JP5246532B2 - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP5246532B2
JP5246532B2 JP2007223952A JP2007223952A JP5246532B2 JP 5246532 B2 JP5246532 B2 JP 5246532B2 JP 2007223952 A JP2007223952 A JP 2007223952A JP 2007223952 A JP2007223952 A JP 2007223952A JP 5246532 B2 JP5246532 B2 JP 5246532B2
Authority
JP
Japan
Prior art keywords
gas
flow path
cell
fuel cell
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007223952A
Other languages
English (en)
Other versions
JP2009059509A (ja
Inventor
重夫 井深
健児 小原
竜也 矢口
靖志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2007223952A priority Critical patent/JP5246532B2/ja
Publication of JP2009059509A publication Critical patent/JP2009059509A/ja
Application granted granted Critical
Publication of JP5246532B2 publication Critical patent/JP5246532B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、複数の固体電解質型セルユニットを重合させた構造のセルスタックを有する燃料電池に関するものである。
この種の燃料電池として、例えば特許文献1に開示された構成のものがある。
その従来の燃料電池は、円形薄板状を成し且つ単セル取付部を有するセル取付用セパレータと、このセル取付用セパレータとほぼ同一の形状を成し且つその周縁部をセル取付用セパレータの周縁部に接合させたセパレータと、両セパレータ間に形成される空間内に対するガス供給及びガス排出を行う中央流路部品を備え、上記空間にリング板状セパレータを設置して、ガス流路の往路と復路とを上下(燃料電池積層方向)に分けて形成した構成のものであり、リング板状セパレータは、このセパレータ又はセル取付用セパレータに設けたディンプル状突起によって、ガス流路の往路及び復路の流路高さを保持するようにしたものである。
特開2002−151106号公報
しかしながら、上記した従来の燃料電池においては、反応用ガスの流通路が上下に分かれて形成されていることに加え、セパレータ又はセル取付用セパレータに設けたディンプル状突起が形成されているので、反応用ガスを単セルに十分に流接させることが難しく、効率のよい発電を行うことができないという問題がある。
そこで本発明は、セルスタック内を流通する反応用ガスを、固体電解質型セルとの流接面積が増大するように回流させて効率のよい発電を行うことができる燃料電池の提供を目的としている。
上記課題を解決するための本発明に係る燃料電池は、固体電解質型セルを配設したセル板とセパレータとにより区画形成される空隙に流路形成体とユニット内集電体を収容したセルユニットを有し、このセルユニット内外に、二種類の反応用ガスを互いに分離して流通させることによる発電を行うものである。
本発明においては、上記流路形成体が、外部から圧送された一方の反応用ガスを空隙内に流入するための流入経路を配設した本体部を有し、その本体部に、空隙内に流入した一方の反応用ガスを、上記固体電解質型セルに流接する流接面積が増加する流路となるように回流させるための複数のガス回流用部材を一体的に突設し、かつ、それらのガス回流用部材とセパレータとを密着させている。
また、上記ユニット内集電体は、複数の集電突起を金属板に突出形成した通気性を有する複数の集電体ブロックを並設しているとともに、それら各集電体ブロックとガス回流部材とを固着している。
本発明によれば、外部から圧送された一方の反応用ガスは、流路形成体の流入経路を通じてセルユニットに導入される。セルユニット内に流入した一方の反応用ガスは、流路形成体に一体的に突設された回流用部材により、上記固体電解質型セルとの流接面積が増加するように回流し、その後、流出経路を通じて排出される。これにより、一方の反応用ガスと固体電解質型セルとの流接面積が増加して効率のよい発電を行うことができる。
また、流路形成体とガス回流用部材の間に隙間が生じないので、その隙間を通じて反応用
ガスが短絡して流通することがなく、その反応用ガスを効率的にセルユニット内に流通させることができる。
さらに、ガス回流用部材が強度部材として機能し、セルユニットの機械的強度を向上させることができる。
以下に、本発明を実施するための最良の形態について、図面を参照して説明する。図1は、本発明の一実施形態に係る燃料電池に用いるセルスタックの斜視図、図2は、本発明の一実施形態に係る燃料電池の概略構成を示す概略説明図であり、図示のセルスタックは図1に矢印Iと矢印IIで示す部分における断面を表している。また、図3は、固体電解質型セルユニットの分解斜視図、図4は、流路形成体の詳細を示す拡大斜視図である。
本発明の一実施形態に係る燃料電池Aは、複数の固体電解質型セルユニット(以下、たんに「セルユニット」という。)10…を互いに間隙sをもって重合してなるセルスタックBをケース20に収容したものであり、そのセルスタックB内外に、二種類の反応用ガスを互いに分離して流通させることによる発電を行うようにしたものである。
「間隙s」は、隣接する他のセルユニット10との間に他方の反応用ガスを流通させるためのものである。
セルスタックBには、二種類の反応用ガスのうちの一方のものが、また、ケース20内には、他方の反応用ガスが互いに分離して流通されるようになっている。
本実施形態においては、一方の反応用ガスが水素(燃料ガス)であり、他方の反応用ガスが空気であるが、一方の反応用ガスを空気、他方の反応ガスを水素としてもよいことは勿論である。
ケース20は、平面視円形にした底壁21と上壁22の全周にわたり周壁23を囲繞形成した気密性を有する円筒形のものである。
上記周壁23には、ケース20内に他方の反応用ガスを導入するためのガス導入口24と、当該ケース20内に導入された他方の反応用ガスを排出するためのガス排出口25が配設されている。
セルユニット10…は、固体電解質型セル30を配設したセル板40とセパレータ50との間に区画形成される空隙kにユニット内集電体60と流路形成体70とを収容し、かつ、そのセル板40の下面にユニット外集電体80を配設した中空円盤形のものであり、それらを軸線Oを中心として同軸的に整列させた構成になっている。
セル板40は、隣接する他のセルユニット10との間に上記した間隙sが形成される高さにした円形段差部41が、円形基板42の中心に下向きにして突設されているとともに、周縁部に周壁43を起立形成したものである。
円形段差部41には、後述する流路形成体70に形成されているガス流入孔71とガス流出孔74…に対応する位置に、それらと同径の貫通孔44,45…が開口形成されている。
固体電解質型セル30は、アノード極(燃料極)とカソード極(空気極)とを電解質(いずれも図示しない)の上下両側に配設した円形に形成されており、図3に示すように、セル板40に軸線Oを中心とした90度間隔で配設されている。
セパレータ50は、隣接する他のセルユニット10との間に、上記した間隙sが形成される高さにした円形段差部51が、円形基板52の中心に上向きにして突設されているとともに、周縁部に周壁53を垂下形成したものである。
円形段差部51には、後述する流路形成体70に形成されているガス流入孔71とガス流出孔74…に対応する位置に、それらと同径の貫通孔54,55…が開口形成されている。
上記したセルユニット10を複数重合することにより、セル板40の円形段差部41と、セパレータ50の円形段差部51とが当接し、これにより上下に重合隣接するセルユニット10,10間に間隙sが形成される。
上記のセル板40とセパレータ50の円形段差部41,51間には、図4に詳細を示す流路形成体70が介挿されている。
流路形成体70は、円柱形の本体部75に、8本のガス回流用部材76…を一体的に突設した構成のものである。
本体部75には、図4に示すように、一方の反応用ガスをセルユニット10に流入させるための流入経路aと、セルユニット10内に流入した一方の反応用ガスを外部に流出させるための流出経路bとが形成されている。
流入経路aはガス流入孔71とガス導入孔72とから、また、流出経路bはガス導出孔73と4つのガス流出孔74とからそれぞれ構成されており、それらの詳細は次のとおりである。
ガス流入孔71は断面円形に形成されており、外部から圧送された一方の反応用ガスを各セルユニット10に分配流通させるためのものであり、軸線Oに一致して本体部75の上下面75a,75b間に貫通形成されている。
ガス流出孔74…は、ガス導出孔73から導出された一方の反応用ガスを外部に流出するためのものであり、本実施形態においては、軸線Oを中心とした90度間隔で本体部75に配設されている。
各ガス流出孔74は、ガス流入孔71よりも小さい内径にした断面円形に形成されており、それぞれ上下面75a,75b間に貫通形成されている。
ガス導入孔72は断面円形に形成されており、図4に示すように、内側開口72aをガス流入孔71に、また、外側開口72bを、本体部75の周面75cにそれぞれ臨ませている。
ガス導出孔73は断面円形に形成されており、外側開口73bを本体部75の周面75cに、また、内側開口73aをガス流出孔74にそれぞれ臨ませている。
上記の流路形成体70は、セルユニット10…どうしを重合することにより、ガス流入孔71…、ガス流出孔74…どうしが上下に対向密接して、流入経路a、流出経路bをそれぞれ連成するようになっている。
ガス回流用部材76…は、セルユニット10内を流通する一方の反応用ガスが上記固体電解質型セル30に流接する面積が増加するように回流させるためのものであり、軸線Oを中心とした45度間隔で配列されている。
本体部75の周面75cには、互いに隣り合う2本のガス回流用部材76,76間に臨む位置に、上記したガス導入孔72とガス導出孔73とが交互に配設されている。
また、ガス導入孔72を臨ませたガス回流用部材76,76間で区画されるセル板40には、固体電解質型セル30が位置している。
本実施形態に示すガス回流用部材76は断面方形に形成されているとともに、その開放端部76bと、セパレータ50及びセル板40の周壁53,43内面との間に、所要の間隙βが形成される全長Lにしている。
換言すると、ガス導入孔72からセルユニット10内に導入された一方の反応用ガスが、ガス回流用部材76の開放端部76bと周壁43(53)との間の間隙βを通じて、上記ガス導出孔73に回流するようにしている。
また、各ガス回流用部材76の上面76cと、セパレータ50の内面(下面)とは、密着固定されており、その間から回流させようとしている一方の反応用ガスが漏出しないようになっている。
上記した流路形成体70の具体的構成は、次のとおりである。図5(A)は、上側形成部体の上面図、(B)は、その上側形成部体の下面図、(C)は、(A)に示すIII‐III線に沿う部分断面図である。なお、下側形成部体は上側形成部体と同形であるので、上側形成部体に付した「A」を「B」に換えた符号を括弧書にして併記することにより、それらの説明を省略する。
本実施形態における流路形成体70は、平面視において互いに同輪郭の上側形成部70Aと下側形成部70Bとからなる上下2分割構造になっており、これらを互いに接合することにより構成されている。
上側形成部70Aは、本体部75Aと、ガス回流用部材76の上側半部76Aとからなる。
本体部75Aの下面には、断面半円形のガス導入孔半部72A、同じく断面半円形のガス導出孔半部73Aを形成しているとともに、本体部75A内にガス流入孔半部71A、及びガス流出孔半部74Aを穿設している。
ガス導入孔半部72A等は例えばハーフエッチングにより形成することができるが、その他の公知の方法で形成してもよい。
そして、上記上側形成部体70Aを下側形成部体70Bと接合することにより、上記したガス導入孔72、ガス導出孔76、ガス流入孔71及びガス流出孔74が形成される。
上記した流路形成体70によれば、ガス導入孔72からセルユニット10内に導入した一方の反応用ガスの全量を、ガス回流用部材76の開放端部76bと周壁43内面との間の間隙βを通じて上記ガス導出孔73に向けて回流させられるようになり、一方の反応用ガスが上記固体電解質型セル30に流接する面積を増加させることができる。
また、流路形成体70にガス回流用部材76…を一体的に突設することにより、それらガス回流用部材76…がセルユニット10の補強材として機能し、そのセルユニット10の機械的な強度を向上させることができる。機械的な強度を向上させられるので、例えば薄型のセパレータの変形を防ぐことができる。
さらに、従来のようなガス回流用部材と流路形成体とを別体に形成した場合における、当該ガス回流用部材と流路形成体との接合部分からの一方の反応用ガスの漏出を防止することもできる。
なお、本実施形態においては、両者の接合を拡散接合で行っているが、例えばロウ付け、溶接、接着剤等による接合を行うことができる。また、ガス回流用部材を本体部と一体に形成したものについて説明したが、本体部にガス回流用部材を接合等により組み付けた構成にしてもよい。
すなわち、「ガス回流用部材を一体的に突設している」ことには、ガス回流用部材を本体部と一体に形成した構成の他、本体部にガス回流用部材を接合等により組み付けた構成を含んでいる。従って、上記した上下2分割構造に限るものではない。
図6(A)は、ユニット内集電体を部分的に示す下面図、(B)は、(A)にIV‐IV線に沿う部分断面図である。
ところで、本実施形態に示すユニット内集電体60は、導電性の発泡金属やフェルト等の多孔体を円環形に成形したものであり、中心に円形開口61を開口している。
このユニット内集電体60の下面には、上記したガス回流用部材76に対応する位置に、そのガス回流用部材76を嵌挿するための嵌挿溝62…が凹陥形成されている。
具体的には、軸線Oを中心とした嵌挿溝62…が45度間隔の放射状に凹陥形成されているとともに、本実施形態においては、嵌挿溝62の上面部分60aが、他の部分よりも高密度にして形成されている。
上記したユニット内集電体60はガス透過性を有しているので、一方の反応用ガスのショートカットを防止する上で有効ではなく、また、可撓性を有するために接合もし難い。
そこで、上記した上面部分(高密度部分)60aをプレス等で形成すると、その高密度部分60aにおいてガス回流用部材76との接合が行いやすくなるとともに、反応用ガスを仕切りやすい。
上記の構造にしたユニット内集電体60は、ガス回流用部材76と高密度部分60aにおいて接合されているとともに、セル板40及びセパレータ50に対してもレーザ溶接等により接合されており、これにより、それらとの接触抵抗を低減させている。
すなわち、従来のものでは、セパレータとユニット内集電体とが接触することにより電流パスを確保している。
しかし、上記従来のものでは、金属表面の酸化やセパレータの変形による接触不良が発生すると接触抵抗が増加し、出力低下につながる。そこで、セパレータ,ユニット内集電体及びガス回流用部材が接合されていると、それらの接合部分が電流パスとなり、良好な導通が得られる。
一方、ユニット内集電体とガス回流用部材のみが接合されている場合でも、ガス回流用部材と流路形成体が一体的に形成され、かつ、その流路形成体がセパレータに接合されていることから、ガス回流用部材を電流経路として利用することができる。
また、ガス回流用部材とユニット内集電体が当接されることにより、振動等によるユニット内集電体の移動や電極との擦れを抑制し、耐久性を向上させることができる。
上記のセル板40とセパレータ50は、互いの周壁43,53の縁部どうしを当接させることにより、これらの間に反応用ガスの流路となる空隙cが区画形成され、その空隙cに上記ユニット内集電体60を配置している。
また、当接した周壁43,53どうしは、全周にわたり気密的(ガス密的)にレーザ溶接等により接合されている。
ユニット外集電体80は、例えばインコネル(登録商標)製の金属メッシュを円環形に成形したものであり、これの周縁部をセル板40又はセパレータ50にレーザ溶接等により接合されている。
セルスタックBは、上述したセルユニット10を互いに複数重合して構成されているとともに、上側フランジ90と下側フランジ100との間に挟み込まれて保持されている。
上側フランジ90は、上記した円形段差部41,51と同径にした円柱形の押さえ部91の周壁91aに、セルユニット10と同径にしたフランジ部92を延出形成した平面視円形板形のものである。
押さえ部91の中心には、上記ガス流入孔71と同径の貫通孔93が穿設されているとともに、上記ガス流出孔74に対向する位置には、そのガス流出孔74と同径の貫通孔94が形成されている。
下側フランジ100は、上記円形段差部41,51と同径にした円柱形の押さえ部101の周壁101aに、セルユニット10と同径にしたフランジ部102を延出形成した平面視円形板形のものである。
押さえ部101の中心には、上記ガス流入孔71と同径の貫通孔103が穿設されているとともに、上記ガス流出孔74に対向する位置には、そのガス流出孔74と同径の貫通孔104が形成されている。
上記の構成からなるセルスタックBは、上側フランジ90と下側フランジ100との間に複数のセルユニット10…を挟み込んだ状態で、それら上側,下側フランジ90,100の貫通孔94,104に、スタッドボルト110を挿通するとともに、上側フランジ90から上部に突出しているねじ部110aに、絶縁ワッシャ111、皿ばね112を介してナット113を螺合することにより、セルユニット10…を挟持するようになっている。
上述した構成からなる燃料電池Aにおける、セルユニット10内の一方の反応用ガスの回流について、主として図7を参照して説明する。図7は、セルユニットの内部構成を示す説明図である。
ガス流入孔71及びガス導入孔72を通じてセルユニット10内に導入された一方の反応用ガスは、これの全量が2本のガス回流用部材76,76に配設されている固体電解質型セル30上を流接通過する。
その流接通過後、周壁43,53とガス回流用部材76との間の間隙βを通じて、隣り合う2本のガス回流用部材76,76で区画されている空処uに向かうように回流する。
隣り合う2本のガス回流用部材76,76で区画されている空処uに流れ込んだ一方の反応用ガスは、ガス導出孔73を通じてガス流出孔74に流れ込んだ後、外部に流出される。
一方、他方の反応用ガスは、ケース20のガス導入口24から、そのケース20内に流入し、セルスタックBの各間隙cを通過した後、ガス排出口25から外部に排出される。これにより、効率のよい発電を行うことができる。
次に、図8,9を参照して、第一の変形例に係る流路形成体について説明する。図8は、第一の変形例に係る流路形成体を採用したセルユニットを示す分解斜視図、図9は、図8に示すV‐V線に沿う断面図である。なお、以下の説明において、上述した実施形態において説明したものと同等のものについては、それらと同一の符号を付して説明を省略する。
図8に示すセルユニット10は、セル板40に配設されている固体電解質型セル120と、流路形成体130の構成が上記したものと相違している。
固体電解質型セル120は、円形開口120aを軸線Oに一致して形成した円板形に形成されているものである。
第一の変形例に係る流路形成体130は、上記した流路形成体70のものと同等の本体部75に、それとは異なる断面形状にしたガス回流用部材131…を一体的に突設したものである。
ガス回流用部材131は、図9に示すように、上側半部131Aと下側半部131Bとが、これらを当接したときに三角形となる断面形状に形成されている。すなわち、下側半部131Bと固体電解質型セル120とが小さい面積で線接触するようにしている。これにより、ガス回流用部材131を補強材として機能させつつ、固体電解質型セル120の電極面積の損失を最小限に抑えることができる。
なお、上記ガス回流用部材は、上記三角形の断面形状に限るものではなく、固体電解質型セル120との接触面積が小さくなる公知の断面形状にすることができる。
次に、図10を参照して、第二の変形例に係る流路形成体について説明する。図10(A)は、第二の変形例に係る流路形成体をなす上側形成体の一部を破断して示す部分下面図、(B)は、(A)に示すVI‐VI線に沿う断面図、(C)は、上側形成体と下側形成体とを当接したときに、ガス回流用部材内に区画形成されたガス導出孔の説明図である。なお、下側形成部体は上側形成部体と同形であるので、上側形成部体に付した「A」を「B」に換えた符号を括弧書にして併記することにより、それらの説明を省略する。
第二の変形例に係る流路形成体140は、平面視において互いに同輪郭の上側形成部140Aと下側形成部140Bとからなる上下2分割構造になっており、これらを互いに接合することにより構成されている。
上側形成部140Aは、本体部141Aに、断面半円形のガス導入孔半部142A、ガス導出孔半部143A、ガス流入孔半部144A、及びガス流出孔半部145Aを形成したものである。なお、146Aはガス回流用部材146の上側半部である。
ガス導入孔半部143Aは、本体部141Aに形成された本体側孔部147と、ガス回流用部材146の上側半部146A内に形成された部材側孔部148とを連通形成したものである。
本体側孔部147は、内端開口147aをガス流入孔半部144Aに臨ませ、かつ、外端を部材側孔部148の内端に連通されているとともに、部材側孔部148の外端開口148aをガス回流用部材146の外端面に開口している。
上記した上側形成部体14Aを下側形成部体140Bと接合することにより、上記したガス導出孔142、ガス流入孔144及びガス流出孔145が形成されるとともに、各ガス回流用部材146内に、(C)に示すような断面円形のガス導入孔142が形成される。
このように、各ガス回流用部材146内にガス導入孔142を形成することにより、一方の反応用ガスを、各ガス回流用部材146の外端面から空処uに向けて分配させられ、反応用ガスの分散性を向上させることができる。
次に、図11を参照して、第三の変形例に係る流路形成体について説明する。図11(A)は、第三の変形例に係る流路形成体をなす上側形成体の一部を破断して示す部分下面図、(B)は、(A)に示すVI‐VI線に沿う断面図である。
なお、第三の変形例に係る流路形成体140は、後述する多孔質体を設けた点を除き、上記図10において説明した流路形成体と同等のものであるので、それらと同等のものに同一の符号を付して説明を省略する。
部材側孔部148内には、発泡金属、金属繊維の焼結体や多孔質セラミック等の多孔質体149が全長にわたり充填されている。
このような多孔質体149は、ガス回流用部材146内の部材側孔部148の形状に合わせて成型し、上側形成部体140Aを下側形成部体140Bと接合する際に挟み込むようにして接合している。
図11に示す構成にした流路形成体によれば、固体電解質型セルに近接配置されているガス回流用部材が高温になっているため、そのガス回流用部材内に一方の反応用ガスを流通させることにより、当該反応用ガスの予熱を行うことができる。
また、ガス回流用部材に導入孔を形成することにより、そのガス回流用部材の強度を低下させる虞もあるが、上記した多孔質体を充填することにより重量の増加を最小限にしながら、機械的強度の向上を図ることができる。
さらに、セルスタックが異常発熱した場合等には、低い温度の反応用ガスを流通させることにより熱交換を行い、固体電解質型セルを冷却することができる。
また、ガス回流用部材148内の多孔質体149にPtやRu等の触媒を担持させることにより、そのガス回流用部材148を触媒流路として利用することができる。
さらに、部分酸化改質による発熱により、固体電解質型セルを加熱することができるとともに、水蒸気改質による吸熱で冷却をも行うことができる。
なお、担持させる材料としては触媒機能を有する金属、Co、Ni、Ru、Rh、Pd、Ir、Pt又はこれらを含む合金を適用できる。
次に、図12を参照して、第四の変形例に係る流路形成体について説明する。図12(A)は、第四の変形例に係る流路形成体をなす上側形成体の一部を破断して示す部分下面図、(B)は、(A)に示すVI‐VI線に沿う断面図である。なお、下側形成部体は上側形成部体と同形であるので、上側形成部体に付した「A」を「B」に換えた符号を括弧書にして併記することにより、それらの説明を省略する。
第四の変形例に係る流路形成体150は、平面視において互いに同輪郭の上側形成部体150Aと下側形成部体150Bとからなる上下2分割構造になっており、これらを互いに接合することにより構成されている。
上側形成部150Aは、本体部151Aに、ガス導出孔半部153A、ガス流入孔半部154A及びガス流出孔半部155Aを、また、ガス回流用部材156の上側半部156A内に断面半円形のガス導入孔半部152Aをそれぞれ形成したものである。
ガス導入孔半部152Aは、本体部151Aに形成された本体側孔部157と、ガス回流用部材156の上側半部156A内に形成された部材側孔部158とを連通形成したものである。
本体側孔部157は、内端開口157aをガス流入孔半部144Aに臨ませ、かつ、外端を部材側孔部158の内端に連通されているとともに、部材側孔部158の外端開口158aをガス回流用部材156の外端面に開口している。
上記した上側形成部体150Aを下側形成部体150Bと接合することにより、上記したガス導出孔152、ガス流入孔154及びガス流出孔155が形成されるとともに、各ガス回流用部材156内に断面円形のガス導入孔152が形成される。
このように、各ガス回流用部材156内にガス導入孔142を形成することにより、一方の反応用ガスを、各ガス回流用部材156の外端面から空処uに向けて分配させられ、一方の反応用ガスの分散性を向上させることができる。
次に、図13を参照して、第五の変形例に係る流路形成体について説明する。図13(A)は、第五の変形例に係る流路形成体をなす上側形成体の一部を破断して示す部分下面図、(B)は、(A)に示すVI‐VI線に沿う断面図、(C)は、(A)に示すVII‐VII線に沿う断面図である。なお、下側形成部体は上側形成部体と同形であるので、上側形成部体に付した「A」を「B」に換えた符号を括弧書にして併記することにより、それらの説明を省略する。
第五の変形例に係る流路形成体160は、平面視において互いに同輪郭の上側形成部160Aと下側形成部160Bとからなる上下2分割構造になっており、これらを互いに接合することにより構成されている。
上側形成部160Aは、本体部161Aに、断面半円形のガス導入孔半部162A、ガス導出孔半部163A、ガス流入孔半部164A、及びガス流出孔半部165Aを形成したものである。なお、166Aはガス回流用部材166の上側半部である。
ガス導入孔半部163Aは、本体部161Aに形成された本体側孔部167と、ガス回流用部材166の上側半部166A内に形成された部材側孔部168とを連通形成したものである。
部材側孔部168は、ガス回流用部材166の上側半部166Aに沿う長さにした断面半円形の主孔169と、主孔169の両側に一定間隔で形成された断面半円形の副孔170…からなる。
副孔170…は、主孔169の両側に形成されることにより、セル板に配設された固体電解質型セル(図示しない)に向けて一方の反応用ガスを導出(吐出)するようになっている。
本体側孔部167は、内端開口167aをガス流入孔半部164Aに臨ませ、かつ、外端を部材側孔部168の内端に連通されている。
上記した上側形成部体160Aを下側形成部体160Bと接合することにより、上記したガス導出孔162、ガス流入孔164及びガス流出孔165が形成されるとともに、各ガス回流用部材146内に、(C)に示すような断面円形のガス導入孔142が形成される。
このように、各ガス回流用部材166内にガス導入孔162を形成することにより、一方の反応用ガスを、いわばシャワー状にして導入することができる。
このような構成のガス導入孔半部162Aを各ガス回流用部材に形成した流路形成体160を、図8に示すような固体電解質型セル120を設けたセルユニットに適用すると、当該ガス回流用部材160による反応用ガスの供給阻害を防止することができる。
すなわち、各ガス回流用部材166の側部から空処uに向けて一方の反応用ガスを分配導入することができ、当該反応用ガスの分散性を向上させて、固体電解質型セルとの流接面積を増加させられる。
図14(A)〜(D)は、それぞれ第6〜第9の変形例に係る流路形成体を示す平面図である。なお、各変形例における本体部は、上述した実施形態において説明した本体部75と同等のものであるので、当該本体部については、それらと同一の符号を付して詳細な説明を省略する。
第6〜第9の変形例に係る流路形成体は、上述したガス回流用部材のような内部構造を異ならせたものではなく、その外形を異ならせたものである。
同図(A)に示す第6の変形例に係る流路形成体200は、ガス回流用部材210が、これの基端部210aから先端部210bに向けて幅広になる形状に形成したものであり、軸線Oを中心とした等角度間隔で配設している。
同図(B)に示す第7の変形例に係る流路形成体220は、ガス回流用部材230を軸線Oを中心として、一部異なる角度間隔で形成したものである。本実施形態においては、大小2つの角度にしている。
同図(C)に示す第8の変形例に係る流路形成体240は、各ガス回流用部材250を互いに一定の曲率で曲成しているとともに、軸線Oを中心とした等角度間隔で配設している。
この構成によれば、例えばセパレータとガス回流用部材との当接面積が増大して、機械的強度を向上させられる。
同図(D)に示す第9の変形例に係る流路形成体260は、ガス回流用部材270を軸線Oを中心とした等角度間隔で形成しているとともに、互いに隣り合うガス回流用部材270,270間に、基端部から先端部にかけて、所定のガス流路をジグザグ状に区画形成する流路区画部材280a〜280dを配設したものである。
このような流路区画部材280a〜280dを設けることにより、一方の反応用ガスを所定のガス流路に沿って確実に流通させることができる。
図15は、他の変形例に係るユニット内集電体を示す部分平面図である。図15(A)は、他の変形例に係るユニット内集電体の部分平面図、(B),(C),(D)は、そのユニット内集電体の構造を示す説明図である。
他の変形例に係るユニット内集電体300は、流路形成体70の隣り合うガス回流用部材76,76で区画される空処uに収容できる平面視台形にした複数の集電体ブロック301…を、厚さ0.1(mm)ほどのステンレス等を円環形に形成した金属基板302上に配設したものである。
隣り合う集電体ブロック301,301は、ガス回流用部材76を挟む間隔にして配置されている。
このようなユニット内集電体300によれば、集電体ブロック301を形成していない金属基板302部分でガス回流用部材と当接させることにより密着性を向上させられるとともに、ガスのショートカットを低減し整流効果を向上させることができる。
ガス回流用部材と金属基板302とは、溶接,拡散接合,ロウ付け,接着等による接合を行うことができる。
また、金属基板302とセパレータと接合することにより、そのセパレータとの導通パスを確保できる。
集電体ブロック301は、本実施形態においては(B)に示すように、金属基板302にディンプルや板バネ状のプレス加工を施すことにより集電突起である円弧形の板ばね301aを複数突出した通気性を有する構造のものである。
なお、集電突起は、上記した円弧形の板ばねに限るものではなく、同図(C)に示すような略円弧形の板ばね301bの両端部のうちの一方を連結している構造、(D)に示すようにディンプル加工した突起301cを突設した構造にすることができる。
図16(A)は、第一の他例に係るセルユニットの分解斜視図、(B)は第二の他例に係るセルユニットの分解斜視図である。なお、本例に示すセルユニットはセパレータを除き、上記図1〜5において説明したものと同等であるので、それらと同一の符号を付して詳細な説明を省略する。
同図(A),(B)に示すセパレータ310は、円形基板311の中心部に、流路形成体70に形成されているガス流入孔71とガス流出孔74…に対応する位置に、それらと同径の貫通孔312,313…を開口形成したものであり、上記したセパレータ10とは、円形段差部を形成していない点で相違している。
本発明の一実施形態に係る燃料電池に用いるセルスタックの斜視図である。 本発明の一実施形態に係る燃料電池の概略構成を示す概略説明図であり、図示のセルスタックは図1に矢印Iと矢印IIで示す部分における断面を表している。 固体電解質型セルユニットの分解斜視図である。 流路形成体の詳細を示す拡大斜視図である。 (A)は、上側形成部体の上面図、(B)は、その上側形成部体の下面図、(C)は、(A)に示すIII‐III線に沿う部分断面図である。 (A)は、ユニット内集電体を部分的に示す下面図、(B)は、(A)にIV‐IV線に沿う部分断面図である。 セルユニットの内部構成を示す説明図である。 第一の変形例に係る流路形成体を採用したセルユニットを示す分解斜視図である。 図8にV‐V線における断面図である。 (A)は、第二の変形例に係る流路形成体をなす上側形成体の一部を破断して示す部分下面図、(B)は、(A)に示すVI‐VI線に沿う断面図、(C)は、上側形成体と下側形成体とを当接したときに、ガス回流用部材内に区画形成されたガス導出孔の説明図である。 (A)は、第三の変形例に係る流路形成体をなす上側形成体の一部を破断して示す部分下面図、(B)は、(A)に示すVI‐VI線に沿う断面図である。 (A)は、第四の変形例に係る流路形成体をなす上側形成体の一部を破断して示す部分下面図、(B)は、(A)に示すVI‐VI線に沿う断面図である。 (A)は、第五の変形例に係る流路形成体をなす上側形成体の一部を破断して示す部分下面図、(B)は、(A)に示すVI‐VI線に沿う断面図、(C)は、(A)に示すVII‐VII線に沿う断面図である。 (A)〜(D)は、それぞれ第6〜第9の変形例に係る流路形成体を示す平面図である。 (A)は、他の変形例に係るユニット内集電体のVIII‐VIII線に沿う部分平面図、(B),(C),(D)は、そのユニット内集電体の構造を示す断面図である。 (A)は、第一の他例に係るセルユニットの分解斜視図、(B)は第二の他例に係るセルユニットの分解斜視図である。
符号の説明
30 固体電解質型セル
40 セル板
50 セパレータ
51 円形段差部
60 ユニット内集電体
70 流路形成体
71 ガス流入孔
72 ガス導入孔
73 ガス導出孔
75 本体部
75A 本体部
76 ガス回流用部材
130 流路形成体
131 ガス回流用部材
146 ガス回流用部材
148 ガス回流用部材
149 多孔質体
150 流路形成体
151A 本体部
152 ガス導入孔
156 ガス回流用部材
160 流路形成体
162 ガス導入孔
210 ガス回流用部材
220 流路形成体
250 ガス回流用部材
260 流路形成体
270 ガス回流用部材
300 ユニット内集電体
301a 集電突起
a 流入経路
b 流出経路
k 空隙
s 間隙
u 空処

Claims (8)

  1. 固体電解質型セルを配設したセル板とセパレータとにより区画形成される空隙に流路形成体とユニット内集電体を収容したセルユニットを有し、このセルユニット内外に、二種類の反応用ガスを互いに分離して流通させることによる発電を行う燃料電池において、
    上記流路形成体は、外部から圧送された一方の反応用ガスを空隙内に流入するための流入経路を配設した本体部を有し、その本体部に、空隙内に流入した一方の反応用ガスを、上記固体電解質型セルに流接する流接面積が増加する流路となるように回流させるための複数のガス回流用部材を一体的に突設し、かつ、それらのガス回流用部材とセパレータとを密着させていること、
    上記ユニット内集電体は、複数の集電突起を金属板に突出形成した通気性を有する複数の集電体ブロックを並設しているとともに、それら各集電体ブロックとガス回流部材とを固着していることを特徴とする燃料電池。
  2. ユニット内集電体が多孔質体で形成されており、そのユニット内集電体とガス回流用部材との当接部分を高密度に形成していることを特徴とする請求項1に記載の燃料電池。
  3. 流路形成体の本体部には、上記した流入経路とともに、空隙内を流通した一方の反応用ガスを外部に流出するための流出経路が配設されており、
    複数のガス回流用部材は、本体部を中心として互いに所定の角度間隔で突設されており、それら各ガス回流用部材を挟む両側位置に、流入経路の終端部と流出経路の始端部とが交互に配設されていることを特徴とする請求項1又は2に記載の燃料電池。
  4. ガス回流用部材を、固体電解質型セルと線接触する断面形状に形成していることを特徴とする請求項1〜3のいずれか1項に記載の燃料電池。
  5. ガス回流用部材内に流入経路の一部を形成していることを特徴とする請求項1〜のいずれか1項に記載の燃料電池。
  6. 流入経路は、ガス回流用部材に沿う長さにした主孔と、この主孔の両側に一定間隔で形成された副孔とをガス回流用部材内に形成していることを特徴とする請求項に記載の燃料電池。
  7. 流入経路内に多孔質体を配設していることを特徴とする請求項5又は6に記載の燃料電池。
  8. 多孔質体に触媒機能を有する材料を担持させていることを特徴とする請求項7に記載の燃料電池。
JP2007223952A 2007-08-30 2007-08-30 燃料電池 Expired - Fee Related JP5246532B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007223952A JP5246532B2 (ja) 2007-08-30 2007-08-30 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007223952A JP5246532B2 (ja) 2007-08-30 2007-08-30 燃料電池

Publications (2)

Publication Number Publication Date
JP2009059509A JP2009059509A (ja) 2009-03-19
JP5246532B2 true JP5246532B2 (ja) 2013-07-24

Family

ID=40555080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007223952A Expired - Fee Related JP5246532B2 (ja) 2007-08-30 2007-08-30 燃料電池

Country Status (1)

Country Link
JP (1) JP5246532B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410159A1 (de) * 1989-07-24 1991-01-30 Asea Brown Boveri Ag Stromkollektor für Hochtemperatur-Brennstoffzelle
EP0432381A1 (de) * 1989-10-12 1991-06-19 Asea Brown Boveri Ag Bauteilanordnung zur Stromführung für keramische Hochtemperatur-Brennstoffzellen
JP3266927B2 (ja) * 1992-03-26 2002-03-18 株式会社村田製作所 固体電解質型燃料電池
JP4356389B2 (ja) * 2003-07-29 2009-11-04 日産自動車株式会社 燃料電池のガス流量制御装置
JP2005317291A (ja) * 2004-04-27 2005-11-10 Tokyo Gas Co Ltd 支持膜式固体酸化物形燃料電池スタック及びその作製方法
JP4836045B2 (ja) * 2004-12-20 2011-12-14 日産自動車株式会社 固体電解質型燃料電池及びスタック構造体
JP4848664B2 (ja) * 2005-04-22 2011-12-28 日産自動車株式会社 固体電解質型燃料電池及びスタック構造体
JP2007141468A (ja) * 2005-11-14 2007-06-07 Nippon Shokubai Co Ltd 固体酸化物形燃料電池

Also Published As

Publication number Publication date
JP2009059509A (ja) 2009-03-19

Similar Documents

Publication Publication Date Title
JP5383051B2 (ja) 燃料電池及び燃料電池スタック
AU2005320012B2 (en) Fuel cell system
JP4708101B2 (ja) 燃料電池セル電圧検出構造
EP1969659B1 (en) Fuel cell and fuel cell stack
JP2009117283A (ja) 燃料電池
JP5613392B2 (ja) 燃料電池スタック
CN100527504C (zh) 燃料电池系统
US8709672B2 (en) Fuel cell module
US8153330B2 (en) Fuel cell separator stacked on an electrolyte electrode assembly
CN100533829C (zh) 燃料电池系统
JP4547177B2 (ja) 燃料電池
JP6714568B2 (ja) ビードシール構造
JP5246532B2 (ja) 燃料電池
KR100978144B1 (ko) 금속지지체형 고체산화물 연료전지
AU2005320013B2 (en) Fuel cell system
JP5613391B2 (ja) 燃料電池
JP4555174B2 (ja) 燃料電池及び燃料電池スタック
JP5131452B2 (ja) 固体電解質型燃料電池
KR20220107283A (ko) 셀 유닛 및 셀 스택
KR20110017472A (ko) 디스크형 고체산화물 연료전지
US9379407B2 (en) Fuel cell module
KR101181788B1 (ko) 디스크형 고체산화물 연료전지 스택 및 그 제조 방법
JP5843219B2 (ja) 固体電解質型燃料電池とこれを用いたスタック構造体
JP5418801B2 (ja) 燃料電池
KR20220055988A (ko) 연료전지용 분리판 조립체 및 이를 포함하는 연료전지 스택

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

R150 Certificate of patent or registration of utility model

Ref document number: 5246532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees