JP5237853B2 - Constant current circuit - Google Patents

Constant current circuit Download PDF

Info

Publication number
JP5237853B2
JP5237853B2 JP2009039335A JP2009039335A JP5237853B2 JP 5237853 B2 JP5237853 B2 JP 5237853B2 JP 2009039335 A JP2009039335 A JP 2009039335A JP 2009039335 A JP2009039335 A JP 2009039335A JP 5237853 B2 JP5237853 B2 JP 5237853B2
Authority
JP
Japan
Prior art keywords
nmos transistor
voltage
constant current
gate
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009039335A
Other languages
Japanese (ja)
Other versions
JP2010198092A (en
Inventor
真 見谷
文靖 宇都宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2009039335A priority Critical patent/JP5237853B2/en
Publication of JP2010198092A publication Critical patent/JP2010198092A/en
Application granted granted Critical
Publication of JP5237853B2 publication Critical patent/JP5237853B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、定電流を流す定電流回路に関する。   The present invention relates to a constant current circuit for supplying a constant current.

現在、半導体装置は、定電流を流す定電流回路をよく搭載している。この定電流回路を用い、例えば、比較回路や増幅回路が動作している。   Currently, semiconductor devices often have a constant current circuit for supplying a constant current. Using this constant current circuit, for example, a comparison circuit and an amplifier circuit are operating.

従来の定電流回路について説明する。図2は、従来の定電流回路を示す図である。   A conventional constant current circuit will be described. FIG. 2 is a diagram illustrating a conventional constant current circuit.

PMOSトランジスタM3のK値(ドライブ能力)はPMOSトランジスタM4のK値よりも高く、または、NMOSトランジスタM2のK値はNMOSトランジスタM1のK値よりも高い。この時、NMOSトランジスタM1とNMOSトランジスタM2とのゲート・ソース間電圧の差分電圧が抵抗R1に発生し、抵抗R1に流れる電流が一定の定電流になる。   The K value (drive capability) of the PMOS transistor M3 is higher than the K value of the PMOS transistor M4, or the K value of the NMOS transistor M2 is higher than the K value of the NMOS transistor M1. At this time, a differential voltage between the gate-source voltages of the NMOS transistor M1 and the NMOS transistor M2 is generated in the resistor R1, and the current flowing through the resistor R1 becomes a constant constant current.

ここで、所望の電流I2が流れる動作点と電流I2が0アンペアになる動作点とにおいて、前者の動作点で定電流回路は安定動作するように、起動回路10が必要になる。この起動回路10において、PMOSトランジスタM4及びNMOSトランジスタM2に流れる電流I2が所定電流未満であり、抵抗R1に流れる電流I2が所定電流未満であり、PMOSトランジスタM4のゲート電圧が所定電圧以上であると、起動回路10は電源端子からNMOSトランジスタM1〜M2のゲートに電流を流し込んで定電流回路を起動する(例えば、特許文献1参照)。   Here, the starting circuit 10 is required so that the constant current circuit operates stably at the operating point where the desired current I2 flows and the operating point where the current I2 becomes 0 amperes. In this starting circuit 10, when the current I2 flowing through the PMOS transistor M4 and the NMOS transistor M2 is less than a predetermined current, the current I2 flowing through the resistor R1 is less than the predetermined current, and the gate voltage of the PMOS transistor M4 is equal to or higher than the predetermined voltage. The activation circuit 10 activates the constant current circuit by supplying current from the power supply terminal to the gates of the NMOS transistors M1 and M2 (see, for example, Patent Document 1).

特許第2803291号公報(図1)Japanese Patent No. 2803291 (FIG. 1)

しかし、従来の技術では、起動回路10が存在するので、その分、定電流回路の回路規模が大きくなってしまう。   However, in the conventional technique, since the starting circuit 10 exists, the circuit scale of the constant current circuit is increased accordingly.

本発明は、このような課題に鑑みてなされ、回路規模の小さい定電流回路を提供する。   The present invention has been made in view of such problems, and provides a constant current circuit having a small circuit scale.

本発明は、上記課題を解決するため、定電流を流す定電流回路において、負のしきい値電圧を有し、ゲートとソースとを接続されるデプレション型NMOSトランジスタと、飽和結線するPMOSトランジスタと、前記デプレション型NMOSトランジスタのソース電圧に基づいた電圧をゲートに印加され、前記デプレション型NMOSトランジスタのドレイン電流と等しいドレイン電流を流す第一NMOSトランジスタと、前記第一NMOSトランジスタのゲート電圧に基づいた電圧をゲートに印加され、前記PMOSトランジスタのドレイン電流と等しいドレイン電流を流す第二NMOSトランジスタと、前記第二NMOSトランジスタのソースと接地端子との間に設けられ、前記第一NMOSトランジスタと前記第二NMOSトランジスタとのゲート・ソース間電圧の差分電圧を発生して前記定電流を流す抵抗と、を備えることを特徴とする定電流回路を提供する。   In order to solve the above-described problems, the present invention provides a depletion type NMOS transistor having a negative threshold voltage and having a gate and a source connected to each other, and a PMOS transistor having a saturation connection in a constant current circuit for supplying a constant current. A voltage based on the source voltage of the depletion type NMOS transistor is applied to the gate, and a drain current equal to the drain current of the depletion type NMOS transistor is passed, and the gate voltage of the first NMOS transistor A second NMOS transistor that is applied to the gate and flows a drain current equal to the drain current of the PMOS transistor, and is provided between a source of the second NMOS transistor and a ground terminal, and the first NMOS transistor And the second NMOS transistor To provide a constant current circuit, characterized in that it comprises a resistor for flowing the constant current generates a differential voltage between the gate-source voltage of the motor.

本発明では、ゲートとソースとを接続されるデプレション型NMOSトランジスタが定電流回路を起動する起動電流を第一、第二NMOSトランジスタのゲートに流すので、定電流回路を起動するための起動回路が不要になり、定電流回路の回路規模が小さくなる。   In the present invention, the depletion type NMOS transistor whose gate and source are connected causes the starting current for starting the constant current circuit to flow to the gates of the first and second NMOS transistors, so that the starting circuit for starting the constant current circuit Becomes unnecessary, and the circuit scale of the constant current circuit is reduced.

定電流回路を示す図である。It is a figure which shows a constant current circuit. 従来の定電流回路を示す図である。It is a figure which shows the conventional constant current circuit.

以下、本発明の実施形態を、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

まず、定電流を流す定電流回路の構成について説明する。図1は、定電流回路を示す図である。   First, the configuration of a constant current circuit for supplying a constant current will be described. FIG. 1 is a diagram illustrating a constant current circuit.

[要素]定電流回路は、PMOSトランジスタP1、デプレション型NMOSトランジスタND1、NMOSトランジスタN2、NMOSトランジスタNL3、及び、抵抗R1を備える。   [Element] The constant current circuit includes a PMOS transistor P1, a depletion type NMOS transistor ND1, an NMOS transistor N2, an NMOS transistor NL3, and a resistor R1.

[要素の接続関係]デプレション型NMOSトランジスタND1のゲートは、ソースとNMOSトランジスタN2のゲート及びドレインとNMOSトランジスタNL3のゲートとに接続し、ドレインは、電源端子に接続する。飽和結線するNMOSトランジスタN2のソースは、接地端子に接続する。飽和結線するPMOSトランジスタP1のゲートは、ドレイン及びNMOSトランジスタNL3のドレインに接続し、ソースは、電源端子に接続する。NMOSトランジスタN2とNMOSトランジスタNL3とは、カレントミラー接続する。抵抗R1は、NMOSトランジスタNL3のソースと接地端子との間に設けられる。   [Element Connection Relationship] The gate of the depletion type NMOS transistor ND1 is connected to the source, the gate and drain of the NMOS transistor N2, and the gate of the NMOS transistor NL3, and the drain is connected to the power supply terminal. The source of the NMOS transistor N2 for saturation connection is connected to the ground terminal. The gate of the PMOS transistor P1 to be saturated is connected to the drain and the drain of the NMOS transistor NL3, and the source is connected to the power supply terminal. The NMOS transistor N2 and the NMOS transistor NL3 are current mirror connected. The resistor R1 is provided between the source of the NMOS transistor NL3 and the ground terminal.

[要素の機能]デプレション型NMOSトランジスタND1は、負のしきい値電圧を有する。デプレション型NMOSトランジスタND1は、ゲートとソースとを接続され、ゲート・ソース間電圧が0ボルトであっても、電流を流す。NMOSトランジスタNL3は、NMOSトランジスタN2よりも低いしきい値電圧を有する。   [Function of Element] The depletion type NMOS transistor ND1 has a negative threshold voltage. The depletion type NMOS transistor ND1 has a gate and a source connected to each other, and allows a current to flow even when the gate-source voltage is 0 volts. The NMOS transistor NL3 has a lower threshold voltage than the NMOS transistor N2.

抵抗R1はポリシリコン抵抗であり、抵抗R1のシート抵抗値は300Ω〜400Ω程度であるので、半導体装置の製造ばらつきや温度変化に対して抵抗R1の抵抗値はほとんど変化しない。   The resistor R1 is a polysilicon resistor, and the sheet resistance value of the resistor R1 is about 300Ω to 400Ω. Therefore, the resistance value of the resistor R1 hardly changes due to manufacturing variations of semiconductor devices and temperature changes.

NMOSトランジスタN2は、デプレション型NMOSトランジスタND1のソース電圧をゲートに印加され、デプレション型NMOSトランジスタND1のドレイン電流と等しいドレイン電流を流す。NMOSトランジスタNL3は、NMOSトランジスタN2のゲート電圧をゲートに印加され、PMOSトランジスタP1のドレイン電流と等しいドレイン電流を流す。デプレション型NMOSトランジスタND1及びNMOSトランジスタN2に電流I1が流れ、NMOSトランジスタN2及びNMOSトランジスタNL3のカレントミラー接続により、PMOSトランジスタP1とNMOSトランジスタNL3と抵抗R1とに電流I2が流れる。抵抗R1は、NMOSトランジスタN2とNMOSトランジスタNL3とのゲート・ソース間電圧の差分電圧を発生し、一定の定電流を流す。   In the NMOS transistor N2, the source voltage of the depletion type NMOS transistor ND1 is applied to the gate, and a drain current equal to the drain current of the depletion type NMOS transistor ND1 flows. In the NMOS transistor NL3, the gate voltage of the NMOS transistor N2 is applied to the gate, and a drain current equal to the drain current of the PMOS transistor P1 flows. The current I1 flows through the depletion type NMOS transistor ND1 and the NMOS transistor N2, and the current I2 flows through the PMOS transistor P1, the NMOS transistor NL3, and the resistor R1 due to the current mirror connection of the NMOS transistor N2 and the NMOS transistor NL3. The resistor R1 generates a differential voltage between the gate and source voltages of the NMOS transistor N2 and the NMOS transistor NL3, and allows a constant constant current to flow.

次に、定電流回路の動作について説明する。   Next, the operation of the constant current circuit will be described.

[起動時の動作]例えば電源投入時において、デプレション型NMOSトランジスタND1は、ゲートとソースとを接続されているので、電流を流す。この電流は、定電流回路を起動する起動電流として機能し、電源端子からNMOSトランジスタN2及びNMOSトランジスタNL3のゲートに流れ込み、NMOSトランジスタN2及びNMOSトランジスタNL3のゲート容量をチャージする。このチャージにより、所望の電流I2が流れる動作点と電流I2が0アンペアになる動作点とにおいて、前者の動作点で定電流回路は安定動作する。つまり、定電流回路は必ず起動する。   [Operation at Startup] For example, when the power is turned on, the depletion type NMOS transistor ND1 has a gate and a source connected to each other, so that a current flows. This current functions as a starting current for starting the constant current circuit, flows from the power supply terminal to the gates of the NMOS transistor N2 and the NMOS transistor NL3, and charges the gate capacitances of the NMOS transistor N2 and the NMOS transistor NL3. By this charging, the constant current circuit operates stably at the former operating point at the operating point where the desired current I2 flows and the operating point where the current I2 becomes 0 amperes. That is, the constant current circuit is always activated.

[起動後の動作]NMOSトランジスタN2におけるしきい値電圧をVt2とし、オーバードライブ電圧をVo2とし、ゲート・ソース間電圧をVgs2とし、NMOSトランジスタNL3におけるしきい値電圧をVt3とし、オーバードライブ電圧をVo3とし、ゲート・ソース間電圧をVgs3とすると、抵抗R1に発生する電圧Vref及びI2は
Vref
=Vgs2−Vgs3
=(Vo2+Vt2)−(Vo3+Vt3)
=(Vo2−Vo3)+(Vt2−Vt3)・・・(1)
I2=Vref/R1・・・(2)
によって算出される。つまり、抵抗R1に、NMOSトランジスタN2とNMOSトランジスタNL3とのオーバードライブ電圧の差分電圧(Vo2−Vo3)及びしきい値電圧の差分電圧(Vt2−Vt3)の合計電圧が発生し、電流I2が流れる。この電流I2は、飽和結線するPMOSトランジスタP1に設けられるカレントミラー回路(図示せず)等によって定電流回路の外に取り出される。
[Operation after Startup] The threshold voltage in the NMOS transistor N2 is Vt2, the overdrive voltage is Vo2, the gate-source voltage is Vgs2, the threshold voltage in the NMOS transistor NL3 is Vt3, and the overdrive voltage is Assuming that Vo3 is Vgs3 and the gate-source voltage is Vgs3, the voltages Vref and I2 generated in the resistor R1 are Vref.
= Vgs2-Vgs3
= (Vo2 + Vt2)-(Vo3 + Vt3)
= (Vo2-Vo3) + (Vt2-Vt3) (1)
I2 = Vref / R1 (2)
Is calculated by That is, a total voltage of the differential voltage (Vo2-Vo3) of the overdrive voltage and the differential voltage (Vt2-Vt3) of the threshold voltage is generated in the resistor R1, and the current I2 flows. . This current I2 is taken out of the constant current circuit by a current mirror circuit (not shown) or the like provided in the PMOS transistor P1 connected in saturation.

ここで、電流I2が電流I1にフィードバックしないので、電流I1と電流I2との比率が制御されず、オーバードライブ電圧Vo2とオーバードライブ電圧Vo3とは等しくならない。しかし、NMOSトランジスタN2及びNMOSトランジスタNL3のK値(ドライブ能力)が大きく回路設計されることにより、オーバードライブ電圧Vo2〜Vo3が小さくなり、これらの差分電圧(Vo2−Vo3)も小さくなる。また、半導体装置の製造ばらつきや温度変化により、しきい値電圧Vt2がばらついて高くなるとしきい値電圧Vt3も同様にばらついて高くなり、低くなると低くなる。つまり、しきい値電圧Vt2〜Vt3は同様にばらつく。つまり、半導体装置の製造ばらつきや温度変化により、しきい値電圧Vt2〜Vt3の差分電圧(Vt2−Vt3)はほとんど変化しない。よって、式(1)より、抵抗R1に発生する電圧Vrefは、半導体装置の製造ばらつきや温度変化にほとんど依存しない一定の定電圧になる。   Here, since the current I2 is not fed back to the current I1, the ratio between the current I1 and the current I2 is not controlled, and the overdrive voltage Vo2 and the overdrive voltage Vo3 are not equal. However, when the circuit is designed so that the K value (drive capability) of the NMOS transistor N2 and the NMOS transistor NL3 is large, the overdrive voltages Vo2 to Vo3 are reduced, and the differential voltage (Vo2 to Vo3) is also reduced. In addition, when the threshold voltage Vt2 varies and increases due to manufacturing variations of semiconductor devices and temperature changes, the threshold voltage Vt3 also varies and increases, and when the threshold voltage Vt2 decreases, the threshold voltage Vt3 decreases. That is, the threshold voltages Vt2 to Vt3 vary similarly. That is, the difference voltage (Vt2−Vt3) between the threshold voltages Vt2 to Vt3 hardly changes due to manufacturing variations of semiconductor devices and temperature changes. Therefore, from the equation (1), the voltage Vref generated in the resistor R1 is a constant voltage that hardly depends on manufacturing variations of semiconductor devices and temperature changes.

また、前述のように、半導体装置の製造ばらつきや温度変化に対して抵抗R1の抵抗値はほとんど変化しない。よって、式(2)より、抵抗R1に流れる電流I2は、半導体装置の製造ばらつきや温度変化にほとんど依存しない一定の定電流になる。   Further, as described above, the resistance value of the resistor R1 hardly changes with respect to manufacturing variations of semiconductor devices and temperature changes. Therefore, from equation (2), the current I2 flowing through the resistor R1 is a constant constant current that hardly depends on manufacturing variations of semiconductor devices or temperature changes.

[効果]このようにすると、ゲートとソースとを接続されるデプレション型NMOSトランジスタND1が定電流回路を起動する起動電流をNMOSトランジスタN2及びNMOSトランジスタNL3のゲートに流すので、定電流回路を起動するための起動回路が不要になり、定電流回路の回路規模が小さくなる。   [Effect] In this way, the depletion type NMOS transistor ND1 whose gate and source are connected flows the starting current for starting the constant current circuit to the gates of the NMOS transistor N2 and the NMOS transistor NL3, so the constant current circuit is started. This eliminates the need for a start-up circuit to reduce the circuit scale of the constant current circuit.

また、電流I1が流れると、NMOSトランジスタN2及びNMOSトランジスタNL3のカレントミラー接続により、電流I2が決まり、電流I2が電流I1にフィードバックしない。よって、例えば電源投入時において、定電流回路における所望の電流I2が流れるまでの時間(セットリング時間)が短くなる。すると、この所望の電流I2を必要とする他の回路の起動が速くなり、半導体装置が高速起動するアプリケーションに対応できるようになる。   When the current I1 flows, the current I2 is determined by the current mirror connection of the NMOS transistor N2 and the NMOS transistor NL3, and the current I2 is not fed back to the current I1. Therefore, for example, when the power is turned on, the time until the desired current I2 in the constant current circuit flows (settling time) is shortened. Then, the start-up of other circuits that require the desired current I2 becomes faster, and the semiconductor device can cope with an application that starts up at high speed.

また、NMOSトランジスタN2及びNMOSトランジスタNL3のK値が大きく回路設計されることにより、オーバードライブ電圧Vo2、Vo3が小さくなるので、これらの差分電圧(Vo2−Vo3)も小さくなる。すると、差分電圧(Vo2−Vo3)は温度特性を持つが、その温度特性の影響がほぼなくなる。また、半導体装置の製造ばらつきや温度変化により、しきい値電圧Vt2、Vt3は同様にばらつくので、しきい値電圧Vt2とVt3の差分電圧(Vt2−Vt3)はほとんど変化しない。すると、式(1)より、抵抗R1に発生する電圧Vrefは、半導体装置の製造ばらつきや温度変化にほとんど依存しない一定の定電圧になる。また、前述のように、半導体装置の製造ばらつきや温度変化に対して抵抗R1の抵抗値はほとんど変化しない。よって、式(2)より、抵抗R1に流れる電流I2は、半導体装置の製造ばらつきや温度変化にほとんど依存しない一定の定電流になる。   In addition, since the K values of the NMOS transistor N2 and the NMOS transistor NL3 are designed to be large, the overdrive voltages Vo2 and Vo3 are reduced, so that the differential voltage (Vo2-Vo3) is also reduced. Then, although the differential voltage (Vo2-Vo3) has temperature characteristics, the influence of the temperature characteristics is almost eliminated. Further, the threshold voltages Vt2 and Vt3 vary in the same manner due to manufacturing variations and temperature changes of the semiconductor device, so that the difference voltage (Vt2−Vt3) between the threshold voltages Vt2 and Vt3 hardly changes. Then, from equation (1), the voltage Vref generated in the resistor R1 is a constant voltage that hardly depends on manufacturing variations of semiconductor devices and temperature changes. Further, as described above, the resistance value of the resistor R1 hardly changes with respect to manufacturing variations of semiconductor devices and temperature changes. Therefore, from equation (2), the current I2 flowing through the resistor R1 is a constant constant current that hardly depends on manufacturing variations of semiconductor devices or temperature changes.

[補足]なお、上記の説明では、NMOSトランジスタNL3がNMOSトランジスタN2よりも低いしきい値電圧を有することにより、NMOSトランジスタN2とNMOSトランジスタNL3とのゲート・ソース間電圧の差分電圧{(Vo2−Vo3)+(Vt2−Vt3)}が抵抗R1に発生する。つまり、NMOSトランジスタN2とNMOSトランジスタNL3とのオーバードライブ電圧の差分電圧(Vo2−Vo3)及びしきい値電圧の差分電圧(Vt2−Vt3)の合計電圧が抵抗R1に発生する。   [Supplement] In the above description, since the NMOS transistor NL3 has a lower threshold voltage than the NMOS transistor N2, the differential voltage {(Vo2−) between the gate-source voltage of the NMOS transistor N2 and the NMOS transistor NL3. Vo3) + (Vt2−Vt3)} is generated in the resistor R1. That is, the total voltage of the differential voltage (Vo2-Vo3) of the overdrive voltage and the differential voltage (Vt2-Vt3) of the threshold voltage between the NMOS transistor N2 and the NMOS transistor NL3 is generated in the resistor R1.

しかし、NMOSトランジスタNL3がNMOSトランジスタN2と同一のしきい値電圧を有し、NMOSトランジスタNL3がNMOSトランジスタN2よりも高いK値を有することにより、NMOSトランジスタN2とNMOSトランジスタNL3とのゲート・ソース間電圧の差分電圧(Vgs2−Vgs3=Vo2−Vo3)が抵抗R1に発生しても良い。つまり、NMOSトランジスタN2とNMOSトランジスタNL3とのオーバードライブ電圧の差分電圧(Vo2−Vo3)が抵抗R1に発生しても良い。これらの差分電圧(Vo2−Vo3)は温度特性を持ってしまうが、NMOSトランジスタN2及びNMOSトランジスタNL3は同一のしきい値を有することになるので、異なるしきい値のNMOSトランジスタを製造する製造プロセスが不要になり、半導体装置の製造プロセスが容易になる。   However, since the NMOS transistor NL3 has the same threshold voltage as the NMOS transistor N2, and the NMOS transistor NL3 has a higher K value than the NMOS transistor N2, the gate-source connection between the NMOS transistor N2 and the NMOS transistor NL3 A voltage difference voltage (Vgs2-Vgs3 = Vo2-Vo3) may be generated in the resistor R1. That is, the differential voltage (Vo2-Vo3) of the overdrive voltage between the NMOS transistor N2 and the NMOS transistor NL3 may be generated in the resistor R1. Although these differential voltages (Vo2−Vo3) have temperature characteristics, the NMOS transistor N2 and the NMOS transistor NL3 have the same threshold value, and therefore a manufacturing process for manufacturing NMOS transistors having different threshold values. Becomes unnecessary, and the manufacturing process of the semiconductor device is facilitated.

P1……PMOSトランジスタ
ND1、N2、NL3……NMOSトランジスタ
R1……抵抗
P1... PMOS transistor ND1, N2, NL3... NMOS transistor R1.

Claims (3)

定電流を流す定電流回路において、
負のしきい値電圧を有し、ゲートとソースとを接続されるデプレション型NMOSトランジスタと、
飽和結線するPMOSトランジスタと、
前記デプレション型NMOSトランジスタのソース電圧に基づいた電圧をゲートに印加され、前記デプレション型NMOSトランジスタのドレイン電流と等しいドレイン電流を流す第一NMOSトランジスタと、
前記第一NMOSトランジスタのゲート電圧に基づいた電圧をゲートに印加され、前記PMOSトランジスタのドレイン電流と等しいドレイン電流を流す第二NMOSトランジスタと、
前記第二NMOSトランジスタのソースと接地端子との間に設けられ、前記第一NMOSトランジスタと前記第二NMOSトランジスタとのゲート・ソース間電圧の差分電圧を発生して前記定電流を流す抵抗と、
を備えることを特徴とする定電流回路。
In a constant current circuit for passing a constant current,
A depletion type NMOS transistor having a negative threshold voltage and having a gate and a source connected;
A PMOS transistor for saturation connection;
A voltage applied to a gate based on a source voltage of the depletion-type NMOS transistor, and a first NMOS transistor that flows a drain current equal to a drain current of the depletion-type NMOS transistor;
A voltage applied to the gate based on the gate voltage of the first NMOS transistor, and a second NMOS transistor that flows a drain current equal to the drain current of the PMOS transistor;
A resistor provided between a source and a ground terminal of the second NMOS transistor, generating a differential voltage of a gate-source voltage between the first NMOS transistor and the second NMOS transistor, and flowing the constant current;
A constant current circuit comprising:
前記第二NMOSトランジスタは、前記第一NMOSトランジスタよりも低いしきい値電圧を有し、
前記抵抗は、前記第一NMOSトランジスタと前記第二NMOSトランジスタとのオーバードライブ電圧の差分電圧及びしきい値電圧の差分電圧に基づいた電圧を発生する、
ことを特徴とする請求項1記載の定電流回路。
The second NMOS transistor has a lower threshold voltage than the first NMOS transistor;
The resistor generates a voltage based on a differential voltage of an overdrive voltage and a differential voltage of a threshold voltage between the first NMOS transistor and the second NMOS transistor;
The constant current circuit according to claim 1.
前記第二NMOSトランジスタは、前記第一NMOSトランジスタよりも高いドライブ能力を有し、
前記抵抗は、前記第一NMOSトランジスタと前記第二NMOSトランジスタとのオーバードライブ電圧の差分電圧に基づいた電圧を発生する、
ことを特徴とする請求項1記載の定電流回路。
The second NMOS transistor has a higher drive capability than the first NMOS transistor,
The resistor generates a voltage based on a differential voltage of an overdrive voltage between the first NMOS transistor and the second NMOS transistor.
The constant current circuit according to claim 1.
JP2009039335A 2009-02-23 2009-02-23 Constant current circuit Active JP5237853B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009039335A JP5237853B2 (en) 2009-02-23 2009-02-23 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009039335A JP5237853B2 (en) 2009-02-23 2009-02-23 Constant current circuit

Publications (2)

Publication Number Publication Date
JP2010198092A JP2010198092A (en) 2010-09-09
JP5237853B2 true JP5237853B2 (en) 2013-07-17

Family

ID=42822791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009039335A Active JP5237853B2 (en) 2009-02-23 2009-02-23 Constant current circuit

Country Status (1)

Country Link
JP (1) JP5237853B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5706653B2 (en) * 2010-09-14 2015-04-22 セイコーインスツル株式会社 Constant current circuit
JP7284593B2 (en) * 2018-03-22 2023-05-31 株式会社東芝 current drive circuit
JP7201677B2 (en) * 2018-05-23 2023-01-10 ソニーセミコンダクタソリューションズ株式会社 startup circuit
WO2021193956A1 (en) 2020-03-26 2021-09-30 株式会社村田製作所 Composite fiber
CN113568460B (en) * 2020-04-29 2022-11-18 无锡华润上华科技有限公司 Bias current generating circuit and flash memory

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628012B2 (en) * 1986-06-11 1994-04-13 日本電気株式会社 Constant voltage generator
JPH02268010A (en) * 1989-04-10 1990-11-01 Canon Inc Constant current circuit using mos transistor
JP2797820B2 (en) * 1992-02-05 1998-09-17 日本電気株式会社 Reference voltage generation circuit
JPH07221568A (en) * 1994-02-09 1995-08-18 Fuji Electric Co Ltd Amplifier circuit device
JP3374541B2 (en) * 1994-08-22 2003-02-04 富士電機株式会社 Method for adjusting temperature dependence of constant current circuit
JP3286155B2 (en) * 1996-02-29 2002-05-27 東光株式会社 Constant voltage circuit
JP3024645B1 (en) * 1998-12-09 2000-03-21 日本電気株式会社 Constant voltage generator
JP2003258105A (en) * 2002-02-27 2003-09-12 Ricoh Co Ltd Reference voltage generating circuit, its manufacturing method and power source device using the circuit
JP3811141B2 (en) * 2003-06-06 2006-08-16 東光株式会社 Variable output constant current source circuit

Also Published As

Publication number Publication date
JP2010198092A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
JP5202980B2 (en) Constant current circuit
JP4544458B2 (en) Semiconductor device
JP4859754B2 (en) Reference voltage generation circuit and constant voltage circuit using the reference voltage generation circuit
US8093881B2 (en) Reference voltage generation circuit with start-up circuit
JP2007066046A (en) Reference voltage generating circuit and constant voltage circuit using the reference voltage generating circuit
JP5279544B2 (en) Voltage regulator
JP4854393B2 (en) Voltage generation circuit
JP5237853B2 (en) Constant current circuit
US7764114B2 (en) Voltage divider and internal supply voltage generation circuit including the same
KR102537312B1 (en) Reference voltage circuit and semiconductor device
JP2008217203A (en) Regulator circuit
US20120249187A1 (en) Current source circuit
JP2011146817A (en) Amplifier
JP6100931B1 (en) Reference voltage generation circuit
JP2008152632A (en) Reference voltage generation circuit
JP2008107971A (en) Power supply voltage generation circuit and semiconductor integrated circuit device
US20120268208A1 (en) Semiconductor integrated circuit device
US20020175663A1 (en) Reference voltage generator tolerant to temperature variations
CN111488026B (en) Power supply voltage stabilizing circuit
JP2002016484A (en) Semiconductor circuit
JP2009294978A (en) Reference voltage circuit
KR20080024411A (en) Data ouput driver in semiconductor memory apparatus
JP2007142698A (en) Startup circuit
US20090213666A1 (en) Low voltage operation bias current generation circuit
JP2005102007A (en) Oscillation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130313

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130329

R150 Certificate of patent or registration of utility model

Ref document number: 5237853

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350