JP5251630B2 - 内燃機関の可変動弁装置 - Google Patents

内燃機関の可変動弁装置 Download PDF

Info

Publication number
JP5251630B2
JP5251630B2 JP2009060102A JP2009060102A JP5251630B2 JP 5251630 B2 JP5251630 B2 JP 5251630B2 JP 2009060102 A JP2009060102 A JP 2009060102A JP 2009060102 A JP2009060102 A JP 2009060102A JP 5251630 B2 JP5251630 B2 JP 5251630B2
Authority
JP
Japan
Prior art keywords
lift
operating angle
valve
intake
control shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009060102A
Other languages
English (en)
Other versions
JP2010209894A (ja
Inventor
俊一 青山
徹 深見
信一 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009060102A priority Critical patent/JP5251630B2/ja
Publication of JP2010209894A publication Critical patent/JP2010209894A/ja
Application granted granted Critical
Publication of JP5251630B2 publication Critical patent/JP5251630B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Valve Device For Special Equipments (AREA)

Description

本発明は内燃機関の可変動弁装置に関する。
従来の動弁装置として、吸気弁及び排気弁をそれぞれ専用のカム軸で独立に駆動するものがある。(例えば、特許文献1参照)。
特開2008−157088号公報
しかしながら、前述した従来の動弁装置は、カム軸が2本となり、クランク軸の回転をカム軸に伝えるためのチェーン等の配置スペースが、カム軸が1本の場合と比較して大きくなり、シリンダヘッドが大型化するという問題点があった。また、吸気弁及び排気弁のバルブタイミングを制御する場合には、2本のカム軸をそれぞれ独立に制御しなければならず、制御が複雑化するという問題点があった。
本発明はこのような従来の問題点に着目してなされたものであり、シリンダヘッドの小型化を図りつつ、吸気弁及び排気弁のバルブタイミングの制御を単純化することを目的とする。
本発明は、以下のような解決手段によって前記課題を解決する。なお、理解を容易にするために本発明の実施形態に対応する符号を付するが、これに限定されるものではない。
本発明は、内燃機関(100)の吸気弁(125)及び排気弁(126)のリフト・作動角を連続的に変更可能な可変動弁装置(10)であって、第1偏心カム(13)及び第2偏心カム(23)が設けられ、内燃機関(100)のクランク軸(114)に連動して回転する駆動軸(11)と、駆動軸(11)に平行に設けられる回転可能な第1制御軸(15)と、揺動中心が第1制御軸(15)の軸心に対して偏心するように、その第1制御軸(15)に揺動自在に支持される第1ロッカアーム(16)と、第1偏心カム(13)に回転自在に支持されるともに第1ロッカアーム(16)に連結されて、その第1ロッカアーム(16)を揺動させる第1リンク(14)と、第1ロッカアーム(14)に連結される第2リンク(17)と、駆動軸(11)に回転自在に支持されるとともに、第2リンク(17)に連結されて揺動し、吸気弁(125)及び排気弁(126)の一方を開閉する第1揺動カム(12)と、駆動軸(11)に平行に設けられる回転可能な第2制御軸(25)と、揺動中心が第2制御軸(25)の軸心に対して偏心するように、その第2制御軸(25)に揺動自在に支持される第2ロッカアーム(27)と、第2偏心カム(23)に回転自在に支持されるとともに第2ロッカアーム(27)に連結され、その第2ロッカアーム(27)を揺動させる第3リンク(24)と、第2ロッカアーム(27)に連結される第4リンク(28)と、駆動軸(11)に平行に設けられた支持軸(21)に回転自在に支持されるとともに、第4リンク(28)に連結されて揺動し、吸気弁(125)及び排気弁(126)の他方を開閉する第2揺動カム(22)と、第1制御軸(15)及び第2制御軸(25)の一方の回転を他方に伝達する伝達手段(29,30,31)と、第1制御軸(15)及び第2制御軸(25)の一方を所定の回転範囲内で回転させるアクチュエータ(18)と、を備えることを特徴とする。
本発明によれば、クランク軸によって駆動される軸を駆動軸のみとし、この駆動軸の回転運動を複数のリンクを介して揺動運動に変換して吸気弁及び排気弁のそれぞれを駆動させた。これにより、吸気カム軸と、排気カム軸の2本をクランク軸によって駆動する場合と比べて、シリンダヘッドの小型化を図ることができる。
また、第1制御軸及び第2制御軸のいずれか一方を制御するだけで、駆動軸の軸心に対する第1ロッカアームの揺動中心の相対位置、及び、駆動軸の軸心に対する第2ロッカアームの揺動中心の相対位置を同時に変化させて吸気弁及び排気弁のバルブタイミングを変更することができる。つまり、第1制御軸及び第2制御軸のいずれか一方を制御するだけで吸気弁及び排気弁のバルブタイミングの制御が可能となり、吸気弁及び排気弁のバルブタイミングの制御を単純化できる。
エンジンの概略構成図である。 可変動弁機構の斜視図である。 吸気リフト・作動角可変機構を駆動軸方向から見たときの図である。 排気リフト・作動角可変機構を駆動軸方向から見たときの図である。 吸気弁のフルリフト(最大作動角)時及び(最小作動角)時における吸気揺動カムの最小揺動時及び最大揺動時の位置を示す図である。 図5(A)〜(D)の骨組みを抜き出して模式的に表した図である。 吸気リフト・作動角可変機構の骨組みを模式的に表した図である。 最小作動角時及び最大作動角時の吸気リフト・作動角可変機構の骨組みを模式的に表した図である。 支点間距離Dが相違する2つの可変動弁機構の骨組みを模式的に表した図である。 吸気弁のバルブリフト特性を示した図である。 排気弁の最小作動角時及び最大作動角時における排気揺動カムの最大揺動時の位置を示す図であり、関連部品の骨組みを抜き出した図である。 本実施形態による吸気弁可変動弁機構の制御について説明する図である。 本実施形態による吸気弁可変動弁機構の制御について説明する図である。 排気弁のバルブリフト特性を示した図である。 他の実施形態による排気弁の最小作動角時及び最大作動角時における排気揺動カムの最大揺動時の位置を示す図であり、関連部品の骨組みを抜き出した図である。
以下、図面等を参照して本発明の実施形態について説明する。
図1は、本発明の一実施形態によるエンジンの概略構成図である。
エンジン100は、シリンダブロック110と、シリンダブロック110の頂部を覆うシリンダヘッド120と、コントローラ130と、を備える。
シリンダブロック110には、複数のシリンダ111が形成される。シリンダ111には、ピストン112が摺動自在に嵌合する。ピストン112は、コンロッド113によってクランク軸114に連結される。
シリンダヘッド120には、燃焼室121の頂壁に開口する吸気通路122及び排気通路123の一部が形成され、燃焼室121の頂壁中心に点火栓124が設けられる。また、シリンダヘッド120には、吸気通路122の開口を開閉する一対の吸気弁125と、排気通路123の開口を開閉する一対の排気弁126とが設けられる。さらに、シリンダヘッド120には、吸気弁125及び排気弁126の開閉時期を任意に時期に設定できる可変動弁機構10が設けられる。可変動弁機構10の構成については後述する。
コントローラ130は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。
コントローラ130には、エンジン100の運転状態を検出する各種センサからの信号が入力される。
次に、本実施形態による可変動弁機構10について説明する。
発明の理解を容易にするため、まず簡単に本実施形態による可変動弁機構10の特徴について説明する。本実施形態による可変動弁機構10は、吸気弁125及び排気弁126のリフト・作動角を1つのアクチュエータのみで連続的に変化させることができるとともに、クランク軸114によって駆動されるシリンダヘッド上の軸の数を1本にした点に特徴がある。以下、本実施形態による可変動弁機構10について詳細に説明する。
図2は、本実施形態による可変動弁機構10の斜視図である。
図2に示すように、可変動弁機構10は、吸気リフト・作動角可変機構1と、排気リフト・作動角可変機構2と、位相可変機構4と、を備える。
吸気リフト・作動角可変機構1は、吸気弁125のリフト・作動角を連続的に変化させる。排気リフト・作動角可変機構2は、排気弁126のリフト・作動角を連続的に変化させる。位相可変機構4は、吸気弁125及び排気弁126のリフト中心角(吸気弁125及び排気弁126が最大リフトを迎えるクランク角度位置)の位相を連続的に進角又は遅角させる。
まず初めに、図2及び図3を参照して、吸気リフト・作動角可変機構1の構成について説明する。
吸気リフト・作動角可変機構1は、駆動軸11と、吸気揺動カム12と、吸気偏心カム13と、第1吸気リンク14と、第1制御軸15と、吸気ロッカアーム16と、第2吸気リンク17と、制御軸回転アクチュエータ18と、を備える。
駆動軸11は、吸気弁125の上方に気筒列方向に設けられ、シリンダヘッド120に回転自在に支持される。駆動軸11は、一端部に設けられたスプロケットを介して、図示しないベルトやチェーンでクランク軸114と連係され、クランク軸114に連動して軸周りに回転する。
吸気揺動カム12は、駆動軸11に回転自在に設けられる。一対の吸気揺動カム12は、互いに円筒等で同位相に固定される。一対の吸気揺動カム12を特に区別する必要があるときは、後述する第2吸気リンク17によって揺動される側を吸気揺動カム12−1といい、他方を吸気揺動カム12−2という。この吸気揺動カム12が駆動軸11を中心として所定の回転範囲で揺動(上下動)することによって、その下方に位置する吸気弁125のバルブリフタが押圧され、吸気弁125が下方にリフトする。
吸気偏心カム13は、円形であり、駆動軸11に圧入固定される。吸気偏心カム13の中心P4(図3参照)は駆動軸11の軸心P3(図3参照)から所定量だけ偏心している。吸気偏心カム13は、吸気揺動カム12から軸方向に所定の距離だけ離れた位置に固定される。
第1吸気リンク14は、円環状の基部14aと、基部の一部から突設された突出部14bとを備える。円環状の基部14aは、吸気偏心カム13に回転自在に嵌合する。突出部14bは、連結ピン51を介して後述する吸気ロッカアーム16の第1アーム16aに連結する。
第1制御軸15は、クランク形状をしており、駆動軸11の斜め上方に駆動軸11と略平行に設けられ、シリンダヘッド120に回転自在に支持される。第1制御軸15は、第1制御軸自身を支える主軸部15aと、その主軸部15aの軸心から所定量だけ偏心した偏心軸部15bと、主軸部15aと偏心軸部15bとを接続する接続部15cと、を備える。
吸気ロッカアーム16は、第1制御軸15の偏心軸部15bに回転自在に設けられる。吸気ロッカアーム16は、吸気揺動カム12のカムノーズ方向側に形成される第1アーム16aと、吸気揺動カム12のカムノーズ方向に突設される第2アーム16bと、を備える。
第2吸気リンク17は、吸気ロッカアーム16と吸気揺動カム12−1とを連結する。第2吸気リンク17は、両端部に二股状の軸受部を有する。第2吸気リンク17の一端部17aと吸気ロッカアーム16の第2アーム16aとが連結ピン52を介して連結する。第2吸気リンク17の他端部17bと吸気揺動カム12−1のカムノーズとが連結ピン53を介して連結する。
制御軸回転アクチュエータ18は、第1制御軸15の一端部に設けられ、第1制御軸15の主軸部15aを所定回転角度範囲内で回転させる。制御軸回転アクチュエータ18は、コントローラ130からの制御信号に基づいて制御される。
図3は、吸気リフト・作動角可変機構1を駆動軸方向から見たときの図である。
図3に示すように、吸気揺動カム12には、基円面12aと、基円面12aからカムノーズの先端縁側に円弧状に延びるカム面12bとが形成される。基円面12aとカム面12bとが、吸気揺動カム12の揺動位置に応じてバルブリフタに当接する。
なお、図3において、P1は、第1制御軸15の偏心軸部15bの軸心である。P2は、第1制御軸15の主軸部15aの軸心である。P3は、駆動軸11の軸心である。P4は、吸気偏心カム13の中心、すなわち、吸気ロッカアーム16の揺動中心である。P5は、第1吸気リンク14と吸気ロッカアーム16の第1アーム16aとを連結する連結ピン51の軸心である。P6は、吸気ロッカアーム16の第2アーム16bと第2吸気リンク17の一端部とを連結する連結ピン52の軸心である。P7は、第2吸気リンク17と吸気揺動カム12−1とを連結する連結ピン53の軸心である。
続いて、図2及び図4を参照して、排気リフト・作動角可変機構2の構成について説明する。
まず、図2を参照して説明する。排気リフト・作動角可変機構2は、駆動軸11と、第1制御軸15と、支持軸21と、排気揺動カム22と、第1排気偏心カム23と、第1排気リンク24と、第2制御軸25と、第2排気偏心カム26と、排気ロッカアーム27と、第2排気リンク28と、第1ディスク29と、第2ディスク30と、連動リンク31と、を備える。
駆動軸11及び第1制御軸15については、前述したので説明を省略する。
支持軸21は、駆動軸11と平行に設けられ、シリンダヘッド120に支持される。
排気揺動カム22は、支持軸21に回転自在に設けられる。一対の排気揺動カム22は、互いに円筒等で同位相に固定される。一対の排気揺動カム22を特に区別する必要があるときは、後述する第2排気リンク28によって揺動される側を排気揺動カム22−1といい、他方の排気揺動カム22−2という。
第1排気偏心カム23は、円形であり、駆動軸11に圧入固定される。第1排気偏心カム23の中心P13(図4参照)は、駆動軸11の軸心P2から所定量だけ偏心している。第1排気偏心カム23は、一対の吸気揺動カム12を挟むように吸気偏心カム13の反対側に設けられ、吸気揺動カム12から軸方向に所定の距離だけ離れた位置に固定される。
第1排気リンク24は、円環状の基部24aと、基部24aの一部から突設された突出部24bとを備える。円環状の基部24aは、第1排気偏心カム23の外周に回転自在に嵌合する。突出部24bは、連結ピン54を介して後述する排気ロッカアーム27の第1アーム27bに連結する。
第2制御軸25は、駆動軸11の斜め上方、かつ、駆動軸11に対して第1制御軸15の反対側に設けられる。第2制御軸25は、駆動軸11と略平行に設けられ、シリンダヘッド120に回転自在に支持される。
第2排気偏心カム26は、円形であり、第2制御軸25に圧入固定される。第2排気偏心カム26の中心P9(図4参照)は、第2制御軸25の軸心P8(図4参照)から所定量だけ偏心している。
排気ロッカアーム27は、中央に形成される基部27aと、基部27aから左右に延びる第1アーム27b及び第2アーム27cと、を備える。中央部に形成される基部27aは、第2排気偏心カム26の外周面に回転自在に嵌合する。第1アーム27bは、連結ピン54を介して第1排気リンク24の突出部24bと連結する。第2アーム27cは、連結ピン55を介して後述する第2排気リンク28に連結される。
第2排気リンク28は、排気ロッカアーム27と排気揺動カム22−1とを連結する。第2排気リンク28は、両端部に二股状の軸受部を有する。第2排気リンク28の一端部28aと排気ロッカアーム27の第2アーム27bとが連結ピン55を介して連結する。第2排気リンク28の他端部28bと排気揺動カム22−1のカムノーズとが連結ピン56を介して連結する。
第1ディスク29は、円形であり、第1制御軸15に圧入固定される。第1ディスク29の中心P14(図4参照)と第1制御軸15の軸心P2とは一致している。
第2ディスク30は、円形であり、第2制御軸25に圧入固定される。第2ディスク30の中心P15(図4参照)と第2制御軸25の軸心P8(図4参照)とは一致している。第2ディスク30の径は、第1ディスク29の径よりも大きい。
連動リンク31は、第1ディスク29と第2ディスク30とを機械的に連結する。これにより、第1制御軸15が回転すると、連動リンク31を介して第2制御軸25も回転する。第2ディスク30の径は第1ディスク29よりも大きいので、第2制御軸25の回転角度は、第1制御軸15の回転角度よりも小さくなる。
図4は、排気リフト・作動角可変機構2を駆動軸方向から見たときの図である。
図4に示すように、排気揺動カム22には、基円面22aと、基円面22aからカムノーズの先端縁側に円弧状に延びるカム面22bとが形成される。基円面22aとカム面22bとが、排気揺動カム22の揺動位置に応じてバルブリフタ126aに当接する。
図4において、P8は、第2制御軸25の軸心である。P9は、第2排気偏心カム26の中心、すなわち、排気ロッカアーム27の揺動中心である。P10は、支持軸21の軸心である。P11は、排気ロッカアーム27の第2アームと第2排気リンク28とを連結する連結ピン55の軸心である。P12は、第2排気リンク28と排気揺動カム22とを連結する連結ピン56の軸心である。P13は、第1排気偏心カム23の中心である。P14は、第1ディスク29の中心である。P15は、支持軸21の軸心P10と同心の第2ディスク30の中心である。
最後に、図2を参照して位相可変機構4の構成について説明する。
位相可変機構4は、位相角制御アクチュエータ41と、油圧装置42と、を備える。
位相角制御アクチュエータ41は、スプロケット43と駆動軸11とを所定の角度範囲内において相対的に回転させる。
油圧装置42は、コントローラ130からの制御信号に基づいて、位相角制御アクチュエータ41を制御する。
油圧装置42による位相角制御アクチュエータ41への油圧制御によって、スプロケット43と駆動軸11とが相対的に回転し、吸気弁125及び排気弁126のリフト中心角が同じ角度だけ進角又は遅角する。
次に、吸気リフト・作動角可変機構1の作用について図2、図5〜図10を参照して説明する。
まず図2を参照して説明する。
吸気リフト・作動角可変機構1は図2のように構成され、駆動軸11がクランク軸11に連動して回転すると、吸気偏心カム13及びその外周に回転自在に嵌合している第1吸気リンク14を介して、吸気ロッカアーム16が偏心軸部15bの軸心P1を中心として揺動する。吸気ロッカアーム16の揺動は、第2吸気リンク17を介して吸気揺動カム12へ伝達され、吸気揺動カム12が所定角度範囲内で揺動する。この吸気揺動カム12が揺動、すなわち上下動することで、バルブリフタ125aが押圧され、吸気弁125が下方にリフトする。
ここで、制御軸回転アクチュエータ18によって、第1制御軸15を所定の回転角度範囲内で回転させると、吸気ロッカアーム16の揺動支点となる偏心軸部15bの軸心P1も回転変位する。そうすると、エンジン本体に対する吸気ロッカアーム16の支持位置が変化する。これにより、吸気揺動カム12の初期揺動位置が変化し、吸気揺動カム12とバルブリフタとの初期接触位置が変化する。その結果、クランク軸一回転あたりの吸気揺動カム12の揺動角は常に一定なので、以下で説明する図5及び図6のように最大リフト量(作動角)が変化する。
図5(A)及び図5(B)は、吸気弁125の最大作動角(フルリフト)時における吸気揺動カム12の最小揺動時及び最大揺動時の位置を示す図である。図5(C)及び図5(D)は、吸気弁125の最小作動角(ゼロリフト)時における吸気揺動カム12の最小揺動時及び最大揺動時の位置を示す図である。
図6は、発明の理解を容易にするために、図5(A)〜(D)から軸心P1〜P7と、各軸心を結ぶ直線と、を抜き出した図である。
図5(A)(B)又は図6(A)(B)に示すように、偏心軸部15bの軸心P1が、主軸部15aの軸心P2の上方に位置しているときは、後述する最小作動角よりも吸気ロッカアーム16が全体として上方へ位置し、それにより、第2吸気リンク17が起きた状態となる。
そのため、第2吸気リンク17と連結する吸気揺動カム12のカムノーズがゼロリフト時と比べて下方へ押し下げられる。その結果、カム面12bが最小作動角よりもバルブリフタ125aに近付く方向に傾く(図5(A)、図6(A)参照)。
そうすると、吸気揺動カム12の初期位置は、駆動軸11の回転に伴って吸気揺動カム12が揺動した際に、バルブリフタ125aと接触する部位が基円面12aからカム面12bへと直ちに移行する。これにより、最小作動角よりも吸気弁125の最大リフト量が大きくなる(図5(B)、図6(B)参照)。その結果、吸気弁125の開時期から閉時期までのクランク角度区間、つまり吸気弁125の作動角も拡大する。
一方、図5(C)(D)又は図6(C)(D)に示すように、第1制御軸15を回転させて偏心軸部15bの軸心P1を主軸部15aの軸心P2の左下方に位置させると、吸気ロッカアーム16は全体として下方に位置し、それにより、第2吸気リンク17が最大作動角よりも寝た状態となる。
そのため、第2吸気リンク17と連結する吸気揺動カム12のカムノーズがフルリフト時と比べて上方に引き上げられる。その結果、カム面12bが最大作動角よりもバルブリフタ125aから離れる方向に傾く(図5(C)、図6(C)参照)。
そうすると、吸気揺動カム12の初期位置は、駆動軸11の回転に伴って吸気揺動カム12が揺動した際に、基円面12aが長くバルブリフタ125aに接触し続け、カム面12bがバルブリフタvに接触する期間が短くなる。これにより、最大作動角よりも吸気弁125の最大リフト量が小さくなる(図5(D)、図6(D)参照)。その結果、吸気弁125の作動角も縮小する。
図7は、吸気リフト・作動角可変機構1の軸心P1〜P7と各軸心を結ぶ直線とを抜き出した図である。図7において、破線は最小作動角を示し、実線は最大作動角を示す。
なお、以下では、偏心軸部15bの軸心P1と、駆動軸11の軸心P3と、を結ぶ線分を「線分P13」という。また、軸心P1と、軸心P3と、の距離を「支点間距離D」という。さらに、線分P13と、図中に点線で示した軸心P3を通る仮想線Lと、がなす角を「支点間角度θ」という。
図7に示すように、作動角を変化させるべく、第1制御軸15を所定の回転角度範囲内で回転させて、偏心軸部15bの軸心P1を、主軸部15aの軸心P2を中心とする円上を移動させると、支点間角度θが変化するとともに、支点間距離Dも変化する。
すなわち、本実施形態による吸気リフト・作動角可変機構1によれば、リフト・作動角を最小作動角から最大作動角へ変化させると、支点間角度θは徐々に増加してθminからθmaxへと変化する。
一方で、支点間距離Dは、最小作動角から中間作動角までは徐々に増加していき、DminからDmaxへと変化する。そして、中間作動角から最大作動角までは徐々に減少していき、DmaxからDminへと変化して最小作動角時の支点間距離と同じ長さに戻る。
以下では、図8を参照して、支点間距離Dを同じ長さに維持したまま支点間角度θを変化させることによって生じる作用を説明する。続いて、図9を参照して、支点間角度θを同じ角度に維持したまま支点間距離Dを変化させることによって生じる変化を説明する。
図8(A)は、最小作動角時を示した図である。図8(B)は、最大作動角時を示した図である。
図8(A)及び図8(B)に示すように、支点間距離Dを同じ長さに維持したまま支点間角度θをθminからθmaxへと変化させると(θmin<θmax)、軸心P1は、軸心P3を中心とする円周C1を下方から上方へと移動する。一方で、軸心P7は、軸心P3を中心とする円周C2を上方から下方へと移動する。つまり、吸気揺動カム12のカムノーズに連結された連結ピン53(軸心P7)の位置が下方に移動する。
そうすると、吸気揺動カム12のバルブリフタ125aとの初期接触位置が、吸気揺動カム12の基円面側からカム面側に移動する。その結果、吸気弁125の作動角が拡大する。
このように、支点間距離Dを同じ長さに維持したまま支点間角度θを大きくすると、吸気弁125の作動角は拡大する。
図9は、支点間距離Dが相違する2つの可変動弁機構の図である。図9(A)及び図9(B)の支点間角度θは同じであるが、図9(A)の支点間距離D1は、図9(B)の支点間距離D2より短い(D1<D2)。
図9(A)及び図9(B)に示すように、支点間距離Dを長くすると、支点間距離Dが短いときよりも偏心軸部15bの軸心P1が上方に位置する。そうすると、吸気ロッカアーム16の第1アーム16a(軸心P5)と、第2アーム16b(軸心P6)とが下方に位置することになる。
これにより、第2吸気リンク17と吸気揺動カム12のカムノーズとを連結する連結ピン53の軸心P7が相対的に下方に押し下げられるので、吸気揺動カム12のバルブリフタ125aとの初期接触位置が、吸気揺動カム12の基円面側からカム面側に移動する。その結果、吸気弁125の作動角が拡大する。
このように、支点間角度θを同じ角度に維持したまま支点間距離Dを長くすると、吸気弁125の作動角は拡大する。
このように、本実施形態による吸気リフト・作動角可変機構1は、支点間角度θと支点間距離Dとを変化させることによって、吸気弁125の作動角を変化させている。
図10は、吸気リフト・作動角可変機構1によるバルブリフト特性を示した図である。
図10に示すように、本実施形態による吸気リフト・作動角可変機構1によれば、作動角を最小作動角から最大作動角へと変化させていったときに、最小作動角から所定の作動角までは、従来通り作動角が大きくなるとともに吸気弁開時期(IVO)が進角する。しかし、所定の角度から最大作動角までは、作動角を大きくしつつ吸気弁開時期を遅角させることができる。
これは、作動角を最小作動角から最大作動角へと変化させたときに、支点間距離Dが、最小作動角から中間作動角までは徐々に増加していくが、中間作動角から最大作動角までは徐々に減少していくためである。
つまり、作動角を最小作動角から最大作動角へと変化させると、支点間角度θが増加することによって作動角が拡大するため、吸気弁開時期が進角する。また、最小作動角から中間作動角までは、支点間距離Dも長くなり、これによっても作動角が拡大するため、吸気弁開時期が進角する。
このように、最小作動角から中間作動角までは、支点間角度θと支点間距離Dとが、共に増加していくため、作動角が大きくなるとともに吸気弁開時期が進角する。
しかし、中間作動角から最大作動角までは、支点間角度θは増加していくものの、支点間距離Dは短くなっていく。そのため、支点間角度θの増加によって吸気弁開時期が進角する一方で、支点間距離Dの減少によってその分吸気弁開時期が遅角する。
したがって、中間作動角から最大作動角までは、作動角を大きくしつつ吸気弁開時期を遅角させることができる。そして、吸気弁のリフト・作動角が拡大するときに、吸気弁のリフト作動角中心は遅角側へ移動するとともに、リフト・作動角の拡大に対するリフト作動角中心の遅角側への移動量は、リフト・作動角が所定のリフト・作動角より小さい側の範囲に比べ、リフト・作動角が所定のリフト・作動角より大きい側の範囲で増大する開時期が遅角する。このように、本実施形態による吸気リフト・作動角可変機構1は、最大作動角時に吸気弁開時期が遅角するバルブ特性となっている。
次に、排気リフト・作動角可変機構2の作用について図2、図11、図12を参照して説明する。
まず図2を参照して説明する。
排気リフト・作動角可変機構2は図2のように構成され、駆動軸11がクランク軸114に連動して回転すると、第1排気偏心カム23及びその外周に回転自在に嵌合している第1排気リンク24を介して、排気ロッカアーム27が第2排気偏心カム26の中心P9を揺動支点として揺動する。排気ロッカアーム27の揺動は、第2排気リンク28を介して排気揺動カム22へ伝達され、排気揺動カム22が所定角度範囲内で揺動する。この排気揺動カム22が揺動、すなわち上下動することで、バルブリフタ126aが押圧され、排気弁126が下方にリフトする。
ここで、制御軸回転アクチュエータ18によって、第1制御軸15を所定の回転角度範囲内で回転させると、第1制御軸15に固定支持されている第1ディスク29も回転する。第1ディスク29が回転すると、連動リンク31によってその回転が第2ディスク30に伝わり、第2ディスク30を介して第2制御軸25が回転させられる。これにより、排気ロッカアーム27の揺動支点となる第2排気偏心カム26の中心P9も回転変位する。そうすると、エンジン本体に対する排気ロッカアーム27の支持位置が変化する。これにより、排気揺動カム22の初期揺動位置が変化し、排気揺動カム22とバルブリフタとの初期接触位置が変化する。その結果、クランク軸一回転あたりの排気揺動カム22の揺動角は常に一定なので、以下で説明する図11のように最大リフト量(作動角)が変化する。
図11は、排気弁126の最小作動角時及び最大作動角時における排気揺動カム22の最大揺動時の位置を示す図であり、関連部品の骨組みを抜き出した図である。図11において、実線が最小作動角時を示し、破線が最大作動角時を示す。
図11に実線で示すように、本実施形態では、偏心軸部15bの軸心P1を主軸部15aの軸心P2の左下方に位置させて、吸気弁125を最小作動角にしているときに、線分P89が線分P810と平行になるように構成している。また、第2排気偏心カム26の中心P9が、第2制御軸25の軸心P8よりも下方に位置するように構成している。
破線で示すように、吸気弁125を最大作動角にするために第1制御軸15を図中時計回りに回転させると(矢印A)、それに応じて第1ディスク29も時計回りに回転する(矢印B)。そうすると、連動リンク31を介して第2ディスク30が反時計回りに回転し(矢印C)、それに応じて第2制御軸25も反時計回りに回転する(矢印D)。
前述したように、第2ディスク30の径は、第1ディスク29の経よりも大きいので、第1制御軸15の回転角度に比べて、第2制御軸25の回転角度は小さくなる。言い換えると、第1制御軸15の軸心から偏心して設けられた、第1ディスク29上の第1偏心ピン29pと、第2制御軸25の軸心から偏心して設けられた、第2ディスク30上の第2偏心ピン30pとを、第1制御軸15及び第2制御軸25の一方の回転を他方に伝達する連動リンク31を介して連結するとともに、第2偏心ピン30pの第2制御軸25の軸心からの偏心量を、第1偏心ピン29pの第1制御軸15の軸心からの偏心量よりも大きくすることにより、第2制御軸25の回転角度を第1制御軸15の回転角度よりも小さくしている。そのため、排気弁126のリフト・作動角を最小作動角時と最大作動角時との間で、変化量が少なくなるようにすることができる。
また、第2排気偏心カム26の中心P9は第2制御軸25の軸心P8を中心とする円上Sを移動するが、本実施形態では最小作動角時に線分P89が線分P910と平行になるように設定している。そのため、最小作動角から最大作動角に変化させたときに、線分P910の距離(以下、「軸間距離」という)の変化は最初のうちは小さく、徐々に大きくなる。つまり、小作動角時のリフト・作動角の変化速度に比べて、大作動角時のリフト・作動角の変化速度を大きくすることができる。言い換えれば、吸気弁のリフト・作動角が大きいときの吸気弁のリフト・作動角の増加に対する排気弁のリフト・作動角の増加は、吸気弁のリフト・作動角が小さいときの吸気弁のリフト・作動角の増加に対する排気弁のリフト・作動角の増加に比べて大きい。
図12は、本実施形態による排気弁126のバルブリフト特性を示した図である。
図12に示すように、排気弁126のリフト・作動角は、中心角はそのままで、最小作動角から最大作動角へと変化する。また、前述したように、最小作動角時のリフト量と、最大作動角時のリフト量と、の変化は少なく、大作動角時のリフト・作動角の変化量が小作動角時よりも大きくなっている。
図13は、本実施形態による吸気弁125及び排気弁126のバルブリフト特性を示した図である。図13(A)は、吸気弁125及び排気弁126を最小作動角に制御しているときのバルブリフト特性を示し、図13(B)は、吸気弁125及び排気弁126を最大作動角に制御しているときのバルブリフト特性を示す。
本実施形態では、吸気弁125及び排気弁126のリフト・作動角の制御を制御軸回転アクチュエータ18のみで実施し、その制御を一元化した。それにもかかわらず、図13(A)及び図13(B)に示すように、排気弁126のリフト・作動角については、中心角が同一のままリフト量の変化を少量にすることができる。一方で、吸気弁125のリフト・作動角については、中心角を遅角させつつリフト量を大きく変化させることができる。
このように、吸気弁125及び排気弁126のリフト・作動角の制御を一元化することで、制御の単純化が図れる。これにより、リフト・作動角制御の信頼性及び速度を向上させることができる。
図14は、本実施形態による位相制御について説明する図である。図14(A)及び図14(B)は、それぞれ低回転低負荷時における位相制御前後のバルブリフト特性を示す。図14(A)は位相制御前を示し、図14(B)は位相制御後を示す。また、図14(B)の破線は、図14(A)で示した位相制御前のバルブリフト特性を示す。
本実施形態では、吸気弁125及び排気弁126の位相制御を駆動軸11に設けられた位相角制御アクチュエータ18のみで実施し、その制御を一元化している。したがって、位相角制御アクチュエータ18によってスプロケット43と駆動軸11とを相対的に回転させると、吸気弁125及び排気弁126のリフト中心角が同じ角度だけ進角又は遅角する。
図14(B)に示すように、位相制御を実施して低回転低負荷時に吸気弁125及び排気弁126のリフト中心角を遅角させ、吸気弁開時期を上死点より遅角側にすることで、吸入行程初期に内部還流を効果的に実施できる。つまり、高温の排気を吸気側に吹き返させずに、筒内に吸い戻して内部還流を実施できるので、吸気側に吹き返した排気を再び筒内に吸い戻す場合と比べて混合気温度を上昇させることができる。
以上説明した本実施形態によれば、吸気弁125及び排気弁126のリフト・作動角の制御を制御軸回転アクチュエータ18のみで実施し、その制御を一元化した。そのため、制御軸回転アクチュエータ18のみを制御するだけで、駆動軸11の軸心P3に対する吸気ロッカアーム16の揺動中心P1の相対位置、及び、駆動軸11の軸心P3に対する排気ロッカアーム27の揺動中心P9の相対位置を同時に変化させて吸気弁125及び排気弁126のリフト・作動角を変更することができる。
これにより、吸気弁125及び排気弁126のリフト・作動角を個別に制御する場合と比べて制御の単純化が図れ、リフト・作動角制御の信頼性及び速度を向上させることができる。
このとき、第2ディスク30の径を第1ディスク29の径よりも大きくして、第2制御軸25の回転角度を、第1制御軸15の回転角度よりも小さくなるようにした。これにより、排気弁126のリフト・作動角を最小作動角時と最大作動角時との間で、変化量が少なくなるようにすることができる。また、リフト・作動角を最小作動角から最大作動角に変化させる過程において、軸間距離の変化速度を小作動角側で小さくなるように、排気リフト・作動角可変機構2のリンク構成を調節した。これにより、小作動角時のリフト・作動角の変化速度に比べて、大作動角時のリフト・作動角の変化速度を大きくすることができる。
また、ベルトやチェーンを介してクランク軸114によって駆動される軸を駆動軸11のみとした。これにより、吸気カム軸と、排気カム軸の2本をクランク軸114によって駆動する場合と比べて、シリンダヘッド120の小型化を図ることができる。
なお、本発明は上記の実施形態に限定されずに、その技術的な思想の範囲内において種々の変更がなしうることは明白である。
例えば、図15に示すように、第2ディスク30の径を第1ディスク29の径と略同等にすれば、第2制御軸25の回転角度も第1制御軸15の回転角度と略同等となるので、再送作動角から最大作動角にしたときの排気弁126のリフト・作動角の変化量を大きくすることができる。
また、最小作動角時に線分P89と線分P910との角度を大きくしておくことで、最小作動角から最大作動角に変化させたときの軸間距離の変化を最初にうちから大きくすることができる。
さらに、第2制御軸25を制御軸回転アクチュエータ18によって回転させても良いし、第2制御軸25をクランク状としても良い。
10 可変動弁機構(可変動弁装置)
11 駆動軸
12 吸気揺動カム(第1揺動カム)
13 吸気偏心カム(第1偏心カム)
14 第1吸気リンク(第1リンク)
15 第1制御軸
16 吸気ロッカアーム(第1ロッカアーム)
17 第2吸気リンク(第2リンク)
18 制御軸回転アクチュエータ(アクチュエータ)
21 支持軸
22 排気揺動カム(第2揺動カム)
23 第1排気偏心カム(第2偏心カム)
24 第1排気リンク(第3リンク)
25 第2制御軸
27 排気ロッカアーム(第2ロッカアーム)
28 第2排気リンク(第4リンク)
29p 第1偏心ピン(伝達手段)
30p 第2偏心ピン(伝達手段)
31 連動リンク(伝達手段)
100 エンジン(内燃機関)
114 クランク軸

Claims (10)

  1. 内燃機関の吸気弁及び排気弁のリフト・作動角を連続的に変更可能な可変動弁装置であって、
    第1偏心カム及び第2偏心カムが設けられ、前記内燃機関のクランク軸に連動して回転する駆動軸と、
    前記駆動軸に平行に設けられる回転可能な第1制御軸と、
    揺動中心が前記第1制御軸の軸心に対して偏心するように、その第1制御軸に揺動自在に支持される第1ロッカアームと、
    前記第1偏心カムに回転自在に支持されるともに前記第1ロッカアームに連結されて、その第1ロッカアームを揺動させる第1リンクと、
    前記第1ロッカアームに連結される第2リンクと、
    前記駆動軸に回転自在に支持されるとともに、前記第2リンクに連結されて揺動し、前記吸気弁及び前記排気弁の一方を開閉する第1揺動カムと、
    前記駆動軸に平行に設けられる回転可能な第2制御軸と、
    揺動中心が前記第2制御軸の軸心に対して偏心するように、その第2制御軸に揺動自在に支持される第2ロッカアームと、
    前記第2偏心カムに回転自在に支持されるとともに前記第2ロッカアームに連結され、その第2ロッカアームを揺動させる第3リンクと、
    前記第2ロッカアームに連結される第4リンクと、
    前記駆動軸に平行に設けられた支持軸に回転自在に支持されるとともに、前記第4リンクに連結されて揺動し、前記吸気弁及び前記排気弁の他方を開閉する第2揺動カムと、
    前記第1制御軸及び第2制御軸の一方の回転を他方に伝達する伝達手段と、
    前記第1制御軸及び前記第2制御軸の一方を所定の回転範囲内で回転させるアクチュエータと、
    を備えることを特徴とする可変動弁装置。
  2. 前記伝達手段は、
    前記第1制御軸の軸心から偏心した第1偏心ピンと、
    前記第2制御軸の軸心から偏心した第2偏心ピンと、
    前記第1偏心ピンと前記第2偏心ピンとを連結して、前記第1制御軸及び前記第2制御軸の一方の回転を他方に伝達する連動リンクと、
    を備えることを特徴とする請求項1に記載の可変動弁装置。
  3. 前記第1揺動カムは前記吸気弁を開閉するとともに、前記第2揺動カムは前記排気弁を開閉し、
    前記第2偏心ピンの第2制御軸の軸心からの偏心量を、前記第1偏心ピンの第1制御軸の軸心からの偏心量よりも大きくすることで、前記第2制御軸の回転角度を前記第1制御軸の回転角度よりも小さくした
    ことを特徴とする請求項2に記載の可変動弁装置。
  4. 前記第1揺動カムは前記吸気弁を開閉するとともに、前記第2揺動カムは前記排気弁を開閉し、
    最小作動角時において、前記第2ロッカアームの揺動中心と前記第2制御軸の軸心とを結ぶ線と、前記第2ロッカアームの揺動中心と前記支持軸の軸心とを結ぶ線と、が略平行となるようにした
    ことを特徴とする請求項1から3までのいずれか1つに記載の可変動弁装置。
  5. 前記第1揺動カムは前記吸気弁を開閉するとともに、前記第2揺動カムは前記排気弁を開閉し、
    吸気弁のリフト・作動角が大きいときの吸気弁のリフト・作動角の増加に対する排気弁のリフト・作動角の増加は、吸気弁のリフト・作動角が小さいときの吸気弁のリフト・作動角の増加に対する排気弁のリフト・作動角の増加に比べて大きい
    ことを特徴とする請求項1から4までのいずれか1つに記載の内燃機関の可変動弁装置。
  6. 前記第1揺動カムは前記吸気弁を開閉するとともに、前記第2揺動カムは前記排気弁を開閉し、
    前記吸気弁のリフト・作動角の拡大に従って、前記吸気弁の開時期が遅角する
    ことを特徴とする請求項1から5までのいずれか1つに記載の内燃機関の可変動弁装置。
  7. 前記吸気弁のリフト・作動角の拡大に従って、前記駆動軸の中心と前記第1ロッカアームの揺動中心との間の距離が短くなることで、前記吸気弁のリフト・作動角の拡大に従って、前記吸気弁の開時期が遅角する
    ことを特徴とする請求項6に記載の内燃機関の可変動弁装置。
  8. 前記吸気弁のリフト・作動角が所定のリフト・作動角より大きくなったときに、リフト・作動角の拡大に従って前記吸気弁の開時期が遅角する
    ことを特徴とする請求項6又は7に記載の内燃機関の可変動弁装置。
  9. 前記第1揺動カムは前記吸気弁を開閉するとともに、前記第2揺動カムは前記排気弁を開閉し、
    前記吸気弁のリフト・作動角が拡大するときに、吸気弁のリフト作動角中心は遅角側へ移動するとともに、リフト・作動角の拡大に対するリフト作動角中心の遅角側への移動量は、リフト・作動角が所定のリフト・作動角より小さい側の範囲に比べ、リフト・作動角が所定のリフト・作動角より大きい側の範囲で増大する
    ことを特徴とする請求項1から8までのいずれか1つに記載の内燃機関の可変動弁装置。
  10. 前記内燃機関のクランク軸に対する前記駆動軸の相対位相角を変化させる位相可変機構を備える
    ことを特徴とする請求項1から9までのいずれか1つに記載の可変動弁装置。
JP2009060102A 2009-03-12 2009-03-12 内燃機関の可変動弁装置 Expired - Fee Related JP5251630B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009060102A JP5251630B2 (ja) 2009-03-12 2009-03-12 内燃機関の可変動弁装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009060102A JP5251630B2 (ja) 2009-03-12 2009-03-12 内燃機関の可変動弁装置

Publications (2)

Publication Number Publication Date
JP2010209894A JP2010209894A (ja) 2010-09-24
JP5251630B2 true JP5251630B2 (ja) 2013-07-31

Family

ID=42970302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009060102A Expired - Fee Related JP5251630B2 (ja) 2009-03-12 2009-03-12 内燃機関の可変動弁装置

Country Status (1)

Country Link
JP (1) JP5251630B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5380220B2 (ja) * 2009-09-17 2014-01-08 日立オートモティブシステムズ株式会社 内燃機関の可変動弁装置
JP6621078B2 (ja) * 2015-07-09 2019-12-18 株式会社NejiLaw 振動発生装置及び軸部材

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9703605D0 (en) * 1997-02-21 1997-04-09 T & N Technology Ltd Operating mechanisms for valves
JP2007239553A (ja) * 2006-03-07 2007-09-20 Nissan Motor Co Ltd 2ストロークエンジン
JP2008286145A (ja) * 2007-05-21 2008-11-27 Nissan Motor Co Ltd 内燃機関の可変動弁装置
KR101209332B1 (ko) * 2007-08-10 2012-12-06 닛산 지도우샤 가부시키가이샤 가변 밸브 장치 및 내연 기관

Also Published As

Publication number Publication date
JP2010209894A (ja) 2010-09-24

Similar Documents

Publication Publication Date Title
JP4571161B2 (ja) 内燃機関の可変動弁装置
KR101234651B1 (ko) 연속 가변 밸브 리프트 장치
JP2008075662A (ja) 内燃機関の可変動弁装置
JP4697011B2 (ja) 可変動弁機構
JP2007146733A (ja) 内燃機関の可変動弁装置
JP4135546B2 (ja) エンジンの可変動弁装置
JP5251630B2 (ja) 内燃機関の可変動弁装置
JP2010127158A (ja) 可変動弁機構
JP4126791B2 (ja) 内燃機関の可変動弁装置
JP3893205B2 (ja) 内燃機関の可変動弁装置
JP3907346B2 (ja) 内燃機関の動弁装置
JP2003343224A (ja) 内燃機関の可変動弁装置
JP2001227315A (ja) 内燃機関の可変動弁装置
JP2010236362A (ja) 可変動弁機構およびこれを用いた内燃機関
JP2010209893A (ja) 内燃機関の可変動弁装置及びその制御装置
JP2009041372A (ja) 内燃機関のバルブ制御装置
JP5626318B2 (ja) 可変動弁装置及び内燃機関
JP2000291419A (ja) 内燃機関の可変動弁装置
JP4871310B2 (ja) 内燃機関の可変動弁機構
JP2011127489A (ja) 内燃機関の可変動弁装置
JP4474065B2 (ja) 内燃機関の可変動弁装置
JP2007239495A (ja) エンジンの可変動弁装置
JP4367317B2 (ja) 内燃機関の可変動弁装置
JP5028356B2 (ja) 可変動弁機構
JP5298863B2 (ja) 内燃機関の動弁装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Ref document number: 5251630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees