JP5248896B2 - 走行作業車両 - Google Patents

走行作業車両 Download PDF

Info

Publication number
JP5248896B2
JP5248896B2 JP2008092577A JP2008092577A JP5248896B2 JP 5248896 B2 JP5248896 B2 JP 5248896B2 JP 2008092577 A JP2008092577 A JP 2008092577A JP 2008092577 A JP2008092577 A JP 2008092577A JP 5248896 B2 JP5248896 B2 JP 5248896B2
Authority
JP
Japan
Prior art keywords
generator motor
engine
planetary gear
motor
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008092577A
Other languages
English (en)
Other versions
JP2009241830A (ja
Inventor
貞一郎 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP2008092577A priority Critical patent/JP5248896B2/ja
Publication of JP2009241830A publication Critical patent/JP2009241830A/ja
Application granted granted Critical
Publication of JP5248896B2 publication Critical patent/JP5248896B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Operation Control Of Excavators (AREA)
  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本発明は、ホイールローダなどの走行作業車両に関し、特に、走行作業車両における駆動源として、エンジンからの動力と電動電動機からの動力とを組み合わせてハイブリッド化を図った走行作業車両に関する。
ホイールローダなどの走行作業車両では、エンジンを駆動源としてブーム、バケットなどの作業機と、車輪などの走行体とが作動される構成が、従来から一般的な構成として知られている。そして、例えば、ホイールローダでは、走行上の起動停止パターンと作業機による土砂のすくい込みパターンと土砂持ち上げ及び排土等のパターンとを組合せた使われ方がされている。しかも、これらの組み合わせたパターンは、短い時間サイクル内において繰り返し行われることになる。
その結果、動力源としてのエンジンは、激しい変動負荷に合わせて制御されることになるため、エンジン出力トルクとエンジン回転数とが頻繁に調整されることになる。しかも、激しい変動負荷に合わせて、エンジン回転数とエンジン出力トルクとを調整せざるを得なくなり、燃費の悪化や排気ガスを抑制することに対しての妨げになっている。
これに対し、近年では、走行作業車両の駆動源としてのエンジンからの動力と電動電動機からの動力とを組み合わせてハイブリッド化を図り、エンジンに加わる負荷変動を抑える試みが行われている。
ハイブリッド化を図った走行作業車両としては、従来のホイールローダでは、エンジン出力をトルクコンバータやHST回路を介して、作業機用ポンプと走行用トランスミッションとに動力配分する構成であったのに対して、特に要求動力が大きな走行側のみを電動化したハイブリッド式建設車両(特許文献1参照。)が提案されている。また、作業機用の動力源とした電動モータと走行用の動力源とした電動モータとをそれぞれ別個に設けたハイブリッド駆動式のホイール系作業車両(特許文献2参照。)なども提案されている。
更に、エンジンからの出力を変速する無段階変速機を、2台の電動モータと3つの遊星減速機とによって構成し、低速から高速までの要求通りに、動力の切り替えを可能とした電気機械式トランスミッション(特許文献3参照。)や、エンジンの出力軸上に発電機としても作用する2つの電動モータを配置し、前記2つの電動モータと1つの遊星減速機とによって無段階変速機を構成したハイブリッド型車両(特許文献4参照)などが提案されている。
特許文献1に記載されたハイブリッド式建設車両を、本発明に係わる従来例1として、図15にはハイブリッド式建設車両の全体構成図を示している。図15に示すように、エンジン50から出力された動力は、動力分配機構55を介して分配され、作業機アクチュエータ用の油圧ポンプ51と電気エネルギーに変換する発電機52とを駆動している。
発電機52により発電された電気エネルギーは、バッテリ54に充電されるとともに、バッテリ54からの電力が、走行動力としてのモータ53に供給される構成になっている。そして、バッテリ54を電気エネルギーモードにおいてバッファとして機能させることができるので、建設車両の走行時に要求される激しい動力の変動負荷を、バッテリ54によって吸収することができる。従って、エンジン50の出力変動を平準化することができる。また、エンジン50の出力軸にクラッチ56を設けておくことで、アイドリングストップを行わせることも可能にしている。
特許文献2に記載されたハイブリッド駆動式のホイール系作業車両を、本発明に係わる従来例2として、図16にはハイブリッド駆動式のホイール系作業車両の全体構成図を示している。図16に示すように、作業機用の動力源とした電動モータ61と走行用の動力源とした電動モータ62とをそれぞれ別個に設けている。エンジン60からの駆動エネルギーは、発電機63によって電気エネルギーに変換されて、バッテリ64に充電される。そして、電動モータ61と電動モータ62とは、バッテリ64に充電された電気エネルギーによって駆動される。
このように、作業機用の電動モータ61と走行用の電動モータ62とを、全く独立した動力源としてそれぞれ制御することができるので、運転条件に係わらず、必要な動力のみをバッテリ64から取り出して使うことができる。そして、エンジン60を、燃費の点においても、また排ガスの点においても、最適な条件下で運転させることが可能になる。また、作業機からの回生エネルギーも、走行動力からの回生エネルギーも、電動モータ61、62をそれぞれ発電機として働かせることにより、バッテリ64に蓄えておくことができる。
特許文献3に記載された電気機械式トランスミッションを、本発明に係わる従来例3として、図17には電気機械式トランスミッションの全体構成図を示している。図17に示すように、エンジン70からの駆動力は、無段階変速機を介して出力シャフト71から取り出され、車両を走行させる駆動力として使用される。無段階変速機は2台の発電電動モータ72、73と3つの遊星減速機74、75、76とによって構成されており、車両を低速走行から高速走行まで、要求通りの速度切り替えが可能となっている。
特許文献4に記載されたハイブリッド型車両を、本発明に係わる従来例4として、図18にはハイブリッド型車両の全体構成図を示している。図18に示すように、エンジン80の出力軸81上に発電機としても作用する2つの電動モータ82、83を配置し、2つの電動モータ82、83と1つの遊星減速機84とによって無段階変速機を構成している。
このように構成されているので、エンジン回転数を一定に維持したモードのままで、ハイブリッド型車両が前後進を行う時の加減速制御を、2つの電動モータ82、83の制御によって自在に制御することが可能となる。
特開2005−133319号公報 特開2006−233843号公報 特開2000−108693号公報 特開平05−281542号公報
ホイールローダの様な走行作業車両では、掘削時には非常に大きな走行動力が要求されている。即ち、掘削時には低速走行を行いつつ、大トルクによる大きな牽引力が要求されている。そこで、特許文献1、2に示したハイブリッド式建設車両やホイール系作業車両において、低速走行を行いつつ、大きな牽引力を得ようとすると、電動モータを大型化することが避けられない。
更に、大トルクの要求を満たすためには、電動モータにおける回転子の構成として、軸方向の寸法に比べて径方向の寸法を大型化することが望ましい構成となる。しかし、一方において走行作業車両の巡航走行時においては、電動モータを高速回転させることが必要となり、そのためには、電動モータの回転子を軸方向に長く、かつ径方向の寸法を小さく構成しておくことが望ましい構成となる。
このように、モータ設計上において互いに相反する背反事情が発生してしまう。従って、特許文献1、2に示したハイブリッド式建設車両やホイール系作業車両では、低速時において大トルクの取り出しを優先させると、逆に、巡航走行時におけて最高速度を満たすことが困難になってしまう問題を抱えている。
即ち、特許文献1のハイブリッド式建設車両では、走行動力が単一の電動モータ53によって、まかなわれる構成となっている。このため、電動モータ53としては、低速時には大きなトルクを出力させることができ、高速走行時には高速回転を行わせることができるといった、両方の特性を有しなければならなくなる。この両方の特性を満足させるためには、電動モータ53としては、非常に大きな構成にしておかなければならないことになる。
また、特許文献2のホイール系作業車両では、特許文献1のハイブリッド式建設車両の場合と同様に、走行動力用モータを大きく構成にしておかなければならない。しかも、作業機用としても電動モータ61を別個に配置しているので、作業機を駆動する時以外は全く使用されない電動モータ61が搭載されることになる。このため、電動モータ61、62を搭載するスペースを広く構成しておくことが必要となり、また、車両搭載機器のコストが大幅に増大してしまうことになる。
更に、特許文献2のホイール系作業車両では、エンジン60からの駆動出力の全てを、発電機63によって電気エネルギーに変換して、バッテリ64に充電している。そして、バッテリ64に充電された電力を、作業機操作用の電動モータ61や走行用の電動モータ62の駆動用の電力として活用する構成になっている。このため、システム全体におけるエネルギー活用効率という面から特許文献2のホイール系作業車両を見ると、システム全体におけるエネルギーの活用効率が低下してしまうという問題が生じている。しかも、この問題は、無視しておくことができないくらいの大きな問題になっている。
これら特許文献1、2に示したハイブリッド式建設車両やホイール系作業車両における問題を解決する手段として、特許文献3、4で示したような、エンジンからの駆動動力に電動モータからの動力を組み合わせた無段階変速機が提案されている。
特許文献3に示した電気機械式トランスミッションを備えた走行作業車両では、最も頻繁に使われる低速域から中速域でのクラッチ係合が避けられず、ギアシフトを行う度ごとにクラッチ係合回数が多くなる。また、作業時にも頻繁にクラッチ係合が行われるので、変速ショックに加えて、クラッチの寿命の悪化が発生してしまう。あるいは、クラッチの寿命の悪化を防止するために、クラッチの大型化が避けられないことになる。
特許文献4に示したハイブリッド型車両では、ハイブリッド型車両で高速巡航の運転を行う際に、搭載される電動モータ82、83の回転数が非常に大きくなり過ぎてしまい、潤滑機器や冷却装置の大型化を図っておかなければならない。しかも、電動モータ82、83の回転部における寿命低下や回転部ロスに伴うシステム効率の低下、電動モータ82、83の信頼性低下といった問題を招いてしまう。
本発明は、システム全体におけるエネルギー効率を改善し、簡素な構造で前後進の加減速を制御可能とし、エンジンの燃費、排ガスの面から見ても最も効率的なエンジン運転を可能とし、更に作業機動力と走行動力とを効率よく、しかも、リアルタイムに変速ショックなく分配できる動力伝達構造を備えた走行作業車両を提案する。
本発明の課題は請求項1及び2に記載された各発明により達成することができる。
即ち、本発明の走行作業車両では、エンジンの出力軸に接続した第一発電電動機と、前記第一発電電動機の出力軸に接続した遊星歯車機構を介して接続された油圧ポンプシステムと、前記エンジンとは異なる駆動源に接続した第二発電電動機と、前記第二発電電動機の出力軸に接続され、前記遊星歯車機構の出力軸を介して接続されたホイール駆動システムと、前記第一発電電動機と前記第二発電電動機とに、それぞれインバータを介して接続した蓄電装置とを有し、
前記遊星歯車機構の異なる構成部位に第一及び第二入力軸を有し、前記第一及び第二入力軸に、前記第一発電電動機の出力軸と前記第二発電電動機の出力軸とがそれぞれ接続されてなることを最も主要な特徴となしている。
また、本発明の走行作業車両では、前記エンジンの回転数と、前記走行作業車両の走行モードと、前記ホイール駆動システムにおけるホイールを駆動する回転数とに応じて、前記第一発電電動機及び前記第二発電電動機をそれぞれ、トルクを発生させないフリー回転のモードと、発電機として働かせるモードと、電動機として働かせるモードとに切替える切替え手段を備えてなることを主要な特徴となしている。
本発明の走行作業車両では、エンジンからの駆動力を、第一発電電動機を介して油圧ポンプシステムと遊星歯車機構とに伝達することができる。しかも、エンジンからの駆動系とは別の駆動系として構成した第二発電電動機からの駆動力を、同じ遊星歯車機構に伝達することができる。そして、遊星歯車機構から出力された駆動力でホイール駆動システムを駆動する構成となっている。
また、第一発電電動機の出力軸が接続した遊星歯車機構の構成部位と、第二発電電動機の出力軸が接続した遊星歯車機構の構成部位とは、異なる構成部位として構成している。これによって、遊星歯車機構から出力される駆動回転数を、第一発電電動機の出力軸における回転数と第二発電電動機の出力軸における回転数とによって、任意の回転数に制御することができる。
即ち、エンジンの駆動だけでは油圧ポンプシステムやホイール駆動システムを駆動するのに必要なエネルギーが得られないときには、エンジンの出力軸に接続した第一発電電動機及び/又は第二発電電動機を適宜電動機として働かせることで、エネルギーの不足分を補うことができる。
エンジンの動力だけで充分に、油圧ポンプシステムやホイール駆動システムを駆動するのに必要なエネルギーが得られているときには、第一発電電動機をフリーなモードとして、一種のフライホイールとして作用させておくことができる。また、エンジンの動力が余っているときや、油圧ポンプシステムから動力が戻ってきたときには、第一発電電動機を発電機として働かせることによって、余ったエネルギーや回生エネルギーを電気エネルギーに変換して蓄電装置に充電しておくことができる。
更に、走行作業車両の前後進と加速・減速動作中において、ホイール駆動システム側から遊星歯車機構に戻ってきた動力による回生エネルギーは、発電機として作用させた第一発電電動機及び/又は第二発電電動機によって電気エネルギーに変換して、蓄電装置に充電しておくことができる。
このようにして蓄電装置に充電された電気エネルギーは、第一発電電動機及び第二発電電動機を電動機として働かせるときの駆動エネルギーとして使用することができる。
また、本発明の走行作業車両では、エンジンの回転数と、走行作業車両の走行モードと、ホイール駆動システムにおけるホイールを駆動する回転数とに応じて、第一発電電動機及び第二発電電動機におけるそれぞれの使用モードを切替える切替え手段を設けておくことができる。
切替え手段を切替えることによって、第一発電電動機と第二発電電動機とをそれぞれ個別に、トルクを発生させないフリー回転のモードと、発電機として働かせるモードと、電動機として働かせるモードとに切替えることができる。
即ち、エンジンの回転数と、走行作業車両の走行モードと、ホイール駆動システムにおけるホイールを駆動する回転数とに応じて、ホイール駆動システムに与えるトルク及び回転数が最適となるように、第一発電電動機及び第二発電電動機におけるそれぞれの使用モードを切替えることができる。また、ホイール駆動システムから第一発電電動機及び第二発電電動機に戻ってくる動力を、第一発電電動機及び/又は第二発電電動機において吸収できるように、第一発電電動機及び第二発電電動機におけるそれぞれの使用モードを切替えることができる。
本発明の好適な実施の形態について、添付図面に基づいて以下において具体的に説明する。本発明の走行作業車両の構成としては、以下においてはホイールローダを例にあげて説明を行う。しかし、本発明の走行作業車両としては、以下で説明するホイールローダの構成以外のものであっても、例えば、フォークリフトなどの走行作業車両に対しても本願発明を好適に適用することができる。このため、本発明は、以下に説明する実施例に限定されるものではなく、多様な変更が可能である。
図1は、本発明の実施形態に係わる走行作業車両1の内部構造を示す全体構成図である。図1に示すように、エンジン2の駆動力は、エンジン2の出力軸である軸Aに接続した第一発電電動機3に伝達されるとともに、第一発電電動機3の出力軸である軸B、軸Cを介して油圧ポンプシステム6及び遊星歯車機構5に伝達される構成となっている。また、エンジン2とは別の駆動源として構成した第二発電電動機4からの駆動力は、第二発電電動機4の出力軸である軸Dを介して遊星歯車機構5に伝達される構成となっている。
尚、ホイール駆動システム10から戻ってきた動力や油圧ポンプシステム6から戻ってきた動力が、軸Bに作用するときには、軸Bは第一発電電動機3の出力軸とはならずに、第一発電電動機3を発電機として働かせる入力軸として機能することになる。同様に、エンジン2に過負荷が加わらないようにするときや、ホイール駆動システム10から戻ってきた動力が、軸Dに作用するときには、軸Dは第二発電電動機4の出力軸とはならずに、第二発電電動機4を発電機として働かせる入力軸として機能することになる。
またこのとき、次に説明する遊星歯車機構5の出力軸である軸Eは、ホイール駆動システム10から戻ってきた動力を遊星歯車機構5に入力するときには、入力軸として機能することになる。遊星歯車機構5の出力軸である軸Eは、ホイール駆動システム10に接続している。ホイール駆動システム10は、遊星歯車機構5の軸Eに接続した回転数をHiとLowとに切替える変速機11と、変速機11からの出力が伝達される動力伝達機構15と、動力伝達機構15からの出力がそれぞれ伝達される前デファレンシャル16a、後デファレンシャル16bと、前デファレンシャル16a及び後デファレンシャル16bによって分配された回転によって回転駆動される一対の前輪18a及び一対の後輪18bとを備えた構成になっている。
また、前輪18aと後輪18bに対しては、それぞれの車輪に対して制動を加える前輪ブレーキ17aと後輪ブレーキ17bとが設けられている。
油圧ポンプシステム6は、軸Cの回転を取り出す油圧ポンプ用の歯車列7と、油圧ポンプ用歯車列7によって取り出された回転によって駆動される第一油圧ポンプ6a及び第二油圧ポンプ6bとから構成されている。第一油圧ポンプ6aは、作業機用アクチュエータ等に圧油を供給する可変容量型油圧ポンプとして構成されており、第二油圧ポンプ6bは、パイロット圧等を吐出する補機駆動用の固定容量型ポンプとして構成されている。
第一発電電動機3は、第一インバータ20aを介して蓄電装置であるバッテリ21に接続されており、第二発電電動機4は、第二インバータ20bを介して蓄電装置であるバッテリ21に接続されている。第一インバータ20a及び第二インバータ20bは、コントローラ25からの制御信号に応じて、第一発電電動機3及び第二発電電動機4をフリー回転のモードと、発電機として働かせるモードと、電動機として働かせるモードとに切替えることができる。
そして、第一発電電動機3及び第二発電電動機4を発電機として働かせているときには、第一発電電動機3及び第二発電電動機4で発電した電気エネルギーを、バッテリ21に充電させておくことができる。また、第一発電電動機3及び第二発電電動機4を電動機として働かせているときには、バッテリ21に充電した電力で第一発電電動機3及び第二発電電動機4を電動機として働かせることができる。
コントローラ25には、遊星歯車機構5の軸Eにおける回転数を検出する速度センサ30からの検出信号が入力されるとともに、アクセルペダル26の操作量、ブレーキペダル27の操作量、前後進切替レバー28における切替位置等に係わる信号が入力される。コントローラ25は、これらの入力信号の値等に基づいて、図示せぬ燃料噴射装置に対してエンジン2への燃料量を制御するとともに、第一インバータ20a及び第二インバータ20bに対する制御信号を出力する。
即ち、エンジン2の駆動力が不足しているとコントローラ25が判断したときには、第一発電電動機3及び/又は第二発電電動機4を電動機として働かせるように、第一インバータ20a及び/又は第二インバータ20bに対しての制御を行う。また、ホイール駆動システム10や油圧ポンプシステム6から戻ってきた動力があると判断したときには、あるいは、エンジン2の駆動力が余っていると判断したときやエンジン2に過大の過負荷が加わってしまうと判断したときなどには、第一発電電動機3及び/又は第二発電電動機4を発電機として働かせるように、第一インバータ20a及び/又は第二インバータ20bに対しての制御を行う。
第一発電電動機3の軸Bが接続した遊星歯車機構5の構成部位と、第二発電電動機4の軸Dが接続した遊星歯車機構5の構成部位とは、異なる構成部位が選択されている。これによって、遊星歯車機構5から出力される軸Eにおける回転数を、エンジン2の回転数を一定に維持したモードであっても、第一発電電動機3の軸Bにおける回転数と第二発電電動機4の軸Dにおける回転数とによって、任意の回転数に制御することができる。そして、エンジン2の回転数をコントローラ25で制御することによって、軸Eにおける回転数を更に細かく制御することができる。
即ち、エンジン2と連動する軸Bの回転変動量が最小限となるように抑制して、電動機として作動させた第二発電電動機4の回転数を大幅に変動させることで、走行作業車両に対して必要な前後進動作を行わせることが可能となる。しかも、エンジン2と連動する軸Bに第一発電電動機3を備えているので、軸Bの回転変動量が最小限となるように、第一発電電動機3を発電機として使用するモードや電動機として使用するモードあるいはトルクを発生させないフリーなモードなどに制御することができる。
しかも、第一発電電動機3と第二発電電動機4とを、それぞれ正逆回転と力行及び回生とのIV象限運転を行わせることによって、従来のようにエンジンの駆動力だけで行っていたときの操作と同じ操作で、走行作業車両に対する前後進及び加速・減速の各動作を行わせることができる。そして、それぞれの動作を行わせるのに必要な動力を、満遍なくホイール駆動システム10に与えることができる。
更には、ホイール駆動システム10から戻ってきた動力を第一発電電動機3と第二発電電動機4とによって吸収することができる。しかも、ホイール駆動システム10から戻ってきた動力を第一発電電動機3と第二発電電動機4とによって吸収することができるので、ホイール駆動システム10から戻ってきた動力によって、エンジン2に過大の負荷が加わってしまうのを防止できる。
ここで、上述したIV象限運転について、説明を加えていくことにする。ここでいうIV象限とは、第一発電電動機3の軸Bと第二発電電動機4の軸Dと遊星歯車機構5の軸Eとにおける回転方向とトルクの符号との相対関係を示すための象限として定義している。即ち、回転数とトルクの双方がプラス符号の場合を第I象限とし、回転数がマイナスの符号でトルクがプラスの符号の場合を第II象限、回転数とトルクの双方がマイナス符号の場合を第三象限、回転数がプラスの符号でトルクがマイナス符号の場合を第IV象限としている。そして、第二発電電動機4を電動機として使用する第I及びIII象限を力行、第二発電電動機4を発電機として使用する第II及びIV象限を回生という。これを図示したものが、図2である。
IV象限運転についての説明を、走行作業車両1として用いたホイールローダにおける代表的作業であるVシェープ運転が行われる場合を例に挙げて説明する。Vシェープ運転とは、山積みされている土砂を掘削して土砂をホイールローダのバケット内に積み込み、積み込まれた土砂をダンプトラックに積み替えし、積み替え後に元の待機位置にまで戻る一連の動作を、1サイクルとする作業(運転)のことである。
この一連のサイクル作業を従来のエンジンの駆動力だけで行ったときに、ホイール駆動システム10に入出力される回転数とトルクとの時間変化としては、図3に示すようなグラフとなる。本願発明におけるハイブリッド化した走行作業車両1においても、エンジン2や第一発電電動機3や第二発電電動機4の駆動源を以下で説明するように制御することで、ホイール駆動システム10に入出力される回転数とトルクとの時間変化のグラフを、図3に示しているグラフと同じグラフとなるように描かせることができる。そこで、以下においては、図3に示しているグラフを、本願発明によって得られたグラフとして説明を続けていくことにする。
図3において、太線はホイール駆動システム10に入出力される回転数を示し、点線はホイール駆動システム10に入出力されるトルクを示している。回転数とトルクとには、プラスとマイナスの符号を付している。
走行作業車両1の入力軸11が前進を行う方向に回転しているとき、回転数の符号としてプラスの符号を付しており、走行作業車両1の入力軸11が後進を行う方向に回転しているとき、回転数の符号としてマイナスの符号を付している。また、回転数とトルクとの符号がともにプラスのときと、ともにマイナスのとき、エンジン2や第一発電電動機3や第二発電電動機4の駆動源が力行を行って状態を示し、回転数とトルクの符号が互いに逆の符号のとき、ホイール駆動システム10から戻された動力によって回生が行われている状態を示している。
ところで、図1に示した実施例1では、遊星歯車機構5内の構成を記載していないので、遊星歯車機構5内の構成を示している実施例5を用いて、以下において説明を行うことにする。尚、実施例5を示した図7においては、図1と同じ構成部材に関しては、同じ部材符号を用いているが、図1に示したコントローラ25、速度センサ30、アクセルペダル26等の一部の構成に関しては図示を省略している。
図7に示す走行作業車両1では、第一発電電動機3の軸Bが、遊星歯車機構35のリング歯車35dを直接駆動する構成となっている。第二発電電動機4の軸Dは、遊星歯車機構35の太陽歯車35aに接続し、遊星歯車機構35の軸Eは、遊星歯車機構35のキャリア35cに接続した構成となっている。また、リング歯車35dと太陽歯車35aとに噛合する遊星歯車35bは、キャリア35cによって回転自在に支承されている。そして、第一油圧ポンプ6a、第二油圧ポンプ6bを駆動する歯車列7は、リング歯車35dの回転を取り出す構成になっている。
図7を参照しながら、図3の説明を行う。
図3の表における「1」の停止モード。
ホイールローダが、空荷状態で停止している停止モードでは、ブレーキが踏み込まれ、遊星歯車機構35の出力軸である軸Eの回転が停止している。このため、エンジン2からの回転数は、遊星歯車機構35を介して第二発電電動機4の軸Dに伝わる。そして、第二発電電動機4はマイナス方向に空回りし、エンジンからの回転数を吸収することになる。このとき第二発電電動機4としては、トルクを発生させないフリーなモードになって、エンジン2に対しての負荷となっていない。
図3に示した表について説明を加えると、横軸の項目として「1」〜「10」の各動作モードを配しており、縦列の項目として、第二発電電動機4、第一発電電動機3、エンジン2、軸B、軸C,アクセルペダル26、ブレーキペダル27、前後進切替レバー28の各部材を、この順番で配している。そして、縦軸の項目と横軸の項目とが重なったところが、横軸の項目とした動作モードでの、縦軸の項目で示した部材のモード状態を示している。
例えば、「1」の停止モードでは、第二発電電動機4は第II象限運転の状態にあり、トルクを発生させないフリーなモードになっている。第一発電電動機3及びエンジン2と軸Bは、ともに第I象限運転の状態にある。軸Cは、ホイールローダの走行とは関係ない「−」の状態となっている。アクセルペダル26は、作動していない「OFF」状態となっており、ブレーキペダル27は、作動している「ON」状態となっており、前後進切替レバー28は、中立位置「N」位置に置かれていることを示している。
また、ローマ数字「I」、「II」、「III」、「IV」は、それぞれ図2で示した象限を表しており、前後進切替レバー28の列における「N」、「F」、「B」は、前後進切替レバー28の切替え位置がそれぞれ中立位置、前進位置、後進位置であることを表している。
図3の表における「2」の前進発進モード。
この前進発進モードでは、前後進切替レバー28(図1参照)が前進位置「N」に入り、ブレーキペダル27(図1参照)が「ON」から「OFF」となり、アクセルペダル26(図1参照)が「OFF」から「ON」に踏み込まれることになる。アクセルペダル26の踏み込み量に比例したトルクが、遊星歯車機構35の軸Eに発生するように、第一発電電動機3、第二発電電動機4、又はエンジン2の軸Aがトルクを発生させる。このとき、トルクの配分は、遊星歯車機構35における遊星歯車の結合方法とそのときのギア比とによって、第二発電電動機4と第一発電電動機3又はエンジン2の軸Aとに配分される。
即ち、図7の場合においてエネルギー損失を考えなければ、下記の様にトルクτの配分がなされる。
τr = τp/(1+α) = τs/α
ここでαは、遊星歯車のギア比であり、τrはリング歯車35dにおけるトルク、τpはキャリア35cにおけるトルク、τsは太陽歯車35aにおけるトルクを表している。
アクセルペダル26が踏み込まれると、エンジン2に燃料を供給する図示せぬスロットルが開き、エンジン2はトルク出力と共に回転数を上げようとする。このとき、エンジン2の回転によって軸Eを回転させようとする。しかし、ホイールローダが停止中のため、遊星歯車機構35の軸Eは停止している。そこで、停止している軸Eからエンジン2に戻されようとする反力トルクは、第二発電電動機4の軸Dの方に流れることになる。
このとき、第一発電電動機3は、エンジン2から出力された回転数を一定に保ちながら、遊星歯車機構35の軸Eを、ホイールローダの前進方向に回転させるように、制御されている。図7で示す遊星歯車機構35の構成では、太陽歯車35aを駆動する第二発電電動機4の回転数、リング歯車35dを駆動するエンジン2又は第一発電電動機3の回転数、キャリア35cによって駆動される遊星歯車機構35の軸Eの回転数の関係は、下記式で表すことができる。
ωr = (1+α)ωp − αωs
ここで、αは、遊星歯車のギア比であり、ωrはリング歯車35dにおける角速度、ωpはキャリア35cにおける角速度、ωsは太陽歯車35aにおける角速度を表している。
そして、第二発電電動機4は、エンジン2の回転数をモニタしているコントローラ25によって、遊星歯車機構35の軸Eの回転数が所定の回転数となるように、回転数制御される。遊星歯車機構35の軸Eの回転数が所定の回転数となったか否かは、速度センサ30(図1参照)によって、検出することができる。
発進段階において、マイナス方向に空回り逆転していた第二発電電動機4は、上述したトルクと回転数の関係式を満たす様に、マイナス方向に回転して発電を行いながら所定の回転数で制御される(第II象限運転)ことになる。これにより、エンジン回転数を一定にしたモードのまま、ホイールローダを前進させるのに必要な大きなトルクを、遊星歯車機構35の軸Eから出力させることができる。
このモードにおいては、第二発電電動機4は発電機として働くことになり、発電されたエネルギーは、バッテリ21に充電されるか、あるいは電動機として働いている第一発電電動機3によって消費されることになる。
図3の表における「3」の前進モード。
前進モードとなって、ホイールローダが前進し始めると、第二発電電動機4は、回転数を徐々に小さくして行き、ついにはゼロ速度にまで到達する。遊星歯車機構35の軸Eは、軸Bと軸Dとの相対回転数に基づいて回転を行うため、軸Eがある回転数にまで達すると第二発電電動機4はゼロ速度にまで到達し、更にマイナス方向の回転からプラス方向の回転へと回転数の符号を反転して車両を加速させ続ける。
このとき、アクセルペダル26(図1参照)は踏まれた「ON」モードのままにあるので、更に加速を続けようとして、第二発電電動機4の回転数は、逐次、遊星歯車機構35の軸Eにおける回転数とエンジン回転数とに応じて、所望の回転数となるように制御されることになる。
第二発電電動機4の回転数における符号がマイナスからプラスに反転すると、第二発電電動機4は発電モードから力行モード(第I象限)へと移行する。即ち、第二発電電動機4の回転数の符号がプラスに反転することによって、第二発電電動機4は電動機として働くことになる。
これによって、第二発電電動機4は、今まで第一発電電動機3への給電用に発電エネルギーを供給していたが、自身が電動機として働くためにエネルギーが必要となる。第二発電電動機4と同時にエンジン2も第一象限において運転しているため、第一発電電動機3は、発電機(第IV象限)となって、第二発電電動機4へのエネルギーを供給することになる。このようにして、遊星歯車機構35の軸Eにおける回転数とトルクとして、図3の前進時におけるグラフと同じグラフを描かせることができる。
図3の表における「4」、「5」の前進・掘削モード。
この前進・掘削モードでは、土砂を掘削しながら、前進することになる。このモードでは、遊星歯車機構35の軸Eからの出力としては、ホイールローダが低速走行を行い、しかも、大きなトルクが得られることが要求される。そしてこのモードにおいては、ホイールローダが土砂からの反力を受けるため、車速も不安定になりやすい。
その結果、ホイールローダとしては、発進、停止、前進を小刻みに繰り返すこととなり、上述した前進発進のモードと前進モードとが逐次、ホイールローダの走行モードに従って切り替わることになる。このとき、最も頻繁に動作を切り替える必要があるのは第二発電電動機4である。
しかし、最も頻繁に動作が切り替わる第二発電電動機4について検討を加えて見ると、エンジン2の軸A又は第一発電電動機3の軸Bの回転数と遊星歯車機構35の軸Eの回転数とを常時モニタしておくことで、アクセルペダル26(図1参照)によるアクセル開度とホイールローダの車速とから、最適なトルク及び回転数が第二発電電動機4から引き出せるように、第二発電電動機4の回転が制御されているに過ぎないことがわかる。
このときも、第一発電電動機3及び第二発電電動機4を制御することによって、遊星歯車機構35の軸Eにおける回転数とトルクとして、図3の前進掘削時におけるグラフと同じグラフを描かせることができる。
図3の表における「6」の後進(土砂運搬)モード。
この後進(土砂運搬)モードにおいて、前後進切替レバー28(図1参照)が、後進位置へと切り替えられると、遊星歯車機構35の軸Eにおける回転数の方向を逆転させるように、第一発電電動機3と第二発電電動機4とが連動して制御スキームを変更する。
即ち、アクセルペダル26(図1参照)によるアクセル開度により、遊星歯車機構35の軸Eが逆転方向に回転するように、第一発電電動機3と第二発電電動機4とが制御される。第二発電電動機4としては、回転数とトルクの符号が反転した第III象限運転モード、第一発電電動機3はエンジン2と同軸上にあるため、回転数は一定だが、トルクの符号が反転する第IV象限運転モードとなる。
第二発電電動機4は前進時と同様に、エンジン2の回転数と遊星歯車機構35の軸Eにおける回転数とにより、軸Eを所定の回転数にするための回転数制御が行われる。第一発電電動機3は、アクセルペダル26(図1参照)によるアクセル開度によって、軸Eから配分されるトルクを吸収するためのトルク制御が行われる。このとき、基準となる回転数としては、エンジン2の回転数によって決定されることになる。
このときも、第一発電電動機3及び第二発電電動機4を制御することによって、遊星歯車機構35の軸Eにおける回転数とトルクとして、図3の後進(土砂運搬)時におけるグラフと同じグラフを描かせることができる。
図3の表における「7」の前進発進モード、「8」の前進モード、「9」の前進・積込みモード、及び「10」の後進モードは、それぞれ上述した「1」〜「6」の各モードと同様の制御が繰り返し行われることになる。
このように、本発明では、走行作業車両をハイブリッド化した利点を活かしつつ、ホイールローダにおける各作業モードに対応して、エンジン2と第一発電電動機3と第二発電電動機4とを制御することによって、エンジン単独にて行っていたと同様の回転数とトルクとを遊星歯車機構35の軸Eに対して与えることができる。即ち、エンジン単独にて行っていたときと同じ操作で、ハイブリッド化したホイールローダ等の走行作業車両を操作することが可能となる。
図1に戻って説明を続けると、ホイールローダとしては、掘削・積み込み作業の際に求められる走行速度は、低速域から中速域までの間における速度しか求められていない。しかし、一方において、作業場内での移動時等においては、高速走行を行えることが必要となる。
図1に示した変速機11を切替えることによって、高速走行時には、変速機11をHiモードに切替えることで、高速走行時に必要とされる回転数をホイールに与えることができる。このため、第二発電電動機4を大型化して第二発電電動機4の回転数を極端に高く構成しておくことが必要なくなる。
また、通常作業時には、上述した通り、低速域から中速域までの間における速度に限られるため、変速機11をLowモードに切替えておくだけで良く、変速ショック等の心配が一切なくなる。更に、高速走行が要求される際には、バケットなどの作業機内に土砂などが積み込まれていない空荷状態で発進することになるため、変速機11をLowモードからHiモードへの切替え時に、中速から高速走行に切り替わるタイミングでの変速ショックも大きな問題はならない。
尚、変速機11の構成に関しては、以下で行う各実施例の説明の後において説明を行う。
このように本願発明は構成されているので、低速から高速の全速度領域において、従来のエンジン単独で行っていた場合と同じ操作で、ハイブリッド化した走行作業車両を操作することができる。
また、エンジン2の軸Aと連動して回転する遊星歯車機構5の入力軸である軸Bを、極力回転数の変動か少なくなるように回転させることが可能となる。または、エンジン2に要求される負荷に対応して、燃費と排ガス低減に最も適したエンジン回転数となるように、エンジン2の回転数を制御することが可能となる。
本願発明における、エンジン2、第一発電電動機3、遊星歯車機構5、第二発電電動機4及遊星歯車機構5の軸Eにおける、それぞれの機器における機能としては、次のようにまとめることができる。
即ち、エンジン2としては、要求負荷に合わせて最適な回転数を出力することが求められており、しかも、燃費と排ガス低減に最も適したエンジン回転数となるように求められている。即ち、エンジン2には、ホイールローダを走行させる走行動力を得るのに要求される軸Eにおける回転数と、軸Eに要求される回転数を出力するとともにエンジン2に要求される最適回転数を満たすことが求められている。
第二発電電動機4としては、軸Eに要求される回転数が出力できるように、遊星歯車機構5を介してエンジン2からの回転数を調整することになる。
第一発電電動機3としては、エンジン2からの出力と第二発電電動機4からの出力とからでは、エンジン2に要求される負荷と最適なエンジン回転数とを調整することができない場合には、第一発電電動機3が電動機として働くことによって、不足分をアシストする。これによって、エンジン2の負荷を減じることができる。また、エンジン2を最適回転数で回転させるために、エンジン2に対する負荷として働くことも、バッテリ21へ電力を供給する発電機として働くこともある。
そして、第一発電電動機3を発電機として働かせて発電を行なうことで、エンジン2の回転に対してブレーキを掛けることができ、エンジン2に加わる負荷を大きくすることも可能となる。
但し、第二発電電動機4の動力源であるバッテリ21内に蓄えられている蓄電量によっても、第一発電電動機3を発電機として働かせたときの発電量が制約されることになる。
遊星歯車機構5としては、エンジン2及び第一発電電動機3からの軸Bと、第二発電電動機4の軸Dとから入力された回転数、トルクとを、遊星歯車機構5内で調整して遊星歯車機構5の軸Eに出力することができる。
軸Eとしては、ホイールローダの走行速度に合わせた回転を出力することができる。
次に、低速走行での掘削作業時における作業機アクチュエータを駆動する油圧ポンプシステム6の動作について説明する。このとき、エンジン2の回転数としては、ホイールローダに供給する走行動力の要求に合わせて低めに設定される。一方で、作業機アクチュエータを駆動する第一油圧ポンプ6aには大きな動力が要求されるため、第一油圧ポンプ6aからの吐出流量を増大させていくことになる。
このため、第一油圧ポンプ6aを可変容量型の油圧ポンプとして構成しておくことで、第一油圧ポンプ6aの1回転当たりにおけるポンプ吐出容量を大きくすることができる。そして、エンジン2の回転数を小さくした状態のままでも、作業機アクチュエータの作動速度や動力が低下することがない。つまり、エンジン2の回転数に左右されずに、作業機アクチュエータにおける動力を調整することができる範囲が拡大することになる。
尚、この低速走行での掘削作業時には、ホイールローダの走行動力と作業機アクチュエータの動力とをともに確保しておく必要がある。このため、事前にバッテリ25に蓄えた蓄電量を大きくしておくことが必要となり、作業機アクチュエータが瞬時に動力を必要な際には、油圧ポンプシステム6の動力を供給する軸Cをモータリングして、電動機として働かせている第一発電電動機3にバッテリ25から供給する電力を制御することができる。
つまり、エンジン2からの動力は、ホイール駆動システム10に振り分け、油圧ポンプシステム6への動力は、電動機として働かせている第一発電電動機3によって駆動させることができる。
従って、本願発明では、エンジン2が出力している以上の大きな仕事を行なうことができる。この結果、エンジン2をより小さな容量として構成しておくことが可能となり、従来における走行作業車両に搭載されているエンジンのパワー以上のパワーを出すことが可能となる。
但し、作業機アクチュエータが大きな動力を要するのは、土砂をすくい込むほんの数秒単位の時間であって、しかも、間欠動作である。これに対して、発電機として働かせた第一発電電動機3や第二発電電動機4によって発電することが求められている電力としては、ホイールローダを走行させるための動力として使用することが常時要求されているものである。このため、上述したような作業機アクチュエータが瞬時に必要な動力を要求したとしても、このときに第一発電電動機3によって消費されるエネルギーとしては、第二発電電動機4によって発電される発電量の方が上回ることになる。
補機駆動用の第二油圧ポンプ6bと作業機用の第一油圧ポンプ6aとは、エンジン2の回転と同様に、一定回転方向にのみ駆動され、かつ、常に回転している必要がある。このため、油圧ポンプシステム6の入力軸となる軸Cは、遊星歯車機構5における入出力軸となる部材の中で最も回転数の変動が少ない部材であって、エンジン2の軸Aと連動した軸Bに結合している部材から回転を取り出すように構成しておくことが最も望ましい構成となる。つまり、車両全体の中でエンジン2に近い回転軸に、油圧ポンプシステム6を配置しておくことが望ましい構成となる。
図4は、本願発明に係わる第2実施例であり、油圧ポンプシステム6における歯車列7の構成及び遊星歯車機構32における内部構成を具体的に示している。他の構成は、実施例1と同様の構成となっている。そのため、同じ部材に関しては実施例1において用いた部材符号と同じ符号を用いることで、その説明を省略する。また、図1に示したコントローラ25、速度センサ30、アクセルペダル26等の一部の構成に関して、図4ではそれらの部材の図示を省略している。
図4に示すように、第一発電電動機3の軸Bは、第一油圧ポンプ6aの駆動軸を兼ねるとともに、軸Bに設けた歯車37が、油圧ポンプシステム6における歯車列7の一部を構成している。第一発電電動機3の軸Bに設けた歯車37は歯車38を介して、遊星歯車機構32におけるリング歯車32dの外周に形成した外歯と噛合している。
遊星歯車機構32におけるリング歯車32dの内歯には、キャリア32cに支承された遊星歯車32bが噛合しており、キャリア32cの回転は、軸Eによって取り出される構成となっている。軸Eは、ホイール駆動システム10への入力軸として構成されている。遊星歯車32bが噛合する太陽歯車32aは、第二発電電動機4の軸Dに設けられている。
即ち、エンジン2及び第一発電電動機3からの回転は、遊星歯車機構32におけるリング歯車32dに入力され、第二発電電動機4からの回転は、太陽歯車32aに入力される構成となっている。そして、キャリア32cによって取り出された回転が、遊星歯車機構32からの出力となっている。
実施例2では、作業機アクチュエータ用の第一油圧ポンプ6aが、エンジン2と第一発電電動機3と直結した構成となっているので、大きな作業機動力が瞬時に要求される場合においても、第一発電電動機3によって応答遅れなく、作業機アクチュエータに対して大きな動力を振り向けることができる。そして、作業機アクチュエータの機敏な動作を行わせることが可能となる。
図5は、本願発明に係わる第3実施例であり、油圧ポンプシステム6における第二油圧ポンプ6bへの動力を、遊星歯車機構33から取り出す配設構成とするとともに、第二発電電動機4を遊星歯車機構33とホイール駆動システム10との間に配設した配置構成としている。他の構成は、実施例1と同様の構成となっている。そのため、同じ部材に関しては実施例1において用いた部材符号と同じ符号を用いることで、その説明を省略する。また、図1に示したコントローラ25、速度センサ30、アクセルペダル26等の一部の構成に関して、図5ではそれらの部材の図示を省略している。
図5に示すように、第一発電電動機3の軸Bは、第一油圧ポンプ6aの駆動軸を兼ねた構成になっており、第一発電電動機3の軸Bに設けた歯車37は歯車38を介して、遊星歯車機構32におけるリング歯車32dの外周に形成した外歯と噛合している。また、リング歯車32dの回転によって、第二油圧ポンプ6bが駆動される構成となっている。
遊星歯車機構32におけるリング歯車32dの内歯には、キャリア32cに支承された遊星歯車32bが噛合しており、キャリア32cの回転は、軸Eによって取り出される構成となっている。軸Eは、ホイール駆動システム10への入力軸として構成されている。遊星歯車32bが噛合する太陽歯車32aは、第二発電電動機4の軸Dに設けられており、軸D内には、軸Eが貫通している。
実施例3では、補機用の第二油圧ポンプ6b又は作業機用の第一油圧ポンプ6aを遊星歯車機構32の1端側に配置することができるため、従来の構成における動力分配装置などが不要となり、駆動効率を高めるとともに、動力伝達部における構成を小型化することが可能となる。
図6は、本願発明に係わる第4実施例であり、エンジン2の軸Aと連動して回転する軸Bで遊星歯車機構34のリング歯車34dを直結駆動する構成となっている。そして、歯車列7を介して第一油圧ポンプ6a及び第二油圧ポンプ8bを駆動し、更に太陽歯車34aに設けた歯車列8を介して第二発電電動機4の軸Dを配している。また、キャリア34cの回転を軸Eにおける回転として取り出している構成となっている。
尚、図6においても、実施例1における部材と同じ部材に関しては、実施例1において用いた部材符号と同じ符号を用いることで、その説明を省略している。また、図1に示したコントローラ25、速度センサ30、アクセルペダル26等の一部の構成に関して、図6ではそれらの部材の図示を省略している。
第4実施例によれば、エンジン2の動力を効率良く走行用の動力として振り分けることができるので、ホイールローダの走行時における加減速を機敏に行なわせることができ、しかも、ブレーキ操作時における回生エネルギーの吸収量を増大させることができる。
図7は、本願発明に係わる第5実施例の構成を示しているが、実施例5の構成に関しては、上述したIV象限の説明時において既に説明を行なっているので、構成についての説明は、省略する。
図7で示すように第5実施例では、エンジン2の軸Aと連動して回転する軸Bで、遊星歯車機構35のリング歯車35dを直結駆動する構成となっている。そして、歯車列7を介して第一油圧ポンプ6a及び第二油圧ポンプ8bを駆動し、更に太陽歯車34aに第二発電電動機4の軸Dを直結している。また、キャリア34cの回転を軸Eにおける回転として取り出す構成となっている。
第5実施例の構成によれば、上述した実施例1〜4の中で遊星歯車機構35を含む変速機構部を最も小型化することができる。従って、従来の走行作業車両におけるレイアウト構成から、変更箇所を最も少なくした状態で実施例5の構成を設けることができる。
従来のホイールローダでは、車体中央上部にはオペキャブを配し、車体下部には前後方向に沿ってアクスルを配し、中央にはプロペラシャフトを貫通させて配置した構成となっている。このように構成されているため、エンジンを車両後部でアクスル部よりも上部部位に配置している。
ホイールローダの掘削反力を得るために、エンジンの様な重量物を車体後部に配置することで、車体の最後部に配しているカウンタウェイトを小さく構成できるといった効果が得られる。そして、本発明では、変速機構部を小型化することができるので、エンジンを設置した前部の部位を、変速機構部用の設置スペースとして活用することができる。
従来における走行作業車両では、エンジンを設置した前部のスペースにトルコンやPTO(動力分配機)、多段のトランスミッションといった機器を押し込めて配設してきた。そこで、本願発明に係わるハイブリッド車においても、このスペース領域を活用するため、実施例5のようにエンジン出力軸の前方側に、エンジン出力軸と同軸上となるように第一発電電動機3、遊星歯車機構35、第二発電電動機4、変速機11等の機器を配置することが最も望ましい構成となる。
変速機11の構成例
図8〜図14に示している変速機11の構成例について説明を行う。変速機11の構成例として、図8〜図14にそれぞれ構成を示しているが、変速機11の構成としては、これらの構成例に限定されるものではなく、多様な変形が可能である。また、変速機11の構成として2段変速の例を示しているが、多段変速の構成としておくこともできる。
図8に示した変速機11では、Hi−Lowの切り替えを大小2組の歯車と第一クラッチCL1及び第二クラッチCL2とによって構成している。この構成では、Hiモードでは第一クラッチCL1を係合させ、第二クラッチCL2 を切り離すことによって、inから入った回転を高速回転に変換してoutから出力させることができる。また、Lowモードでは第一クラッチCL1 を切り離し、第二クラッチCL2 を係合させることによって、inから入った回転を低速回転に変換してoutから出力させることができる。
この変速機11の構成では、構造が最も簡便でシンプルな構成となっている。
図9に示した変速機11では、Hi−Lowの切り替えを大小2組の歯車と1組の遊星歯車機構14と第一クラッチCL1及び第二クラッチCL2と第一ブレーキBL1及び第二ブレーキBL2とによって構成している。この構成では、Hiモードでは第一クラッチCL1を切り離し、第二クラッチCL2 を係合させ、第一ブレーキBL1を係合させて、第二ブレーキBL2 を切り離すことによって、inから入った回転を高速回転に変換してoutから出力させることができる。
また、Lowモードでは第一クラッチCL1を係合させ、第二クラッチCL2を切り離し、第一ブレーキBL1を切り離して、第二ブレーキBL2 を係合させることによって、inから入った回転を低速回転に変換してoutから出力させることができる。
この変速機11の構成では、モード切替において一方の変速動作における無駄な連れ周り部が少なく構成されているので、効率的な変速が可能となっている。
図10に示した変速機11では、Hi−Lowの切り替えを大小1組の歯車と1組の遊星歯車機構14と第一ブレーキBL1及び第二ブレーキBL2と大歯車40のスライド機構とから構成されている。Hiモードでは第一ブレーキBL1を係合させ、第二ブレーキBL2を切り離して、大歯車40を遊星歯車機構14から遠ざける方向(図中点線状態)にスライドさせることによって、inから入った回転を高速回転に変換してoutから出力させることができる。
また、Lowモードでは第一ブレーキBL1を切り離し、第二ブレーキBL2を係合させ、大歯車40を遊星歯車機構14に近づける方向(図中実線状態)にスライドさせることによって、inから入った回転を低速回転に変換してoutから出力させることができる。
尚、Hi−Lowの切り替え時において、大歯車40をスライドさせる際に、大歯車40と小歯車とがスムーズに噛合できるように、即ち、噛合位置の同期をとるために、図示されない歯車速度検出手段によって、入力側速度を調整することで、大歯車40のスライドをよりスムーズに移行させることができる。
この変速機11の構成では、モード切替において一方の変速動作における無駄な連れ周り部が少なくなり、効率的な変速が可能となる。
図11に示した変速機11では、Hi−Lowの切り替えを大小2組の歯車と1組の遊星歯車機構14と第一クラッチCL1及び第二クラッチCL2と、第一ブレーキBL1及び第二ブレーキBL2とから構成されている。Hiモードでは、第一クラッチCL1CL1を切り離して、第二クラッチCL2 を係合させ、第一ブレーキBL1を係合させて、第二ブレーキBL2を切り離すことによって、inから入った回転を高速回転に変換してoutから出力させることができる。
また、Lowモードでは第一クラッチCL1を係合させ、第二クラッチCL2 を切り離し、第一ブレーキBL1を切り離して、第二ブレーキBL2 を係合させることによって、inから入った回転を低速回転に変換してoutから出力させることができる。
この変速機11の構成では、モード切替において一方の変速動作における無駄な連れ周り部が少なく、効率的な変速が可能である。
図12に示した変速機11では、Hi−Lowの切り替えを1組の遊星歯車機構14と遊星歯車と第一クラッチCL1及び第二クラッチCL2と、第一ブレーキBL1及び第二ブレーキBL2とから構成されている。Hiモードでは、第二クラッチCL2 を切り離し、第一クラッチCL1を係合させ、第一ブレーキBL1を係合させて、第二ブレーキBL2 を切り離すことによって、inから入った回転を高速回転に変換してoutから出力させることができる。
また、Lowモードでは、第二クラッチCL2 を係合させ、第一クラッチCL1を切り離し、第一ブレーキBL1を切り離して、第二ブレーキBL2 を係合させることによって、inから入った回転を低速回転に変換してoutから出力させることができる。
この変速機11の構成では、モード切替において一方の変速動作における無駄な連れ周り部が少なく、効率的な変速が可能となる。
図13に示した変速機11では、Hi−Lowの切り替えを2組の遊星歯車機構14a、14bと第一ブレーキBL1及び第二ブレーキBL2とから構成されている。Hiモードでは、第一ブレーキBL1を係合し、第二ブレーキBL2を切り離すことによって、inから入った回転を高速回転に変換してoutから出力させることができる。
また、Lowモードでは、第一ブレーキBL1を切り離し、第二ブレーキBL2を係合させることによって、inから入った回転を低速回転に変換してoutから出力させることができる。
この変速機11の構成では、inとoutの入出力が同軸上に配置される構成となっているので、変速機11を小型化することが可能となる。更に、遊星歯車機構14a、14bの外周部に配置する保持ブレーキ装置という簡素な構成にすることができる。
図14に示した変速機11では、Hi−Lowの切り替えを2組の遊星歯車機構14a、14bと第一ブレーキBL1及び第二ブレーキBL2とから構成されている。Hiモードでは、第一ブレーキBL1を係合させ、第二ブレーキBL2を切り離すことによって、inから入った回転を高速回転に変換してoutから出力させることができる。
また、Lowモードでは、第一ブレーキBL1を切り離し、第二ブレーキBL2を係合させることによって、inから入った回転を低速回転に変換してoutから出力させることができる。
この変速機11の構成では、inとoutの入出力が同軸上に配置されるため、変速機11を小型化することが可能となる。更に、遊星歯車機構14a、14bの外周部に配置する保持ブレーキ装置という簡素な構成にすることができる。
本発明は、本発明の技術思想を適用することができる装置等に対しては、本発明の技術思想を適用することができる。
本発明の実施形態に係わる走行作業車両の全体構成図である。(実施例1) IV象限の説明図である。(説明図) 走行作業車両の動作パターンに対応した各構成部材の状態を示した図である。(実施例) 走行作業車両の他の全体構成図である。(実施例2) 走行作業車両の別の全体構成図である。(実施例3) 走行作業車両の更に別の全体構成図である。(実施例4) 走行作業車両の更に他の全体構成図である。(実施例5) 変速機の構成図である。(実施例) 変速機の他の構成図である。(実施例) 変速機の別の構成図である。(実施例) 変速機の更に別の構成図である。(実施例) 変速機の更に他の構成図である。(実施例) 変速機のまた他の構成図である。(実施例) 変速機の更にまた他の構成図である。(実施例) 走行作業車両の全体構成図である。(従来例1) 走行作業車両の全体構成図である。(従来例2) 走行作業車両の全体構成図である。(従来例3) 走行作業車両の全体構成図である。(従来例4)
符号の説明
1・・・走行作業車両、3・・・第1発電電動機、4・・・第2発電電動機、5・・・遊星歯車機構、6・・・油圧ポンプシステム、10・・・ホイール駆動システム、11・・・変速機、20a・・・第一インバータ、20b・・・第二インバータ、21・・・バッテリ、25・・・コントローラ、32〜35・・・遊星歯車機構、50・・・エンジン、51・・・油圧ポンプ、52・・・発電機、53・・・モータ、54・・・バッテリ、60・・・エンジン、61、62・・・発電モータ、63・・・発電機、64・・・バッテリ、70・・・エンジン、72、73・・・発電電動モータ、74〜76・・・遊星減速機、80・・・エンジン、82、83・・・電動モータ、84・・・遊星減速機。

Claims (2)

  1. エンジンの出力軸に接続した第一発電電動機と、
    前記第一発電電動機の出力軸に接続した遊星歯車機構を介して接続された油圧ポンプシステムと、
    前記エンジンとは異なる駆動源に接続した第二電動発電機と、
    前記第二発電電動機の出力軸に接続され、前記遊星歯車機構の出力軸を介して接続されたホイール駆動システムと、
    前記第一発電電動機と前記第二発電電動機とに、それぞれインバータを介して接続した蓄電装置と、
    前記遊星歯車機構の異なる構成部位に第一及び第二入力軸を有し、
    前記第一及び第二入力軸に、前記第一発電電動機の出力軸と前記第二発電電動機の出力軸とがそれぞれ接続されてなることを特徴とする走行作業車両。
  2. 前記エンジンの回転数と、前記走行作業車両の走行モードと、前記ホイール駆動システムにおけるホイールを駆動する回転数とに応じて、前記第一発電電動機及び前記第二発電電動機をそれぞれ、トルクを発生させないフリー回転のモードと、発電機として働かせるモードと、電動機として働かせるモードとに切替える切替え手段を備えてなることを特徴とする請求項1記載の走行作業車両。
JP2008092577A 2008-03-31 2008-03-31 走行作業車両 Expired - Fee Related JP5248896B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008092577A JP5248896B2 (ja) 2008-03-31 2008-03-31 走行作業車両

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008092577A JP5248896B2 (ja) 2008-03-31 2008-03-31 走行作業車両

Publications (2)

Publication Number Publication Date
JP2009241830A JP2009241830A (ja) 2009-10-22
JP5248896B2 true JP5248896B2 (ja) 2013-07-31

Family

ID=41304240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008092577A Expired - Fee Related JP5248896B2 (ja) 2008-03-31 2008-03-31 走行作業車両

Country Status (1)

Country Link
JP (1) JP5248896B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5528860B2 (ja) * 2010-03-16 2014-06-25 株式会社神戸製鋼所 作業用車両
JP5312400B2 (ja) 2010-05-27 2013-10-09 日立建機株式会社 ハイブリッドホイールローダ
JP5313986B2 (ja) * 2010-09-17 2013-10-09 日立建機株式会社 ハイブリッド作業車両
KR101666689B1 (ko) * 2011-01-24 2016-10-17 두산인프라코어 주식회사 Hst 기반의 하이브리드 시스템
JP5611147B2 (ja) * 2011-08-16 2014-10-22 日立建機株式会社 作業車両
US20150273998A1 (en) * 2012-12-12 2015-10-01 Hiroaki Kiyokami Hybrid vehicle
JP6297821B2 (ja) * 2013-11-15 2018-03-20 株式会社小松製作所 作業車両
US11780315B2 (en) 2017-06-29 2023-10-10 Gkn Automotive Ltd. Transmission assembly for a hybrid vehicle
IT201800001308A1 (it) * 2018-01-18 2019-07-18 Soma Aurelio Veicolo da lavoro ibrido con cambio di velocità CVT
JP2018105114A (ja) * 2018-02-22 2018-07-05 株式会社小松製作所 作業車両及びその制御方法
CN114875983B (zh) * 2022-06-21 2023-06-27 吉林大学 一种场地用电液混合动力轮式装载机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293616B2 (ja) * 2000-11-10 2002-06-17 株式会社エクォス・リサーチ ハイブリッド型車両
JP4764018B2 (ja) * 2005-01-25 2011-08-31 株式会社小松製作所 走行作業機械
DE102005022011A1 (de) * 2005-05-12 2005-12-08 Daimlerchrysler Ag Antriebsstrang für ein Kraftfahrzeug mit einer Brennkraftmaschine und einem elektrischen Antriebsaggregat

Also Published As

Publication number Publication date
JP2009241830A (ja) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5248896B2 (ja) 走行作業車両
JP5427110B2 (ja) 建設機械及びその制御方法
US9790663B2 (en) Work vehicle having a work implement
US8347998B2 (en) Working machine with one or more electric machines for driving, braking, and/or generating power and a method for operating such a working machine
JP6170719B2 (ja) ホイールローダ
US7677340B2 (en) Hybrid-type forklift
JP4764018B2 (ja) 走行作業機械
CN101417606B (zh) 混合动力驱动系统及其驱动方法
US8808136B2 (en) Working machine and a method for operating a working machine
JP2007524540A (ja) 統合された油圧駆動モジュールおよび4輪駆動を有する油圧式ハイブリッド車両、およびその動作方法
JP5095252B2 (ja) 建設機械及びその制御方法
WO2015056492A1 (ja) 作業車両及び作業車両の制御方法
CN104854374A (zh) 无级变速器和包括无级变速器的工程机械
JP6630030B2 (ja) ホイールローダ及びホイールローダの制御方法
CN110962577A (zh) 混合动力变速箱及混合动力变速传动系统
JP5248895B2 (ja) 走行作業車両
JP2011093345A (ja) 車両系建設機械及びその制御方法
JP5123024B2 (ja) 走行作業車両
JP2006273516A (ja) ハイブリッド型フォークリフト
JP2001010361A (ja) 自動車用駆動装置
JP2013203386A (ja) ハイブリッド車両の駆動制御装置
JP2006273517A (ja) ハイブリッド型フォークリフト
JP2006273515A (ja) ハイブリッド型フォークリフト
JP5083631B2 (ja) ハイブリッド駆動装置
JP2006273513A (ja) ハイブリッド型フォークリフト

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20121228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees