JP5229531B2 - 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ - Google Patents

電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ Download PDF

Info

Publication number
JP5229531B2
JP5229531B2 JP2007237673A JP2007237673A JP5229531B2 JP 5229531 B2 JP5229531 B2 JP 5229531B2 JP 2007237673 A JP2007237673 A JP 2007237673A JP 2007237673 A JP2007237673 A JP 2007237673A JP 5229531 B2 JP5229531 B2 JP 5229531B2
Authority
JP
Japan
Prior art keywords
particles
resin
carrier
coating layer
toner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007237673A
Other languages
English (en)
Other versions
JP2009069471A (ja
Inventor
将志 長山
富美雄 近藤
慎一郎 八木
浩介 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007237673A priority Critical patent/JP5229531B2/ja
Publication of JP2009069471A publication Critical patent/JP2009069471A/ja
Application granted granted Critical
Publication of JP5229531B2 publication Critical patent/JP5229531B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Developing Agents For Electrophotography (AREA)

Description

本発明は、磁性を有する芯材粒子と該粒子表面を被覆する樹脂層からなる電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジに関する。
一般に電子写真法、静電写真法等の画像形成方法においては、潜像担持体上に形成された静電潜像を現像するために、トナーとキャリアとを撹拌混合することによって得られる現像剤が使用される。この現像剤は、適当に帯電された混合物であることが要求される。一般に静電潜像を現像する方法としては、トナーとキャリアとを混合して得られる二成分系現像剤を使用する方法と、キャリアを含まない一成分系現像剤を使用する方法が公知である。二成分現像方式は、キャリアを使用することからトナーに対する摩擦帯電面積が広く、一成分方式に比較して帯電特性が安定しており、長期にわたって高画質を維持する上で有利である。また、現像領域へのトナー量供給能力が高いことから、特に高速機に多く採用されている。また、レーザービームなどで感光体上に静電潜像を形成し、この潜像を顕像化するデジタル方式電子写真システムにおいても、前述の特徴が有用であることから二成分現像方式が広く採用されている。
このような二成分系現像方式に使用される粒状キャリアは、キャリア表面へのトナーのスペント防止、キャリア均一表面の形成、表面酸化防止、感湿性低下の防止、現像剤の寿命の延長、感光体のキャリアによるキズあるいは摩耗からの保護、帯電極性の制御または帯電量の調節等を目的として、適当な樹脂材料で被覆等を施すことにより、高耐久性化を図る検討が成されている。例えば特定の樹脂材料で被覆されたもの(特許文献1:特開昭58−108548号公報)、さらにその被覆層に種々の添加剤を添加するもの(特許文献2〜8:特開昭54−155048号公報、特開昭57−40267号公報、特開昭58−108549号公報、特開昭59−166968号公報、特公平1−19584号公報、特公平3−628号公報、特開平6−202381号公報)、さらに、キャリア表面に添加剤を付着させたものを用いるもの(特許文献9:特開平5−273789号公報)などが開示されている。また、特許文献10(特開平8−6307号公報)にはグアナミン樹脂と該グアナミン樹脂と架橋可能な熱硬化樹脂でキャリア被覆材を構成するものが開示され、特許文献11(特許第2683624号公報)には、メラミン樹脂とアクリル樹脂の架橋物をキャリア被覆材として用いることが開示されている。
また、更なる高耐久性化を望むべく、特許文献12(特開2001−117287号公報)では樹脂層に熱可塑性樹脂とグアナミン樹脂を架橋させた樹脂成分と、帯電調節剤を含有させたものが開示されている。これにより、現像剤を摩擦帯電させるための攪拌時に発生するトナーとの摩擦あるいはキャリア同士の摩擦による被覆樹脂への強い衝撃を吸収することが可能なだけの弾性を有する樹脂層を得ることができ、キャリアへのトナーのスペントを抑制することが可能になる。
しかしながら、市場における更なる高耐久性化への要望は依然として高く、更なる高耐久性化が求められている。
樹脂被覆キャリアは、樹脂被覆に伴って絶縁化され、現像電極として働かなくなるので、特にベタ画像部でエッジ効果が生じやすくなるといった欠点がある。また、トナー離脱時のカウンターチャージも過大となるので、静電現像による非画像部へのキャリア付着が発生しやすくなる。そこで、この問題を解決するために、例えば、キャリアの被覆層中に導電剤として導電性カーボンを分散した樹脂被覆キャリアが提案されている(例えば、特許文献13:特開昭56−75659号公報)。
しかし、このようなキャリアは、現像剤として使用する際のキャリア同士あるいはトナーとの摩擦や衝突等により、キャリア被覆層からカーボン、もしくはカーボンを含む樹脂片が脱離し、トナー粒子に付着したり、そのまま現像されたりする。黒トナーを使用した黒文字等の複写画像を形成するときは、この現象はそれほど大きな問題にならないが、カラートナー、特にイエロートナーと組み合わせた現像剤においては色の濁り(色汚れ)の問題として顕著に現れる。
特許文献14〜16(特開平4−360156号公報、特開平5−303238号公報、特開平11−174740号公報)では、キャリア被覆層中に導電性フィラーを含有させたキャリアが示されている。これらのキャリアでは、カーボンに限定せずに導電性フィラーを導電性微粒子として使用することが可能であることから、キャリアから脱離した有色物のトナーへの影響を少なくするために着色量の少ない材料を選択することが可能であるが、これらの提案は導電性フィラーの電気的安定性に起因する画質の向上を目的としており、なおかつ、導電性フィラーの色についての言及がされていないため、上記色汚れの問題を解決する手段としては不完全である。
したがって、キャリア表面からの脱離が少なく、かつ、脱離したとしても色汚れを発生させず、なおかつ、効率よく導電性を発揮する材料が求められている。
特開昭58−108548号公報 特開昭54−155048号公報 特開昭57−40267号公報 特開昭58−108549号公報 特開昭59−166968号公報 特公平1−19584号公報 特公平3−628号公報 特開平6−202381号公報 特開平5−273789号公報 特開平8−6307号公報 特許第2683624号公報 特開2001−117287号公報 特開昭56−75659号公報 特開平4−360156号公報 特開平5−303238号公報 特開平11−174740号公報
従って、本発明の目的は、上記従来技術に鑑みて、長期間使用によっても、トナーのスペント化が抑制され、キャリア被覆層からの被覆片や付着物片が脱離し難く、抵抗変化が少なく、帯電量の低下がなく、キャリア付着がなく、画像の色汚れが少なく、表面酸化防止、感湿性低下の防止、現像剤の寿命の延長化、感光体のキャリアによるキズあるいは摩耗からの保護が達成されるキャリア、これを用いた二成分系現像剤、これらを使用する画像形成方法及びそのためのプロセスカートリッジを提供することにある。
本発明者らは、上記課題を解決すべく鋭意検討を行なった。本発明はこれに基づいてなされたものである。
上記課題は本発明の(1)〜()によって解決される。

(1)「磁性を有する芯材粒子と該粒子を被覆する結着樹脂層とからなる電子写真現像剤用キャリアにおいて、
芯材粒子表面から該芯材粒子を被覆する被覆層の表面までの平均厚みをT(μm)、キャリア表面に沿って、0.2μm間隔で被覆層における樹脂部分の厚み(芯材表面と粒子との間に存在する樹脂部の厚み、粒子間に存在する樹脂部の厚み、粒子上の樹脂部の厚み、及び芯材上の樹脂部の厚みを、透過型電子顕微鏡(TEM)を用いて測定し、50個の測定値を得て、この測定値を平均した値を被覆層における樹脂部分の平均厚みをhとするとき、
前記結着樹脂層は、体積平均粒径D1(μm)と該被覆層における樹脂部分の平均厚みh(μm)の比(D1/h)が、1<(D1/h)<10の関係を満たす第1硬質粒子、
体積平均粒径D2(μm)と該被覆層における樹脂部分の平均厚みh(μm)との比(D2/h)が、0.001<(D2/h)<1の関係を満たす第2硬質粒子を含むものであり、
前記第2硬質粒子は導電性微粒子を含有し、該導電性微粒子は、基材となる粒子の表面に二酸化スズと酸化インジウムからなる導電性被覆層を設けた、アスペクト比が3〜200の針状あるいは棒状の微粒子であり、前記基材は酸化チタンであり、前記導電性被覆層は下層が二酸化スズの層、上層が二酸化スズを含む酸化インジウムの層によって構成されたものであり、
前記平均厚みT(μm)が、0.1≦T≦3.0の範囲であることを特徴とする電子写真現像剤用キャリア」、
)「前記導電性微粒子の基材がルチル型酸化チタンであることを特徴とする前記第()項に記載の電子写真現像剤用キャリア。
)「前記結着樹脂が、少なくともアクリル樹脂とアミノ樹脂との反応物かシリコーン樹脂のいずれかを含むことを特徴とする前記第(1)項又は第(2)項に記載の電子写真現像剤用キャリア」、
)「前記第(1)項乃至第()項のいずれかに記載の電子写真現像剤用キャリアとトナーとを含有することを特徴とする電子写真現像剤」、
)「前記第()項に記載の電子写真用現像剤を用いることを特徴とする画像形成方法」、
)「少なくとも感光体及び現像手段を具備するプロセスカートリッジにおいて、前記第()項に記載の画像形成方法を用いて画像を形成することを特徴とするプロセスカートリッジ」。
以下の詳細かつ具体的な発明から明らかなように、本発明によれば、長期間使用によっても、トナーのスペント化が抑制され、キャリア被覆層からの被覆片や付着物片が脱離し難く、抵抗変化が少なく、帯電量の低下がなく、キャリア付着がなく、画像の色汚れが少なく、表面酸化防止、感湿性低下の防止、現像剤の寿命の延長化、感光体のキャリアによるキズあるいは摩耗からの保護が達成されるキャリア、これを用いた二成分系現像剤、これらを使用する画像形成方法及びそのためのプロセスカートリッジがを提供されるという優れた効果を奏する。
以下に本発明を更に詳細に説明する。
本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、キャリア表面の結着樹脂層に、下層が二酸化スズの層、上層が二酸化スズを含む酸化インジウムの層という構成からなる導電性被覆層を有し、白色で、形状が針状あるいは棒状である導電性微粒子を含有させることで、二酸化スズと酸化インジウムの該構成に起因する良好な導電性をもつ導電性微粒子が、キャリア表面上で機能が長期に渡り安定して発揮され、かつ、万が一、キャリア樹脂層から導電性粒子が脱離、もしくはキャリア樹脂層ごと剥離した場合でも、画像に対して色汚れの問題を発生させないという、新規な技術構想を考案した。
導電性微粒子を含む被覆層がキャリア粒子から離脱しても、導電性微粒子がトナーの発色に対して悪影響を及ぼす色でなければ色汚れに関して問題はない。本発明者らは鋭意研究を重ねた結果、導電性微粒子が白色であれば導電性微粒子がキャリアの樹脂被覆層から脱離したとしてもトナーの発色に悪影響を及ぼさないとの結論に至った。具体的には、該導電性微粒子の粉体色調が、L値は70以上、更に好ましくは80以上、特に好ましくは85以上、b値は−10以上10以下、更に好ましくは−5以上5以下、特に好ましくは−1以上3以下であればトナーの発色に悪影響を及ぼさずに使用することができる。
粉体色調のL値が70未満の場合には白色度が十分でないため、トナーの発色に悪影響を及ぼす。b値が−10未満、もしくは10より大きい場合には彩度が高くなってしまい、トナーと共に定着された際に色汚れを発生させてしまう。
本発明における粉体色調の測定法は以下のとおりである。
まず、上皿天秤で6gを測り取る。成形ダイス上に白紙を敷き、ステンレスリングを置きそこへ秤量した試料を入れ押さえ金具を乗せる。小型自動プレス機を用いてプレスし標準版により標準調整した色差計にてL値、b値を読み取る。
測色計(日本電色工業(株)製 Z-10018P又は同等以上の性能を有する測定器)
ステンレスリング(内径40mmφ、高さ18mm)
粒子に導電性を持たせるためには、基材粒子表面に導電性の被覆層を形成すればよい。特に、基材粒子表面に二酸化スズ層と該二酸化スズ層上に設けた二酸化スズと酸化インジウムからなる導電性被膜層を設けた構造とすることで、カーボンブラックと同等レベルの導電性付与効果を発揮させることができる。
ただ、基材表面に直接に二酸化スズと酸化インジウムからなる導電性被膜層を形成しても、基材粒子の電気的な影響も大きく、良好な導電性が得られない場合がある。また、基材上へ直接、二酸化スズの水和物と酸化インジウムの水和物の混合液を被覆させても、基材表面に均一に被覆をさせることは難しく、品質の面で問題が発生する場合がある。
基材粒子表面を酸化アルミニウム、酸化チタン、酸化亜鉛や酸化ジルコニウム等の、コーティング材として一般的に使用されている材料にてコートした後に二酸化スズの水和物と酸化インジウムの水和物の混合液を基材粒子に被覆させると、均一な導電性被覆層を形成することができる。しかし、これらのコート材料を下層に用いても、そのコート材料の電気的影響から、良好な導電性を得られないことが多い。そこで、下層を形成するコート材料に二酸化スズを用いたところ、上層の導電被覆層を均一かつ強固に固定化することができ、また、下層からの電気的な悪影響を受けることもなく良好な導電性を得ることができた。なお、下層には該粒子の効果を損ねない程度であれば、少量の酸化インジウム成分が混入していても問題ない。
本発明における導電性微粒子の形状は針状あるいは棒状である。導電性粒子の形状を針状もしくは棒状とすることで、樹脂被覆層中に導電性粒子を分散させたときに、導電性粒子の側面がキャリア表面に露出しやすくなる。また、キャリア表面に対して並行に網目状に配置されやすくなる。その結果、キャリア抵抗を下げる機能の効率が向上する。更に、導電性粒子がキャリア芯材表面の凹部に入り込んで導電効果が発揮されなくなることが防がれる効果もあり、導電性粒子の形状を針状もしくは棒状とすることは、導電性粒子の機能を効率よく発現させるために非常に効果的である。
本発明における針状・棒状とは、アスペクト比が3〜200、好ましくは3〜100より好ましくは3〜50であることを指す。アスペクト比が3よりも小さいと、上記の棒状/針状形状の効果が現れにくくなる。アスペクト比が200よりも大きいと、粒子の強度に対して、かかるモーメントが大きいために、樹脂と共にキャリア芯材表面に塗布した際に導電性粒子が折れやすくなり、棒状/針状形状の効果が発揮されにくくなる。
前記導電性微粒子のアスペクト比は、例えば、走査型電子顕微鏡及び透過型電子顕微鏡を用いて前記導電性微粒子もしくはキャリア割断面の被覆層における導電性微粒子部位を撮影することで得られる二次元視野像において、任意に50個選択した前記導電性微粒子の一番長い部位を長径とし、該長径と直交する軸で一番長い部位を短径とした平均値を求め、それらを除することによって算出することができる。
導電性微粒子の形状を針状あるいは棒状にするためには、基材粒子の形状が針状あるいは棒状であればよい。酸化チタンを素材とすると形状が針状あるいは棒状の粒子を得られやすく好ましい。特にルチル型の結晶構造を持たせると更に好ましい形状が得られやすい。
導電性に注目すると、導電性微粒子の基材は、酸化アルミニウム、酸化チタン、酸化亜鉛、二酸化ケイ素、硫酸バリウム、酸化ジルコニウムのいずれかを、単独或いは複数を併用して用いると、導電性付与効果が顕著になる。これは、粒子表面の導電処理との相性が良く、導電処理効果が良好に発揮されるためであると考えられる。
色調に注目すると、酸化アルミニウム、酸化チタンは前述の色調条件を満たしやすい。
これらのことから、本発明の導電性粒子の基材には、酸化チタンが好ましく、特にルチル型の酸化チタンも用いることが好ましい。ただし本発明は、酸化チタン以外にも、良好に効果を発揮するものについては導電性粒子の基材として用いることが可能である。
なお、本発明における「酸化チタン」には、「二酸化チタン」も含めている。
本願発明に適した導電性微粒子の、導電性被覆層の詳細な製造方法として、以下のような態様が挙げられる。しかし、これは作成方法の一例であり、本発明の導電性微粒子の作成方法はこの方法に限定されるものではない。
下層の二酸化スズの水和物の被膜を形成させる方法としては、種々の方法があるが、例えば、白色無機顔料の水懸濁液に、スズ塩またはスズ酸塩の溶液を添加した後、アルカリまたは酸を添加する方法、スズ塩またはスズ塩酸とアルカリまたは酸とを別々に並行して添加し被覆処理する方法等がある。白色無機顔料粒子表面に酸化スズの含水物を均一に被覆処理するには、後者の並行添加の方法がより適しており、この時、水懸濁液を50〜100℃に加温保持することがより好ましい。又、スズ塩またはスズ酸塩とアルカリまたは酸とを並行添加する際のpHを2〜9とする。二酸化スズ水和物の等電点はpH=5.5であるので、好ましくはpH=2〜5あるいはpH=6〜9を維持することが重要で、これによりスズの加水反応生成物を白色無機顔料粒子表面に均一に沈着させることができる。
スズ塩としては、例えば、塩化スズ、硫酸スズ、硝酸スズ等を使用することができる。また、スズ酸塩としては、例えば、スズ酸ナトリウム、スズ酸カリウム等を使用することができる。
アルカリとしては、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸アンモニウム、アンモニア水、アンモニアガス等、酸としては、例えば、塩酸、硫酸、硝酸、酢酸等を使用することができる。
二酸化スズの水和物の被覆量は基材粒子に対して、SnOとして0.5〜50重量%であり、好ましくは1.5〜40重量%である。少な過ぎると、上に被覆する酸化スズを含む酸化インジウムの水和物の被覆状態が不均一となり、しかも、基材粒子の影響を受け、粉体の体積固有抵抗が高くなる。多過ぎると、基材粒子表面に密着していない酸化スズの水和物の量が多くなり、被覆が不均一になり易い。
次に上層の二酸化スズを含む酸化インジウムの水和物の被覆を形成させる方法も種々の方法があるが、先に被覆した二酸化スズの水和物の被膜を溶解させないため、スズ塩及びインジウム塩の混合溶液とアルカリとを別々に並行して添加し被膜を形成させる方法がより好ましい。この時、水懸濁液を50〜100℃に加温することがより好ましい。また、混合溶液とアルカリとを並行添加する際のpHは2〜9とし、好ましくはpH2〜5あるいは、pH6〜9で維持することが重要で、これによりスズ及びインジウムの加水反応生成物を均一に沈着させることができる。
スズの原料としては、例えば、塩化スズ、硫酸スズ、硝酸スズ等を使用することができる。インジウムの原料としては、例えば、塩化インジウム、硫酸インジウム等を使用することができる。
二酸化スズ添加量は、Inに対してSnOとして0.1〜20重量%、好ましくは、2.5〜15重量%であり、少な過ぎても、多過ぎても所望の導電性が得られない。
酸化インジウムの処理量は基材の無機顔料に対して、Inとして5〜200重量%、好ましくは8〜150重量%であり、少な過ぎると所望の導電性が得られず、多過ぎても導電性はほとんど向上せず、また、高価になりコスト面からも好ましくない。
なお、本明細書において、「導電性」粉末とは、粉体の体積固有抵抗値として1〜500Ω・cmの値を有するものを意味する。後述する実施例においても示されるように、本発明により、アンチモン含有品と同程度の100Ω・cm以下、場合により10Ω・cm以下という非常に導電性に優れた白色導電性粉末を得ることができる。
加熱処理を行う際には、350〜750℃で非酸化性雰囲気にて行うことが好ましく、空気中で加熱処理したものと比べると粉体の体積固有抵抗を2〜3桁低くすることができる。
非酸化性雰囲気とするためには、不活性ガスが使用できる。不活性ガスとしては例えば、窒素、ヘリウム、アルゴン、炭酸ガス等を使用することができる。工業的には、窒素ガスを吹き込みながら加熱処理を行うことがコスト的に有利であり、特性の安定したものが得られる。
加熱する際の温度は350〜750℃、好ましくは400〜700℃であり、この範囲より低い場合にも、高い場合にも、所望の導電性が得がたい。また、加熱時間は、短かすぎる場合には加熱効果がなく、長すぎてもそれ以上の効果が望めないことから、15分〜4時間程度が適当であり、好ましくは、1〜2時間程度である。
更に、導電性微粒子の粉体比抵抗が200(Ω・cm)を超える場合には、該導電性微粒子の抵抗引き下げ能力は低く、キャリアの抵抗値を適切な値にする為には、該導電性微粒子量は多く必要となる。この時キャリア表面での結着樹脂の占める割合に比べ、該粒子の占める割合が過多となるため、帯電発生箇所である結着樹脂の占める割合が不十分となり、十分な帯電能力を発揮できない。それに加え、結着樹脂量に比べ粒子量が多過ぎるので、結着樹脂による粒子の保持能力が不十分となり、粒子が脱離し易くなるので、帯電量や抵抗等の変動量が増え十分な耐久性が得られず好ましくない。
本発明で使用されるキャリアは、芯材(26)と、この芯材(26)を被覆する被覆層(27)とを有してなり、この被覆層(27)は、少なくとも結着樹脂、硬質粒子(以下、第1粒子(G1)と示す。)を含み、第1粒子(G1)の粒径D1(μm)は、被覆層(27)における樹脂部分の平均厚みh(μm)に対し、次式1<(D1/h)<10を満たすことが好ましい。
芯材(26)を被覆する層としては、被覆層(27)の他に他の層を有することも可能である。また更に、(27)被覆層は、結着樹脂、第1粒子(G1)、第2粒子(G2)の他に、必要に応じて他の成分を含むことも可能である。
被覆層(27)における樹脂部分の平均厚みhは、芯材(26)表面に対して垂直方向に存在する膜の厚みを表すものであり、芯材(26)表面から被覆層(27)表面までの厚みにおいて、粒子部分を除いた樹脂部分の平均厚みを示すものである。
図1は、本実施形態で使用されるキャリアの被覆層を示す説明図である。図1に示すように、被覆層(27)における樹脂部分の厚みとしては、芯材(26)表面と粒子との間に存在する樹脂部の厚み(ha)と、各粒子間に存在する樹脂部の厚み(hb)と、粒子上に存在する樹脂部の厚み(hc)と、芯材(26)上に存在する樹脂部の厚み(hd)とがある。
被覆層(27)における樹脂部分の平均厚みhは、例えば、透過型電子顕微鏡(TEM)を用いて、キャリアの断面を観察して測定することができる。具体的には、キャリア表面に沿って、0.2μm間隔で被覆層(27)における樹脂部分の厚み(芯材表面と粒子との間に存在する樹脂部の厚み(ha)、粒子間に存在する樹脂部の厚み(hb)、粒子上の樹脂部の厚み(hc)、及び芯材上の樹脂部の厚み(hd)を、透過型電子顕微鏡(TEM)を用いて測定し、50個の測定値を得て、この測定値を平均した値を被覆層(27)における樹脂部分の平均厚みhとする。
具体的な算出方法としては、被覆層(27)における樹脂部分の平均厚みhの値は、上述の方法で得られた各測定値を合計し、得られた値を、測定値の個数で割った値である。この測定値の個数は、芯材(26)表面と粒子との間に存在する樹脂部の厚み(ha)、粒子間に存在する樹脂部の厚み(hb)、粒子上の樹脂部の厚み(hc)、及び芯材(26)上の樹脂部の厚み(hd)をそれぞれ1つと捉えて数える。
例えば、図1で示される測定点(A)では、前記(hb)及び前記(hc)が存在するので、測定点(A)における測定値の個数は2つとなる。
また、上述の測定方法において、50個ある測定値のうち、最後に測定した箇所において、被覆層(27)における樹脂部分の厚みの測定値として複数の測定値(例えば、前記(ha)及び前記(hc)を得た場合には、上記測定値の合計値を、測定値の個数である「49+(最後の測定点における測定値の数)」の値で割った値を、被覆層(27)における樹脂部分の平均厚みhの値とする。
被覆層(27)に含まれる硬質粒子(以下、第1粒子(G1)と示す。)の粒径D1(μm)は、被覆層(27)における樹脂部分の平均厚みh(μm)に対し、1<(D1/h)<10の関係を満たすものとし、より好ましくは1<(D1/h)<5の関係を満たすものである。
第1粒子(G1)の粒径D1と被覆層(27)における樹脂部分の平均厚みhとが、上述の関係式を満たすと、キャリアの被覆層(27)に対して第1粒子(G1)の方が凸となる。この凸部分によって、現像剤を摩擦帯電させるための攪拌を行った時に、トナーとキャリア、又はキャリア同士の摩擦接触によってキャリア被覆層(27)の結着樹脂に与えられる強い衝撃を緩和することができる。これにより、帯電発生箇所である、キャリア被覆層(27)の結着樹脂の膜削れが発生することを抑制することができる。
また、キャリア同士が摩擦接触することによって、上述の被覆層(27)表面に対して凸となって存在する粒子が、キャリア表面に付着したトナーのスペント成分を掻き落とす、クリーニングの効果を得ることができる。これにより、トナースペントの現象が発生するのを効果的に防止することができる。
(D/h)が1以下であると、第1粒子が結着樹脂中に埋没して、被覆層(27)中に添加された第1粒子(G1)の効果を十分に得ることができないことがある。また、(D/h)が10以上であると、第1粒子(G1)と結着樹脂との接触面積が小さくなり、第1粒子(G1)のキャリア粒子に対する充分な拘束力が得られず、第1粒子(G1)がキャリア粒子表面から容易に脱離してしまうことがある。
被覆層(27)は、被覆層に平均的に適度な強度を持たせるために第2の硬質微粒子(以下、第2粒子(G2)と示す。)を含有することが好ましく、第2粒子(G2)の粒径D2(μm)は、被覆層(27)における樹脂部分の平均厚みh(μm)に対し、0.001<(D2/h)<1を満たすものが好ましく、より好ましくは0.01<(D2/h)<0.5を満たすものが好ましい。
第2粒子(G2)の粒径(D2)を、被覆層(27)の平均厚みよりも小さくすることで、第2粒子(G2)を被覆層(27)中に分散させながら内包することができる。そのため、被覆層の強度を平均的に向上させることができる。
第1硬質微粒子の粒径D1、第2硬質微粒子の粒径D2、導電性微粒子の粒径は自動粒度分布測定装置CAPA-700(堀場製作所製)にて体積平均粒径を測定する。測定の前処理として、ジューサーミキサーにアミノシラン(SH6020:東レ・ダウコーニング・シリコーン社製)30mlにトルエン溶液300mlを入れる。試料を6.0gを加え、ミキサー回転速度をlowにセットし3分間分散する。1000mlビーカーに予め用意されたトルエン溶液500mlの中に分散液を適量加えて希釈する。希釈液はホモジナイザーにて常に攪拌を続ける。この希釈溶液を超遠心式自動粒度分布測定装置CAPA-700にて測定する。
測定条件
回転速度:2000rpm
最大粒度:2.0μm
最小粒度:0.1μm
粒度間隔:0.1μm
分散媒粘度:0.59mPa・s
分散媒密度:0.87g/cm
また、第2粒子(G2)の体積固有抵抗値は、好ましくは1.0×1012Ω・cm以下、より好ましくは1.0×1010Ω・cm以下、更に好ましくは1.0×10Ω・cm以下である。第2粒子G2の体積固有抵抗を1.0×1012Ω・cm以下と低抵抗のものとすることによって、被覆層27の帯電付与能力を適切な低さに制御し、最終的に得られる画増の濃度を高めることができる。
本発明における導電性微粒子、第1粒子(G1)及び第2粒子(G2)の体積固有抵抗は、例えば、以下のようにして測定することができる。
内径1インチの円筒状の塩化ビニル管の中に試料を入れ、その上下を電極で挟む。これら電極をプレス機により、15kg/cmの圧力を1分加える。続いて、この加圧した状態で、LCRメータによる測定を行い、抵抗(r)を得る。得られた抵抗値を、下記数式(1)により計算して、体積固有抵抗を求めることができる。
Figure 0005229531
(ただし、式(1)中、Hは試料の厚みを表す値であり、rは試料の抵抗値を表す値である。)
(D2/h)の値が1以上であると、第2粒子(G2)が被覆層(27)の厚みに対して大きすぎるため、分散して被覆層の強度を平均的に向上させるという効果が発揮されにくくなる。また、(D2/h)が0.001以下であると、被覆層(27)厚みに対して第2粒子(G2)の粒径が小さ過ぎるため、効果が得られにくくなる。
芯材(26)表面から被覆層(27)表面までの平均厚みT(μm)は、0.1≦T≦3.0であることが好ましく、0.1≦T≦2.0であることがより好ましい。
芯材(26)表面から被覆層(27)表面までの平均厚み(T)が0.1μm未満であると、キャリア芯材(26)を覆う膜としての被覆層(27)の総厚が薄すぎるため、ランニング経時において、被覆層(27)が削られてキャリア芯材(26)が剥き出しになる現象が起こりやすくなり、キャリアの耐久性が低下する。
また、芯材(26)から被覆層(27)表面までの平均厚みTが3.0μmを超えると、芯材(26)表面に形成される膜厚が厚すぎるため、キャリアの磁化が下がりやすくなり、キャリア付着を生じさせることがある。
被覆層(27)における樹脂部分の平均厚みh(μm)は、0.04〜2μmが好ましく、0.04〜1μmがより好ましい。
第1粒子(G1)の体積平均粒子径D1は、0.05〜3μmであることが好ましく、0.05〜1μmがより好ましい。
第2粒子(G2)の粒径D2は、0.005〜1μmであることが好ましく、0.01〜0.2μmがより好ましい。
芯材(26)表面から被覆層(27)表面までの厚み(T)は、図1に示すように、上述した、被覆層(27)における樹脂部分の平均厚みhとは異なる厚みを表しており、キャリア表面の各地点における芯材(26)表面から被覆層(27)表面までの厚みを示すものである。
図1に示すように、被覆層(27)中に添加された粒子の粒径が、被覆層(27)における樹脂部分の厚みよりも大きい場合には、この粒子の粒径が、芯材(26)表面から被覆層(27)表面までの厚みTに相当する値となる。
芯材(26)表面から被覆層(27)表面までの平均厚みTは、例えば、透過型電子顕微鏡(TEM)を用いてキャリア断面を観察し、芯材(26)表面から被覆層(27)表面までの厚みを、キャリア表面に沿って0.2μm間隔で50点測定し、これらの測定値を平均して得られる値である。
第1粒子(G1)としては、例えば、アルミナ粒子、シリカ粒子、チタニア粒子、酸化亜鉛粒子などが挙げられ、これらの中でも、アルミナ粒子は、キャリアの被覆材料に用いられる結着樹脂との相性も良く、分散性、接着性の面でも優れているだけではなく、硬度が非常に高いので、現像装置(40)内でのストレスに対し、磨耗、割れが生じ難く、長期にわたって被覆層の保護効果、スペント物掻き取り効果を発揮できるので特に好ましい。
アルミナ粒子としては、粒径5μm以下のアルミナ粒子が好ましく、表面処理をしていないもの、疎水化処理などの表面処理したもの等を用いることができる。
シリカとしては、トナー用に用いられているもの、及びそれ以外のものも用いることができ、表面処理していないもの、疎水化処理など表面処理したもの等を用いることができる。また、前記導電性微粒子を、第1粒子(G1)として用いてもよい。
被覆層(27)中に含まれる第1粒子(G1)の含有量は10〜80wt%であることが好ましく、20〜60wt%がより好ましい。
第1粒子(G1)の被覆層(27)における含有量が10wt%未満であると、キャリア粒子表面での結着樹脂の占める割合に比べ、第1粒子(G1)の占める割合が少なすぎるため、結着樹脂への強い衝撃を伴う接触を緩和する効果が小さいので、十分な耐久性が得られないことがある。
一方、80wt%を超えると、キャリア表面での結着樹脂の占める割合に比べ、第1粒子(G1)の占める割合が多すぎるため、帯電発生箇所である結着樹脂の占める割合が不十分となり、十分な帯電能力を発揮できないことがある。更に、結着樹脂量に比べて第1粒子(G1)の量が多すぎるので、結着樹脂による第1粒子(G1)の保持能力が不十分となり、第1粒子(G1)が脱離し易くなり、帯電量や抵抗等の変動量が増加して、十分な耐久性が得られないことがある。
ここで、第1粒子(G1)の被覆層(27)における含有量は、下記式(2)で表される。
Figure 0005229531
第2粒子(G2)としては、酸化チタン、酸化亜鉛、酸化スズ、表面処理された酸化チタン、表面処理された酸化亜鉛、及び表面処理された酸化スズから選択される少なくとも1種の粒子が好適に用いられる。
これらの粒子は、適度な硬度を持ち、且つ、キャリアのコート材料に用いられる樹脂との相性もよく、分散性、接着性の面でも優れており、特に酸化チタンや表面処理を施した酸化チタンは第2粒子(G2)として好ましい。
また、粒子母体として上記以外のものを使用した場合でも、粒子表面に疎水化処理等の表面処理を施すことで分散性を向上させたり、導電性処理等の表面処理を施すことで粒径及び体積固有抵抗を上述した範囲内にさせたりしたものであれば、上述したのと同様の理由から、良好な効果を得ることができる。また、前記導電性微粒子を、第2粒子(G2)として用いてもよい。
被覆層(27)に含まれる第2粒子(G2)の含有量は、2〜50wt%であることが好ましく、2〜30wt%であることがより好ましい。
被覆層(27)における第2粒子(G2)の含有量が多いほど、強度を高める効果は大きいが、第2粒子(G2)の含有量が50wt%を超えると、被覆層(27)内部における第2粒子(G2)の分散状態が大幅に悪化する。粒子の分散状態が悪化すると、被覆層(27)内部で第2粒子(G2)の一部が互いに凝集してしまうため、第2粒子(G2)の効果が平均的には発揮されにくくなる。
一方、第2粒子(G2)の被覆層(27)における含有量が2wt%未満であると、含有量が少なすぎるために、第2粒子(G2)を添加した効果を十分に得ることができない。
第2粒子(G2)の被覆層(27)における含有量は、下記式(3)によって表される。
Figure 0005229531
キャリア粒子の被覆層(27)に用いられる結着樹脂としては、アクリル樹脂とアミノ樹脂との反応物、及びシリコーン樹脂のいずれかが好適に挙げられる。
アクリル樹脂とアミノ樹脂との反応物としては、特に制限はなく、目的に応じて適宜選択することができるが、アクリル樹脂とアミノ樹脂との架橋反応物が好適である。
アクリル樹脂としては、特に制限はなく、全てのアクリル樹脂の中から目的に応じて適宜選択することができるが、これらの中でも、ガラス転移温度(Tg)は20〜100℃が好ましく、25〜80℃がより好ましい。アクリル樹脂のガラス転移温度(Tg)がこの範囲内であると、アクリル樹脂は適度な弾性を有しており、現像剤を摩擦帯電させるための攪拌における、トナーとキャリアとの摩擦あるいはキャリア同士の摩擦で、結着樹脂への強い衝撃を伴う接触の際、該衝撃を吸収することができ、被覆層を破損することなく維持することが可能となる。
ガラス転移温度(Tg)が20℃未満であると、常温においても結着樹脂がブロッキングするため、保存性が悪く実用上使用できないことがある。一方、ガラス転移温度(Tg)が100℃を超えると、結着樹脂が硬く脆性が高くなり過ぎて衝撃を吸収することができず、その脆さから結着樹脂が削れると共に、該粒子を保持することができず、脱離しやすくなることがある。
また、アミノ樹脂としては、特に制限はなく、従来から知られているアミノ樹脂の中から目的に応じて適宜選択することができ、例えば、グアナミン、メラミンを用いることで、帯電量付与能力を著しく向上させることができる。
シリコーン樹脂としては、特に制限はなく、一般的に知られているシリコーン樹脂の中から目的に応じて適宜選択することができ、例えば、オルガノシロサン結合のみからなるストレートシリコーン樹脂、アルキド樹脂、ポリエステル樹脂、エポキシ樹脂、アクリル樹脂、ウレタン樹脂などで変性したシリコーン樹脂、などが挙げられる。
前記シリコーン樹脂は、市販品を用いることができ、ストレートシリコーン樹脂としては、信越化学工業社製のKR271、KR255、KR152;東レ・ダウコーニング・シリコーン社製のSR2400、SR2406、SR2410、等が挙げられる。
前記変性シリコーン樹脂としては、例えば、信越化学工業社製のKR206(アルキド変性)、KR5208(アクリル変性)、ES1001N(エポキシ変性)、KR305(ウレタン変性);東レ・ダウコーニング・シリコーン社製のSR2115(エポキシ変性)、SR2110(アルキド変性)、などが挙げられる。
なお、シリコーン樹脂単体で用いることも可能であるが、架橋反応する成分、帯電量調整成分等を同時に用いることも可能である。
キャリア粒子の被覆層(27)に用いられる結着樹脂としては、上述の樹脂以外にも、必要に応じてキャリア用被覆樹脂として一般的に用いられているものを使用することができ、例えば、ポリビニル系樹脂、ポリスチレン系樹脂、ハロゲン化オレフィン樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリエチレン樹脂、ポリ弗化ビニル樹脂、ポリ弗化ビニリデン樹脂、ポリトリフルオロエチレン樹脂、ポリヘキサフルオロプロピレン樹脂、弗化ビニリデンと弗化ビニルとの共重合体、テトラフルオロエチレンと弗化ビニリデンと非弗化単量体とのターポリマー等のフルオロターポリマー、などが挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
被覆層(27)は、例えば、第1粒子(G1)、第2粒子(G2)、結着樹脂等を溶剤に溶解させて塗布溶液を調製した後、該塗布溶液を芯材(26)の表面に公知の塗布方法により均一に塗布し、乾燥した後、焼付を行うことにより形成することができる。前記塗布方法としては、例えば、浸漬法、転動流動層法、スプレー法などが挙げられる。
前記溶剤としては、特に制限はなく、目的に応じて適宜選択することができるが、例えば、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、セルソルブチルアセテート、ブチルセロソルブなどが挙げられる。
前記焼付としては、特に制限はなく、外部加熱方式であってもよいし、内部加熱方式であってもよく、例えば、固定式電気炉、流動式電気炉、ロータリー式電気炉、バーナー炉等を用いる方法、マイクロウエーブを用いる方法、などが挙げられる。
本実施形態において使用されるキャリアの芯材(26)の体積平均粒径は特に制限するものではないが、像担持体(1)へのキャリア付着、キャリア飛散防止の点から、体積平均粒径が20μm以上であるものが好ましく、キャリアスジ等の異常画像発生を防止して、画像品質の低下を防止する観点から、100μm以下のものが好ましく、特に、20〜60μmのものを用いることで、近年の高画質化に対して、より好適に応えることができる。
芯材(26)としては、特に制限はなく、電子写真用二成分キャリアとして公知のものの中から目的に応じて適宜選択することができ、例えば、フェライト、マグネタイト、鉄、ニッケル、が好適に挙げられる。また、近年著しく進む環境面への影響を配慮し、フェライトであれば、従来の銅−亜鉛系フェライトではなく、例えば、Mn系フェライト、Mn−Mg系フェライト、Mn−Mg−Srフェライト等を用いることが好適である。
具体的には、MFL-35S、MFL-35HS(パウダーテック社製)、DFC-400M(同和鉄粉工業社製)が好適な例として挙げられる。
本発明のキャリアにおいて、その抵抗率は、好ましくは1×1011〜1×1016[Ω・cm]、より好ましくは1×1012〜1×1014[Ω・cm]である。
キャリアの抵抗率が1×1011[Ω・cm]よりも低いと、現像ギャップ(感光体と現像スリーブ間の最近接距離)が狭くなった場合、キャリアに電荷が誘導されてキャリア付着が発生し易くなる。感光体の線速度、および、現像スリーブの線速度が大きい場合、悪化の傾向が見られる。また、ACバイアスを印加する場合は顕著である。通常、カラートナー現像用キャリアは充分なトナー付着量を得るため、低抵抗のものが使用されることが一般的である。
上記の抵抗範囲のキャリアは、適正なトナー帯電量のもとで使用することにより、充分な画像濃度が得られる。
また、1×1016[Ω・cm]より大きいとトナーと反対極性の電荷が溜まりやすくなり、キャリアが帯電してキャリア付着が起き易くなる。
上記キャリア抵抗率は、次の方法により、測定することができる。
図2に示すように、電極間距離2mm、表面積2×4cmの電極(22a)、(22b)を収容したフッ素樹脂製容器からなるセル(21)にキャリア(23)を充填し、両極間に100Vの直流電圧を印加し、ハイレジスタンスメーター4329A(4329A+LJK 5HVLVWDQFH OHWHU;横川ヒューレットパッカード株式会社製)にて直流抵抗を測定する。
キャリア抵抗測定の際の充填の度合いは、キャリアをセルにあふれるまで入れたのち、セル全体を20回タッピングしたのち、セルの上面を非磁性でできた水平なへらを用いてセルの上端に沿って一回の操作で平らにかきとる。充填の際に加圧は不要である。
上記キャリアの抵抗率の調整は、導電性微粒子の量や樹脂被覆層の膜厚の制御等によって可能である。
本発明の現像剤は、本発明のキャリアと、トナーを使用することで作製できる。
本発明において用いられるトナーは、少なくとも結着樹脂及び着色剤を含んで構成され、更に離型剤、帯電制御剤、またこれらの他に、必要に応じてその他の成分を含んでなる。
以下にトナーの製造方法について記述するが、トナーの製造方法としては、特に一つのものに限定されるものではなく、目的に応じて適宜選択することができる。例えば、粉砕法、水系媒体中で油相を乳化、懸濁又は凝集させトナー母体粒子を形成させる、懸濁重合法、乳化重合法、ポリマー懸濁法等が挙げられる。
本発明において用いられるトナーの結着樹脂としては、特に制限はなく、公知のものの中から目的に応じて適宜選択することができ、例えば、ポリスチレン、ポリp−スチレン、ポリビニルトルエン等のスチレン及びその置換体の単重合体、スチレン−p−クロルスチレン共重合体、スチレン−プロピレン共重合体、スチレン−ビニルトルエン共重合体、スチレン−アクリル酸メチル共重合体、スチレン−アクリル酸エチル共重合体、スチレン−メタアクリル酸共重合隊、スチレン−メタアクリル酸メチル共重合体、スチレン−メタアクリル酸エチル共重合体、スチレン−メタアクリル酸ブチル共重合体、スチレン−α−クロルメタアクリル酸メチル共重合体、スチレン−アクリロニトリル共重合体、スチレン−ビニルメチルエーテル共重合体、スチレン−ビニルメチルケトン共重合体、スチレン−ブタジエン共重合体、スチレン−イソプロピル共重合体、スチレン−マレイン酸エステル共重合体等のスチレン系共重合体、ポリチメルメタクリレート樹脂、ポリブチルメタクリレート樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリエチレン樹脂、ポリエステル樹脂、ポリウレタン樹脂、エポキシ樹脂、ポリビニルブチラール樹脂、ポリアクリル酸樹脂、ロジン樹脂、変性ロジン樹脂、テルペン樹脂、フェノール樹脂、脂肪族又は芳香族炭化水素樹脂、芳香族系石油樹脂などが単独あるいは混合して使用できる。
着色剤としては、特に制限はなく、公知の染料及び顔料の中から目的に応じて適宜選択することができ、例えば、カーボンブラック、ニグロシン染料、鉄黒、ナフトールイエローS、ハンザイエロー(10G、5G、G)、カドミュウムイエロー、黄色酸化鉄、黄土、黄鉛、チタン黄、ポリアゾイエロー、オイルイエロー、ハンザイエロー(GR、A、RN、R)、ピグメントイエローL、ベンジジンイエロー(G、GR)、パーマネントイエロー(NCG)、バルカンファストイエロー(5G、R)、タートラジンレーキ、キノリンイエローレーキ、アンスラザンイエローBGL、イソインドリノンイエロー、ベンガラ、鉛丹、鉛朱、カドミュウムレッド、カドミュウムマーキュリレッド、アンチモン朱、パーマネントレッド4R、パラレッド、ファイセーレッド、パラクロルオルトニトロアニリンレッド、リソールファストスカーレットG、ブリリアントファストスカーレット、ブリリアントカーンミンBS、パーマネントレッド(F2R、F4R、FRL、FRLL、F4RH)、ファストスカーレットVD、ベルカンファストルビンB、ブリリアントスカーレットG、リソールルビンGX、パーマネントレッドF5R、ブリリアントカーミン6B、ポグメントスカーレット3B、ボルドー5B、トルイジンマルーン、パーマネントボルドーF2K、ヘリオボルドーBL、ボルドー10B、ボンマルーンライト、ボンマルーンメジアム、エオシンレーキ、ローダミンレーキB、ローダミンレーキY、アリザリンレーキ、チオインジゴレッドB、チオインジゴマルーン、オイルレッド、キナクリドンレッド、ピラゾロンレッド、ポリアゾレッド、クロームバーミリオン、ベンジジンオレンジ、ペリノンオレンジ、オイルオレンジ、コバルトブルー、セルリアンブルー、アルカリブルーレーキ、ピーコックブルーレーキ、ビクトリアブルーレーキ、無金属フタロシアニンブルー、フタロシアニンブルー、ファストスカイブルー、インダンスレンブルー(RS、BC)、インジゴ、群青、紺青、アントラキノンブルー、ファストバイオレットB、メチルバイオレットレーキ、コバルト紫、マンガン紫、ジオキサンバイオレット、アントラキノンバイオレット、クロムグリーン、ジンクグリーン、酸化クロム、ピリジアン、エメラルドグリーン、ピグメントグリーンB、ナフトールグリーンB、グリーンゴールド、アシッドグリーンレーキ、マラカイトグリーンレーキ、フタロシアニングリーン、アントラキノングリーン、酸化チタン、亜鉛華、リトボン、等が挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
着色剤のトナーにおける含有量は1〜15重量%が好ましく、3〜10重量%がより好ましい。
着色剤は、樹脂と複合化されたマスターバッチとして使用してもよい。該樹脂としては、特に制限はなく、目的に応じて公知のものの中から適宜選択することができ、例えば、スチレン又はその置換体の重合体、スチレン系共重合体、ポリメチルメタクリレート樹脂、ポリブチルメタクリレート樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エポキシ樹脂、エポキシポリオール樹脂、ポリウレタン、ポリアミド、ポリビニルブチラール、ポリアクリル酸樹脂、ロジン、変性ロジン、テルペン樹脂、脂肪族炭化水素樹脂、脂環族炭化水素樹脂、芳香族系石油樹脂、塩素化パラフィン、パラフィン、等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
離型剤としては、特に制限はなく、目的に応じて公知のものの中から適宜選択することができ、例えば、ワックス類、等が好適に挙げられる。
ワックス類としては、例えば、カルボニル基含有ワックス、ポリオレフィンワックス、長鎖炭化水素、等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、カルボニル基含有ワックスが好ましい。
カルボニル基含有ワックスとしては、例えば、ポリアルカン酸エステル、ポリアルカノールエステル、ポリアルカン酸アミド、ポリアルキルアミド、ジアルキルケトン、等が挙げられる。前記ポリアルカン酸エステルとしては、例えば、カルナバワックス、モンタンワックス、トリメチロールプロパントリベヘネート、ペンタエリスリトールテトラベヘネート、ペンタエリスリトールジアセテートジベヘネート、グリセリントリベヘネート、1,18−オクタデカンジオールジステアレート等が挙げられる。ポリアルカノールエステルとしては、例えば、トリメリット酸トリステアリル、ジステアリルマレエート等が挙げられる。前記ポリアルカン酸アミドとしては、例えば、ジベヘニルアミド等が挙げられる。前記ポリアルキルアミドとしては、例えば、トリメリット酸トリステアリルアミド等が挙げられる。前記ジアルキルケトンとしては、例えば、ジステアリルケトン等が挙げられる。これらカルボニル基含有ワックスの中でも、ポリアルカン酸エステルが特に好ましい。
ポリオレフィンワッックスとしては、例えば、ポリエチレンワックス、ポリプロピレンワックス等が挙げられる。
長鎖炭化水素としては、例えば、パラフィンワックス、サゾールワックス等が挙げられる。
離型剤の融点としては、特に制限はなく、目的に応じて適宜選択することができるが、40〜160℃が好ましく、50〜120℃がより好ましく、60〜90℃が特に好ましい。
融点が、40℃未満であると、ワックスが耐熱保存性に悪影響を与えることがあり、160℃を超えると、低温での定着時にコールドオフセットを起こし易いことがある。
離型剤の溶融粘度としては、該ワックスの融点より20℃高い温度での測定値として、5〜1,000cpsが好ましく、10〜100cpsがより好ましい。溶融粘度が、5cps未満であると、離型性が低下することがあり、1,000cpsを超えると、耐ホットオフセット性、低温定着性への向上効果が得られなくなることがある。
離型剤の前記トナーにおける含有量としては、特に制限はなく、目的に応じて適宜選択することができるが、1〜40重量%が好ましく、3〜30重量%がより好ましい。
前記含有量が、40重量%を超えると、トナーの流動性が悪化することがある。
帯電制御剤としては、特に制限はなく、感光体に帯電される電荷の正負に応じて正又は負の荷電制御剤を適宜選択して用いることができる。
負の帯電制御剤としては、例えば、電子供与性の官能基を持つ樹脂又は化合物、アゾ染料、有機酸の金属錯体、などを用いることができる。具体的には、ボントロン(品番:S−31、S−32、S−34、S−36、S−37、S−39、S−40、S−44、E−81、E−82、E−84、E−86、E−88、A、1−A、2−A、3−A)(以上、オリエント化学工業社製))、カヤチャージ(品番:N−1、N−2)、カヤセットブラック(品番:T−2、004)(以上、日本化薬社製))、アイゼンスピロンブラック(T−37、T−77、T−95、TRH、TNS−2)(以上、保土谷化学工業社製)、FCA−1001−N、FCA−1001−NB、FCA−1001−NZ、(以上、藤倉化成社製)、などが挙げられる。
正の荷電制御剤としては、例えば、ニグロシン染料等の塩基性化合物、4級アンモニウム塩等のカチオン性化合物、高級脂肪酸の金属塩等を用いることができる。具体的には、ボントロン(品番:N−01、N−02、N−03、N−04、N−05、N−07、N−09、N−10、N−11、N−13、P−51、P−52、AFP−B)(以上、オリエント化学工業社製)、TP−302、TP−415、TP−4040(以上、保土谷化学工業社製)、コピーブルーPR、コピーチャージ(品番:PX−VP−435、NX−VP−434)(以上、ヘキスト社製)、FCA(品番:201、201−B−1、201−B−2、201−B−3、201−PB、201−PZ、301)(以上、藤倉化成社製)、PLZ(品番:1001、2001、6001、7001)(以上、四国化成工業社製)、などが挙げられる。
これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
帯電制御剤の添加量は、結着樹脂の種類、分散方法を含めたトナー製造方法によって決定されるもので、一義的に限定されるものではないが、結着樹脂100重量部に対し0.1〜10重量部が好ましく、0.2〜5重量部がより好ましい。前記添加量が10重量部を超えると、トナーの帯電性が大きすぎ、帯電制御剤の効果を減退させ、現像ローラとの静電気的吸引力が増大し、現像剤の流動性低下や、画像濃度の低下を招くことがあり、0.1重量部未満であると、帯電立ち上り性や帯電量が十分でなく、トナー画像に影響を及ぼしやすいことがある。
トナー材料には、結着樹脂、離型剤、着色剤、及び帯電制御剤の他に、必要に応じて無機微粒子、流動性向上剤、クリーニング性向上剤、磁性材料、金属石鹸、等を添加することができる。
無機微粒子としては、例えば、シリカ、チタニア、アルミナ、酸化セリウム、チタン酸ストロンチウム、炭酸カルシウム、炭酸マグネシウム、リン酸カルシウム等を用いることができ、シリコーンオイルやヘキサメチルジシラザンなどで疎水化処理されたシリカ微粒子や、特定の表面処理を施した酸化チタンを用いることがより好ましい。
前記シリカ微粒子としては、例えば、アエロジル(品番:130、200V、200CF、300、300CF、380、OX50、TT600、MOX80、MOX170、COK84、RX200、RY200、R972、R974、R976、R805、R811、R812、T805、R202、VT222、RX170、RXC、RA200、RA200H、RA200HS、RM50、RY200、REA200)(以上、日本アエロジル社製)、HDK(品番:H20、H2000、H3004、H2000/4、H2050EP、H2015EP、H3050EP、KHD50)、HVK2150(以上、ワッカーケミカル社製)、カボジル(品番:L−90、LM−130、LM−150、M−5、PTG、MS−55、H−5、HS−5、EH−5、LM−150D、M−7D、MS−75D、TS−720、TS−610、TS−530)(以上、キャボット社製)等を用いることができる。
無機微粒子の添加量としては、トナー母体粒子100重量部に対し0.1〜5.0重量部が好ましく、0.5〜3.2重量部がより好ましい。
本発明におけるトナーの製造方法としては、前述のとおり特に限定するものではないが、粉砕法の製造方法として、以下を例示する。
前記のトナー材料を混合し、該混合物を溶融混練機に仕込んで溶融混練する。該溶融混練機としては、例えば、一軸、二軸の連続混練機や、ロールミルによるバッチ式混練機を用いることができる。例えば、神戸製鋼所社製KTK型二軸押出機、東芝機械社製TEM型押出機、ケイシーケイ社製二軸押出機、池貝鉄工所社製PCM型二軸押出機、ブス社製コニーダー等が好適に用いられる。この溶融混練は、バインダー樹脂の分子鎖の切断を招来しないような適正な条件で行うことが好ましい。具体的には、溶融混練温度は、バインダー樹脂の軟化点を参考にして行われ、該軟化点より高温過ぎると切断が激しく、低温すぎると分散が進まないことがある。
粉砕では、前記混練で得られた混練物を粉砕する。この粉砕においては、まず、混練物を粗粉砕し、次いで微粉砕することが好ましい。この際ジェット気流中で衝突板に衝突させて粉砕したり、ジェット気流中で粒子同士を衝突させて粉砕したり、機械的に回転するローターとステーターの狭いギャップで粉砕する方式が好ましく用いられる。
分級は、前記粉砕で得られた粉砕物を分級して所定粒径の粒子に調整する。前記分級は、例えば、サイクロン、デカンター、遠心分離等により、微粒子部分を取り除くことにより行うことができる。
粉砕及び分級が終了した後に、粉砕物を遠心力などで気流中に分級し、所定の粒径のトナーを製造する。
また、トナーの流動性や保存性、現像性、転写性を高めるために、以上のようにして製造されたトナー母体粒子に更に疎水性シリカ微粉末等の無機微粒子を添加混合してもよい。添加剤の混合は一般の粉体の混合機が用いられるがジャケット等装備して、内部の温度を調節できることが好ましい。なお、添加剤に与える負荷の履歴を変えるには、途中又は漸次添加剤を加えていけばよい。この場合、混合機の回転数、転動速度、時間、温度などを変化させてもよい。又はじめに強い負荷を、次に、比較的弱い負荷を与えてもよいし、その逆でもよい。使用できる混合設備としては、例えば、V型混合機、ロッキングミキサー、レーディゲミキサー、ナウターミキサー、ヘンシェルミキサーなどが挙げられる。次いで、粗大粒子、凝集粒子の除去を目的に、篩を通過させることでトナーを得ることができる。
本発明の画像形成方法は、本発明の現像剤を用いて潜像を現像する方法である。該方法においては、外部から印加する現像バイアスとして、直流電圧に交流電圧を重畳させた電圧を印加すると、充分な画像濃度が得られる。特に、ハイライトの粒状性が良好となる。
更に、現像バイアスとして、直流電圧のみを印加すると、キャリア付着、エッジ効果が大幅に改善され、また、地汚れ対する余裕度が大きくなるため、キャリアに対するトナー被覆率を上げられること、また、トナー帯電量及び現像バイアスを下げることが可能となり、画像濃度アップを図ることができる。
本発明のプロセスカートリッジは、感光体と、感光体の表面に形成される静電潜像を本発明の現像剤を用いて現像する現像装置を少なくとも一体に支持し、画像形成装置本体に着脱自在である。なお、プロセスカートリッジは、感光体の表面を帯電させる帯電ブラシ、感光体の表面に残存する現像剤を払拭するブレード等の手段をさらに一体に支持することができる。
次に、図面により、本発明の画像形成方法及び画像形成装置の例を詳しく説明するが、これら例は、本発明を説明するためのものであって、本発明を限定するためのものではない。
図3は、本発明で用いられる現像装置の一例を示す図であり、後述するような変形例も本発明の範疇に属するものである。
図3において、潜像担持体である感光体(20)に対向して配設された現像装置(40)は、現像剤担持体としての現像スリーブ(41)、現像剤収容部材(42)、規制部材としてのドクターブレード(43)、支持ケース(44)等から主に構成されている。
感光体(20)側に開口を有する支持ケース(44)には、内部にトナー(21)を収容するトナー収容部としてのトナーホッパー(45)が接合されている。トナーホッパー(45)に隣接した、トナー(21)と、キャリア(23)からなる現像剤を収容する現像剤収容部(46)には、トナー(21)とキャリア(23)を撹拌し、トナー(21)に摩擦/剥離電荷を付与するための、現像剤撹拌機構(47)が設けられている。
トナーホッパー(45)の内部には、図示しない駆動手段によって回動されるトナー供給手段としてのトナーアジテータ(48)及びトナー補給機構(49)が配設されている。トナーアジテータ(48)及びトナー補給機構(49)は、トナーホッパー(45)内のトナー(21)を現像剤収容部(46)に向けて撹拌しながら送り出す。
感光体(20)とトナーホッパー(45)との間の空間には、現像スリーブ(41)が配設されている。図示しない駆動手段で図の矢印方向に回転駆動される現像スリーブ(41)は、キャリア(23)による磁気ブラシを形成するために、その内部に現像装置(40)に対して相対位置不変に配設された、磁界発生手段としての図示しない磁石を有する。
現像剤収容部材(42)の、支持ケース(44)に取り付けられた側と対向する側には、ドクターブレード(43)が一体的に取り付けられている。ドクターブレード(43)は、この例では、その先端と現像スリーブ(41)の外周面との間に一定の隙間を保った状態で配設されている。
このような装置を非限定的に用い、本発明の画像形成方法は、次のように遂行される。即ち、上記構成により、トナーホッパー(45)の内部からトナーアジテータ(48)、トナー補給機構(49)によって送り出されたトナー(21)は、現像剤収容部(46)へ運ばれ、現像剤撹拌機構(47)で撹拌されることによって、所望の摩擦/剥離電荷が付与され、キャリア(23)と共に現像剤として、現像スリーブ(41)に担持されて感光体(20)の外周面と対向する位置まで搬送され、トナー(21)のみが感光体(20)上に形成された静電潜像と静電的に結合することにより、感光体(20)上にトナー像が形成される。
図4は、図3の現像装置を有する画像形成装置の一例を示す図である。ドラム状の感光体(20)の周囲に、帯電部材(32)、像露光系(33)、現像装置(40)、転写装置(50)、クリーニング装置(60)、除電ランプ(70)が配置されていて、この例の場合、帯電部材(32)の表面は、感光体(20)の表面とは約0.2mmの間隙を置いて非接触状態にあり、帯電部材(32)により感光体(20)に帯電を施す際、帯電部材(32)に図示してない電圧印加手段によって直流成分に交流成分を重畳した電界により、感光体(20)を帯電させることにより、帯電ムラを低減することが可能であり、効果的である。現像方法を含む画像形成方法は、以下の動作で行われる。
画像形成の一連のプロセスは、ネガ−ポジプロセスで説明を行うことができる。有機光導電層を有する感光体(OPC)に代表される感光体(20)は、除電ランプ(70)で除電され、帯電チャージャ、帯電ローラー等の帯電部材(32)で均一にマイナスに帯電され、レーザー光学系等の像露光系(33)から照射されるレーザー光で潜像形成(この例では、露光部電位の絶対値は、非露光部電位の絶対値より低電位となる)が行われる。
レーザー光は、半導体レーザーから発せられて、高速で回転する多角柱の多面鏡(ポリゴン)等により、感光体(20)の表面を、感光体(20)の回転軸方向に走査する。このようにして形成された潜像が、現像装置(40)にある現像剤担持体である現像スリーブ(41)上に供給されたトナー及びキャリアの混合物からなる現像剤により現像され、トナー像が形成される。潜像の現像時には、電圧印加機構(図示せず)から現像スリーブ(41)に、感光体(20)の露光部と非露光部の間に、ある適当な大きさの直流電圧又はこれに交流電圧を重畳した現像バイアスが印加される。
一方、転写媒体(例えば紙)(80)が、給紙機構(図示せず)から給送され、上下一対のレジストローラ(図示せず)で画像先端と同期をとって、感光体(20)と転写装置(50)との間に給送され、トナー像が転写される。このとき、転写装置(50)には、転写バイアスとして、トナー帯電の極性と逆極性の電位が印加されることが好ましい。その後、転写媒体(80)は、感光体(20)より分離され、転写像が得られる。
また、感光体(20)上に残存するトナーは、クリーニング部材としてのクリーニングブレード(61)により、クリーニング装置(60)内のトナー回収室(62)に回収される。
回収されたトナーは、トナーリサイクル手段(図示せず)により現像剤収容部(46)及び/又はトナーホッパー(45)に搬送され、再使用されてもよい。
画像形成装置は、上述の現像装置を複数配置し、転写媒体上へトナー像を順次転写した後、定着機構へ送り、熱等によってトナーを定着する装置であってもよく、一端中間転写媒体上へ複数のトナー像を転写し、これを一括して転写媒体に転写後同様の定着を行う装置であってもよい。
図5には、本発明で用いられる画像形成装置の他の例を示す。感光体(20)は、導電性支持体上に少なくとも感光層が設けられており、駆動ローラー(24a)、(24b)により駆動され、帯電部材(32)による帯電、像露光系(33)による像露光、現像装置(40)による現像、を有する転写装置(50)を用いる転写、クリーニング前露光光源(26)によるクリーニング前露光、ブラシ状クリーニング手段(64)及びクリーニングブレード(61)によるクリーニング、除電ランプ(70)による除電が繰り返し行われる。図5においては、感光体(20)(勿論この場合は支持体が透光性である)に支持体側よりクリーニング前露光が行われる。
図6に、本発明のプロセスカートリッジの一例を示す。このプロセスカートリッジは、感光体(20)と、近接型のブラシ状の帯電部材(32)、本発明の現像剤を収納する現像装置(40)、クリーニングブレード(61)を少なくとも有するクリーニング装置を一体に支持し、画像形成装置本体に着脱自在である。本発明においては、上述の各構成要素をプロセスカートリッジとして一体に結合して構成し、このプロセスカートリッジを複写機、プリンタ等の画像形成装置本体に対して着脱自在に構成することができる。
以下、本発明を実施例および比較例を挙げて説明する。なお、本発明はここに例示される実施例に限定されるものではない。また、以下において「部」は重量部を、「%」は重量%を表す。
[トナーの作製]
(結着樹脂合成例1)
冷却管、攪拌機および窒素導入管の付いた反応槽中に、ビスフェノールAエチレンオキサイド2モル付加物724部、イソフタル酸276部およびジブチルチンオキサイド2部を入れ、常圧下230℃で8時間反応し、さらに10〜15mmHgの減圧で5時間反応した後、160℃まで冷却して、これに32部の無水フタル酸を加えて2時間反応した。
次いで、80℃まで冷却し、酢酸エチル中にてイソフォロンジイソシアネート188部と2時間反応を行いイソシアネート含有プレポリマー(P1)を得た。
次いでプレポリマー(P1)267部とイソホロンジアミン14部を50℃で2時間反応させ、重量平均分子量64000のウレア変性ポリエステル(U1)を得た。
上記と同様にビスフェノールAエチレンオキサイド2モル付加物724部、テレフタル酸276部を常圧下、230℃で8時間重縮合し、次いで10〜15mmHgの減圧で5時間反応して、ピーク分子量5000の変性されていないポリエステル(E1)を得た。
ウレア変性ポリエステル(U1)200部と変性されていないポリエステル(E1)800部を酢酸エチル/MEK(1/1)混合溶剤2000部に溶解、混合し、結着樹脂(B1)の酢酸エチル/MEK溶液を得た。
一部減圧乾燥し、結着樹脂(B1)を単離した。Tgは62℃であった。
(ポリエステル樹脂合成例A)
テレフタル酸 :60部
ドデセニル無水コハク酸 :25部
無水トリメリット酸 :15部
ビスフェノールA(2,2)プロピレンオキサイド :70部
ビスフェノールA(2,2)エチレンオキサイド :50部
上記組成物を、温度計、攪拌器、コンデンサー及び窒素ガス導入管を備えた容量1Lの4つ口丸底フラスコ内に入れ、このフラスコをマントルヒーターにセットし、窒素ガス導入管より窒素ガスを導入してフラスコ内を不活性雰囲気下に保った状態で昇温し、次いで0.05gのジブチルスズオキシドを加えて温度を200℃に保って反応させポリエステルA得た。このポリエステルAのピーク分子量は4200であり、ガラス転移点は59.4℃であった。
(マスターバッチ作成例1)
顔料:C.I.Pigment Yellow 155 :40部
結着樹脂:ポリエステル樹脂A :60部
水 :30部
上記原材料をヘンシェルミキサーにて混合し、顔料凝集体中に水が染み込んだ混合物を得た。これをロ−ル表面温度130℃に設定した2本ロールにより45分間混練を行い、パルベライザーで1mmφの大きさに粉砕し、 マスターバッチ(M1)を得た。
(トナー製造例A)
ビーカー内に前記の結着樹脂(B1)の酢酸エチル/MEK溶液240部、ペンタエリスリトールテトラベヘネート(融点81℃、溶融粘度25cps)20部、マスターバッチ(M1)8部を入れ、60℃にてTK式ホモミキサーにて12000rpmで攪拌し、均一に溶解、分散させ、トナー材料液を用意した。
ビーカー内にイオン交換水706部、ハイドロキシアパタイト10%懸濁液(日本化学工業(株)製スーパタイト10)294部、ドデシルベンゼンスルホン酸ナトリウム0.2部を入れ均一に溶解した。
ついで60℃に昇温し、TK式ホモミキサーにて12000rpmに攪拌しながら、上記トナー材料溶液を投入し10分間攪拌した。
ついでこの混合液を攪拌棒および温度計付のコルベンに移し、98℃まで昇温して溶剤を除去し、濾別、洗浄、乾燥した後、風力分級し、トナー粒子を得た。
ついで、このトナー粒子100部に疎水性シリカ1.0部と、疎水化酸化チタン1.0部をヘンシェルミキサーにて混合して、「トナーA」を得た。
この「トナーA」の超薄切片を作成し、透過型電子顕微鏡(日立社製H−9000H)を用いて、トナーの断面写真(倍率×100,000)を撮影し、写真から、ランダム選択した100点の着色剤部分の分散径から平均値を求めた。ここで、1粒子の分散径は最長径と最短径の平均とし、また、凝集状態にあるものは凝集体自身を1粒子とした。
着色剤の平均分散粒径は、0.40μmであった。また、0.7μm以上の分散粒径を持つ着色剤は、4.5%であった。
次に「トナーA」の粒径を、コールターエレクトロニクス社製の粒度測定器「コールターカウンターTA2」を用い、アパーチャー径100μmで測定したところ、体積平均粒径(Dv)=6.2μm、個数平均粒径(Dn)=5.1μmであった。
引き続き、「トナーA」の円形度を、フロー式粒子像分析装置FPIA−1000(東亜医用電子株式会社製)により平均円形度として計測した。測定は、前記装置に、予め不純固形物を除去した水100〜150ml中に分散剤として界面活性剤(アルキルベンゼンスフォン酸塩)を0.1〜0.5ml加え、更に測定試料を0.1〜0.5g程度加え、超音波分散器で約1〜3分間分散処理を行い、分散液濃度を3000〜1万個/μlに調整した測定液をセットして行った。得られた「トナーA」の円形度は0.96であった。
(導電性微粒子の製造例)
(製造例1)
酸化アルミニウム(平均一次粒径0.05μm、アスペクト比197)100gを水1リットルに分散させて水懸濁液とした。この懸濁液を70℃に加温保持した。別途用意した塩化第二スズ(SnCl・5HO)11.6gを2N塩酸100ミリリットルに溶かした溶液と12重量%アンモニア水とを、懸濁液のpHを7〜8に保持するように約40分かけ同時添加した。引き続き別途用意した塩化インジウム(InCl)36.7gおよび塩化第二スズ(SnCl・5HO)5.4gを2N塩酸450ミリリットルに溶かした溶液と12重量%アンモニア水とを懸濁液のpHを7〜8に保持するように約1時間かけて同時滴下した。滴下終了後、処理懸濁液を濾過、洗浄し、得られた処理顔料のケーキを110℃で乾燥した。
次いで、得られた乾燥粉末を窒素ガス気流中(1リットル/分)で500℃にて1時間熱処理して、白色導電性粒子Aを得た。平均一次粒径は0.05μm、アスペクト比は197であった。
(製造例2)
基材を酸化アルミニウム(平均一次粒径0.07μm、アスペクト比3.2)に変更したこと以外は製造例1と同様にして白色導電性粒子Bを得た。平均一次粒径は0.07μm、アスペクト比は3.2であった。
(製造例3)
酸化アルミニウム(平均一次粒径0.08μm、アスペクト比32)100gを水1リットルに分散させて水懸濁液とした。この懸濁液を70℃に加温保持した。別途用意した塩化インジウム(InCl)36.7gおよび塩化第二スズ(SnCl・5HO)5.4gを2N塩酸450ミリリットルに溶かした溶液と12重量%アンモニア水とを懸濁液のpHを7〜8に保持するように約1時間かけて同時滴下した。滴下終了後、処理懸濁液を濾過、洗浄し、得られた処理顔料のケーキを110℃で乾燥した。次いで、得られた乾燥粉末を窒素ガス気流中(1リットル/分)で500℃にて1時間熱処理して、白色導電性粒子Cを得た。平均一次粒径は0.08μm、アスペクト比は32であった。
(製造例4)
基材を酸化アルミニウム(平均一次粒径0.05μm、アスペクト比205)に変更したこと以外は製造例1と同様にして白色導電性粒子Dを得た。平均一次粒径は0.05μm、アスペクト比は205であった。
(製造例5)
基材を酸化アルミニウム(平均一次粒径0.07μm、アスペクト比2.4)に変更したこと以外は製造例1と同様にして白色導電性粒子Eを得た。平均一次粒径は0.07μm、アスペクト比は2.4であった。
(製造例6)
カーボンブラック(ライオンアクゾ製、ケッチェンブラックEC600JD)をそのまま導電性微粒子Fとした。
(製造例7)
基材をルチル型酸化チタン(平均一次粒径0.08μm、アスペクト比32)に変更したこと以外は製造例1と同様にして白色導電性粒子Gを得た。平均一次粒径は0.08μm、アスペクト比は32であった。
(製造例8)
基材をルチル型酸化チタン(平均一次粒径0.37μm、アスペクト比27)に変更したこと以外は製造例1と同様にして白色導電性粒子Hを得た。平均一次粒径は0.37μm、アスペクト比は27であった。
(キャリア製造例)
(製造例1)
アクリル樹脂溶液(固形分濃度:50重量%) 2130重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子A 1500重量部
トルエン 6000重量部
以上の各材料をホモミキサーにて10分間分散し、樹脂層形成液を調合した。キャリア芯材として体積平均粒径が35μmのフェライト粒子を用い、上記樹脂溶液を芯材表面に厚みhが0.15μmとなるようにスピラコーター(岡田精工社製)により55℃の雰囲気下で30g/minに割合で塗布し、乾燥させた。層厚の調整は液量によって行った。得られたキャリアを、電気炉中にて150℃で1時間放置して焼成し、冷却後に目開き100μmの篩を用いて解砕して、キャリアIを得た。平均厚さTは0.20μmであった。
芯材の体積平均粒径の測定は、マイクロトラック粒度分析計(日機装株式会社)のSRAタイプを使用し、0.7μm以上、125μm以下のレンジ設定で行ったものを用いた。
前記被覆層における樹脂部分の平均厚みh(μm)は、透過型電子顕微鏡(TEM)を用いて、キャリア断面を観察し、芯材表面と粒子との間に存在する樹脂部の厚みhaと、粒子間に存在する樹脂部の厚みhbと、芯材や粒子上の樹脂部の厚みhcとを、キャリア表面に沿って0.2μm間隔で50点測定し、得られた測定値を平均して求めた。
前記芯材表面から被覆層表面までの厚みT(μm)は、透過型電子顕微鏡(TEM)を用いて、キャリア断面の観察をし、芯材表面から被覆層表面までの厚みTを、キャリア表面に沿って0.2μm間隔で50点測定し、得られた測定値を平均して求めた。
(製造例2)
導電性粒子に導電性粒子Bを用いたこと以外は製造例1と同様にして製造し、キャリアIIを得た。平均厚さTは0.20μmであった。
(製造例3)
導電性粒子に導電性粒子Cを用いたこと以外は製造例1と同様にして製造し、キャリアIIIを得た。平均厚さTは0.20μmであった。
(製造例4)
導電性粒子に導電性粒子Dを用いたこと以外は製造例1と同様にして製造し、キャリアIVを得た。平均厚さTは0.20μmであった。
(製造例5)
導電性粒子に導電性粒子Eを用いたこと以外は製造例1と同様にして製造し、キャリアVを得た。平均厚さTは0.20μmであった。
(製造例6)
導電性粒子に導電性粒子Fを用いたこと以外は製造例1と同様にして製造し、キャリアVIを得た。平均厚さTは0.20μmであった。
(製造例7)
導電性粒子に導電性粒子Gを用いたこと以外は製造例1と同様にして製造し、キャリアVIIを得た。平均厚さTは0.20μmであった。
(製造例8)
アクリル樹脂溶液(固形分濃度:50重量%) 2130重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子G 750重量部
アルミナ粒子(体積平均粒径0.35μm) 750重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアVIIIを得た。平均厚さTは0.40μmであった。
(製造例9)
アクリル樹脂溶液(固形分濃度:50重量%) 2130重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子G 750重量部
アルミナ粒子(体積平均粒径0.35μm) 750重量部
酸化チタン粒子(体積平均粒径0.015μm) 500重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアIVを得た。平均厚さTは0.42μmであった。
(製造例10)
アクリル樹脂溶液(固形分濃度:50重量%) 1500重量部
シリコーン樹脂溶液(固形分20重量%) 1575重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子G 750重量部
アルミナ粒子(体積平均粒径0.35μm) 750重量部
酸化チタン粒子(体積平均粒径0.015μm) 500重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアXを得た。平均厚さTは0.42μmであった。
(製造例11)
アクリル樹脂溶液(固形分濃度:50重量%) 1500重量部
グアナミン溶液(固形分70重量%) 450重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子G 750重量部
アルミナ粒子(体積平均粒径0.35μm) 750重量部
酸化チタン粒子(体積平均粒径0.015μm) 500重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアXIを得た。平均厚さTは0.42μmであった。
(製造例12)
アクリル樹脂溶液(固形分濃度:50重量%) 1500重量部
グアナミン溶液(固形分70重量%) 450重量部
アミノシラン(固形分濃度:100重量%) 4重量部
導電性粒子H 1500重量部
酸化チタン粒子(体積平均粒径0.015μm) 500重量部
トルエン 6000重量部
樹脂層形成液の材料を上記のものに変更したこと以外は製造例1と同様にして、キャリアXIIを得た。平均厚さTは0.42μmであった。
(製造例13)
厚みhが0.05μmとなるように樹脂溶液の塗布量を変更した以外は製造例11と同様にして、キャリアXIIIを得た。平均厚さTは0.08μmであった。
(製造例14)
厚みhが2.40μmとなるように樹脂溶液の塗布量を変更した以外は製造例11と同様にして、キャリアXIVを得た。平均厚さTは3.02μmであった。
参考例1)
トナー製造例で得たトナーAを7重量部と、キャリア製造例1で得られたキャリアIを93重量部用い、ミキサーで10分攪拌して現像剤を作成した。
(画像の精細性)
市販のデジタルフルカラープリンター(株式会社リコー製、imagio Neo C600)に現像剤をセットし、画像面積5%の文字チャート(1文字の大きさが2mm×2mm程度)を出力し、その文字再現性から画像の精細性の評価を行った。評価のランク分けは次のように行った。
◎:非常に良好、○:良好、△:許容、×:実用上許容できないレベル
(耐久性)
上記の画像精細性評価の画像出力を100k枚行い、耐久性評価用のランニング試験とした。このランニング試験後と試験前での、帯電低下量およびキャリア抵抗変化量をもって耐久性の評価を行った。
帯電低下量の測定は以下の方法にて行った。
まず、初期のキャリア93重量%に対しトナー7重量%の割合で混合し摩擦帯電させたサンプルを、一般的なブローオフ法(東芝ケミカル株式会社製、TB−200)にて測定し、この値を初期帯電量とする。次に、ランニング後の現像剤からトナーを前記ブローオフ装置にて除去し、得られたキャリア93重量%に対し新規にトナーを7重量%の割合で混合し、初期のキャリアと同様に摩擦帯電させたサンプルを、初期のキャリアと同様に帯電量測定を行い、初期帯電量との差を帯電低下量とする。帯電低下量の目標値は10.0μC/g以内である。帯電量の低下の原因はキャリア表面へのトナースペントであるため、トナースペントを減らすことで、帯電量の低下を抑えることができる。
キャリア抵抗値変化量の測定は以下の方法にて行った。
キャリアを抵抗計測平行電極の電極間(ギャップ2mm)に投入し、DC1,000Vを印加して30sec後の抵抗値をハイレジスト計で計測した。得られた値を体積抵抗率に変換した値を初期抵抗値とする。
次に、ランニング後の現像剤中のトナーを前記ブローオフ装置にて除去し、得たキャリアに対して前記抵抗測定方法と同様の方法で抵抗測定を行い、得られた値を体積抵抗率に変換し、初期抵抗値との差をキャリア抵抗値変化量とする。キャリア抵抗値変化量の目標値は絶対値で3.0〔Log(Ω・cm)〕以内である。抵抗変化の原因は、キャリアの被覆層の削れ、トナー成分のスペント、キャリア被覆層中の大粒子脱離などであるため、これらを減らすことで、キャリア抵抗の変化を抑えることができる。
(地肌部キャリア付着)
市販のデジタルフルカラープリンター(株式会社リコー製、imagio Neo C600)に現像剤をセットし、地肌ポテンシャルを150Vに固定し、画像面積1%のA3文字チャート(1文字の大きさが2mm×2mm程度)を出力し、その地肌部のキャリア付着発生個数により評価を行った。評価のランク分けは次のように行った。
◎:0個、○:2個以上5個以下、△:6個以上10個以下、×:11個
(色汚れ)
ベタ画像を出力してX−Riteにより測定した。具体的には、現像剤をセットしセット直後の画像をX−Rite(アムテック株式会社製 X−Rite 938 D50)により測定した値(E)と、現像ユニット単独で1時間空攪拌の後画像を出力し、その画像をX−Riteにより測定した値(E')、次式により△Eを求め以下のようにランク付けした。
△E=E−E'
E=(L^2+a*^2+b*^2)^(1/2)
(Yellow ID=1.4時の値を読む)
E=初期剤E値
E'=1時間空攪拌後
◎ :△E≦2、 ○ :2<△E≦5、 × :5<△E
参考例2〜6、実施例1〜4、比較例1〜4)
現像剤に用いるキャリアを、製造例2〜14にて作成したキャリアを用いたこと以外は参考例1と同様にして評価を行った。
上記参考例2〜6、実施例1〜4、比較例1〜4の組み合わせを表1に、評価結果を表2に示す。
Figure 0005229531
Figure 0005229531
本発明の電子写真用キャリアの被覆層を示す説明図である。 キャリアの抵抗率の測定に用いる抵抗測定セルの斜視図である。 本発明で用いられる現像装置の1例を示す図である。 図3の現像装置を有する画像形成装置の1例を示す図である。 本発明で用いられる画像形成装置の他の例を示した図である。 本発明のプロセスカートリッジの1例を説明する図である。
符号の説明
(図1)
26 芯材
27 被覆層
ha、hb、hc、hd 樹脂部の厚み
T 芯材表面から被覆層表面までの平均厚み
G1 第1粒子
G2 第2粒子
A 測定点

(図2)
21 セル
22a 電極
22b 電極
23 キャリア

(図3)
20 感光体ドラム
21 トナー
23 キャリア
40 現像装置
41 現像スリーブ
42 現像剤収容部材
43 現像剤供給規制部材
44 支持ケース
45 トナーホッパー
46 現像剤収容部
47 現像剤撹拌機構
48 トナーアジテータ
49 トナー補給機構

(図4)
20 感光体ドラム
32 像担持体帯電部材
33 像露光系
40 現像装置
41 現像スリーブ
45 トナーホッパー
47 現像剤撹拌機構
50 転写機構
60 クリーニング機構
61 クリーニングブレード
62 トナー回収室
70 除電ランプ
80 中間転写媒体

(図5)
20 感光体ドラム
24a 駆動ローラー
24b 駆動ローラー
26 クリーニング前露光光源
32 像担持体帯電部材
33 像露光系
40 現像装置
50 転写機構
61 クリーニングブレード
64 ブラシ状クリーニング手段
70 除電ランプ

(図6)
20 感光体ドラム
32 帯電部材
40 現像装置
61 クリーニング手段(クリーニングブレード)

Claims (6)

  1. 磁性を有する芯材粒子と該粒子を被覆する結着樹脂層とからなる電子写真現像剤用キャリアにおいて、
    芯材粒子表面から該芯材粒子を被覆する被覆層の表面までの平均厚みをT(μm)、キャリア表面に沿って、0.2μm間隔で被覆層における樹脂部分の厚み(芯材表面と粒子との間に存在する樹脂部の厚み、粒子間に存在する樹脂部の厚み、粒子上の樹脂部の厚み、及び芯材上の樹脂部の厚み)を、透過型電子顕微鏡(TEM)を用いて測定し、50個の測定値を得て、この測定値を平均した値を被覆層における樹脂部分の平均厚みをhとするとき、
    前記結着樹脂層は、体積平均粒径D1(μm)と該被覆層における樹脂部分の平均厚みh(μm)の比(D1/h)が、1<(D1/h)<10の関係を満たす第1硬質粒子、
    体積平均粒径D2(μm)と該被覆層における樹脂部分の平均厚みh(μm)との比(D2/h)が、0.001<(D2/h)<1の関係を満たす第2硬質粒子を含むものであり、
    前記第2硬質粒子は導電性微粒子を含有し、該導電性微粒子は、基材となる粒子の表面に二酸化スズと酸化インジウムからなる導電性被覆層を設けた、アスペクト比が3〜200の針状あるいは棒状の微粒子であり、前記基材は酸化チタンであり、前記導電性被覆層は下層が二酸化スズの層、上層が二酸化スズを含む酸化インジウムの層によって構成されたものであり、
    前記平均厚みT(μm)が、0.1≦T≦3.0の範囲であることを特徴とする電子写真現像剤用キャリア。
  2. 前記導電性微粒子の基材がルチル型酸化チタンであることを特徴とする請求項に記載の電子写真現像剤用キャリア。
  3. 前記結着樹脂が、少なくともアクリル樹脂とアミノ樹脂との反応物かシリコーン樹脂のいずれかを含むことを特徴とする請求項1または2に記載の電子写真現像剤用キャリア。
  4. 請求項1乃至のいずれかに記載の電子写真現像剤用キャリアとトナーとを含有することを特徴とする電子写真現像剤。
  5. 請求項に記載の電子写真用現像剤を用いることを特徴とする画像形成方法。
  6. 少なくとも感光体及び現像手段を具備するプロセスカートリッジにおいて、請求項に記載の画像形成方法を用いて画像を形成することを特徴とするプロセスカートリッジ。
JP2007237673A 2007-09-13 2007-09-13 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ Active JP5229531B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007237673A JP5229531B2 (ja) 2007-09-13 2007-09-13 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007237673A JP5229531B2 (ja) 2007-09-13 2007-09-13 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ

Publications (2)

Publication Number Publication Date
JP2009069471A JP2009069471A (ja) 2009-04-02
JP5229531B2 true JP5229531B2 (ja) 2013-07-03

Family

ID=40605799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007237673A Active JP5229531B2 (ja) 2007-09-13 2007-09-13 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ

Country Status (1)

Country Link
JP (1) JP5229531B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6932916B2 (ja) * 2015-12-28 2021-09-08 株式会社リコー 画像形成用キャリア、画像形成用現像剤、画像形成装置、画像形成方法およびプロセスカートリッジ
JP6691322B2 (ja) 2016-03-17 2020-04-28 株式会社リコー 静電潜像現像剤用キャリア、二成分現像剤、補給用現像剤、画像形成装置、およびトナー収容ユニット

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006038961A (ja) * 2004-07-22 2006-02-09 Fuji Xerox Co Ltd 静電荷像現像用キャリア、静電荷像現像剤、静電荷像現像用キャリアの製造方法および画像形成方法
JP4307352B2 (ja) * 2004-09-13 2009-08-05 株式会社リコー 静電潜像現像用カラーキャリア及び現像剤
JP2007102159A (ja) * 2005-03-18 2007-04-19 Ricoh Co Ltd 電子写真用キャリア、並びに、現像剤、現像剤入り容器、プロセスカートリッジ、画像形成方法及び画像形成装置

Also Published As

Publication number Publication date
JP2009069471A (ja) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5169408B2 (ja) 画像形成方法、画像形成装置及びプロセスカートリッジ
JP5151415B2 (ja) 画像形成方法、画像形成装置及びプロセスカートリッジ
JP5429594B2 (ja) 画像形成方法、画像形成装置並びにプロセスカートリッジ及びそのための電子写真現像剤並びに現像剤用キャリア
JP5424118B2 (ja) 現像装置、プロセスカートリッジ、及び、画像形成装置
US20080152393A1 (en) Carrier for electrophotographic developer, image forming method, and process cartridge
JP2008102394A (ja) キャリア、補給用現像剤、現像装置内現像剤、現像剤補給装置、画像形成装置、プロセスカートリッジ
JP2009186769A (ja) キャリア、現像剤、現像装置、プロセスカートリッジ、画像形成装置
JP6932916B2 (ja) 画像形成用キャリア、画像形成用現像剤、画像形成装置、画像形成方法およびプロセスカートリッジ
JP2006276060A (ja) 静電潜像現像用トナー及び画像形成装置
JP2007286078A (ja) キャリア、補給用現像剤、現像装置内現像剤、現像剤補給装置、画像形成装置、プロセスカートリッジ
JP4355734B2 (ja) 現像剤、現像装置、画像形成装置、および画像形成方法
JP5187091B2 (ja) キャリア、現像剤及び画像形成方法
JP4607008B2 (ja) キャリア、並びに現像剤、現像剤入り容器、プロセスカートリッジ、画像形成装置、及び画像形成方法
JP4963843B2 (ja) 画像形成方法、2成分現像剤およびプロセスカ−トリッジ
JP5151440B2 (ja) 電子写真現像剤用キャリア、現像剤、画像形成方法、画像形成装置、およびプロセスカートリッジ
JP2007102159A (ja) 電子写真用キャリア、並びに、現像剤、現像剤入り容器、プロセスカートリッジ、画像形成方法及び画像形成装置
JP5229531B2 (ja) 電子写真現像剤用キャリア、現像剤、画像形成方法およびプロセスカートリッジ
JP2000039741A (ja) 磁性微粒子分散型樹脂キャリア,二成分系現像剤及び画像形成方法
JP4854498B2 (ja) キャリア、補給用現像剤、現像装置内現像剤、現像剤補給装置、画像形成装置、プロセスカートリッジ
JP5106988B2 (ja) 電子写真用トナーのキャリアとその製造方法、電子写真用現像剤、及び画像形成方法
JP4868994B2 (ja) キャリア及び現像剤
JP4547437B2 (ja) 現像剤、現像装置および画像形成装置
WO2016158802A1 (ja) 静電荷像現像用トナー、現像剤、及び画像形成方法
JP2000199983A (ja) 二成分系現像剤及び画像形成方法
JP5360475B2 (ja) 電子写真用キャリア、電子写真用二成分現像剤、及び画像形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3