JP5229531B2 - 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ - Google Patents
電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ Download PDFInfo
- Publication number
- JP5229531B2 JP5229531B2 JP2007237673A JP2007237673A JP5229531B2 JP 5229531 B2 JP5229531 B2 JP 5229531B2 JP 2007237673 A JP2007237673 A JP 2007237673A JP 2007237673 A JP2007237673 A JP 2007237673A JP 5229531 B2 JP5229531 B2 JP 5229531B2
- Authority
- JP
- Japan
- Prior art keywords
- particles
- resin
- carrier
- coating layer
- toner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Developing Agents For Electrophotography (AREA)
Description
しかしながら、市場における更なる高耐久性化への要望は依然として高く、更なる高耐久性化が求められている。
しかし、このようなキャリアは、現像剤として使用する際のキャリア同士あるいはトナーとの摩擦や衝突等により、キャリア被覆層からカーボン、もしくはカーボンを含む樹脂片が脱離し、トナー粒子に付着したり、そのまま現像されたりする。黒トナーを使用した黒文字等の複写画像を形成するときは、この現象はそれほど大きな問題にならないが、カラートナー、特にイエロートナーと組み合わせた現像剤においては色の濁り(色汚れ)の問題として顕著に現れる。
したがって、キャリア表面からの脱離が少なく、かつ、脱離したとしても色汚れを発生させず、なおかつ、効率よく導電性を発揮する材料が求められている。
上記課題は本発明の(1)〜(6)によって解決される。
(1)「磁性を有する芯材粒子と該粒子を被覆する結着樹脂層とからなる電子写真現像剤用キャリアにおいて、
芯材粒子表面から該芯材粒子を被覆する被覆層の表面までの平均厚みをT(μm)、キャリア表面に沿って、0.2μm間隔で被覆層における樹脂部分の厚み(芯材表面と粒子との間に存在する樹脂部の厚み、粒子間に存在する樹脂部の厚み、粒子上の樹脂部の厚み、及び芯材上の樹脂部の厚みを、透過型電子顕微鏡(TEM)を用いて測定し、50個の測定値を得て、この測定値を平均した値を被覆層における樹脂部分の平均厚みをhとするとき、
前記結着樹脂層は、体積平均粒径D1(μm)と該被覆層における樹脂部分の平均厚みh(μm)の比(D1/h)が、1<(D1/h)<10の関係を満たす第1硬質粒子、
体積平均粒径D2(μm)と該被覆層における樹脂部分の平均厚みh(μm)との比(D2/h)が、0.001<(D2/h)<1の関係を満たす第2硬質粒子を含むものであり、
前記第2硬質粒子は導電性微粒子を含有し、該導電性微粒子は、基材となる粒子の表面に二酸化スズと酸化インジウムからなる導電性被覆層を設けた、アスペクト比が3〜200の針状あるいは棒状の微粒子であり、前記基材は酸化チタンであり、前記導電性被覆層は下層が二酸化スズの層、上層が二酸化スズを含む酸化インジウムの層によって構成されたものであり、
前記平均厚みT(μm)が、0.1≦T≦3.0の範囲であることを特徴とする電子写真現像剤用キャリア」、
(2)「前記導電性微粒子の基材がルチル型酸化チタンであることを特徴とする前記第(1)項に記載の電子写真現像剤用キャリア。
(3)「前記結着樹脂が、少なくともアクリル樹脂とアミノ樹脂との反応物かシリコーン樹脂のいずれかを含むことを特徴とする前記第(1)項又は第(2)項に記載の電子写真現像剤用キャリア」、
(4)「前記第(1)項乃至第(3)項のいずれかに記載の電子写真現像剤用キャリアとトナーとを含有することを特徴とする電子写真現像剤」、
(5)「前記第(4)項に記載の電子写真用現像剤を用いることを特徴とする画像形成方法」、
(6)「少なくとも感光体及び現像手段を具備するプロセスカートリッジにおいて、前記第(5)項に記載の画像形成方法を用いて画像を形成することを特徴とするプロセスカートリッジ」。
本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、キャリア表面の結着樹脂層に、下層が二酸化スズの層、上層が二酸化スズを含む酸化インジウムの層という構成からなる導電性被覆層を有し、白色で、形状が針状あるいは棒状である導電性微粒子を含有させることで、二酸化スズと酸化インジウムの該構成に起因する良好な導電性をもつ導電性微粒子が、キャリア表面上で機能が長期に渡り安定して発揮され、かつ、万が一、キャリア樹脂層から導電性粒子が脱離、もしくはキャリア樹脂層ごと剥離した場合でも、画像に対して色汚れの問題を発生させないという、新規な技術構想を考案した。
粉体色調のL値が70未満の場合には白色度が十分でないため、トナーの発色に悪影響を及ぼす。b値が−10未満、もしくは10より大きい場合には彩度が高くなってしまい、トナーと共に定着された際に色汚れを発生させてしまう。
まず、上皿天秤で6gを測り取る。成形ダイス上に白紙を敷き、ステンレスリングを置きそこへ秤量した試料を入れ押さえ金具を乗せる。小型自動プレス機を用いてプレスし標準版により標準調整した色差計にてL値、b値を読み取る。
測色計(日本電色工業(株)製 Z-10018P又は同等以上の性能を有する測定器)
ステンレスリング(内径40mmφ、高さ18mm)
ただ、基材表面に直接に二酸化スズと酸化インジウムからなる導電性被膜層を形成しても、基材粒子の電気的な影響も大きく、良好な導電性が得られない場合がある。また、基材上へ直接、二酸化スズの水和物と酸化インジウムの水和物の混合液を被覆させても、基材表面に均一に被覆をさせることは難しく、品質の面で問題が発生する場合がある。
基材粒子表面を酸化アルミニウム、酸化チタン、酸化亜鉛や酸化ジルコニウム等の、コーティング材として一般的に使用されている材料にてコートした後に二酸化スズの水和物と酸化インジウムの水和物の混合液を基材粒子に被覆させると、均一な導電性被覆層を形成することができる。しかし、これらのコート材料を下層に用いても、そのコート材料の電気的影響から、良好な導電性を得られないことが多い。そこで、下層を形成するコート材料に二酸化スズを用いたところ、上層の導電被覆層を均一かつ強固に固定化することができ、また、下層からの電気的な悪影響を受けることもなく良好な導電性を得ることができた。なお、下層には該粒子の効果を損ねない程度であれば、少量の酸化インジウム成分が混入していても問題ない。
前記導電性微粒子のアスペクト比は、例えば、走査型電子顕微鏡及び透過型電子顕微鏡を用いて前記導電性微粒子もしくはキャリア割断面の被覆層における導電性微粒子部位を撮影することで得られる二次元視野像において、任意に50個選択した前記導電性微粒子の一番長い部位を長径とし、該長径と直交する軸で一番長い部位を短径とした平均値を求め、それらを除することによって算出することができる。
導電性に注目すると、導電性微粒子の基材は、酸化アルミニウム、酸化チタン、酸化亜鉛、二酸化ケイ素、硫酸バリウム、酸化ジルコニウムのいずれかを、単独或いは複数を併用して用いると、導電性付与効果が顕著になる。これは、粒子表面の導電処理との相性が良く、導電処理効果が良好に発揮されるためであると考えられる。
色調に注目すると、酸化アルミニウム、酸化チタンは前述の色調条件を満たしやすい。
これらのことから、本発明の導電性粒子の基材には、酸化チタンが好ましく、特にルチル型の酸化チタンも用いることが好ましい。ただし本発明は、酸化チタン以外にも、良好に効果を発揮するものについては導電性粒子の基材として用いることが可能である。
なお、本発明における「酸化チタン」には、「二酸化チタン」も含めている。
下層の二酸化スズの水和物の被膜を形成させる方法としては、種々の方法があるが、例えば、白色無機顔料の水懸濁液に、スズ塩またはスズ酸塩の溶液を添加した後、アルカリまたは酸を添加する方法、スズ塩またはスズ塩酸とアルカリまたは酸とを別々に並行して添加し被覆処理する方法等がある。白色無機顔料粒子表面に酸化スズの含水物を均一に被覆処理するには、後者の並行添加の方法がより適しており、この時、水懸濁液を50〜100℃に加温保持することがより好ましい。又、スズ塩またはスズ酸塩とアルカリまたは酸とを並行添加する際のpHを2〜9とする。二酸化スズ水和物の等電点はpH=5.5であるので、好ましくはpH=2〜5あるいはpH=6〜9を維持することが重要で、これによりスズの加水反応生成物を白色無機顔料粒子表面に均一に沈着させることができる。
アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、アンモニア水、アンモニアガス等、酸としては、例えば、塩酸、硫酸、硝酸、酢酸等を使用することができる。
二酸化スズの水和物の被覆量は基材粒子に対して、SnO2として0.5〜50重量%であり、好ましくは1.5〜40重量%である。少な過ぎると、上に被覆する酸化スズを含む酸化インジウムの水和物の被覆状態が不均一となり、しかも、基材粒子の影響を受け、粉体の体積固有抵抗が高くなる。多過ぎると、基材粒子表面に密着していない酸化スズの水和物の量が多くなり、被覆が不均一になり易い。
スズの原料としては、例えば、塩化スズ、硫酸スズ、硝酸スズ等を使用することができる。インジウムの原料としては、例えば、塩化インジウム、硫酸インジウム等を使用することができる。
酸化インジウムの処理量は基材の無機顔料に対して、In2O3として5〜200重量%、好ましくは8〜150重量%であり、少な過ぎると所望の導電性が得られず、多過ぎても導電性はほとんど向上せず、また、高価になりコスト面からも好ましくない。
加熱する際の温度は350〜750℃、好ましくは400〜700℃であり、この範囲より低い場合にも、高い場合にも、所望の導電性が得がたい。また、加熱時間は、短かすぎる場合には加熱効果がなく、長すぎてもそれ以上の効果が望めないことから、15分〜4時間程度が適当であり、好ましくは、1〜2時間程度である。
被覆層(27)における樹脂部分の平均厚みhは、例えば、透過型電子顕微鏡(TEM)を用いて、キャリアの断面を観察して測定することができる。具体的には、キャリア表面に沿って、0.2μm間隔で被覆層(27)における樹脂部分の厚み(芯材表面と粒子との間に存在する樹脂部の厚み(ha)、粒子間に存在する樹脂部の厚み(hb)、粒子上の樹脂部の厚み(hc)、及び芯材上の樹脂部の厚み(hd)を、透過型電子顕微鏡(TEM)を用いて測定し、50個の測定値を得て、この測定値を平均した値を被覆層(27)における樹脂部分の平均厚みhとする。
例えば、図1で示される測定点(A)では、前記(hb)及び前記(hc)が存在するので、測定点(A)における測定値の個数は2つとなる。
また、上述の測定方法において、50個ある測定値のうち、最後に測定した箇所において、被覆層(27)における樹脂部分の厚みの測定値として複数の測定値(例えば、前記(ha)及び前記(hc)を得た場合には、上記測定値の合計値を、測定値の個数である「49+(最後の測定点における測定値の数)」の値で割った値を、被覆層(27)における樹脂部分の平均厚みhの値とする。
第1粒子(G1)の粒径D1と被覆層(27)における樹脂部分の平均厚みhとが、上述の関係式を満たすと、キャリアの被覆層(27)に対して第1粒子(G1)の方が凸となる。この凸部分によって、現像剤を摩擦帯電させるための攪拌を行った時に、トナーとキャリア、又はキャリア同士の摩擦接触によってキャリア被覆層(27)の結着樹脂に与えられる強い衝撃を緩和することができる。これにより、帯電発生箇所である、キャリア被覆層(27)の結着樹脂の膜削れが発生することを抑制することができる。
また、キャリア同士が摩擦接触することによって、上述の被覆層(27)表面に対して凸となって存在する粒子が、キャリア表面に付着したトナーのスペント成分を掻き落とす、クリーニングの効果を得ることができる。これにより、トナースペントの現象が発生するのを効果的に防止することができる。
(D/h)が1以下であると、第1粒子が結着樹脂中に埋没して、被覆層(27)中に添加された第1粒子(G1)の効果を十分に得ることができないことがある。また、(D/h)が10以上であると、第1粒子(G1)と結着樹脂との接触面積が小さくなり、第1粒子(G1)のキャリア粒子に対する充分な拘束力が得られず、第1粒子(G1)がキャリア粒子表面から容易に脱離してしまうことがある。
第2粒子(G2)の粒径(D2)を、被覆層(27)の平均厚みよりも小さくすることで、第2粒子(G2)を被覆層(27)中に分散させながら内包することができる。そのため、被覆層の強度を平均的に向上させることができる。
回転速度:2000rpm
最大粒度:2.0μm
最小粒度:0.1μm
粒度間隔:0.1μm
分散媒粘度:0.59mPa・s
分散媒密度:0.87g/cm3
内径1インチの円筒状の塩化ビニル管の中に試料を入れ、その上下を電極で挟む。これら電極をプレス機により、15kg/cm2の圧力を1分加える。続いて、この加圧した状態で、LCRメータによる測定を行い、抵抗(r)を得る。得られた抵抗値を、下記数式(1)により計算して、体積固有抵抗を求めることができる。
芯材(26)表面から被覆層(27)表面までの平均厚み(T)が0.1μm未満であると、キャリア芯材(26)を覆う膜としての被覆層(27)の総厚が薄すぎるため、ランニング経時において、被覆層(27)が削られてキャリア芯材(26)が剥き出しになる現象が起こりやすくなり、キャリアの耐久性が低下する。
また、芯材(26)から被覆層(27)表面までの平均厚みTが3.0μmを超えると、芯材(26)表面に形成される膜厚が厚すぎるため、キャリアの磁化が下がりやすくなり、キャリア付着を生じさせることがある。
第1粒子(G1)の体積平均粒子径D1は、0.05〜3μmであることが好ましく、0.05〜1μmがより好ましい。
第2粒子(G2)の粒径D2は、0.005〜1μmであることが好ましく、0.01〜0.2μmがより好ましい。
図1に示すように、被覆層(27)中に添加された粒子の粒径が、被覆層(27)における樹脂部分の厚みよりも大きい場合には、この粒子の粒径が、芯材(26)表面から被覆層(27)表面までの厚みTに相当する値となる。
芯材(26)表面から被覆層(27)表面までの平均厚みTは、例えば、透過型電子顕微鏡(TEM)を用いてキャリア断面を観察し、芯材(26)表面から被覆層(27)表面までの厚みを、キャリア表面に沿って0.2μm間隔で50点測定し、これらの測定値を平均して得られる値である。
アルミナ粒子としては、粒径5μm以下のアルミナ粒子が好ましく、表面処理をしていないもの、疎水化処理などの表面処理したもの等を用いることができる。
シリカとしては、トナー用に用いられているもの、及びそれ以外のものも用いることができ、表面処理していないもの、疎水化処理など表面処理したもの等を用いることができる。また、前記導電性微粒子を、第1粒子(G1)として用いてもよい。
第1粒子(G1)の被覆層(27)における含有量が10wt%未満であると、キャリア粒子表面での結着樹脂の占める割合に比べ、第1粒子(G1)の占める割合が少なすぎるため、結着樹脂への強い衝撃を伴う接触を緩和する効果が小さいので、十分な耐久性が得られないことがある。
一方、80wt%を超えると、キャリア表面での結着樹脂の占める割合に比べ、第1粒子(G1)の占める割合が多すぎるため、帯電発生箇所である結着樹脂の占める割合が不十分となり、十分な帯電能力を発揮できないことがある。更に、結着樹脂量に比べて第1粒子(G1)の量が多すぎるので、結着樹脂による第1粒子(G1)の保持能力が不十分となり、第1粒子(G1)が脱離し易くなり、帯電量や抵抗等の変動量が増加して、十分な耐久性が得られないことがある。
ここで、第1粒子(G1)の被覆層(27)における含有量は、下記式(2)で表される。
これらの粒子は、適度な硬度を持ち、且つ、キャリアのコート材料に用いられる樹脂との相性もよく、分散性、接着性の面でも優れており、特に酸化チタンや表面処理を施した酸化チタンは第2粒子(G2)として好ましい。
また、粒子母体として上記以外のものを使用した場合でも、粒子表面に疎水化処理等の表面処理を施すことで分散性を向上させたり、導電性処理等の表面処理を施すことで粒径及び体積固有抵抗を上述した範囲内にさせたりしたものであれば、上述したのと同様の理由から、良好な効果を得ることができる。また、前記導電性微粒子を、第2粒子(G2)として用いてもよい。
被覆層(27)における第2粒子(G2)の含有量が多いほど、強度を高める効果は大きいが、第2粒子(G2)の含有量が50wt%を超えると、被覆層(27)内部における第2粒子(G2)の分散状態が大幅に悪化する。粒子の分散状態が悪化すると、被覆層(27)内部で第2粒子(G2)の一部が互いに凝集してしまうため、第2粒子(G2)の効果が平均的には発揮されにくくなる。
一方、第2粒子(G2)の被覆層(27)における含有量が2wt%未満であると、含有量が少なすぎるために、第2粒子(G2)を添加した効果を十分に得ることができない。
第2粒子(G2)の被覆層(27)における含有量は、下記式(3)によって表される。
アクリル樹脂とアミノ樹脂との反応物としては、特に制限はなく、目的に応じて適宜選択することができるが、アクリル樹脂とアミノ樹脂との架橋反応物が好適である。
アクリル樹脂としては、特に制限はなく、全てのアクリル樹脂の中から目的に応じて適宜選択することができるが、これらの中でも、ガラス転移温度(Tg)は20〜100℃が好ましく、25〜80℃がより好ましい。アクリル樹脂のガラス転移温度(Tg)がこの範囲内であると、アクリル樹脂は適度な弾性を有しており、現像剤を摩擦帯電させるための攪拌における、トナーとキャリアとの摩擦あるいはキャリア同士の摩擦で、結着樹脂への強い衝撃を伴う接触の際、該衝撃を吸収することができ、被覆層を破損することなく維持することが可能となる。
ガラス転移温度(Tg)が20℃未満であると、常温においても結着樹脂がブロッキングするため、保存性が悪く実用上使用できないことがある。一方、ガラス転移温度(Tg)が100℃を超えると、結着樹脂が硬く脆性が高くなり過ぎて衝撃を吸収することができず、その脆さから結着樹脂が削れると共に、該粒子を保持することができず、脱離しやすくなることがある。
また、アミノ樹脂としては、特に制限はなく、従来から知られているアミノ樹脂の中から目的に応じて適宜選択することができ、例えば、グアナミン、メラミンを用いることで、帯電量付与能力を著しく向上させることができる。
前記シリコーン樹脂は、市販品を用いることができ、ストレートシリコーン樹脂としては、信越化学工業社製のKR271、KR255、KR152;東レ・ダウコーニング・シリコーン社製のSR2400、SR2406、SR2410、等が挙げられる。
前記変性シリコーン樹脂としては、例えば、信越化学工業社製のKR206(アルキド変性)、KR5208(アクリル変性)、ES1001N(エポキシ変性)、KR305(ウレタン変性);東レ・ダウコーニング・シリコーン社製のSR2115(エポキシ変性)、SR2110(アルキド変性)、などが挙げられる。
なお、シリコーン樹脂単体で用いることも可能であるが、架橋反応する成分、帯電量調整成分等を同時に用いることも可能である。
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、セルソルブチルアセテート、ブチルセロソルブなどが挙げられる。
前記焼付としては、特に制限はなく、外部加熱方式であってもよいし、内部加熱方式であってもよく、例えば、固定式電気炉、流動式電気炉、ロータリー式電気炉、バーナー炉等を用いる方法、マイクロウエーブを用いる方法、などが挙げられる。
具体的には、MFL-35S、MFL-35HS(パウダーテック社製)、DFC-400M(同和鉄粉工業社製)が好適な例として挙げられる。
キャリアの抵抗率が1×1011[Ω・cm]よりも低いと、現像ギャップ(感光体と現像スリーブ間の最近接距離)が狭くなった場合、キャリアに電荷が誘導されてキャリア付着が発生し易くなる。感光体の線速度、および、現像スリーブの線速度が大きい場合、悪化の傾向が見られる。また、ACバイアスを印加する場合は顕著である。通常、カラートナー現像用キャリアは充分なトナー付着量を得るため、低抵抗のものが使用されることが一般的である。
上記の抵抗範囲のキャリアは、適正なトナー帯電量のもとで使用することにより、充分な画像濃度が得られる。
また、1×1016[Ω・cm]より大きいとトナーと反対極性の電荷が溜まりやすくなり、キャリアが帯電してキャリア付着が起き易くなる。
上記キャリア抵抗率は、次の方法により、測定することができる。
図2に示すように、電極間距離2mm、表面積2×4cmの電極(22a)、(22b)を収容したフッ素樹脂製容器からなるセル(21)にキャリア(23)を充填し、両極間に100Vの直流電圧を印加し、ハイレジスタンスメーター4329A(4329A+LJK 5HVLVWDQFH OHWHU;横川ヒューレットパッカード株式会社製)にて直流抵抗を測定する。
キャリア抵抗測定の際の充填の度合いは、キャリアをセルにあふれるまで入れたのち、セル全体を20回タッピングしたのち、セルの上面を非磁性でできた水平なへらを用いてセルの上端に沿って一回の操作で平らにかきとる。充填の際に加圧は不要である。
上記キャリアの抵抗率の調整は、導電性微粒子の量や樹脂被覆層の膜厚の制御等によって可能である。
本発明において用いられるトナーは、少なくとも結着樹脂及び着色剤を含んで構成され、更に離型剤、帯電制御剤、またこれらの他に、必要に応じてその他の成分を含んでなる。
以下にトナーの製造方法について記述するが、トナーの製造方法としては、特に一つのものに限定されるものではなく、目的に応じて適宜選択することができる。例えば、粉砕法、水系媒体中で油相を乳化、懸濁又は凝集させトナー母体粒子を形成させる、懸濁重合法、乳化重合法、ポリマー懸濁法等が挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
着色剤のトナーにおける含有量は1〜15重量%が好ましく、3〜10重量%がより好ましい。
ワックス類としては、例えば、カルボニル基含有ワックス、ポリオレフィンワックス、長鎖炭化水素、等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、カルボニル基含有ワックスが好ましい。
カルボニル基含有ワックスとしては、例えば、ポリアルカン酸エステル、ポリアルカノールエステル、ポリアルカン酸アミド、ポリアルキルアミド、ジアルキルケトン、等が挙げられる。前記ポリアルカン酸エステルとしては、例えば、カルナバワックス、モンタンワックス、トリメチロールプロパントリベヘネート、ペンタエリスリトールテトラベヘネート、ペンタエリスリトールジアセテートジベヘネート、グリセリントリベヘネート、1,18−オクタデカンジオールジステアレート等が挙げられる。ポリアルカノールエステルとしては、例えば、トリメリット酸トリステアリル、ジステアリルマレエート等が挙げられる。前記ポリアルカン酸アミドとしては、例えば、ジベヘニルアミド等が挙げられる。前記ポリアルキルアミドとしては、例えば、トリメリット酸トリステアリルアミド等が挙げられる。前記ジアルキルケトンとしては、例えば、ジステアリルケトン等が挙げられる。これらカルボニル基含有ワックスの中でも、ポリアルカン酸エステルが特に好ましい。
ポリオレフィンワッックスとしては、例えば、ポリエチレンワックス、ポリプロピレンワックス等が挙げられる。
長鎖炭化水素としては、例えば、パラフィンワックス、サゾールワックス等が挙げられる。
融点が、40℃未満であると、ワックスが耐熱保存性に悪影響を与えることがあり、160℃を超えると、低温での定着時にコールドオフセットを起こし易いことがある。
離型剤の溶融粘度としては、該ワックスの融点より20℃高い温度での測定値として、5〜1,000cpsが好ましく、10〜100cpsがより好ましい。溶融粘度が、5cps未満であると、離型性が低下することがあり、1,000cpsを超えると、耐ホットオフセット性、低温定着性への向上効果が得られなくなることがある。
前記含有量が、40重量%を超えると、トナーの流動性が悪化することがある。
負の帯電制御剤としては、例えば、電子供与性の官能基を持つ樹脂又は化合物、アゾ染料、有機酸の金属錯体、などを用いることができる。具体的には、ボントロン(品番:S−31、S−32、S−34、S−36、S−37、S−39、S−40、S−44、E−81、E−82、E−84、E−86、E−88、A、1−A、2−A、3−A)(以上、オリエント化学工業社製))、カヤチャージ(品番:N−1、N−2)、カヤセットブラック(品番:T−2、004)(以上、日本化薬社製))、アイゼンスピロンブラック(T−37、T−77、T−95、TRH、TNS−2)(以上、保土谷化学工業社製)、FCA−1001−N、FCA−1001−NB、FCA−1001−NZ、(以上、藤倉化成社製)、などが挙げられる。
正の荷電制御剤としては、例えば、ニグロシン染料等の塩基性化合物、4級アンモニウム塩等のカチオン性化合物、高級脂肪酸の金属塩等を用いることができる。具体的には、ボントロン(品番:N−01、N−02、N−03、N−04、N−05、N−07、N−09、N−10、N−11、N−13、P−51、P−52、AFP−B)(以上、オリエント化学工業社製)、TP−302、TP−415、TP−4040(以上、保土谷化学工業社製)、コピーブルーPR、コピーチャージ(品番:PX−VP−435、NX−VP−434)(以上、ヘキスト社製)、FCA(品番:201、201−B−1、201−B−2、201−B−3、201−PB、201−PZ、301)(以上、藤倉化成社製)、PLZ(品番:1001、2001、6001、7001)(以上、四国化成工業社製)、などが挙げられる。
前記シリカ微粒子としては、例えば、アエロジル(品番:130、200V、200CF、300、300CF、380、OX50、TT600、MOX80、MOX170、COK84、RX200、RY200、R972、R974、R976、R805、R811、R812、T805、R202、VT222、RX170、RXC、RA200、RA200H、RA200HS、RM50、RY200、REA200)(以上、日本アエロジル社製)、HDK(品番:H20、H2000、H3004、H2000/4、H2050EP、H2015EP、H3050EP、KHD50)、HVK2150(以上、ワッカーケミカル社製)、カボジル(品番:L−90、LM−130、LM−150、M−5、PTG、MS−55、H−5、HS−5、EH−5、LM−150D、M−7D、MS−75D、TS−720、TS−610、TS−530)(以上、キャボット社製)等を用いることができる。
無機微粒子の添加量としては、トナー母体粒子100重量部に対し0.1〜5.0重量部が好ましく、0.5〜3.2重量部がより好ましい。
粉砕及び分級が終了した後に、粉砕物を遠心力などで気流中に分級し、所定の粒径のトナーを製造する。
図3は、本発明で用いられる現像装置の一例を示す図であり、後述するような変形例も本発明の範疇に属するものである。
(結着樹脂合成例1)
冷却管、攪拌機および窒素導入管の付いた反応槽中に、ビスフェノールAエチレンオキサイド2モル付加物724部、イソフタル酸276部およびジブチルチンオキサイド2部を入れ、常圧下230℃で8時間反応し、さらに10〜15mmHgの減圧で5時間反応した後、160℃まで冷却して、これに32部の無水フタル酸を加えて2時間反応した。
次いで、80℃まで冷却し、酢酸エチル中にてイソフォロンジイソシアネート188部と2時間反応を行いイソシアネート含有プレポリマー(P1)を得た。
次いでプレポリマー(P1)267部とイソホロンジアミン14部を50℃で2時間反応させ、重量平均分子量64000のウレア変性ポリエステル(U1)を得た。
上記と同様にビスフェノールAエチレンオキサイド2モル付加物724部、テレフタル酸276部を常圧下、230℃で8時間重縮合し、次いで10〜15mmHgの減圧で5時間反応して、ピーク分子量5000の変性されていないポリエステル(E1)を得た。
ウレア変性ポリエステル(U1)200部と変性されていないポリエステル(E1)800部を酢酸エチル/MEK(1/1)混合溶剤2000部に溶解、混合し、結着樹脂(B1)の酢酸エチル/MEK溶液を得た。
一部減圧乾燥し、結着樹脂(B1)を単離した。Tgは62℃であった。
テレフタル酸 :60部
ドデセニル無水コハク酸 :25部
無水トリメリット酸 :15部
ビスフェノールA(2,2)プロピレンオキサイド :70部
ビスフェノールA(2,2)エチレンオキサイド :50部
上記組成物を、温度計、攪拌器、コンデンサー及び窒素ガス導入管を備えた容量1Lの4つ口丸底フラスコ内に入れ、このフラスコをマントルヒーターにセットし、窒素ガス導入管より窒素ガスを導入してフラスコ内を不活性雰囲気下に保った状態で昇温し、次いで0.05gのジブチルスズオキシドを加えて温度を200℃に保って反応させポリエステルA得た。このポリエステルAのピーク分子量は4200であり、ガラス転移点は59.4℃であった。
顔料:C.I.Pigment Yellow 155 :40部
結着樹脂:ポリエステル樹脂A :60部
水 :30部
上記原材料をヘンシェルミキサーにて混合し、顔料凝集体中に水が染み込んだ混合物を得た。これをロ−ル表面温度130℃に設定した2本ロールにより45分間混練を行い、パルベライザーで1mmφの大きさに粉砕し、 マスターバッチ(M1)を得た。
ビーカー内に前記の結着樹脂(B1)の酢酸エチル/MEK溶液240部、ペンタエリスリトールテトラベヘネート(融点81℃、溶融粘度25cps)20部、マスターバッチ(M1)8部を入れ、60℃にてTK式ホモミキサーにて12000rpmで攪拌し、均一に溶解、分散させ、トナー材料液を用意した。
ビーカー内にイオン交換水706部、ハイドロキシアパタイト10%懸濁液(日本化学工業(株)製スーパタイト10)294部、ドデシルベンゼンスルホン酸ナトリウム0.2部を入れ均一に溶解した。
ついで60℃に昇温し、TK式ホモミキサーにて12000rpmに攪拌しながら、上記トナー材料溶液を投入し10分間攪拌した。
ついでこの混合液を攪拌棒および温度計付のコルベンに移し、98℃まで昇温して溶剤を除去し、濾別、洗浄、乾燥した後、風力分級し、トナー粒子を得た。
ついで、このトナー粒子100部に疎水性シリカ1.0部と、疎水化酸化チタン1.0部をヘンシェルミキサーにて混合して、「トナーA」を得た。
この「トナーA」の超薄切片を作成し、透過型電子顕微鏡(日立社製H−9000H)を用いて、トナーの断面写真(倍率×100,000)を撮影し、写真から、ランダム選択した100点の着色剤部分の分散径から平均値を求めた。ここで、1粒子の分散径は最長径と最短径の平均とし、また、凝集状態にあるものは凝集体自身を1粒子とした。
着色剤の平均分散粒径は、0.40μmであった。また、0.7μm以上の分散粒径を持つ着色剤は、4.5%であった。
次に「トナーA」の粒径を、コールターエレクトロニクス社製の粒度測定器「コールターカウンターTA2」を用い、アパーチャー径100μmで測定したところ、体積平均粒径(Dv)=6.2μm、個数平均粒径(Dn)=5.1μmであった。
引き続き、「トナーA」の円形度を、フロー式粒子像分析装置FPIA−1000(東亜医用電子株式会社製)により平均円形度として計測した。測定は、前記装置に、予め不純固形物を除去した水100〜150ml中に分散剤として界面活性剤(アルキルベンゼンスフォン酸塩)を0.1〜0.5ml加え、更に測定試料を0.1〜0.5g程度加え、超音波分散器で約1〜3分間分散処理を行い、分散液濃度を3000〜1万個/μlに調整した測定液をセットして行った。得られた「トナーA」の円形度は0.96であった。
(製造例1)
酸化アルミニウム(平均一次粒径0.05μm、アスペクト比197)100gを水1リットルに分散させて水懸濁液とした。この懸濁液を70℃に加温保持した。別途用意した塩化第二スズ(SnCl4・5H2O)11.6gを2N塩酸100ミリリットルに溶かした溶液と12重量%アンモニア水とを、懸濁液のpHを7〜8に保持するように約40分かけ同時添加した。引き続き別途用意した塩化インジウム(InCl3)36.7gおよび塩化第二スズ(SnCl4・5H2O)5.4gを2N塩酸450ミリリットルに溶かした溶液と12重量%アンモニア水とを懸濁液のpHを7〜8に保持するように約1時間かけて同時滴下した。滴下終了後、処理懸濁液を濾過、洗浄し、得られた処理顔料のケーキを110℃で乾燥した。
次いで、得られた乾燥粉末を窒素ガス気流中(1リットル/分)で500℃にて1時間熱処理して、白色導電性粒子Aを得た。平均一次粒径は0.05μm、アスペクト比は197であった。
基材を酸化アルミニウム(平均一次粒径0.07μm、アスペクト比3.2)に変更したこと以外は製造例1と同様にして白色導電性粒子Bを得た。平均一次粒径は0.07μm、アスペクト比は3.2であった。
酸化アルミニウム(平均一次粒径0.08μm、アスペクト比32)100gを水1リットルに分散させて水懸濁液とした。この懸濁液を70℃に加温保持した。別途用意した塩化インジウム(InCl3)36.7gおよび塩化第二スズ(SnCl4・5H2O)5.4gを2N塩酸450ミリリットルに溶かした溶液と12重量%アンモニア水とを懸濁液のpHを7〜8に保持するように約1時間かけて同時滴下した。滴下終了後、処理懸濁液を濾過、洗浄し、得られた処理顔料のケーキを110℃で乾燥した。次いで、得られた乾燥粉末を窒素ガス気流中(1リットル/分)で500℃にて1時間熱処理して、白色導電性粒子Cを得た。平均一次粒径は0.08μm、アスペクト比は32であった。
基材を酸化アルミニウム(平均一次粒径0.05μm、アスペクト比205)に変更したこと以外は製造例1と同様にして白色導電性粒子Dを得た。平均一次粒径は0.05μm、アスペクト比は205であった。
基材を酸化アルミニウム(平均一次粒径0.07μm、アスペクト比2.4)に変更したこと以外は製造例1と同様にして白色導電性粒子Eを得た。平均一次粒径は0.07μm、アスペクト比は2.4であった。
カーボンブラック(ライオンアクゾ製、ケッチェンブラックEC600JD)をそのまま導電性微粒子Fとした。
基材をルチル型酸化チタン(平均一次粒径0.08μm、アスペクト比32)に変更したこと以外は製造例1と同様にして白色導電性粒子Gを得た。平均一次粒径は0.08μm、アスペクト比は32であった。
基材をルチル型酸化チタン(平均一次粒径0.37μm、アスペクト比27)に変更したこと以外は製造例1と同様にして白色導電性粒子Hを得た。平均一次粒径は0.37μm、アスペクト比は27であった。
(製造例1)
アクリル樹脂溶液(固形分濃度:50重量%) 2130重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子A 1500重量部
トルエン 6000重量部
以上の各材料をホモミキサーにて10分間分散し、樹脂層形成液を調合した。キャリア芯材として体積平均粒径が35μmのフェライト粒子を用い、上記樹脂溶液を芯材表面に厚みhが0.15μmとなるようにスピラコーター(岡田精工社製)により55℃の雰囲気下で30g/minに割合で塗布し、乾燥させた。層厚の調整は液量によって行った。得られたキャリアを、電気炉中にて150℃で1時間放置して焼成し、冷却後に目開き100μmの篩を用いて解砕して、キャリアIを得た。平均厚さTは0.20μmであった。
前記被覆層における樹脂部分の平均厚みh(μm)は、透過型電子顕微鏡(TEM)を用いて、キャリア断面を観察し、芯材表面と粒子との間に存在する樹脂部の厚みhaと、粒子間に存在する樹脂部の厚みhbと、芯材や粒子上の樹脂部の厚みhcとを、キャリア表面に沿って0.2μm間隔で50点測定し、得られた測定値を平均して求めた。
前記芯材表面から被覆層表面までの厚みT(μm)は、透過型電子顕微鏡(TEM)を用いて、キャリア断面の観察をし、芯材表面から被覆層表面までの厚みTを、キャリア表面に沿って0.2μm間隔で50点測定し、得られた測定値を平均して求めた。
導電性粒子に導電性粒子Bを用いたこと以外は製造例1と同様にして製造し、キャリアIIを得た。平均厚さTは0.20μmであった。
導電性粒子に導電性粒子Cを用いたこと以外は製造例1と同様にして製造し、キャリアIIIを得た。平均厚さTは0.20μmであった。
導電性粒子に導電性粒子Dを用いたこと以外は製造例1と同様にして製造し、キャリアIVを得た。平均厚さTは0.20μmであった。
導電性粒子に導電性粒子Eを用いたこと以外は製造例1と同様にして製造し、キャリアVを得た。平均厚さTは0.20μmであった。
導電性粒子に導電性粒子Fを用いたこと以外は製造例1と同様にして製造し、キャリアVIを得た。平均厚さTは0.20μmであった。
導電性粒子に導電性粒子Gを用いたこと以外は製造例1と同様にして製造し、キャリアVIIを得た。平均厚さTは0.20μmであった。
アクリル樹脂溶液(固形分濃度:50重量%) 2130重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子G 750重量部
アルミナ粒子(体積平均粒径0.35μm) 750重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアVIIIを得た。平均厚さTは0.40μmであった。
アクリル樹脂溶液(固形分濃度:50重量%) 2130重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子G 750重量部
アルミナ粒子(体積平均粒径0.35μm) 750重量部
酸化チタン粒子(体積平均粒径0.015μm) 500重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアIVを得た。平均厚さTは0.42μmであった。
アクリル樹脂溶液(固形分濃度:50重量%) 1500重量部
シリコーン樹脂溶液(固形分20重量%) 1575重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子G 750重量部
アルミナ粒子(体積平均粒径0.35μm) 750重量部
酸化チタン粒子(体積平均粒径0.015μm) 500重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアXを得た。平均厚さTは0.42μmであった。
アクリル樹脂溶液(固形分濃度:50重量%) 1500重量部
グアナミン溶液(固形分70重量%) 450重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子G 750重量部
アルミナ粒子(体積平均粒径0.35μm) 750重量部
酸化チタン粒子(体積平均粒径0.015μm) 500重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアXIを得た。平均厚さTは0.42μmであった。
アクリル樹脂溶液(固形分濃度:50重量%) 1500重量部
グアナミン溶液(固形分70重量%) 450重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子H 1500重量部
酸化チタン粒子(体積平均粒径0.015μm) 500重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアXIIを得た。平均厚さTは0.42μmであった。
厚みhが0.05μmとなるように樹脂溶液の塗布量を変更した以外は製造例11と同様にして、キャリアXIIIを得た。平均厚さTは0.08μmであった。
厚みhが2.40μmとなるように樹脂溶液の塗布量を変更した以外は製造例11と同様にして、キャリアXIVを得た。平均厚さTは3.02μmであった。
トナー製造例で得たトナーAを7重量部と、キャリア製造例1で得られたキャリアIを93重量部用い、ミキサーで10分攪拌して現像剤を作成した。
市販のデジタルフルカラープリンター(株式会社リコー製、imagio Neo C600)に現像剤をセットし、画像面積5%の文字チャート(1文字の大きさが2mm×2mm程度)を出力し、その文字再現性から画像の精細性の評価を行った。評価のランク分けは次のように行った。
◎:非常に良好、○:良好、△:許容、×:実用上許容できないレベル
上記の画像精細性評価の画像出力を100k枚行い、耐久性評価用のランニング試験とした。このランニング試験後と試験前での、帯電低下量およびキャリア抵抗変化量をもって耐久性の評価を行った。
帯電低下量の測定は以下の方法にて行った。
まず、初期のキャリア93重量%に対しトナー7重量%の割合で混合し摩擦帯電させたサンプルを、一般的なブローオフ法(東芝ケミカル株式会社製、TB−200)にて測定し、この値を初期帯電量とする。次に、ランニング後の現像剤からトナーを前記ブローオフ装置にて除去し、得られたキャリア93重量%に対し新規にトナーを7重量%の割合で混合し、初期のキャリアと同様に摩擦帯電させたサンプルを、初期のキャリアと同様に帯電量測定を行い、初期帯電量との差を帯電低下量とする。帯電低下量の目標値は10.0μC/g以内である。帯電量の低下の原因はキャリア表面へのトナースペントであるため、トナースペントを減らすことで、帯電量の低下を抑えることができる。
キャリア抵抗値変化量の測定は以下の方法にて行った。
キャリアを抵抗計測平行電極の電極間(ギャップ2mm)に投入し、DC1,000Vを印加して30sec後の抵抗値をハイレジスト計で計測した。得られた値を体積抵抗率に変換した値を初期抵抗値とする。
市販のデジタルフルカラープリンター(株式会社リコー製、imagio Neo C600)に現像剤をセットし、地肌ポテンシャルを150Vに固定し、画像面積1%のA3文字チャート(1文字の大きさが2mm×2mm程度)を出力し、その地肌部のキャリア付着発生個数により評価を行った。評価のランク分けは次のように行った。
◎:0個、○:2個以上5個以下、△:6個以上10個以下、×:11個
ベタ画像を出力してX−Riteにより測定した。具体的には、現像剤をセットしセット直後の画像をX−Rite(アムテック株式会社製 X−Rite 938 D50)により測定した値(E)と、現像ユニット単独で1時間空攪拌の後画像を出力し、その画像をX−Riteにより測定した値(E')、次式により△Eを求め以下のようにランク付けした。
△E=E−E'
E=(L^2+a*^2+b*^2)^(1/2)
(Yellow ID=1.4時の値を読む)
E=初期剤E値
E'=1時間空攪拌後
◎ :△E≦2、 ○ :2<△E≦5、 × :5<△E
現像剤に用いるキャリアを、製造例2〜14にて作成したキャリアを用いたこと以外は参考例1と同様にして評価を行った。
26 芯材
27 被覆層
ha、hb、hc、hd 樹脂部の厚み
T 芯材表面から被覆層表面までの平均厚み
G1 第1粒子
G2 第2粒子
A 測定点
(図2)
21 セル
22a 電極
22b 電極
23 キャリア
(図3)
20 感光体ドラム
21 トナー
23 キャリア
40 現像装置
41 現像スリーブ
42 現像剤収容部材
43 現像剤供給規制部材
44 支持ケース
45 トナーホッパー
46 現像剤収容部
47 現像剤撹拌機構
48 トナーアジテータ
49 トナー補給機構
(図4)
20 感光体ドラム
32 像担持体帯電部材
33 像露光系
40 現像装置
41 現像スリーブ
45 トナーホッパー
47 現像剤撹拌機構
50 転写機構
60 クリーニング機構
61 クリーニングブレード
62 トナー回収室
70 除電ランプ
80 中間転写媒体
(図5)
20 感光体ドラム
24a 駆動ローラー
24b 駆動ローラー
26 クリーニング前露光光源
32 像担持体帯電部材
33 像露光系
40 現像装置
50 転写機構
61 クリーニングブレード
64 ブラシ状クリーニング手段
70 除電ランプ
(図6)
20 感光体ドラム
32 帯電部材
40 現像装置
61 クリーニング手段(クリーニングブレード)
Claims (6)
- 磁性を有する芯材粒子と該粒子を被覆する結着樹脂層とからなる電子写真現像剤用キャリアにおいて、
芯材粒子表面から該芯材粒子を被覆する被覆層の表面までの平均厚みをT(μm)、キャリア表面に沿って、0.2μm間隔で被覆層における樹脂部分の厚み(芯材表面と粒子との間に存在する樹脂部の厚み、粒子間に存在する樹脂部の厚み、粒子上の樹脂部の厚み、及び芯材上の樹脂部の厚み)を、透過型電子顕微鏡(TEM)を用いて測定し、50個の測定値を得て、この測定値を平均した値を被覆層における樹脂部分の平均厚みをhとするとき、
前記結着樹脂層は、体積平均粒径D1(μm)と該被覆層における樹脂部分の平均厚みh(μm)の比(D1/h)が、1<(D1/h)<10の関係を満たす第1硬質粒子、
体積平均粒径D2(μm)と該被覆層における樹脂部分の平均厚みh(μm)との比(D2/h)が、0.001<(D2/h)<1の関係を満たす第2硬質粒子を含むものであり、
前記第2硬質粒子は導電性微粒子を含有し、該導電性微粒子は、基材となる粒子の表面に二酸化スズと酸化インジウムからなる導電性被覆層を設けた、アスペクト比が3〜200の針状あるいは棒状の微粒子であり、前記基材は酸化チタンであり、前記導電性被覆層は下層が二酸化スズの層、上層が二酸化スズを含む酸化インジウムの層によって構成されたものであり、
前記平均厚みT(μm)が、0.1≦T≦3.0の範囲であることを特徴とする電子写真現像剤用キャリア。 - 前記導電性微粒子の基材がルチル型酸化チタンであることを特徴とする請求項1に記載の電子写真現像剤用キャリア。
- 前記結着樹脂が、少なくともアクリル樹脂とアミノ樹脂との反応物かシリコーン樹脂のいずれかを含むことを特徴とする請求項1または2に記載の電子写真現像剤用キャリア。
- 請求項1乃至3のいずれかに記載の電子写真現像剤用キャリアとトナーとを含有することを特徴とする電子写真現像剤。
- 請求項4に記載の電子写真用現像剤を用いることを特徴とする画像形成方法。
- 少なくとも感光体及び現像手段を具備するプロセスカートリッジにおいて、請求項5に記載の画像形成方法を用いて画像を形成することを特徴とするプロセスカートリッジ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007237673A JP5229531B2 (ja) | 2007-09-13 | 2007-09-13 | 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007237673A JP5229531B2 (ja) | 2007-09-13 | 2007-09-13 | 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009069471A JP2009069471A (ja) | 2009-04-02 |
JP5229531B2 true JP5229531B2 (ja) | 2013-07-03 |
Family
ID=40605799
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007237673A Active JP5229531B2 (ja) | 2007-09-13 | 2007-09-13 | 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5229531B2 (ja) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6932916B2 (ja) * | 2015-12-28 | 2021-09-08 | 株式会社リコー | 画像形成用キャリア、画像形成用現像剤、画像形成装置、画像形成方法およびプロセスカートリッジ |
JP6691322B2 (ja) | 2016-03-17 | 2020-04-28 | 株式会社リコー | 静電潜像現像剤用キャリア、二成分現像剤、補給用現像剤、画像形成装置、およびトナー収容ユニット |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006038961A (ja) * | 2004-07-22 | 2006-02-09 | Fuji Xerox Co Ltd | 静電荷像現像用キャリア、静電荷像現像剤、静電荷像現像用キャリアの製造方法および画像形成方法 |
JP4307352B2 (ja) * | 2004-09-13 | 2009-08-05 | 株式会社リコー | 静電潜像現像用カラーキャリア及び現像剤 |
JP2007102159A (ja) * | 2005-03-18 | 2007-04-19 | Ricoh Co Ltd | 電子写真用キャリア、並びに、現像剤、現像剤入り容器、プロセスカートリッジ、画像形成方法及び画像形成装置 |
-
2007
- 2007-09-13 JP JP2007237673A patent/JP5229531B2/ja active Active
Also Published As
Publication number | Publication date |
---|---|
JP2009069471A (ja) | 2009-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5169408B2 (ja) | 画像形成方法、画像形成装置及びプロセスカートリッジ | |
JP5151415B2 (ja) | 画像形成方法、画像形成装置及びプロセスカートリッジ | |
JP5429594B2 (ja) | 画像形成方法、画像形成装置並びにプロセスカートリッジ及びそのための電子写真現像剤並びに現像剤用キャリア | |
JP5424118B2 (ja) | 現像装置、プロセスカートリッジ、及び、画像形成装置 | |
US20080152393A1 (en) | Carrier for electrophotographic developer, image forming method, and process cartridge | |
JP2008102394A (ja) | キャリア、補給用現像剤、現像装置内現像剤、現像剤補給装置、画像形成装置、プロセスカートリッジ | |
JP2009186769A (ja) | キャリア、現像剤、現像装置、プロセスカートリッジ、画像形成装置 | |
JP6932916B2 (ja) | 画像形成用キャリア、画像形成用現像剤、画像形成装置、画像形成方法およびプロセスカートリッジ | |
JP2006276060A (ja) | 静電潜像現像用トナー及び画像形成装置 | |
JP2007286078A (ja) | キャリア、補給用現像剤、現像装置内現像剤、現像剤補給装置、画像形成装置、プロセスカートリッジ | |
JP4355734B2 (ja) | 現像剤、現像装置、画像形成装置、および画像形成方法 | |
JP5187091B2 (ja) | キャリア、現像剤及び画像形成方法 | |
JP4607008B2 (ja) | キャリア、並びに現像剤、現像剤入り容器、プロセスカートリッジ、画像形成装置、及び画像形成方法 | |
JP4963843B2 (ja) | 画像形成方法、2成分現像剤およびプロセスカ−トリッジ | |
JP5151440B2 (ja) | 電子写真現像剤用キャリア、現像剤、画像形成方法、画像形成装置、およびプロセスカートリッジ | |
JP2007102159A (ja) | 電子写真用キャリア、並びに、現像剤、現像剤入り容器、プロセスカートリッジ、画像形成方法及び画像形成装置 | |
JP5229531B2 (ja) | 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ | |
JP2000039741A (ja) | 磁性微粒子分散型樹脂キャリア,二成分系現像剤及び画像形成方法 | |
JP4854498B2 (ja) | キャリア、補給用現像剤、現像装置内現像剤、現像剤補給装置、画像形成装置、プロセスカートリッジ | |
JP5106988B2 (ja) | 電子写真用トナーのキャリアとその製造方法、電子写真用現像剤、及び画像形成方法 | |
JP4868994B2 (ja) | キャリア及び現像剤 | |
JP4547437B2 (ja) | 現像剤、現像装置および画像形成装置 | |
WO2016158802A1 (ja) | 静電荷像現像用トナー、現像剤、及び画像形成方法 | |
JP2000199983A (ja) | 二成分系現像剤及び画像形成方法 | |
JP5360475B2 (ja) | 電子写真用キャリア、電子写真用二成分現像剤、及び画像形成方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100517 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120112 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120223 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120423 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130306 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |