するとき、細長いガス出口開口の隣接する組が重なり合うことを特徴とする液浸リソグラフィ装置が提供される。
一態様によると、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造と、対向面に向けて気流の向きを変えるように構成された複数の細長いガス出口開口と、対向面の走査方向および/またはステップ方向に対して、隣接する細長いガス出口開口の間の隙間とそれぞれ整列された複数の液体抽出開口と、を有する、空間の半径方向外側の液滴コントローラと、を備える液浸リソグラフィ装置が提供される。
一態様によると、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方の対向面と投影系との間の空間に、閉じ込め構造を用いて液体を閉じ込め、投影系に対して対向面を走査方向に移動させ、空間の半径方向外側の液滴コントローラの半径方向内側から液滴コントローラの半径方向外側に液滴を通過させ、液滴コントローラの半径方向外側から液滴コントローラの半径方向内側への液滴の通過を防止することによって、液浸液の液滴を操作することを含む、リソグラフィ装置を用いたデバイスの製造方法が提供される。
一態様によると、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方の対向面と投影系との間の空間に、閉じ込め構造を用いて液体を閉じ込め、投影系に対して対向面を走査方向に移動させ、空間の半径方向外側の複数の細長いガス出口開口を通して、対向面に向けて気流の向きを変えることを含み、対向面の走査方向で観察するとき、および/または走査方向に直交する方向で観察するとき、細長いガス出口開口の隣接する組が重なり合う、リソグラフィ装置を用いたデバイスの製造方法が提供される。
一態様によると、リソグラフィ装置を用いたデバイスの製造方法が提供される。この方法は、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方の対向面と投影系との間の空間に、閉じ込め構造を用いて液体を閉じ込め、投影系に対して対向面を走査方向に移動させ、間に隙間のある複数の細長ガス出口開口からの気流を対向面に向けて向きを変えることで、液浸液の液体を操作し、複数の液体抽出開口を通して液滴の少なくとも一部を抽出することを含む。各液体抽出開口は、走査方向に対して、隣接する細長ガス出口開口の間のそれぞれの隙間と整列される。
一態様によると、液浸リソグラフィ装置用の流体ハンドリング構造が提供される。流体ハンドリング構造は、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給し閉じ込めるように構成される。液体は、流体ハンドリング構造の表面と対向面との間にメニスカスを形成する。流体ハンドリング構造は、対向面上の液体がメニスカスに到達するのを防止する液滴コントローラを備える。
以下、対応する参照符号が対応する部分を表す添付の模式図を参照して、本発明の実施形態を例示として説明する。
本発明の一実施形態に係るリソグラフィ装置を示す図である。 リソグラフィ投影装置で使用される液体供給システムを示す図である。 リソグラフィ投影装置で使用される液体供給システムを示す図である。 リソグラフィ投影装置で使用される別の液体供給システムを示す図である。 リソグラフィ投影装置で使用される別の液体供給システムを示す図である。 本発明の一実施形態に係る液体ハンドリング構造の平面図である。 本発明の一実施形態に係る液体ハンドリング構造の平面図である。 本発明の一実施形態に係る液体ハンドリング構造の平面図である。 本発明の一実施形態に係る液体ハンドリング構造の平面図である。 本発明の一実施形態に係る液体ハンドリング構造の部分平面図である。 本発明の一実施形態に係る液体ハンドリング構造の平面図である。 本発明の一実施形態に係る液体ハンドリング構造の平面図である。
図1は、本発明の一実施形態に係るリソグラフィ装置を模式的に示す図である。この装置は、
放射ビームB(例えばUV放射またはDUV放射)を調整するよう構成されている照明系(イルミネータ)ILと、
パターニングデバイス(例えばマスク)MAを支持するよう構成され、いくつかのパラメータに従ってパターニングデバイスMAを正確に位置決めするよう構成されている第1の位置決め装置PMに接続されている支持構造(例えばマスクテーブル)MTと、
基板(例えばレジストでコーティングされたウェーハ)Wを保持するよう構成され、いくつかのパラメータに従って基板Wを正確に位置決めするよう構成されている第2の位置決め装置PWに接続されている基板テーブル(例えばウェーハテーブル)WTと、
パターニングデバイスMAにより放射ビームBに付与されたパターンを基板Wの(例えば一つまたは複数のダイからなる)目標部分Cに投影するよう構成されている投影系(例えば屈折投影レンズ)PSと、を備える。
照明系は、放射の方向や形状の調整またはその他の制御用に、各種の光学素子例えば屈折光学素子、反射光学素子、磁気的光学素子、電磁気的光学素子、静電的光学素子または他の各種光学部品を含んでもよく、あるいはこれらの任意の組み合わせを含んでもよい。
支持構造MTは、パターニングデバイスMAを保持する。支持構造MTは、パターニングデバイスMAの向きやリソグラフィ装置の構成、あるいはパターニングデバイスMAが真空環境下で保持されるか否かなどの他の条件に応じた方式でパターニングデバイスMAを保持する。支持構造MTは、機械的固定、真空固定、またはパターニングデバイスMAを保持するその他の固定用技術を用いてもよい。支持構造MTは例えばフレームまたはテーブルであってよく、必要に応じて固定されていてもよいし移動可能であってもよい。支持構造MTは、パターニングデバイスMAを例えば投影系PSに対して所望の位置に位置決めできるようにしてもよい。本明細書では「レチクル」または「マスク」という用語を用いた場合には、より一般的な用語である「パターニングデバイス」に同義であるとみなされるものとする。
本明細書では「パターニングデバイス」という用語は、例えば基板の目標部分にパターンを形成すべく放射ビームの断面にパターンを付与するために使用されうるいかなるデバイスをも指し示すよう広く解釈されるべきである。放射ビームに与えられるパターンは、基板の目標部分に所望されるパターンと厳密に対応していなくてもよい。このような場合には例えば、放射ビームのパターンが位相シフトフィーチャあるいはいわゆるアシストフィーチャを含む場合がある。一般には、放射ビームに付与されるパターンは、目標部分に形成される集積回路などのデバイスの特定の機能層に対応する。
パターニングデバイスMAは透過型であっても反射型であってもよい。パターニングデバイスの例としては、例えばマスクやプログラマブルミラーアレイ、プログラマブルLCDパネルなどがある。マスクはリソグラフィの分野では周知であり、バイナリマスクやレベンソン型位相シフトマスク、ハーフトーン型位相シフトマスク、さらに各種のハイブリッド型マスクが含まれる。プログラマブルミラーアレイの一例としては、小型のミラーがマトリックス状に配列され、各ミラーが入射してくる放射ビームを異なる方向に反射するように個別に傾斜されるというものがある。これらの傾斜ミラーにより、マトリックス状ミラーで反射された放射ビームにパターンが付与されることになる。
本明細書では「投影系」という用語は、使用される露光光あるいは液浸や真空の利用などの他の要因に関して適切とされるいかなる投影系をも包含するよう広く解釈されるべきである。投影系には例えば屈折光学系、反射光学系、反射屈折光学系、磁気的光学系、電磁気的光学系、静電的光学系、またはこれらの任意の組み合わせなどが含まれる。以下では「投影レンズ」という用語は、より一般的な用語である「投影系」と同義に用いられうる。
ここに図示されるのは、(例えば透過型マスクを用いる)透過型のリソグラフィ装置である。これに代えて、(例えば上述のようなプログラマブルミラーアレイまたは反射型マスクを用いる)反射型のリソグラフィ装置を用いることもできる。
リソグラフィ装置は二つ以上(二つの場合にはデュアルステージと呼ばれる)の基板テーブル(及び/または二つ以上のパターニングデバイステーブル)を備えてもよい。このような多重ステージ型の装置においては追加されたテーブルは並行して使用されるか、あるいは1以上のテーブルで露光が行われている間に他の1以上のテーブルで準備工程を実行するようにしてもよい。
図1に示されるようにイルミネータILは放射源SOから放射ビームを受け取る。例えば光源がエキシマレーザである場合には、光源SOとリソグラフィ装置とは別体であってもよい。この場合、光源SOはリソグラフィ装置の一部を構成しているとはみなされなく、放射ビームは光源SOからイルミネータILへとビーム搬送系BDを介して受け渡される。ビーム搬送系BDは例えば適当な方向変更用のミラー及び/またはビームエキスパンダを含んで構成される。あるいは光源が例えば水銀ランプである場合には、光源はリソグラフィ装置に一体に構成されていてもよい。光源SOとイルミネータILとは、またビーム搬送系BDが必要とされる場合にはこれも合わせて、放射系または放射システムと総称される。
イルミネータILは放射ビームの角強度分布を調整するためのアジャスタADを備えてもよい。一般には、イルミネータの瞳面における強度分布の少なくとも半径方向外径及び/または内径の大きさ(通常それぞれ「シグマ−アウタ(σ−outer)」、「シグマ−インナ(σ−inner)」と呼ばれる)が調整される。加えてイルミネータILは、インテグレータIN及びコンデンサCOなどの他の要素を備えてもよい。イルミネータILはビーム断面における所望の均一性及び強度分布を得るべく放射ビームを調整するために用いられる。光源SOと同様に、イルミネータILはリソグラフィ装置の一部を構成するとみなされてもみなされなくてもよい。例えば、イルミネータILはリソグラフィ装置の一体部分であってもよいし、リソグラフィ装置とは別個の物体であってもよい。後者の場合、リソグラフィ装置は、イルミネータILをその上に搭載できるように構成されてもよい。選択的に、イルミネータILが取り外し可能であり、(例えば、リソグラフィ装置メーカまたは別のサプライヤーによって)別個に提供されてもよい。
放射ビームBは、支持構造(例えばマスクテーブル)MTに保持されるパターニングデバイス(例えばマスク)MAに入射して、当該パターニングデバイスによりパターンが付与される。パターニングデバイスMAを通過した放射ビームBは投影系PSに進入する。投影系PSはビームを基板Wの目標部分Cに投影する。第2の位置決め装置PWと位置センサIF(例えば、干渉計、リニアエンコーダ、静電容量センサなど)により基板テーブルWTを正確に移動させることができる。基板テーブルWTは例えば放射ビームBの経路に異なる目標部分Cを順次位置決めするように移動される。同様に、第1の位置決め装置PMと他の位置センサ(図1には明示せず)とにより放射ビームBの経路に対してパターニングデバイスMAを正確に位置決めすることができる。この位置決めは例えばマスクライブラリからのマスクの機械的交換後や露光走査中に行われる。一般に支持構造MTの移動は、第1の位置決め装置PMの一部を構成するロングストロークモジュール(粗い位置決め用)及びショートストロークモジュール(精細な位置決め用)により実現される。同様に基板テーブルWTの移動は、第2の位置決め装置PWの一部を構成するロングストロークモジュール及びショートストロークモジュールにより実現される。ステッパでは(スキャナとは異なり)、支持構造MTはショートストロークのアクチュエータにのみ接続されているか、あるいは固定されていてもよい。パターニングデバイスMAと基板Wとは、パターニングデバイスアライメントマークM1、M2及び基板アライメントマークP1、P2を用いてアライメントされてもよい。図においては基板アライメントマークが専用の目標部分を占拠しているが、アライメントマークは目標部分間のスペースに配置されてもよい(これはスクライブライン・アライメントマークとして公知である)。同様に、パターニングデバイスMAに複数のダイがある場合にはパターニングデバイスアライメントマークをダイ間に配置してもよい。
図示の装置は例えば次のうちの少なくとも一つのモードで使用されうる。
1.ステップモードにおいては、放射ビームに付与されたパターンの全体が1回の照射(すなわち単一静的露光)で目標部分Cに投影される間、支持構造MT及び基板テーブルWTは実質的に静止状態とされる。そして基板テーブルWTがX方向及び/またはY方向に移動されて、異なる目標部分Cが露光される。ステップモードでは露光フィールドの最大サイズが単一静的露光で転写される目標部分Cのサイズを制限することになる。
2.スキャンモードにおいては、放射ビームに付与されたパターンが目標部分Cに投影される間(すなわち単一動的露光の間)、支持構造MT及び基板テーブルWTは同期して走査される。支持構造MTに対する基板テーブルWTの速度及び方向は、投影系PSの拡大(縮小)特性及び像反転特性により定められる。スキャンモードでは露光フィールドの最大サイズが単一動的露光での目標部分の(非走査方向の)幅を制限し、走査移動距離が目標部分Cの(走査方向の)長さを決定する。
3.別のモードにおいては、支持構造MTがプログラム可能パターニングデバイスを保持して実質的に静止状態とされ、放射ビームに付与されたパターンが目標部分Cに投影される間、基板テーブルWTが移動または走査される。このモードではパルス放射源が通常用いられ、プログラム可能パターニングデバイスは、基板テーブルWTの毎回の移動後、または走査中の連続放射パルス間に必要に応じて更新される。この動作モードは、上述のプログラマブルミラーアレイ等のプログラム可能パターニングデバイスを利用するマスクレスリソグラフィに容易に適用することができる。
上記で記載したモードの組み合わせおよび/または実施形態を使用してもよいし、全く別のモードを使用してもよい。
投影系の最終素子と基板との間に液体を提供する構成は少なくとも二種類に分類することができる。これらは、浴槽型の構成と、いわゆる局所液浸システムである。浴槽型構成では、基板の実質的に全体と基板テーブルの選択部分とが液槽に浸される。いわゆる局所液浸システムは、基板の局所区域にのみ液体を供給する液体供給システムを使用する。後者の分類では、液体で満たされる空間は平面視で基板上面よりも小さい。液体で満たされた領域は基板がその領域の下を移動している間、投影系に対し実質的に静止状態にある。局所液体供給システムの四つの異なるタイプが図2ないし図5に示されている。
提案された構成の一つは、液体閉じ込めシステムを用いて基板の局所領域上のみかつ投影系の最終素子と基板との間に液体を提供する液体供給システムである(通常、基板は投影系の最終素子よりも大きな表面積を有する)。これを構成するために提案された方法の一つが、PCT特許出願公開WO99/49504に開示されている。図2及び図3に示されているように、液体が少なくとも一つの入口によって基板上に、好ましくは最終素子に対する基板の移動方向に沿って供給される。液体は投影系の下を通過した後に少なくとも一つの出口によって除去される。すなわち、基板が−X方向に要素の下を走査されると、液体が要素の+X側にて供給され、−X側にて除去される。図2は、液体が入口を介して供給され、低圧源に接続された出口によって要素の他方側で除去される模式的な構成図である。基板Wの上の矢印は液体の流れ方向を表し、基板Wの下方の矢印は基板テーブルの移動方向を表す。図2では、液体が最終素子に対する基板の移動方向に沿って供給されるが、こうである必要はない。最終素子の周囲に配置された入口及び出口の様々な方向及び数が可能であり、一例が図3に示され、ここでは各側に4組の入口と出口が、最終素子の周囲に規則的なパターンで設けられる。液体供給装置および液体回収装置内の矢印は、液体の流れ方向を表している。
局所液体供給システムをもつ液浸リソグラフィの別の解決法が、図4に示されている。液体は、投影系PLの両側にある二つの溝入口によって供給され、入口の半径方向外側に配置された複数の別個の出口によって除去される。入口および出口は、投影ビームを通す穴を中心に有するプレートに設けることができる。液体は、投影系PSの一方側にある一つの溝入口によって供給され、投影系PSの他方側にある複数の別個の出口によって除去され、これによって投影系PSと基板Wとの間に液体の薄膜の流れが生じる。どちらの組み合わせの入口と出口を使用するかの選択は、基板Wの移動方向によって決まる(他方の組み合わせの入口及び出口は作動させない)。図4の断面図において、矢印は入口に入る液体および出口から出る液体の流れ方向を表している。
それぞれ参照によりその全体が本明細書に援用される、欧州特許出願公開EP1420300および米国特許出願公開US2004−0136494に、ツインステージまたはデュアルステージ液浸リソグラフィ装置の着想が開示されている。このような装置には、基板を支持する二つのテーブルが設けられる。液浸液が存在しない第1位置でテーブルを用いてレベリング測定が実行され、液浸液が存在する第2位置でテーブルを用いて露光が実行される。代替的に、リソグラフィ装置は一つのテーブルのみを有する。
PCT特許出願公開WO2005/064405は、液浸液を閉じ込めない全域濡れ構成を開示する。このシステムでは、基板上面の全体が液体で覆われる。これが有利であるのは、基板上面全体が実質的に同条件で露光されるからである。これは基板温度制御及び基板処理に有利である。WO2005/064405号によれば、液体供給システムは投影系の最終素子と基板との間隙に液体を供給する。液体は基板の残りの領域へと漏れ出る(流れる)ことが許容されている。基板テーブル端部の障壁によって液体の漏れが抑制され、基板テーブル上面からの液体除去が制御される。このシステムは基板の温度制御及び処理を改善するが、液浸液の蒸発はなお生じる。この問題を軽減するのに役立つ一手法が米国特許出願公開US2006/0119809号に記載されている。基板Wの全ての位置を覆い、部材と基板上面との間及び/または部材と基板を保持する基板テーブルとの間に液浸液を延ばすよう構成された、ある部材が設けられる。
提案されている別の構成は流体閉じ込め構造を液体供給システムに設けることである。流体閉じ込め構造は、投影系の最終素子と基板テーブルWTまたは基板Wとの間の空間の境界の少なくとも一部に沿って延在する。これを図5に示す。流体閉じ込め構造は、投影系に対してXY平面内で実質的に静止しているが、Z方向(光軸方向)にはいくらかの相対運動があってもよい。流体閉じ込め構造と基板表面との間にシールが形成される。一実施形態では、流体閉じ込め構造と基板表面との間にシールが形成され、このシールは気体シールなどの非接触シールであってもよい。このようなシステムは、米国特許出願公開US2004−0207824に開示されている。別の実施形態では、流体閉じ込め構造が非気体シールであるシールを有しており、したがって液体閉じ込め構造と呼ばれてもよい。
図5は、バリア部材または流体閉じ込め構造を形成する本体を有する局所液体供給システムまたは液体ハンドリング構造12を模式的に示す図である。流体閉じ込め構造は、投影系の最終素子と基板テーブルWTまたは基板Wとの間の空間11の境界の少なくとも一部に沿って延在する。なお後述の説明で基板Wの表面への言及は、そうではないことを明示していない限り、基板テーブルWTの表面をも追加的または代替的に意味するものとする。液体ハンドリング構造は、投影系に対してXY面で実質的に静止するが、Z方向(光軸の方向)にはいくらかの相対運動が存在してもよい。一実施形態では、液体ハンドリング構造12と基板Wの表面との間にシールが形成される。このシールは、気体シールや流体シール等の非接触シールであってもよい。
液体ハンドリング構造12は、投影系PLの最終素子と基板Wとの間の空間11の少なくとも一部に液体を収容する。基板Wに対する非接触シール16が投影系の像フィールドの周囲に形成され、投影系PLの最終素子と基板Wとの間の空間に液体が閉じ込められてもよい。この空間の少なくとも一部が液体ハンドリング構造12により形成される。液体ハンドリング構造12は投影系PLの最終素子の下方に配置され、当該最終素子を囲む。液体が、投影系下方かつ液体ハンドリング構造12内部の空間に、液体入口13によってもたらされる。液体出口13によって液体が除去されてもよい。液体ハンドリング構造12は、投影系PSの最終素子の少し上まで延在してもよい。液位が最終素子の上まで上昇することで、液体のバッファが提供される。一実施例においては液体ハンドリング構造12は、上端において内周が投影系またはその最終素子の形状によく一致し、例えば円形であってもよい。下端においては、内周が像フィールドの形状によく一致し、例えば長方形でもよいが、これに限られない。内周は任意の形状であってよい。例えば、内周は投影系の最終素子の形状と一致してもよい。内周は円形であってもよい。
液体は、液体ハンドリング構造12の底部と基板Wの表面との間に使用時に形成される気体シール16によって空間11に保持される。気体シール16は、例えば空気または合成空気、一実施例ではNまたは別の不活性ガスなどの気体によって形成される。気体は、圧力下で入口15を介してバリア部材12と基板Wとの隙間に提供され、出口14から抜き取られる。気体入口15への過剰圧力、出口14の真空レベル、及び隙間の幾何学的形状は、液体を閉じ込める内側への高速の気流が存在するように構成される。バリア部材12と基板Wとの間の液体に気体から作用する力が空間11に液体を保持する。入口及び出口は空間11を取り巻く環状溝であってもよい。環状溝は連続していてもよいし不連続であってもよい。気体の流れは空間11に液体を保持するのに効果的である。このようなシステムは、米国特許出願公開US2004−0207824号に開示されている。
図5の例は、基板Wの上面の局所領域にのみ常に液体が提供される、いわゆる局所領域構成である。例えば米国特許出願公開US2006−0038968に開示されるような単相抽出器または二相抽出器を利用する液体ハンドリング構造を含む、他の構成も可能である。一実施形態では、単相または二相抽出器は多孔質材料で覆われる入口を備える。単相抽出器の一実施形態では、多孔質材料を用いて気体から液体を分離し単相の液体抽出を実現する。多孔質材料の下流のチャンバがわずかに負圧に維持され、チャンバが液体で満たされる。チャンバ内の負圧は、多孔質材料の穴の中に形成されるメニスカスがチャンバ内に周囲気体を引き込むことを防止する。しかしながら、多孔質表面が液体と接触するとき、流れを抑制するメニスカスは存在せず、液体はチャンバ内に自由に流入することができる。多孔質材料は、例えば直径が5−300μmの範囲、望ましくは5−50μmの範囲である多数の小さな穴を有する。一実施形態では、多孔質材料は少なくともわずかに親液性(例えば親水性)である。すなわち、液浸液(例えば水)に対して90°未満の接触角を有する。
多くの他のタイプの液体供給システムを使用可能である。本発明は、任意の特定のタイプの液体供給システムに限定されない。本発明は、例えば使用を最適化するために、投影系の最終素子と基板との間に液体が閉じ込められる閉じ込め液浸システムとともに使用すると有利であってもよい。しかしながら、任意の他のタイプの液体供給システムとともに本発明を用いることができる。
図6は、例えば図5のシール構成14、15、16を置換することができる、本発明の一実施形態のメニスカス固定デバイスを示す。図6のメニスカス固定デバイスは複数の(抽出)開口50を備える。各開口は分散している。各開口50は円形であるように図示されているが、必ずしもそうである必要はない。実際、一つまたは複数の開口50の形状が、正方形、円形、直線形状、長方形、楕円、三角形、スリットなどの細長形状等から選択される一つまたは複数であってもよい。各開口50は、平面視で、恐らく最大寸法が0.5mmより大きい、望ましくは1mmより大きい直径などの最大断面寸法を有する。望ましくは、開口50が汚染により大きな影響を受けることがない。
図6のメニスカス固定デバイスの開口50はそれぞれ、別個に負圧(under pressure)源に接続されてもよい。代替的にまたは追加的に、開口50のそれぞれまたは複数が、負圧で保持される共通のチャンバ(環状であってもよい)に接続されてもよい。このようにして、それぞれのまたは複数の開口50における一様な負圧を実現することができる。開口50を真空源に接続してもよいし、および/または液体供給システムを取り囲む大気の圧力を増加して負圧を生成してもよい。
各開口50は、液体と気体の混合物、例えば二相流を抽出するように設計されている。液体は空間11から抽出され、開口50の液体とは反対側の大気から気体が抽出される。これは、矢印16で示すような気流を形成する。この気流は、図6に示すように、開口50の間の(例えば隣合う開口50の間の)実質的に適切な場所にメニスカス90を固定するために有効である。気流は、運動量の遮断(momentum blocking)によって、気流で誘発される圧力勾配によって、および/または液体上の気流の引き込み(剪断)によって液体の閉じ込めを維持するのに役立つ。
図6から分かるように、平面視で多角形を形成するように開口50が配置される。図6の場合、これは投影系PSの下方の基板Wの主要な移動方向と整列された主軸110、120を有する菱形の形状である。これは、開口50が円形に配列される場合よりも、最大走査速度を確実に速くすることに役立つ。この理由は、二つの開口50の間のメニスカスにかかる力がcosθ倍に低下するからである。ここで、θは、基板Wが移動する方向に対する二つの開口50を結ぶ線の角度である。こうして、基板の主要な移動方向(通常は走査方向)と整列された開口50の形状の主軸110、および基板の他の主要な移動方向(通常はステップ方向)と整列された第2軸120を有することによって、スループットを最適化することができる。最大走査速度は、メニスカス90がその安定性を維持する位置での基板Wに対する液体ハンドリング構造12の最大速度である。最大走査速度を超えると、メニスカスはもはや安定せず、壊滅的な液体損失が起こりえる。図11は、追加の外側ガス(例えば空気)ナイフ111を有する構成を示す。このガスナイフは液体損失を防止するのに役立つ。このように、図11に示された構成を、最大走査速度よりも大きな速度で使用することができる。
開口50および液体ハンドリング構造12のさらなる詳細は、米国特許出願公開US2008/0212046、US2009/0279060、US2009/0279062で見つけることができ、これらは参照によりその全体が本明細書に援用される。
一実施形態では、下面40に別の開口70が形成される。別の開口70は、使用時に液体ハンドリング構造12から液体を供給するように構成される。別の開口70は、液体ハンドリング構造12から、液浸液などの液体を供給するための出口とみなすことができる。別の開口70は、空間11に液体を供給する入口と呼ぶこともできる。別の開口70は、投影系PSの光軸に対して、抽出開口50の半径方向内側にある。液体ハンドリング構造12の別の開口70に存在する液体は、基板Wの方向に向けられる。このタイプの別の開口70は、液浸液内に気泡が発生する可能性を低減するために設けられる。基板Wのエッジと基板テーブルWTとの間の領域に気体を捕らえることができる。基板/基板テーブルに対する、液体ハンドリング構造12の下面の前進部分では、基板Wおよび/または基板テーブルWTの対向面が液体ハンドリング構造12に対して十分に速く移動することができ、その結果、液体は空間11から開口50まで流れることができない。液体ハンドリング構造12の下面の一部は濡れがなくなり(de-wet)、開口50のメニスカス固定の有効性に影響を与える。別の開口70を通して、望ましくは開口50の近傍に液体を供給することで、気泡の内包および濡れの消失の危険性が低減される。
別の開口70の形状は、収納する液体における液体ハンドリング構造12の有効性に影響を及ぼす。別の開口70は、平面視での開口50の形状のように、平面視で角付きの形状であることが望ましい。実際、別の開口70および開口50の角付き形状が、実質的に同様であることが望ましい。一実施形態では、それぞれの形状が、各角の頂点において別の開口70または開口50を有する。望ましくは、一実施形態では、別の開口70は開口50の10mm以内、望ましくは5mm以内である。すなわち、開口50により作られる形状の全ての部分が、別の開口70により作られる形状の部分の10mm以内に存在する。一実施形態では、別の開口70は複数の別の開口70を含む。
抽出開口50および別の開口70に関するさらなる詳細は、米国特許出願公開US2009/0279060で見つけることができ、これは参照により本明細書に援用される。
露光中の基板Wおよび/または基板を支持する基板テーブルWT上の空間11から液体の一部が失われることがある。液体ハンドリング構造12と基板テーブル(したがって基板W)との間には相対運動がある。したがって、基板Wまたは基板テーブルWT上の液滴の位置が、液体ハンドリング構造12(液体閉じ込め構造)の下方を通過することがある。閉じ込められた液体のメニスカス90は、液体ハンドリング構造12と基板Wまたは基板テーブルWTとの間にあるので、液滴がメニスカス90と衝突する場合がある。衝突の結果、液浸空間11内に気泡が形成され、欠陥問題を生じることがある。
例えば、閉じ込め液浸システムでは、液体閉じ込め構造12と基板Wとの間に延びる液体メニスカス90と液滴が衝突することがある。このような衝突を原因として、液体が気泡として気体(例えば空気)を封入することがある。気泡は例えば直径5−10μmであるが、直径1−500μmであってもよい。気泡は、液浸液を通って投影系PSと基板Wとの間の空間11内に移動することもあるし、または基板Wと空間11との相対運動によって気泡が空間11内に移動することもある。この場所に存在する気泡は、結像に影響を及ぼす。すなわち、気泡がレジスト内に露光され、結像欠陥を生じうる。気泡は、一旦形成されると、基板Wまたは基板テーブルWTに対して実質的に静止状態を維持する。したがって、投影系PSが気泡の上にビームBを投影するときに欠陥が生じる。
特に、液体ハンドリング構造12と基板Wまたは基板テーブルWTとの間の相対運動が臨界走査速度を超えるとき、および/または、基板Wおよび基板テーブルWTの間の場所の上方に液体ハンドリング構造12が位置する一方、液体ハンドリング構造12と基板W/基板テーブルWTとの間に相対運動があるとき、液滴が失われることがある。この液滴が閉じ込められた液浸液のメニスカス90と衝突すると、基板Wまたは基板テーブルWTの表面に気泡が生成される。投影系PSが放射ビームBを向ける露光領域64を気泡が横切るときに、気泡が欠陥を生じさせる。
一実施形態では、開口50の半径方向外側に連続ガスナイフがある。連続ガスナイフは、連続ガスナイフが両方向に(すなわち、半径方向内側および半径方向外側)移動する遭遇液滴を遮断するという点で、液滴コントローラのガスナイフ構成とは異なる。対照的に、液滴コントローラのガスナイフ構成は連続的ではない。不連続であることで、ガスナイフ構成の気流を液滴が一方向(すなわち半径方向外側)に通過することが可能になる。連続ガスナイフは、液体ハンドリング構造12の下面に隙間を備える。隙間は、加圧源(overpressure source)に接続される。連続ガスナイフは閉鎖図形の形状であってもよい。動作中に、連続ガスナイフを通して気流が供給される。この連続ガスナイフの目的は、液体ハンドリング構造12から液滴が失われることを防止するのに役立つ。連続ガスナイフの設置に関するさらなる特徴は、図11に示した構成に関連して説明される。これらの特徴は、連続ガスナイフを有するように修正された、図6に示した構成に適用可能である。
このようなガスナイフを有する液体ハンドリング構造12の実施形態では、開口50とガスナイフ111、61または73との間の領域に液浸液を集めることができる。これは、基板Wと基板テーブルWTとの間の位置を越えて液体ハンドリング構造12が位置する一方、液体ハンドリング構造12と基板W/基板テーブルWTとの間に相対運動があるときに特に起こる事象である。続いて、基板W/基板テーブルWTが液体ハンドリング構造12の表面に対して例えばステップ方向に移動するときに、この集積した液浸液がメニスカス90と衝突することがある。この場合、ステップ移動中に大きな気泡が生成される。
閉鎖形状の形態のガスナイフを備えない実施形態では、液浸液の液滴が液体ハンドリング構造12によって失われる。この液滴は、基板W、基板テーブルWTまたは他の表面に留まる。続いて、基板W/基板テーブルWTの走査方向が反転すると、失われた液滴がメニスカス90と衝突し、これによって気泡が生じる。
本発明の一実施形態は、メニスカス90と失われた液浸液の液滴との衝突を防止することによって、この問題を少なくとも部分的に解決することを目的とする。一実施形態では、液体ハンドリング構造12に液滴コントローラ60を設けることによって、これが達成される。液滴コントローラ60は、液浸液が閉じ込められる空間11の半径方向外側に位置する。
液滴コントローラ60は、液浸液の液滴を、液滴コントローラ60の半径方向内側から、液滴コントローラ60の半径方向外側へと通過させるように構成される。メニスカス90から逃げる液浸液の液滴は、液滴コントローラ60からの気流を通して逃げることができる。液滴コントローラ60は、液滴コントローラ60の半径方向外側から液滴コントローラ60の半径方向内側に液滴が移動するのを防止するようにさらに構成される。液滴コントローラ60は、基板または基板テーブル上に位置する液滴を、メニスカス90および/またはメニスカス固定開口50のラインから離れて移動させるように構成される。液滴コントローラは、メニスカス90に液滴が接近する(そして到達する)のを防止するように構成される。
液滴コントローラ60の半径方向外側の対向面上に位置する液滴が、メニスカス90と衝突することが防止される。走査方向が反転するとき、またはステッピング移動中に液体がメニスカス90と衝突する可能性が低減される。液滴コントローラ60は「ダイオード」ガスナイフとして機能する。液浸液の液滴は、半径方向内側から半径方向外側へ一方向のみに、ダイオードガスナイフを越えることができる。液滴コントローラ60は、ガスナイフ61、62の構成によって、液体がメニスカス90と衝突するのを防止するのに役立つ。ガスナイフ61、62は液体が逃げられるように構成される。これは、例えば走査方向が反転するときに、液体が蓄積しその後メニスカス90と液体が衝突するのを防止する。ガスナイフは、(メニスカスに対して)到来する液滴がメニスカス90に到達するのを防ぐのに役立つ。
図6に示すように、液滴コントローラ60は、空間11の半径方向外側に複数の細長いガス出口開口61、62を備えてもよい。細長いガス出口開口61、62は、対向面に向けて気流の向きを変えるように構成される。細長いガス出口開口61、62はそれぞれガスナイフ開口を形成する。
細長いガス出口開口61、62の隣接する組は、液体ハンドリング構造のステップ方向120および/または走査方向110から見たときに重なり合う。走査方向はステップ方向と直交していてもよい。この重なり合いの目的は、露光領域64に気泡が形成されるのを防止することである。重なり合いは、細長いガス出口開口61の少なくとも一つによって、ステップ方向120に移動する液滴が遮断されるという結果を有する。液滴のメニスカス90への到達が防止される。気泡を形成する衝突が回避される。液滴は、露光領域64によって占有されない基板Wの一部に逸らされる。
細長いガス出口開口61、62は、空間11およびメニスカス固定開口50の半径方向外側の形状のラインに配置される。細長いガス出口開口61、62が後に続く形状は、メニスカス固定開口50が後に続く形状と同一であってもよい。形状は、角付き、例えば菱形であってもよい。形状は、角のない円形または楕円であってもよい。細長いガス出口開口は、外側開口62と内側開口61とを備える。液滴コントローラ60のガスナイフ構成の断面には、二つの内側開口61の間に隙間63が配置される。外側開口62は、二つの内側開口61の半径方向外側に配置される。外側開口62は、隙間63の半径方向外側に配置される。断面がステップ方向であるかまたは走査方向であるかに応じて、露光領域64からそれぞれ走査方向110またはステップ方向120から見たとき、外側開口62は二つの内側開口61と重なり合う。図6に示した構成では、液滴コントローラ60が後に続く形状が角付きの形状である。角は、露光領域64に対して走査方向110およびステップ方向120を指すように構成される。外側開口62および隙間63は、形状の角に配置されてもよい。外側開口および二つの内側開口と重なり構成との組み合わせは、「コーナーダイオード」と呼ばれてもよい。隙間63および外側開口62が内側開口62の半径方向外側にあるという事実の結果、細長いガス出口開口61、62の構成によって画成される形状がメニスカス90の形状とは異なるようになる。
重なり合いの目的は、走査方向またはステップ方向のいずれかで液体ハンドリング構造12に接近する液滴が、細長いガス出口開口61、62の一つによって遮断される。これは、液滴とメニスカス90との衝突を防止するのに役立ち、これによって欠陥を発生させうる気泡の生成が防止される。衝突が発生すると、気泡が形成されることがある。気泡は、基板表面に対して静止状態を維持する。基板Wが液体ハンドリング構造12に対して移動し続けると、気泡が露光領域64に進入する。これが欠陥を発生させうる。隙間63の目的は、液滴コントローラ60の半径方向内側の領域から、液滴コントローラ60の半径方向外側の領域に、液滴を逃すことができる。これは、液体ハンドリング構造12の対向面に対する移動方向が変化するとき、後でメニスカス90に衝突するであろう液滴の蓄積を防止する。
細長いガス出口開口61、62は、同一の加圧源に接続されることが望ましい。代替的に、ガス出口開口61、62が別個の加圧源に接続されてもよい。これは、単一の加圧源を使用するよりもさらに複雑な構造が必要になる。しかしながら、気流のパラメータが、ガス出口開口からガス出口開口まで個々に変化してもよいという利点を有する。例えば、気流速度またはガス速度が変化してもよい。
一構成では、液体ハンドリング構造12の走査方向およびステップ方向に対して外側開口62が角度が付けられている。この目的は、外側開口62と直角方向で外側開口62に液滴が接近する場合に比べると小さな気体力で、到来する液滴を外側開口62によって偏向させることである。走査方向またはステップ方向に対して時計方向または反時計方向のいずれかに外側開口62の角度が付けられて(スキューされて)いてもよい。図6では、図の上部にある外側開口62は、走査方向110に対して時計回りに角度が付けられている。各外側開口62は、二つの取り得るスキュー方向を有する。各外側開口62に対して、スキュー方向の置換に対応して、様々な構成を取ることができる。四つの外側開口を有する一構成では、各変形例が外側開口62のスキュー方向の異なる組み合わせを有する、16個の取り得る変形例がある。
角度の付けられた(またはより正確にはスキューされた)外側開口62は、二つの隣接する内側開口61の間の隙間63から離して液滴の向きを変えるのに役立つ。液滴は、液体ハンドリング構造12と対向面(例えば、基板W/基板テーブルWT)との間の相対運動と直交する成分を有する方向に向けられる。したがって、液滴が相対的にメニスカスから液浸空間11に接近するとき、液滴は外側開口62からガスナイフに向けて移動する。外側開口62に角度が付けられ、したがって走査方向またはステップ方向と整列していないので、液滴はガスナイフの全長に沿って移動する。移動の方向と直交する方向、例えば走査方向から見たとき、液滴は、移動の方向と直交する方向、すなわち前の例で矢印120で示されたステップ方向に移動する。外側開口62がスキューされるのと同様の態様で、一つまたは複数の内側開口61がスキューされてもよい。
図7に示すように、細長いガス出口開口61の間の不連続ギャップ63の代替例として、液滴コントローラ72が連続するガス出口開口73、74の通過区画74を代わりにまたは追加的に備えてもよい。この場合、連続ガス出口開口の他のブロック区画73の気流を通るよりも、通過区画74の気流を通して液滴がより通過しやすくなる。したがって、通過区画74の気流を通して液滴が逃げることができるが、ブロック区画73によってメニスカス90に到達することが防止される。一構成では、液滴コントローラの一区画がギャップ63を備え、液滴コントローラの別の区画が通過区画74を備えてもよい。
一構成では、通過区画74は、対向面の法線に対して鋭角に気流の向きを変えるように構成されたガス出口開口によって提供される。気流は対向面の方に向けられ、半径方向外側の角度にされる。半径方向内側に移動する液滴は、気流によって遮断される。半径方向外側に移動する液滴は、気流開口の下を通過することができる。角度の付いた気流を与えるガスナイフにより、液滴の一方向のみの通過が可能になる。
通過区画74は、例えばブロック区画73と比べて通過区画74の気流を通してより小さな流速またはより小さなガス速度を有する気流の向きを変える連続ガス出口開口を構成することによって、通過区画74を有効にしてもよい。この場合、コントローラ71は、連続ガス出口開口(すなわちガスナイフ)73、74の気流を通して気流を制御するように構成され、その結果、ガスナイフのブロック区画73の気流の流速および/またはガス速度が、通過区画74の気流よりも大きくなる。図7に示された実施形態の他の特徴は、図6に示された実施形態に関して上述したのと同様である。
図8は、本発明のさらなる実施形態を示す。図8に示された実施形態は、図6および7に示された実施形態に関して上述した特徴のそれぞれを備えてもよい。液滴コントローラ80の形状の角(または他の位置)に配置された「コーナーダイオード」ガスナイフに加えてまたはこれに替えて、図8に示された実施形態は、以下に述べるような「サイドダイオード」ガスナイフ構造を備える。「サイドダイオード」ガスナイフを、「コーナーダイオード」ガスナイフとともに、またはこれの代替として用いることができる。「コーナーダイオード」は、液体ハンドリング構造12と基板Wおよび/または基板テーブルWTの間の線形相対運動中に、液滴を制御するのに効果的である。「サイドダイオード」は、線形運動中と同じく、基板Wおよび/または基板テーブルWTが液体ハンドリング構造12に対して向きを変えるときに液滴を制御するのに効果的である。
図8に示すように、液滴コントローラ80は、メニスカス90の半径方向外側の形状に構成された複数の細長いガス出口開口61、62、81の形態をとってもよい。ブロック開口81と呼ばれてもよい、一連の細長いガス出口開口が、形状の辺に対応するラインに沿って配置される。液体ハンドリング構造12のステップ方向で観察するとき、ブロック開口81の連接する組が重なり合う。
ブロック開口81は、ステップ方向に対して重なり合う。これは、ステップ方向において液滴が液滴コントローラ80に接近する場合、液滴がブロック開口81の一つに遭遇する場合があることを意味する。これは、ステップ方向に延びるラインが、液滴コントローラ80において少なくとも一つのブロック開口81と交差するからである。ブロック開口81の一つと遭遇することなく液滴が通過できるような隙間はない。液体ハンドリング構造と基板/基板テーブルの間の相対運動は、二つの直交方向に限定されなくてもよい。液体ハンドリング構造が走査端に到達すると、走査方向が反転される前に、液体ハンドリング構造が例えば曲線経路で向きを変える。コーナーダイオードとサイドダイオードの構成は、旋回動作中にメニスカスに接近する液滴がメニスカス90に到達するのを防止するのに役立つように構成されてもよい。
上述のような液滴コントローラの機能は、液滴コントローラ80の半径方向外側の液滴がメニスカス90に到達するのを防止するのに役立つ。液滴コントローラの機能を有効にするのに役立たさせるために、上述した特徴に加えて、ブロック開口81は、ライン(すなわち形状の側辺)の接線に対して走査方向に向けて傾斜した細長方向をそれぞれ有している。
図8に示された液体ハンドリング構造12の左上四分の一(すなわち、図の上方に示された角と図の左方に示された角との間の四分の一)にあるブロック開口81が、図6および7におけるガス出口開口の対応する区画に対して反時計回りに回転されている。右上四分の一は、左上四分の一と実質的に対称の構成を有しており、液体ハンドリング構造の中心を通り方向110に沿った垂直線に対して線対称である。これは、図8に示す液体ハンドリング構造12の右上四分の一において、「サイドダイオード」ガスナイフを形成するブロック開口81が、ラインの接線に対して時計回りに回転されていることを意味する。下半分は、図の中心を通り方向120に沿った対称水平線に対して、上半分と実質的に対称である構成を有する。
ブロック開口81は、単一の直線である必要はない。図8に示すように、ブロック開口81は、間に角度のある少なくとも二つの区画を備えてもよい。ブロック開口81は曲線形状であってもよい。
ステップ方向120に対してブロック開口81を重ねることで、ステップ方向120においてブロック開口81に接近する液滴が、メニスカス90に到達することがブロックされる。望ましくは、ブロック開口81は、走査方向120で観察したときに重なり合うように構成される。この目的は、走査方向から接近する液滴が、隣接するブロック開口81の間の隙間を通過するのを防止するのに役立つ。
液浸液の液滴が、図8に示した液滴コントローラ80のブロック開口81の一つに図の上方から接近する場合、ブロック開口81は、図を通る中心線から離れるように(すなわち、液体ハンドリング構造12の中心から離れるように)液滴を逸らす。しかしながら、液滴は、隣接するブロック開口81の半径方向内側を通る。したがって、ブロック開口81の傾斜方向のために、液滴は隣接するブロック開口81の間を通ってもよい。
液滴のメニスカス90への到達を防止するのに役立たせるために、別の部分82または代替的に別のガス出口開口82が設けられる。このガス出口開口82は、トラップ開口82と呼ばれてもよい。トラップ開口82は、それぞれのブロック開口81の半径方向内側端部から角度をもって延びる。この角度(または方向)は、液体ハンドリング構造12のステップ方向と、それぞれのブロック開口81の主要な細長方向の間であることが望ましい。トラップ開口82は、ブロック開口81に沿って移動する液滴のバリアとなる気流を提供する。結果として、ブロック開口81とトラップ開口82との接合部に液滴が集積する。
一実施形態では、ブロック開口81とトラップ開口82の間の交差部(接合部)の内側に、抽出器83が配置される。この抽出器83は、交差部に集積される液滴の少なくとも一部を抽出するように構成される。これは、交差部のオーバーフローを防止するのに役立つ。これがないと、液滴が液滴コントローラ80の半径方向内側に到達し、メニスカス90と衝突することになる。
ブロック開口81は、走査方向110とステップ方向120の両方に対して必ずしも重なる必要はない。走査方向110またはステップ方向120のいずれかにおいてブロック開口81の間に隙間がある場合、液滴コントローラ80は、走査方向またはステップ方向のいずれかに対して、それぞれの隙間と整列した抽出開口(図8には不図示)を備えることが望ましい。この目的は、液滴コントローラ80のブロック開口81の間の隙間を通過するあらゆる液滴を、メニスカス90に到達する前に抽出することである。走査方向110とステップ方向120の中間の方向で観察するとき、ブロック開口81が重なり合ってもよい。この構成の目的は、走査方向とステップ方向の間の方向であらゆる液滴の接近をブロックすることである。これは、液体ハンドリング構造と基板/基板テーブルとの間の相対運動が走査方向110とステップ方向120の間の方向にあってもよい旋回動作の間に、液滴がメニスカス90に接近するのを防止するのに効果的である。
図9は、ガスナイフ91、92と抽出器93のブロック区画の間の、上述のような隙間を特徴とする、本発明の一実施形態を示す。この実施形態の背後にある着想は、衝突の前にできる限り多数の液滴を抽出することによって、液滴とメニスカス90との衝突から気泡が生じる可能性を低減することである。
図9に示した実施形態では、空間11の半径方向外側の液滴コントローラ95は、複数の細長いガス出口開口91、92および複数の液体抽出開口93とを備える。液滴コントローラ95は、メニスカス90の半径方向外側に配置される。液体抽出開口93は、液体ハンドリング構造の走査方向に対して、隣接する細長いガス出口開口91、92の間のそれぞれの隙間と整列される。追加的にまたは代替的に、液体抽出開口93は、液体ハンドリング構造12のステップ方向に対して隙間と整列されてもよい。液体抽出開口93は、減圧源と接続される。同一の減圧源または別個の減圧源に開口93が接続されてもよい。
図9に示された実施形態では、液体抽出開口93が、細長いガス出口開口91、92の半径方向内側に配置される。一実施形態では、代替的にまたは追加的に、液体抽出開口が、細長いガス出口開口91、92の半径方向外側に配置される。液体抽出開口の半径方向外側は、液体ハンドリング構造12の後退側にとって特に有利である。すなわち、液滴コントローラ95の半径方向内側の液滴が半径方向外側に移動するとき、細長いガス出口開口91、92の一つによって液滴がブロックされる。結果として、細長いガス出口開口91、92の間の隙間の一つに向けて液滴が導かれる。この場合では、液体ハンドリング構造12の移動の方向(すなわち、走査方向またはステップ方向)に対して、隙間と整列された液体抽出開口93が存在するのが望ましい。これにより、液滴の少なくとも一部を液体抽出開口を通して抽出することが可能になり、これによって対向面上に液滴を残さないか、または液滴を小さくする。
一実施形態では、細長いガス出口開口91、92の半径方向内側と半径方向外側の両方に、液体抽出開口93が配置される。
一実施形態では、メニスカス固定開口50の他に液体抽出開口93が設けられない。この実施形態では、液体ハンドリング構造12と対向面との間の相対運動の方向に対して、隣接する細長いガス出口開口91、92の間の隙間とメニスカス固定開口50が整列される。この目的は、メニスカス固定開口50において液滴がメニスカス90と衝突する場合、メニスカス固定開口50の間のメニスカス90と液滴が衝突する状況と比べて、気泡が形成される可能性を低減することである。この実施形態では、メニスカス固定開口50の半径方向外側のエッジに液滴コントローラ95が設けられる。一実施形態では、メニスカス固定開口50は液滴コントローラ95の一部である。
望ましくは、細長いガス出口開口91、92は、形状11の半径方向外側に角付き形状の形態で配置される。一実施形態では、角付き形状の角に、角に隙間がないようにガス出口開口92の連続ブロック区画が設けられる。換言すると、形状の角には、半径方向外側を指すV字型ガス出口開口の先端を有するV字型ガス出口開口の半径方向内側に、液体抽出開口が配置される。
この実施形態では、液滴コントローラ95の半径方向内側の液滴が、角付き形状の角に向けて導かれてもよい。望ましくは、閉じ込められた液浸液のメニスカスと接触する液体抽出開口が、液体ハンドリング構造の走査方向に対して、V字型ガス出口開口の先端と整列される。液体抽出開口94は、角に集積する液滴の少なくとも一部を抽出するように構成される。
望ましくは、走査方向またはステップ方向に対して、角付き形状の角がメニスカス固定抽出開口50と整列される。液体ハンドリング構造12と対向面の間の相対運動方向が反転する場合、メニスカス抽出開口50において、角に集積した残存液体がメニスカス90と衝突する。結果として、気泡生成の可能性が低下する。
図10は、図9に示されたものの修正実施形態の一部を示す。図10では、一連の偏向(diverting)ガス出口開口101が設けられる。これらの偏向ガス出口開口101は、液体ハンドリング構造の走査方向110で観察するとき、隣接する組が重なり合うように配置される。一実施形態では、ステップ方向110で観察するとき、偏向ガス出口開口101の隣接する組が重なり合う。偏向ガス出口開口101は、細長いガス出口開口91、92の間の隙間を通過し、空間11内の臨界領域から離れて液体抽出開口93によって完全に抽出されなかったあらゆる残存液滴を偏向させる。臨界領域とは、投影系PSから向けられた放射によって露光されるべき領域である。メニスカス90と衝突する液滴から生じる気泡が放射によって露光されるとき、欠陥が発生するので、この領域は重要である。
望ましくは、一連の偏向ガス出口開口101がラインに沿って配置され、走査方向と直交する方向120に向けて、偏向ガス出口開口101のそれぞれの細長方向がラインの接線に対して傾斜される。ガス出口開口91、101は、二つの区画102、103で構成されることが望ましい。第1区画は、第2区画103に対して角度が付けられている。第2区画の目的は、ステップ方向120で観察するときに隣接するガス出口開口との重なりを作ることである。第1区画の目的は、液滴がメニスカスに到達するのを許すことなく、到来する液滴を隣接するガス出口開口または抽出穴に逸らすことである。
細長ガス出口開口の全長を増加すると、遭遇する液滴が細長いガス出口開口の気流を通過する可能性が増加する。この理由のため、ガス出口開口の単一の連続区画よりも、一連の偏向ガス出口開口101を使用することが望ましい。
図6から10に示された実施形態に関連して上述したように、離散したガス出口開口(例えばガスナイフ)を使用して到来する液滴を遮断する一方、流出する液滴が隙間または通過区画を通って逃げることが可能になる。これに加えてまたは代替して、離散したガス出口開口の間の隙間と整列した抽出開口を使用して(到来するか流出する)液滴を抽出してもよい。これらの二つの原理は任意の実施形態で組み合わせることができる。
例えば、走査方向またはステップ方向の他方に対して、ガス出口開口の間の隙間と整列された液体抽出開口と隣接する組とが走査方向110またはステップ方向120に重なり合うようにガス出口開口が配置されてもよい。
空間11の半径方向外側の閉鎖図形形態で連続ガス出口開口を設けることによって、上述した任意の実施形態を修正することができる。例えば、図11は、このような周囲のガス出口開口111を有する、図8に示した実施形態の修正バージョンである。連続ガス出口開口111は、細長いガス出口開口61、81の半径方向内側にあってもよい。代替的にまたはこれに加えて、図11に示すように、細長いガス出口開口61、81の半径方向外側に連続ガス出口開口111があってもよい。細長いガス出口開口61、81に接続されるものと同一のまたは異なる負圧源に連続ガス出口開口111が接続されてもよい。
液体は空間11から開口50に流れる。環状流れモードの中に二相抽出(すなわち気体と液体)が生じるように開口50が設計されてもよい。環状流れモード内で、気体は開口50の中心を通って実質的に流れてもよく、また液体は開口50の壁面に沿って実質的に流れてもよい。脈動の発生が少ない滑らかな流れが生まれる。
図11では、メニスカス固定開口50が直線形状に配置される。図11は、メニスカス固定開口50が円形に配置される構成を示す。この場合、液滴コントローラのガス出口開口が、メニスカス固定開口50の半径方向外側にありかつ空間11の半径方向外側にある円形に配置されてもよい。図12では、液滴コントローラ122、123の個々のガス出口開口は図示されていない。液滴コントローラは、サイドダイオード区画122とコーナーダイオード区画123とを備える。サイドダイオード122とコーナーダイオード123は、任意の他の実施形態に関して上述した形態をとってもよい。一実施形態では、液滴コントローラは、サイドダイオード122のみ、コーナーダイオード123のみ、またはサイドダイオード122とコーナーダイオード123の組み合わせを備えてもよい。少なくとも二つのサイドダイオード区画および/またはコーナーダイオード区画が存在してもよい。図12では、四つのサイドダイオード122と四つのコーナーダイオード123とがある。
図12に示すように、外側ガス出口開口111は円形であってもよい。望ましくは、液滴コントローラのガス出口開口と外側ガス出口開口111との間に位置する液体を抽出するために複数の外側抽出器121がある。外側抽出器121は、液体と気体を抽出する二相抽出器であってもよい。外側抽出器121は円形に配置されてもよい。外側抽出器121は、液滴コントローラ122、123の半径方向外側かつ外側ガス出口開口111の半径方向内側に位置する液滴の少なくとも一部を抽出することができる。このような液滴を、液滴コントローラ122、123の半径方向内側から逃がして外側ガス出口開口111によって捕らえることができる。液滴を少なくとも部分的に抽出することによって、例えば走査方向が変化するときに、液滴がメニスカスと衝突する可能性が低下する。
上述の実施形態は、いわゆるデュアルステージリソグラフィ装置上に実装することができる。一部のデュアルステージリソグラフィ装置では、(液体損失の防止を意図した)周囲のガスナイフによって液浸液の液滴(単数または複数)が集積することがある。その後、集積した液滴がメニスカス90と衝突することがある。本発明の一実施形態によると、このような液滴を制御された方法で液体ハンドリング構造12の下方から逃がすか、および/または液体抽出開口93を通して液滴を抽出することができる。例えば、図6では、二つの別のガスナイフ61の間の隙間の半径方向外側に、到来する液滴を遮断するための角度の付けられたガスナイフ62が配置される。上述したこのようなガス出口開口(またはガスナイフ)では、液浸液の液滴を遮断するために比較的大きな加圧が必要になる。
本発明の任意の実施形態は、液体ハンドリング構造12のガス出口開口を通して気流を制御するためのコントローラを備えてもよい。このようなコントローラ112が図11に示されている。コントローラは、液体ハンドリング構造12に対する対向面の位置に基づき、細長いガス出口開口61、81からの気流を対向面に向けて制御するように構成されてもよい。これに加えてまたはこれに替えて、コントローラ112は、液体ハンドリング構造12と対向面との間の相対運動の方向または速度に基づき気流を制御してもよい。
特に、コントローラ112は、基板Wおよび基板テーブルWTの間の位置の上にそれぞれのガス出口開口が位置するとき、ガス出口開口からの気流の向きが変わるように、ガス出口開口を制御するように構成されてもよい。ガス出口開口が基板Wと基板テーブルWTの間に位置しないとき、コントローラ112によってスイッチオフされてもよい。この目的は、液体ハンドリング構造が基板Wと基板テーブルWTの間の位置の上方にあるとき、メニスカス90から液浸液が失われる可能性が特に高いことである。したがって、基板Wから基板テーブルWTへの交差、またはその逆に対応する期間は、液滴のメニスカス90との衝突を防止するために重要であることがある。
一実施形態では、液体ハンドリング構造と液滴コントローラを備える液浸リソグラフィ装置が提供される。液体ハンドリング構造は、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成される。液滴コントローラは、液滴コントローラの半径方向内側から液滴コントローラの半径方向外側に液浸液の液滴を通過させるように構成される。液滴コントローラは、さらに、液滴コントローラの半径方向外側から液滴コントローラの半径方向内側への液滴の通過を防止する。
液滴コントローラは、対向面に向けて気流の向きを変えるように構成された複数の細長いガス出口開口を備えてもよい。
一実施形態では、液体ハンドリング構造と複数の細長いガス出口開口を備える液浸リソグラフィ装置が提供される。液体ハンドリング構造は、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成される。複数の細長いガス出口開口は、空間の半径方向外側にあり、対向面に向けて気流の向きを変えるように構成される。対向面の走査方向で観察するとき、および/または走査方向と直交する方向で観察するとき、細長いガス出口開口の隣接する組が重なり合う。
液浸リソグラフィ装置は、対向面の走査方向から観察するとき、隣接する細長いガス出口開口の間のそれぞれの隙間と整列された液体抽出開口をさらに備えてもよい。
一実施形態では、液体ハンドリング構造と液滴コントローラを備える液浸リソグラフィ装置が提供される。液体ハンドリング構造は、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成される。液滴コントローラは、空間の半径方向外側にあり、複数の細長いガス出口開口と複数の液体抽出開口とを備える。複数の細長いガス出口開口は、対向面に向けて気流の向きを変えるように構成される。複数の液体抽出開口は、対向面の走査方向および/またはステップ方向に対して、隣接する細長いガス出口開口の間の隙間とそれぞれ整列される。
閉じ込められた液浸液のメニスカスと細長いガス出口開口との間に、複数の液体抽出開口のうち少なくとも一つが配置されてもよい。複数の液体抽出開口のうち少なくとも一つが、細長いガス出口開口の半径方向外側に配置されてもよい。複数の液体抽出開口のうち少なくとも一つが、空間内に液浸液を閉じ込めるように構成されてもよい。
対向面の走査方向で観察するとき、細長いガス出口開口の隣接する組が重なり合ってもよい。
細長いガス出口開口がラインに配置されてもよく、それぞれの細長いガス出口開口におけるラインの接線に対して、少なくとも一つの細長いガス出口開口の細長方向が対向面の走査方向に向けて傾斜している。
液浸リソグラフィ装置はトラップガス出口開口をさらに備えてもよい。この開口は、それぞれの細長いガス出口開口の半径方向内側端部から、対向面の走査方向に直交する方向とそれぞれの細長いガス出口開口の細長方向との間に、ある角度で延出してもよい。
液浸リソグラフィ装置は、対向面の走査方向と直交する方向で観察するとき、一連の偏向ガス出口開口のなかの隣接する組が重なり合うように配置された、一連の偏向ガス出口開口をさらに備えてもよい。偏向ガス出口開口のそれぞれの細長方向は、それぞれの偏向ガス出口開口におけるラインの接線に対して、走査方向と直交する方向に向けて傾斜していてもよい。
細長いガス出口開口は、空間の半径方向外側の角付き形状のラインに配置されてもよい。形状の角に、半径方向外側を指すV字型ガス出口開口の先端を有するV字型ガス出口開口の半径方向内側に、液体抽出開口が配置されてもよい。
閉じ込められた液浸液のメニスカスと接触する液体抽出開口は、対向面の走査方向に対して、V字型ガス出口開口の先端と整列していてもよい。
細長いガス出口開口は、空間の半径方向外側の角付き形状のラインに配置されてもよい。形状の角では、細長いガス出口開口のうち二つの間の隙間の半径方向外側に、少なくとも一つの細長ガス出口開口が配置されてもよい。対向面の走査方向またはステップ方向と直交する方向で観察するとき、二つの細長ガス出口開口と重なり合ってもよい。
細長ガス出口開口の少なくとも一つは、走査方向またはステップ方向と直交していなくてもよい。
液浸リソグラフィ装置は、液体ハンドリング構造に対する対向面の位置および/または移動に基づき、細長ガス出口開口からの気流を対向面に向けて制御するように構成されたコントローラをさらに備えてもよい。
細長いガス出口開口が、対向面の法線と鋭角に気流の向きを変えるように構成されてもよい。
液体ハンドリング構造が、空間の半径方向外側の対向面に向けて気流の向きを変えるように構成された、閉鎖図形の形態の連続ガス出口開口を備えてもよい。
連続ガス出口開口は、細長ガス出口開口の半径方向内側にあってもよい。連続ガス出口開口は、細長ガス出口開口の半径方向外側にあってもよい。
一実施形態では、リソグラフィ装置を用いたデバイスの製造方法が提供される。この方法は、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方の対向面と投影系との間の空間に、閉じ込め構造を用いて液体を閉じ込めることを含む。この方法は、投影系に対して対向面を走査方向に移動させることをさらに含む。この方法は、液滴コントローラの半径方向内側から液滴コントローラの半径方向外側に液滴を通過させることをさらに含む。液滴コントローラは空間の半径方向外側にあってもよい。この方法は、液滴コントローラの半径方向外側から液滴コントローラの半径方向内側への液滴の通過を防止することによって、液浸液の液滴を操作することをさらに含む。
一実施形態では、リソグラフィ装置を用いたデバイスの製造方法が提供される。この方法は、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方の対向面と投影系との間の空間に、閉じ込め構造を用いて液体を閉じ込めることを含む。この方法は、投影系に対して対向面を走査方向に移動させることを含む。この方法は、空間の半径方向外側の複数の細長いガス出口開口を通して、対向面に向けて気流の向きを変えることをさらに含む。対向面の走査方向で観察するとき、および/または走査方向に直交する方向で観察するとき、細長いガス出口開口の隣接する組が重なり合う。
一実施形態では、リソグラフィ装置を用いたデバイスの製造方法が提供される。この方法は、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方の対向面と投影系との間の空間に、閉じ込め構造を用いて液体を閉じ込めることを含む。この方法は、投影系に対して対向面を走査方向に移動させることを含む。この方法は、間に隙間のある複数の細長ガス出口開口からの気流を対向面に向けて向きを変えることで、液浸液の液体を操作することをさらに含む。この方法は、複数の液体抽出開口を通して液滴の少なくとも一部を抽出することをさらに含む。各液体抽出開口は、走査方向に対して、隣接する細長ガス出口開口の間のそれぞれの隙間と整列されてもよい。
一実施形態では、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造が提供される。液体ハンドリング構造は、液滴コントローラの半径方向内側から液滴コントローラの半径方向外側に液浸液の液滴を通過させ、液滴コントローラの半径方向外側から液滴コントローラの半径方向内側への液滴の通過を防止するように構成された、空間の半径方向外側の液滴コントローラを備える。
一実施形態では、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造が提供される。液体ハンドリング構造は、対向面に向けて気流の向きを変えるように構成された、空間の半径方向外側の複数の細長いガス出口開口を備える。対向面の走査方向で観察するとき、および/または走査方向と直交する方向で観察するとき、細長いガス出口開口の隣接する組が重なり合う。
一実施形態では、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造が提供される。液体ハンドリング構造は、空間の半径方向外側の液滴コントローラを備えてもよい。液滴コントローラは、複数の細長いガス出口開口と複数の液体抽出開口とを備えてもよい。複数の細長いガス出口開口は、対向面に向けて気流の向きを変えるように構成される。各液体抽出開口は、対向面の走査方向および/またはステップ方向に対して、隣接する細長いガス出口開口の間の隙間とそれぞれ整列される。
一実施形態では、液浸リソグラフィ装置用の流体ハンドリング構造が提供される。流体ハンドリング構造は、テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給し閉じ込めるように構成される。液体は、流体ハンドリング構造の表面と対向面との間にメニスカスを形成してもよい。流体ハンドリング構造は、対向面上の液体がメニスカスに到達するのを防止する液滴コントローラを備えてもよい。
理解されるように、上述した構造のいずれも任意の他の構造とともに使用することができ、この出願で保護されるものは明確に説明した組み合わせに限られない。さらに、本明細書における液滴への言及は液膜を含んでもよい。
IC製造におけるリソグラフィ装置の使用について本文書において特に言及をしてきたが、本明細書で述べたリソグラフィ装置は、他の応用形態も有していることを理解すべきである。例えば、集積された光学システム、磁気領域メモリ用の誘導及び検出パターン(guidance and detection pattern)、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッドなどの製造といった応用である。当業者は、このような代替的な応用形態の文脈において、本明細書における「ウェハ」または「ダイ」という用語のいかなる使用も、それぞれより一般的な用語である「基板」または「目標部分」と同義とみなすことができることを認められよう。本明細書で参照された基板は、例えばトラック(通常、レジスト層を基板に付加し、露光されたレジストを現像するツール)、計測ツール及び/または検査ツールで露光の前後に加工されてもよい。適用可能であれば、本明細書の開示は、そのような基板処理工具または他の工具に対しても適用することができる。さらに、例えば多層ICを作製するために二回以上基板が加工されてもよく、その結果、本明細書で使用された基板という用語は、複数回処理された層を既に含む基板のことも指してもよい。
本明細書で使用される「照射」及び「ビーム」という用語は、紫外線(UV)照射(例えば、365、248、193、157、または126nmの波長を有する)を含む、あらゆるタイプの電磁気照射を包含する。「レンズ」という用語は、文脈の許す限り、屈折光学要素及び反射光学要素を含む様々なタイプの光学要素のうちの任意の一つまたはその組み合わせを指す場合もある。明細書の全体を通して、ステップ方向および走査方向について言及してきた。明細書内で言及された走査方向およびステップ方向は主要な直交軸である。しかし、好適な実施形態では、これらの主要軸が走査方向およびステップ方向と整列されてもよいし、他の実施形態では主要軸が走査方向およびステップ方向と独立していてもよい。
本発明の特定の実施形態が上述されたが、説明したもの以外の態様で本発明が実施されてもよい。例えば、本発明の実施形態は、上述の方法を記述する機械で読み取り可能な命令の一つまたは複数のシーケンスを含むコンピュータプログラムの形式をとってもよいし、そのコンピュータプログラムを記録したデータ記録媒体(例えば半導体メモリ、磁気ディスク、または光ディスク)であってもよい。機械で読み取り可能な命令は2以上のコンピュータプログラムにより実現されてもよい。それら2以上のコンピュータプログラムは一つまたは複数の異なるメモリ及び/またはデータ記録媒体に記録されていてもよい。
本明細書に記載のコントローラは、リソグラフィ装置の少なくとも一つの構成要素内部に設けられた一つまたは複数のコンピュータプロセッサによって一つまたは複数のコンピュータプログラムが読み取られたときに動作可能であってもよい。コントローラは信号を受信し処理し送信するのに適切ないかなる構成であってもよい。一つまたは複数のプロセッサは少なくとも一つのコントローラに通信可能に構成されていてもよい。例えば、複数のコントローラの各々が上述の方法のための機械読み取り可能命令を含むコンピュータプログラムを実行するための一つまたは複数のプロセッサを含んでもよい。各コントローラはコンピュータプログラムを記録する記録媒体及び/またはそのような媒体を受けるハードウェアを含んでもよい。コントローラは一つまたは複数のコンピュータプログラムの機械読み取り可能命令に従って動作してもよい。
本発明の一つまたは複数の実施形態はいかなる液浸リソグラフィ装置に適用されてもよい。上述の形式のものを含むがこれらに限られない。液浸液が浴槽形式で提供されてもよいし、基板の局所領域のみに提供されてもよいし、非閉じ込め型であってもよい。非閉じ込め型においては、液浸液が基板及び/または基板テーブルの表面から外部に流れ出ることで、基板テーブル及び/または基板の覆われていない実質的に全ての表面が濡れ状態であってもよい。非閉じ込め液浸システムにおいては、液体供給システムは液浸液を閉じ込めなくてもよいし、液浸液の一部が閉じ込められるが完全には閉じ込めないようにしてもよい。
本明細書に述べた液体供給システムは広く解釈されるべきである。ある実施形態においては投影系と基板及び/または基板テーブルとの間の空間に液体を提供する機構または構造体の組み合わせであってもよい。一つまたは複数の構造体、及び一つまたは複数の流体開口の組み合わせを含んでもよい。流体開口は、一つまたは複数の液体開口10、一つまたは複数の気体開口、一つまたは複数の二相流のための開口を含む。開口のそれぞれは、液浸空間への入口(または液体ハンドリング構造からの出口)または液浸空間からの出口(または液体ハンドリング構造への入口)であってもよい。一実施例においては、液浸空間の表面は基板及び/または基板テーブルの一部であってもよい。あるいは液浸空間の表面は基板及び/または基板テーブルの表面を完全に含んでもよいし、液浸空間が基板及び/または基板テーブルを包含してもよい。液体供給システムは、液体の位置、量、性質、形状、流速、またはその他の性状を制御するための一つまたは複数の要素をさらに含んでもよいが、それは必須ではない。
上述の説明は例示であり限定することを意図していない。よって、当業者であれば以下に述べる請求項の範囲から逸脱することなく本発明の変形例を実施することが可能であろう。

Claims (13)

  1. テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造と、
    前記空間の半径方向外側に配置され、加圧源からの気流を前記対向面の法線に対して鋭角に該対向面に向けて流すように構成された複数の細長いガス出口開口を備える液滴コントローラであって、液滴コントローラの半径方向内側から液滴コントローラの半径方向外側に液浸液の液滴を通過させ、液滴コントローラの半径方向外側から液滴コントローラの半径方向内側への液滴の通過を防止する液滴コントローラと、
    を備えることを特徴とする液浸リソグラフィ装置。
  2. テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造と、
    加圧源からの気流を前記対向面の法線に対して鋭角に該対向面に向けて流すように構成された、前記空間の半径方向外側の複数の細長いガス出口開口と、を備え、
    前記対向面の走査方向から前記複数の細長いガス出口開口を見たとき、および/または前記走査方向と直交する方向から前記複数の細長いガス出口開口を見たとき、細長いガス出口開口の隣接する組が重なり合うように配置されていることを特徴とする液浸リソグラフィ装置。
  3. 前記対向面の走査方向から前記複数の細長いガス出口開口を見たとき、隣接する細長いガス出口開口の間のそれぞれの隙間と整列された液体抽出開口をさらに備えることを特徴とする請求項2に記載の液浸リソグラフィ装置。
  4. テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造と、
    加圧源からの気流を前記対向面の法線に対して鋭角に該対向面に向けて流すように構成された複数の細長いガス出口開口と、前記対向面の走査方向および/またはステップ方向に対して、隣接する細長いガス出口開口の間の隙間とそれぞれ整列された複数の液体抽出開口と、を有する、前記空間の半径方向外側の液滴コントローラと、
    を備えることを特徴とする液浸リソグラフィ装置。
  5. 閉じ込められた液浸液のメニスカスと前記細長いガス出口開口との間に、前記複数の液体抽出開口のうち少なくとも一つが配置されることを特徴とする請求項またはに記載の液浸リソグラフィ装置。
  6. それぞれの細長いガス出口開口の半径方向内側端部から、前記対向面の走査方向に直交する方向と前記それぞれの細長いガス出口開口の細長方向との間に、ある角度で延出するトラップガス出口開口をさらに備えることを特徴とする請求項ないしのいずれかに記載の液浸リソグラフィ装置。
  7. 前記細長いガス出口開口が、前記空間の半径方向外側の角付き形状のラインに配置され、
    前記形状の角に、半径方向外側を指すV字型ガス出口開口の先端を有するV字型ガス出口開口の半径方向内側に、液体抽出開口が配置されることを特徴とする請求項ないしのいずれかに記載の液浸リソグラフィ装置。
  8. 前記液体ハンドリング構造が、前記空間の半径方向外側に配置されるとともに、加圧源からの気流を前記対向面の法線に対して鋭角に該対向面に向けて流すように構成された、閉鎖図形の形態の連続ガス出口開口を備えることを特徴とする請求項ないしのいずれかに記載の液浸リソグラフィ装置。
  9. テーブル、テーブルによって支持される基板、またはテーブルと基板の両方の対向面と投影系との間の空間に、閉じ込め構造を用いて液体を閉じ込め、
    前記投影系に対して前記対向面を走査方向に移動させ、
    前記空間の半径方向外側に配置され、加圧源からの気流を前記対向面の法線に対して鋭角に該対向面に向けて流すように構成された複数の細長いガス出口開口を備える液滴コントローラを用いて、液滴コントローラの半径方向内側から液滴コントローラの半径方向外側に液滴を通過させ、液滴コントローラの半径方向外側から液滴コントローラの半径方向内側への液滴の通過を防止することによって、液浸液の液滴を操作することを含む、リソグラフィ装置を用いたデバイスの製造方法。
  10. テーブル、テーブルによって支持される基板、またはテーブルと基板の両方の対向面と投影系との間の空間に、閉じ込め構造を用いて液体を閉じ込め、
    前記投影系に対して前記対向面を走査方向に移動させ、
    前記空間の半径方向外側の複数の細長いガス出口開口を通して、加圧源からの気流を前記対向面の法線に対して鋭角に該対向面に向けて流すことを含み、
    前記対向面の走査方向から前記複数の細長いガス出口開口を見たとき、および/または前記走査方向に直交する方向から前記複数の細長いガス出口開口を見たとき、前記細長いガス出口開口の隣接する組が重なり合うように配置されていることを特徴とする、リソグラフィ装置を用いたデバイスの製造方法。
  11. テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造であって、
    前記空間の半径方向外側に配置され、加圧源からの気流を前記対向面の法線に対して鋭角に該対向面に向けて流すように構成された複数の細長いガス出口開口を備える液滴コントローラであって、液滴コントローラの半径方向内側から液滴コントローラの半径方向外側に液浸液の液滴を通過させ、液滴コントローラの半径方向外側から液滴コントローラの半径方向内側への液滴の通過を防止する液滴コントローラを備えることを特徴とする、液体ハンドリング構造。
  12. テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造であって、
    加圧源からの気流を前記対向面の法線に対して鋭角に該対向面に向けて流すように構成された、前記空間の半径方向外側の複数の細長いガス出口開口を備え、
    前記対向面の走査方向から前記複数の細長いガス出口開口を見たとき、および/または前記走査方向と直交する方向から前記複数の細長いガス出口開口を見たとき、前記細長いガス出口開口の隣接する組が重なり合うように配置されていることを特徴とする、液体ハンドリング構造。
  13. テーブル、テーブルによって支持される基板、またはテーブルと基板の両方を含む対向面と投影系との間の空間に液浸液を供給して閉じ込めるように構成された液体ハンドリング構造であって、
    加圧源からの気流を前記対向面の法線に対して鋭角に該対向面に向けて流すように構成された複数の細長いガス出口開口と、前記対向面の走査方向および/またはステップ方向に対して、隣接する細長いガス出口開口の間の隙間とそれぞれ整列された複数の液体抽出開口と、を有する、前記空間の半径方向外側の液滴コントローラを備えることを特徴とする、液体ハンドリング構造。
JP2011039323A 2010-03-04 2011-02-25 リソグラフィ装置およびリソグラフィ装置を用いたデバイス製造方法 Active JP5260693B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US31043210P 2010-03-04 2010-03-04
US61/310,432 2010-03-04

Publications (2)

Publication Number Publication Date
JP2011187954A JP2011187954A (ja) 2011-09-22
JP5260693B2 true JP5260693B2 (ja) 2013-08-14

Family

ID=44531066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011039323A Active JP5260693B2 (ja) 2010-03-04 2011-02-25 リソグラフィ装置およびリソグラフィ装置を用いたデバイス製造方法

Country Status (6)

Country Link
US (1) US8902400B2 (ja)
JP (1) JP5260693B2 (ja)
KR (1) KR101220836B1 (ja)
CN (1) CN102193328B (ja)
NL (1) NL2006076A (ja)
TW (1) TWI443477B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2131241B1 (en) * 2008-05-08 2019-07-31 ASML Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US10504126B2 (en) 2009-01-21 2019-12-10 Truaxis, Llc System and method of obtaining merchant sales information for marketing or sales teams
US20110246292A1 (en) * 2009-01-21 2011-10-06 Billshrink, Inc. System and method for providing availability of alternative service plans associated with a financial account statement
US10594870B2 (en) 2009-01-21 2020-03-17 Truaxis, Llc System and method for matching a savings opportunity using census data
US8566197B2 (en) 2009-01-21 2013-10-22 Truaxis, Inc. System and method for providing socially enabled rewards through a user financial instrument
US8600857B2 (en) 2009-01-21 2013-12-03 Truaxis, Inc. System and method for providing a savings opportunity in association with a financial account
EP2381310B1 (en) 2010-04-22 2015-05-06 ASML Netherlands BV Fluid handling structure and lithographic apparatus
NL2008979A (en) 2011-07-11 2013-01-14 Asml Netherlands Bv A fluid handling structure, a lithographic apparatus and a device manufacturing method.
KR20230048456A (ko) * 2016-01-13 2023-04-11 에이에스엠엘 네델란즈 비.브이. 유체 핸들링 구조체 및 리소그래피 장치
CN110088686B (zh) * 2016-12-14 2021-11-16 Asml荷兰有限公司 光刻设备及器件制造方法
US10707175B2 (en) * 2018-05-22 2020-07-07 Globalfoundries Inc. Asymmetric overlay mark for overlay measurement
US10948830B1 (en) 2019-12-23 2021-03-16 Waymo Llc Systems and methods for lithography
CN112684667B (zh) * 2020-12-25 2023-09-12 浙江启尔机电技术有限公司 一种光刻方法
WO2024175287A1 (en) * 2023-02-21 2024-08-29 Asml Netherlands B.V. Fluid handling system and method in which defects due to liquid left on a substrate can be reduced and lithographic apparatus comprising the fluid handling system

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4509852A (en) 1980-10-06 1985-04-09 Werner Tabarelli Apparatus for the photolithographic manufacture of integrated circuit elements
AU2747999A (en) 1998-03-26 1999-10-18 Nikon Corporation Projection exposure method and system
SG121822A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
EP1420300B1 (en) 2002-11-12 2015-07-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
SG121818A1 (en) 2002-11-12 2006-05-26 Asml Netherlands Bv Lithographic apparatus and device manufacturing method
US7372541B2 (en) * 2002-11-12 2008-05-13 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1498778A1 (en) * 2003-06-27 2005-01-19 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
US7394521B2 (en) 2003-12-23 2008-07-01 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7701550B2 (en) 2004-08-19 2010-04-20 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US7397533B2 (en) 2004-12-07 2008-07-08 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
JP4262252B2 (ja) * 2005-03-02 2009-05-13 キヤノン株式会社 露光装置
US9477158B2 (en) 2006-04-14 2016-10-25 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8144305B2 (en) 2006-05-18 2012-03-27 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
US8634053B2 (en) * 2006-12-07 2014-01-21 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
NL1035757A1 (nl) 2007-08-02 2009-02-03 Asml Netherlands Bv Lithographic apparatus and device manufacturing method.
JP2009188241A (ja) * 2008-02-07 2009-08-20 Toshiba Corp 液浸露光装置及び液浸露光方法
NL1036715A1 (nl) * 2008-04-16 2009-10-19 Asml Netherlands Bv Lithographic apparatus.
EP2131241B1 (en) 2008-05-08 2019-07-31 ASML Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
US8421993B2 (en) * 2008-05-08 2013-04-16 Asml Netherlands B.V. Fluid handling structure, lithographic apparatus and device manufacturing method
ATE548679T1 (de) 2008-05-08 2012-03-15 Asml Netherlands Bv Lithografische immersionsvorrichtung, trocknungsvorrichtung, immersionsmetrologievorrichtung und verfahren zur herstellung einer vorrichtung
NL2003225A1 (nl) * 2008-07-25 2010-01-26 Asml Netherlands Bv Fluid handling structure, lithographic apparatus and device manufacturing method.
JP2011134776A (ja) * 2009-12-22 2011-07-07 Elpida Memory Inc 半導体装置の製造方法、及び半導体装置の製造装置

Also Published As

Publication number Publication date
TWI443477B (zh) 2014-07-01
TW201137540A (en) 2011-11-01
US20110216292A1 (en) 2011-09-08
JP2011187954A (ja) 2011-09-22
KR101220836B1 (ko) 2013-01-21
NL2006076A (en) 2011-09-06
CN102193328B (zh) 2014-04-09
CN102193328A (zh) 2011-09-21
US8902400B2 (en) 2014-12-02
KR20110100586A (ko) 2011-09-14

Similar Documents

Publication Publication Date Title
JP5260693B2 (ja) リソグラフィ装置およびリソグラフィ装置を用いたデバイス製造方法
JP5661064B2 (ja) 流体ハンドリング構造、リソグラフィ装置およびデバイス製造方法
JP4679371B2 (ja) リソグラフィ装置およびデバイス製造方法
JP5437761B2 (ja) リソグラフィ装置及びデバイス製造方法
JP4903835B2 (ja) 流体ハンドリング構造、リソグラフィ装置及びデバイス製造方法
KR101317737B1 (ko) 유체 핸들링 구조체, 리소그래피 장치 및 디바이스 제조 방법
JP5063641B2 (ja) 液浸リソグラフィ装置、乾燥デバイス、液浸メトロロジー装置及びデバイス製造方法
US20180101102A1 (en) Fluid handling structure, lithographic apparatus and device manufacturing method
JP2013232673A (ja) リソグラフィ装置およびデバイス製造方法
KR102053155B1 (ko) 유체 핸들링 구조체, 리소그래피 장치 및 디바이스 제조 방법
JP5065432B2 (ja) 流体ハンドリングデバイス、液浸リソグラフィ装置及びデバイス製造方法
JP2011171733A (ja) 基板テーブル、リソグラフィ装置、及びリソグラフィ装置を使用してデバイスを製造するための方法
JP2007288185A (ja) リソグラフィ装置およびデバイス製造方法
JP4958930B2 (ja) 液浸リソグラフィ装置及びデバイス製造方法
JP2011151397A (ja) リソグラフィ装置およびデバイス製造方法
JP5021056B2 (ja) リソグラフィ装置、該装置を制御する方法及びリソグラフィ装置を用いてデバイスを製造する方法
JP5508336B2 (ja) 流体ハンドリング構造、リソグラフィ装置およびデバイス製造方法
JP5503938B2 (ja) 液浸リソグラフィ装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260693

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250