JP5228586B2 - Vapor deposition mask, vapor deposition pattern production method using the same, semiconductor wafer evaluation sample production method, semiconductor wafer evaluation method, and semiconductor wafer production method - Google Patents
Vapor deposition mask, vapor deposition pattern production method using the same, semiconductor wafer evaluation sample production method, semiconductor wafer evaluation method, and semiconductor wafer production method Download PDFInfo
- Publication number
- JP5228586B2 JP5228586B2 JP2008100925A JP2008100925A JP5228586B2 JP 5228586 B2 JP5228586 B2 JP 5228586B2 JP 2008100925 A JP2008100925 A JP 2008100925A JP 2008100925 A JP2008100925 A JP 2008100925A JP 5228586 B2 JP5228586 B2 JP 5228586B2
- Authority
- JP
- Japan
- Prior art keywords
- vapor deposition
- semiconductor wafer
- mask
- mask layer
- hole
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007740 vapor deposition Methods 0.000 title claims description 126
- 239000004065 semiconductor Substances 0.000 title claims description 77
- 238000011156 evaluation Methods 0.000 title claims description 27
- 238000004519 manufacturing process Methods 0.000 title claims description 26
- 235000012431 wafers Nutrition 0.000 claims description 128
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- 230000008021 deposition Effects 0.000 claims description 41
- 238000000034 method Methods 0.000 claims description 28
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 229910052782 aluminium Inorganic materials 0.000 claims description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 4
- 230000000903 blocking effect Effects 0.000 claims description 4
- 239000012260 resinous material Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 230000002950 deficient Effects 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 238000009434 installation Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 88
- 238000000151 deposition Methods 0.000 description 32
- 238000005259 measurement Methods 0.000 description 23
- 239000007769 metal material Substances 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 10
- 239000000696 magnetic material Substances 0.000 description 9
- 238000001771 vacuum deposition Methods 0.000 description 6
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 4
- 238000000206 photolithography Methods 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000007261 regionalization Effects 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005019 vapor deposition process Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005137 deposition process Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 229920006015 heat resistant resin Polymers 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
- Testing Or Measuring Of Semiconductors Or The Like (AREA)
Description
本発明は、蒸着パターンを作製するための蒸着用マスクに関する。より詳しくは、半導体ウェーハの任意の位置の電気的特性、特に容量−電圧特性を高精度で測定するために、ウェーハ表面に金属電極を形成するために好適な蒸着用マスクに関するものである。
更に、本発明は、前記マスクを使用する蒸着パターン作製方法、半導体ウェーハ評価用試料の作製方法、半導体ウェーハの評価方法および半導体ウェーハの製造方法に関する。
The present invention relates to a vapor deposition mask for producing a vapor deposition pattern. More specifically, the present invention relates to a deposition mask suitable for forming a metal electrode on the surface of a wafer in order to measure electrical characteristics, particularly capacitance-voltage characteristics, at an arbitrary position of a semiconductor wafer with high accuracy.
Furthermore, the present invention relates to a deposition pattern manufacturing method using the mask, a semiconductor wafer evaluation sample manufacturing method, a semiconductor wafer evaluation method, and a semiconductor wafer manufacturing method.
シリコン半導体ウェーハの品質を評価する方法として、金属電極によるショットキー電極を形成し該ショットキー電極の容量―電圧特性を測定することにより、ウェーハの抵抗率を求める方法がある。 As a method for evaluating the quality of a silicon semiconductor wafer, there is a method of obtaining a wafer resistivity by forming a Schottky electrode by a metal electrode and measuring a capacitance-voltage characteristic of the Schottky electrode.
ショットキー電極を形成するための方法としては、ウェーハ表面側全面に金属膜を形成し、フォトリソ法により所定の面積を有する電極パターンを作製する方法が知られている。しかし、フォトリソを利用する場合はパターンの露光、洗浄、リンス等の工程が必要であり時間が掛かるという問題がある。 As a method for forming a Schottky electrode, a method is known in which a metal film is formed on the entire wafer surface side, and an electrode pattern having a predetermined area is produced by photolithography. However, when photolithography is used, there is a problem that it takes time because it requires processes such as pattern exposure, cleaning, and rinsing.
また、ショットキー電極を形成するための方法としては、真空蒸着法と呼ばれる方法も広く使用されている。真空蒸着法は、真空中にて抵抗加熱または電子照射により金属を蒸発させ被蒸着物に該金属膜を堆積させるものである。このときに所定の面積を有する電極を形成するために、通常、所定の面積の孔を有する金属マスクを磁石を利用しウェーハ表面と密着させることが行われている(例えば特許文献1および2参照)。
一般に使用される真空蒸着装置は、抵抗加熱法を用いたものや電子ビームを利用したものであり、これらは通常蒸着源は1箇所である。図1に、一般的な真空蒸着装置の概略図を示す。一般に使用される真空蒸着装置は、図1に示すようにウェーハが固定配置される(固定型装置)。固定型装置は、チャンバーを小型化し、真空引きに要する時間を短縮化できるため、作業効率の面で好ましい。しかし、固定型装置では、該蒸着源直下の孔部分は陰が出来ることなく孔面積と同等の電極面積を有する電極を形成可能であるものの、蒸着源から離れた部分、つまりウェーハ外周部分ではマスク厚みによる陰ができる。この点について、以下に図面に基づきさらに説明する。 Generally used vacuum vapor deposition apparatuses are those using a resistance heating method or using an electron beam, and these usually have one vapor deposition source. FIG. 1 shows a schematic view of a general vacuum deposition apparatus. In a generally used vacuum vapor deposition apparatus, a wafer is fixedly arranged as shown in FIG. 1 (fixed type apparatus). The stationary apparatus is preferable in terms of work efficiency because the chamber can be downsized and the time required for evacuation can be shortened. However, in the fixed type apparatus, an electrode having an electrode area equivalent to the hole area can be formed without shadowing the hole portion directly under the vapor deposition source, but the mask is not provided in a portion away from the vapor deposition source, that is, the wafer outer peripheral portion. Shade by thickness is possible. This point will be further described below with reference to the drawings.
図2に、蒸着源直下に位置するマスク開口部に蒸着膜を形成する場合(図2(a))と蒸着源から離れた場所に位置するマスク開口部に蒸着膜を形成する場合(図2(b))の蒸着膜形成状態の模式図を示す。図3に、図2(b)に示す態様の孔近傍の拡大模式図を示す。図4に、残存ガスおよび水分の蒸着流への影響の説明図を示す。
図1に示すような蒸着源が一箇所の固定型装置では、抵抗加熱により蒸着源部分が加熱され金属塊が蒸発する。チャンバー内が真空であれば、金属塊の蒸発により発生する蒸着流は殆どが直進し、球状に拡散する。そのため、図2(a)に示すように、蒸着源直下では真上から蒸着流が来るため孔の陰はできないのに対し、図2(b)に示すように蒸着源から遠ざかる部分(ウェーハ外周部)では蒸着流が斜めに来るため孔の厚みにより陰ができる。この陰部分の領域では、図3に示すように蒸着流の分子同士の衝突や分子と残留空気分子の衝突が起こり、進行方向が変化した蒸着分子が陰部分に堆積するため、蒸着膜が形成されない部分や厚さが不均一な部分が生じる。また、真空中とは言え、残存するガスや水成分により蒸着流はこれら残留物に当たり飛ぶ方向が変わり陰の部分に蒸着することもある(図4参照)。
一般に、ショットキー電極を形成して半導体ウェーハの電気的特性を評価する方法では、ショットキー接合の容量−電圧特性を測定した後、解析ソフトに電極パターン面積を入力してウェーハの抵抗率を求める。蒸着により形成した電極面積を測定するには、通常、光学的装置(レーザー顕微鏡、CCDカメラ搭載の顕微鏡等)が使用される。しかし、ウェーハ表面と蒸着した部分とのコントラストが無いまたは非常に小さい陰部分となる領域は、電極として作用するにもかかわらず上記測定装置では蒸着部として認識されない可能性が高く、最終的に出力する抵抗率への誤差となることがある。
FIG. 2 shows a case in which a vapor deposition film is formed in a mask opening located directly under the vapor deposition source (FIG. 2A) and a case in which a vapor deposition film is formed in a mask opening located in a location away from the vapor deposition source (FIG. 2). The schematic diagram of the vapor deposition film formation state of (b)) is shown. FIG. 3 shows an enlarged schematic view of the vicinity of the hole in the embodiment shown in FIG. FIG. 4 shows an explanatory diagram of the influence of residual gas and moisture on the vapor deposition flow.
In a fixed type apparatus having one vapor deposition source as shown in FIG. 1, the vapor deposition source portion is heated by resistance heating, and the metal lump is evaporated. If the inside of the chamber is a vacuum, most of the vapor deposition flow generated by the evaporation of the metal mass goes straight and diffuses in a spherical shape. Therefore, as shown in FIG. 2 (a), the vapor deposition flow comes from directly above the vapor deposition source, so the hole cannot be shaded, whereas the part away from the vapor deposition source (wafer outer periphery) as shown in FIG. 2 (b). Part), the deposition flow comes diagonally, so the shadow is formed by the thickness of the hole. In this shaded area, as shown in FIG. 3, collisions between the molecules of the vapor deposition flow and collisions between molecules and residual air molecules occur, and vapor deposition molecules whose traveling direction has changed accumulate in the shaded part, so that a vapor deposition film is formed. The part which is not done and the part where thickness is not uniform occur. Moreover, although it is in a vacuum, the vapor deposition flow may change in the flying direction due to the remaining gas or water component, and may be deposited in the shaded area (see FIG. 4).
In general, in the method of evaluating the electrical characteristics of a semiconductor wafer by forming a Schottky electrode, after measuring the capacitance-voltage characteristics of a Schottky junction, the electrode pattern area is input to analysis software to determine the resistivity of the wafer. . In order to measure the area of the electrode formed by vapor deposition, an optical device (laser microscope, microscope equipped with a CCD camera, etc.) is usually used. However, there is a high possibility that the area where there is no contrast between the wafer surface and the deposited part or the shadow part is very small is not recognized as a deposited part by the above measuring device even though it acts as an electrode. May cause an error in resistivity.
上記陰部分の領域はマスク厚みが薄くなるほど小さくなる。そこで従来使用されていた金属マスクの厚みを薄くすることにより、上記の問題を解決することが考えられる。しかし、金属材料は薄くなると金属箔状になり、磁石によってウェーハ上に密着載置できなくなる等、マスクとしての取り扱いが困難となる。予めウェーハ表面全面に金属膜を蒸着させフォトリソを利用することで、陰のない所望の面積を有する電極を形成することはできる。しかし、金属マスク使用の場合は蒸着後すぐに電気的測定できるのに対し、フォトリソを利用する場合はパターンの露光、洗浄、リンス等の工程が必要であり時間が掛かる。 The shaded area becomes smaller as the mask thickness decreases. Therefore, it is conceivable to solve the above problem by reducing the thickness of a metal mask that has been used conventionally. However, when the metal material becomes thin, it becomes a metal foil shape, which makes it difficult to handle as a mask, such as being unable to be placed in close contact with a wafer by a magnet. By depositing a metal film on the entire wafer surface in advance and using photolithography, an electrode having a desired area without shadow can be formed. However, when a metal mask is used, electrical measurement can be performed immediately after vapor deposition, whereas when photolithography is used, processes such as pattern exposure, cleaning, and rinsing are required, which takes time.
また、上記問題を解決するために、チャンバー内に設置したウェーハが回転する機構を備えた真空蒸着装置(回転型装置)を用いることも考えられる。しかし、回転型装置はチャンバーが大型となり真空引きに長時間を要するため作業効率が低下する点が課題であった。また、蒸着源をマスク孔と同数設けて各孔の真上に蒸着源を配置することも考えられるが、蒸着源の個数を増やすと蒸着機の必要電力は該蒸着源増加数の和となるため大掛かりな電気回路変更工事を伴い多額の費用が必要である。また、蒸着源を増やすことで蒸着用金属の消費量も多くなりコストが増大するという問題がある。 In order to solve the above problem, it is also conceivable to use a vacuum deposition apparatus (rotary type apparatus) equipped with a mechanism for rotating a wafer installed in a chamber. However, the rotary type apparatus has a problem that the chamber becomes large and requires a long time for evacuation, so that the working efficiency is lowered. In addition, it is conceivable to provide the same number of vapor deposition sources as the mask holes and arrange the vapor deposition sources directly above each hole. However, if the number of vapor deposition sources is increased, the required power of the vapor deposition machine becomes the sum of the number of vapor deposition sources increased. Therefore, a large amount of cost is required with a large-scale electric circuit change work. Moreover, there is a problem that increasing the number of vapor deposition sources increases the consumption of the metal for vapor deposition and increases the cost.
そこで、本発明の目的は、半導体ウェーハの電気的特性を高精度かつ簡便に評価し得る手段を提供することにある。 Accordingly, an object of the present invention is to provide means capable of easily and easily evaluating the electrical characteristics of a semiconductor wafer.
上記の蒸着時の陰の問題を回避するためには、金属マスクの厚みを数十ミクロン程度に薄くすることが考えられる。しかしながら数10ミクロン程度の厚さの磁性体金属マスクは金属箔様のため、磁石を利用してウェーハ表面に密着させる場合に柔らかすぎてマスク自体が歪み、孔部分とウェーハ表面に歪みによる隙間ができてしまい所望の面積となるような電極を形成することは困難である。また、非磁性体金属マスクは磁石の影響は受けないのでウェーハ表面に載置する場合の取扱いは簡単であるが、非磁性体では磁石を利用してウェーハと密着させることができないため、孔部分とウェーハ表面に隙間ができてしまい所望の面積となるような電極を形成することは困難である。
そこで本発明者らは鋭意検討を重ねた結果、極薄のマスクをウェーハ表面に戴置する際、上記マスク上に磁性体を載置することで、密着性を維持しつつマスクの薄型化を達成できることを見出し、本発明を完成するに至った。
In order to avoid the above-described problem of shadowing during vapor deposition, it is conceivable to reduce the thickness of the metal mask to about several tens of microns. However, a magnetic metal mask with a thickness of several tens of microns is like a metal foil, so when using a magnet to adhere to the wafer surface, it is too soft and the mask itself is distorted, and there is a gap between the hole and the wafer surface due to the distortion. It is difficult to form an electrode that can be formed to have a desired area. In addition, since the non-magnetic metal mask is not affected by the magnet, it can be handled easily when it is placed on the wafer surface. It is difficult to form an electrode that creates a desired area by forming a gap on the wafer surface.
Therefore, as a result of intensive studies, the present inventors have reduced the thickness of the mask while maintaining adhesion by placing a magnetic material on the mask when placing an ultra-thin mask on the wafer surface. The inventors have found that this can be achieved and have completed the present invention.
即ち、上記目的は、下記手段により達成された。
[1]被蒸着物の被蒸着面上に蒸着パターンを形成するための蒸着用マスクであって、
少なくとも1つの貫通孔を有する厚みが1μm以上50μm以下の非磁性材料からなるマスク層を有し、
上記被蒸着物は半導体ウェーハであり、
上記マスク層上に、該マスク層が有する貫通孔を塞ぐことなく磁性体を有し、
前記磁性体は、少なくとも1つの貫通孔を有する磁性層であり、前記マスク層が有する貫通孔と磁性層が有する貫通孔が一致または重複することにより開口部が形成され、
磁性層が有する貫通孔の開口は、マスク層が有する貫通孔の開口より大きく、
マスク層が有する貫通孔は、磁性体側の表面に向かって開口が広くなるテーパー状であり、
マスク層が有する貫通孔の開口と磁性層が有する貫通孔の開口は同心円状であり、
マスク層と磁性体は別部材であり、
被蒸着物はホルダー上に載置され、該ホルダーには磁石設置用溝に磁石が設置されており、
前記マスク層および磁性体は、被蒸着面上にマスク層と磁性体の順に配置され、
前記マスク層および磁性体は位置合わせ用の孔を有し、前記配置時に、前記孔に前記ホルダーが有する位置合わせ部材を差し込むことにより位置合わせが行われ、
被蒸着物、マスク層および磁性体は、前記磁石による磁力により固定されることを特徴とする蒸着用マスク。
[2]前記磁性体の厚みは、100μm以上1mm以下である[1]に記載の蒸着用マスク。
[3]マスク層は、SUS304、アルミニウム、銅および樹脂性材料からなる群から選ばれる少なくとも一種からなる層である[1]または[2]に記載の蒸着用マスク。
[4]磁性体は、SUS430、鉄およびニッケルからなる群から選ばれる少なくとも一種である[1]〜[3]のいずれかに記載の蒸着用マスク。
[5][1]〜[4]のいずれかに記載の蒸着用マスクを被蒸着物の被蒸着面上に配置した後、被蒸着面に蒸着処理を施す蒸着パターン作製方法であって、
前記マスクを、被蒸着面とマスク層表面とが対向するように被蒸着物上に配置し、かつ、
上記マスクを配置した面とは反対の面上に磁石を配置することを特徴とする蒸着パターン作製方法。
[6]被蒸着面は半導体ウェーハ表面であり、蒸着処理によって半導体ウェーハ表面に金属パターンを形成する[5]に記載の蒸着パターン作製方法。
[7][6]に記載の方法によって半導体ウェーハ表面上に金属パターンを作製する半導体ウェーハ評価用試料の作製方法。
[8][6]に記載の方法によって半導体ウェーハ表面上に金属パターンを作製し、
作製された金属パターンを介して半導体ウェーハの電気的特性を測定する半導体ウェーハの評価方法。
[9]複数の半導体ウェーハからなる半導体ウェーハのロットを準備する工程と、
前記ロットから少なくとも1つの半導体ウェーハを抽出する工程と、
前記抽出された半導体ウェーハの品質を評価する工程と、
前記評価により良品と判定された半導体ウェーハと同一ロット内の他の半導体ウェーハを製品ウェーハとして出荷することを含む、半導体ウェーハの製造方法であって、
前記抽出された半導体ウェーハの評価を、[8]に記載の方法によって行うことを特徴とする、前記方法。
That is, the above object was achieved by the following means.
[1] A deposition mask for forming a deposition pattern on a deposition surface of an object to be deposited,
Having a mask layer made of a nonmagnetic material having at least one through hole and a thickness of 1 μm or more and 50 μm or less,
The deposition object is a semiconductor wafer,
On the mask layer, having a magnetic body without blocking the through-holes of the mask layer,
The magnetic body is a magnetic layer having at least one through hole, and an opening is formed by matching or overlapping the through hole of the mask layer and the through hole of the magnetic layer,
The opening of the through hole of the magnetic layer is larger than the opening of the through hole of the mask layer,
The through hole of the mask layer has a tapered shape in which the opening widens toward the surface on the magnetic body side,
The opening of the through hole of the mask layer and the opening of the through hole of the magnetic layer are concentric .
Mask layer and the magnetic body are separate members,
The object to be deposited is placed on a holder, and a magnet is installed in the magnet installation groove in the holder.
The mask layer and the magnetic body are disposed on the deposition surface in the order of the mask layer and the magnetic body,
The mask layer and the magnetic body have alignment holes, and alignment is performed by inserting an alignment member of the holder into the holes at the time of the arrangement.
The vapor deposition mask , wherein the deposition object, the mask layer, and the magnetic body are fixed by the magnetic force of the magnet .
[2] The vapor deposition mask according to [1], wherein the magnetic material has a thickness of 100 μm or more and 1 mm or less.
[3] The evaporation mask according to [1] or [2], wherein the mask layer is a layer made of at least one selected from the group consisting of SUS304, aluminum, copper, and a resinous material.
[4] The evaporation mask according to any one of [1] to [3], wherein the magnetic body is at least one selected from the group consisting of SUS430, iron, and nickel.
[5] A vapor deposition pattern manufacturing method in which the vapor deposition mask according to any one of [1] to [4] is disposed on a vapor deposition surface of a vapor deposition object, and then vapor deposition treatment is performed on the vapor deposition surface,
The mask is disposed on the deposition object such that the deposition surface and the mask layer surface face each other; and
A vapor deposition pattern manufacturing method, comprising: arranging a magnet on a surface opposite to a surface on which the mask is disposed.
[6] The vapor deposition pattern manufacturing method according to [5], wherein the deposition target surface is a semiconductor wafer surface, and a metal pattern is formed on the semiconductor wafer surface by vapor deposition.
[7] A method for producing a semiconductor wafer evaluation sample, wherein a metal pattern is produced on a semiconductor wafer surface by the method according to [6].
[8] A metal pattern is formed on the surface of the semiconductor wafer by the method described in [6],
A semiconductor wafer evaluation method for measuring electrical characteristics of a semiconductor wafer through a produced metal pattern.
[9] preparing a lot of semiconductor wafers comprising a plurality of semiconductor wafers;
Extracting at least one semiconductor wafer from the lot;
Evaluating the quality of the extracted semiconductor wafer;
A method for manufacturing a semiconductor wafer, comprising shipping as a product wafer another semiconductor wafer in the same lot as the semiconductor wafer determined to be non-defective by the evaluation,
The method according to claim 8, wherein the evaluation of the extracted semiconductor wafer is performed by the method according to [8].
本発明によれば、小型の真空チャンバーを有する真空蒸着装置において多額の費用を要する改造をすることなくウェーハ面内任意の位置に繰り返し精度良く電極を形成し、かつ電極厚みに依存した陰部分を小さくすることで面積測定装置での電極面積測定ばらつきを抑えることができる。これにより本発明によれば、シリコンウェーハ等の半導体ウェーハの品質を高精度かつ簡便に評価することができる。 According to the present invention, in a vacuum deposition apparatus having a small vacuum chamber, an electrode is repeatedly and accurately formed at an arbitrary position on the wafer surface without making a costly modification, and a shadow portion depending on the electrode thickness is formed. By making it smaller, variations in electrode area measurement in the area measuring apparatus can be suppressed. Thereby, according to this invention, the quality of semiconductor wafers, such as a silicon wafer, can be evaluated highly accurately and easily.
[蒸着用マスク]
本発明の蒸着用マスクは、被蒸着面上に蒸着パターンを形成するための蒸着用マスクであって、少なくとも1つの貫通孔を有する厚みが1μm以上50μm以下のマスク層を有し、上記マスク層上に、該マスク層が有する貫通孔を塞ぐことなく磁性体を有するものである。
[Deposition mask]
The vapor deposition mask of the present invention is a vapor deposition mask for forming a vapor deposition pattern on a surface to be vapor-deposited, and has a mask layer having at least one through hole and a thickness of 1 μm to 50 μm, and the mask layer On the top, the magnetic layer is provided without blocking the through hole of the mask layer.
従来マスク材料として使用されていた金属材料は、厚みが数十ミクロンほどになると、金属箔様となる等の理由から磁力等でウェーハ上に密着載置することが困難となる。そのため、マスクとしての取り扱いやすさを考慮すると100μmを超える厚みを有することが求められる。しかし、厚みが100μmを超えると前述の陰部分の領域に起因する測定精度低下の問題が生じるおそれがある。
そこで本発明では、マスク(マスク層)の厚みを1μm以上50μm以下とする。但し、磁性金属材料の場合、上記厚さとなると金属箔様となるためウェーハ表面を覆うように載置できず磁力により密着させることは困難である。非磁性金属材料や樹脂材料は、通常、上記厚さであっても比較的剛直であるか可撓性を示すためウェーハ表面を覆うように搭置すること自体は可能であるものの、磁力により密着させることができない。
そこで本発明では、上記マスク層上に磁性体を配置し、この磁性体の磁力によりマスク層をウェーハ表面と密着させる。これにより、上記の陰部分に起因する測定精度低下を回避し、回転型蒸着装置と比べて作業効率の点で有利な固定型蒸着装置を使用して、高精度での評価が可能な評価用試料を作製することができる。
以下、本発明の蒸着用マスクについて更に詳細に説明する。
Conventionally, when a metal material that has been used as a mask material has a thickness of about several tens of microns, it becomes difficult to place the metal material on a wafer by a magnetic force or the like because it becomes like a metal foil. Therefore, considering the ease of handling as a mask, it is required to have a thickness exceeding 100 μm. However, if the thickness exceeds 100 μm, there is a possibility that the measurement accuracy may be reduced due to the above-described shadow area.
Therefore, in the present invention, the thickness of the mask (mask layer) is 1 μm or more and 50 μm or less. However, in the case of a magnetic metal material, when it becomes the above thickness, it becomes like a metal foil, so that it cannot be placed so as to cover the wafer surface and it is difficult to make it adhere by magnetic force. Although non-magnetic metal materials and resin materials are usually relatively rigid or flexible even if they have the above-mentioned thickness, they can be mounted so as to cover the wafer surface itself, but they are adhered by magnetic force. I can't let you.
Therefore, in the present invention, a magnetic material is disposed on the mask layer, and the mask layer is brought into close contact with the wafer surface by the magnetic force of the magnetic material. As a result, it is possible for evaluation to be performed with high accuracy by using a stationary type vapor deposition device that is advantageous in terms of work efficiency compared to a rotary type vapor deposition device, avoiding a decrease in measurement accuracy due to the shaded area. A sample can be made.
Hereinafter, the vapor deposition mask of the present invention will be described in more detail.
本発明の蒸着用マスクは、少なくとも1つの貫通孔を有する厚みが1μm以上50μm以下のマスク層を有する。前記マスク層の厚さが1μm未満では、取り扱いが困難であり作業性が低下する。厚さが50μmを超えると、前述の陰部分に起因する測定誤差が生じるとともに、磁性体と磁石で挟み込むことにより被蒸着面と密着させることが困難となる。前記マスク層の厚さは、好ましくは5〜45μm、より好ましくは10〜40μmの範囲である。 The vapor deposition mask of the present invention has a mask layer having at least one through hole and a thickness of 1 μm to 50 μm. If the thickness of the mask layer is less than 1 μm, handling is difficult and workability is reduced. When the thickness exceeds 50 μm, a measurement error due to the above-described shadow portion occurs, and it is difficult to make it adhere to the deposition surface by being sandwiched between the magnetic body and the magnet. The thickness of the mask layer is preferably in the range of 5 to 45 μm, more preferably 10 to 40 μm.
前記マスク層は、金属材料であっても樹脂性材料であってもよい。金属材料は、磁性金属材料であっても非磁性金属材料であってもよいが、磁性金属材料は上記の厚さでは金属箔様となり作業性に劣るため、非磁性金属材料を用いることが好ましい。なお、本発明における「金属」には2種以上の金属の合金も含むものとする。好ましい非磁性金属材料としては、SUS304、アルミニウム、銅などを挙げることができる。また、樹脂性材料としては、蒸着処理時の温度でも変質しない耐熱性樹脂を使用することが好ましい。耐熱性を有する樹脂としては、フッ素系樹脂(例えばポリテトラフルオロエチレン)、ポリオレフィン樹脂(例えばポリエチレン)、ポリイミド樹脂を挙げることができる。なお、上記耐熱性とは、例えば100℃以上の温度下でも変形等を起こさないことをいう。 The mask layer may be a metal material or a resinous material. The metal material may be a magnetic metal material or a non-magnetic metal material, but the magnetic metal material is like a metal foil at the above thickness and is inferior in workability. Therefore, it is preferable to use a non-magnetic metal material. . The “metal” in the present invention includes an alloy of two or more metals. Examples of preferable nonmagnetic metal materials include SUS304, aluminum, and copper. Further, as the resinous material, it is preferable to use a heat resistant resin that does not change even at the temperature during the vapor deposition treatment. Examples of the resin having heat resistance include a fluorine resin (for example, polytetrafluoroethylene), a polyolefin resin (for example, polyethylene), and a polyimide resin. The heat resistance means that deformation does not occur even at a temperature of 100 ° C. or higher, for example.
前記マスク層は、少なくとも1つの貫通孔を有する。貫通孔の数は少なくとも1つであり特に限定されるものではなく、被蒸着面の用途等に応じて設定すればよい。貫通孔の大きさは、形成する蒸着パターン1つあたりの大きさとほぼ同じとすればよく、例えば直径1〜3mm程度とすることができる。後述のテーパー状の開口を有する貫通孔の場合、形成する蒸着パターンの大きさと、マスク層の被蒸着面側表面の貫通孔開口の大きさをほぼ同じとすればよい。 The mask layer has at least one through hole. The number of through-holes is at least one and is not particularly limited, and may be set according to the use of the deposition surface. The size of the through hole may be approximately the same as the size of each vapor deposition pattern to be formed, and may be about 1 to 3 mm in diameter, for example. In the case of a through-hole having a tapered opening described later, the size of the vapor deposition pattern to be formed and the size of the through-hole opening on the vapor deposition surface side surface of the mask layer may be substantially the same.
マスク層の貫通孔は、磁性体側の表面に向かって開口が広くなるテーパー状とすることもできる。テーパー角度は、蒸着源とパターン形成位置の関係より、パターン形成面と平行な直線と蒸着源とパターン形成位置を結んだ直線とでできる鋭角な角度より小さい角度とすることが好ましい。 The through hole of the mask layer may be tapered so that the opening becomes wider toward the surface on the magnetic material side. The taper angle is preferably smaller than an acute angle formed by a straight line parallel to the pattern formation surface and a straight line connecting the vapor deposition source and the pattern formation position, based on the relationship between the vapor deposition source and the pattern formation position.
本発明の蒸着用マスクは、上記マスク層上に、該マスク層が有する貫通孔を塞ぐことなく磁性体を有する。マスク層上への磁性体の配置例を図5に示す。本発明の蒸着用マスクは、図5上図に示すように、マスク層の貫通孔を塞がないようにマスク層上に部分的に磁性体が配置されていてもよく、図5下図に示すようにマスク層と同形状の磁性層(磁性マスク)の2層を積層した二層構造のマスクであってもよい。この場合、二層の貫通孔が一致または重複することにより、蒸着用マスクの開口部が形成される。 The vapor deposition mask of the present invention has a magnetic material on the mask layer without blocking the through holes of the mask layer. An example of the arrangement of the magnetic material on the mask layer is shown in FIG. In the vapor deposition mask of the present invention, as shown in the upper diagram of FIG. 5, a magnetic material may be partially disposed on the mask layer so as not to block the through-holes of the mask layer. Thus, a mask having a two-layer structure in which two layers of magnetic layers (magnetic masks) having the same shape as the mask layer are stacked may be used. In this case, the opening of the vapor deposition mask is formed by matching or overlapping the two-layer through-holes.
以下に、図6を参照し、二層マスクを被蒸着表面に設置する作業フローの一例を、被蒸着物が半導体ウェーハである態様を例にとり説明する。
まずウェーハを、磁石が設置されたウェーハホルダー上に載置する(図6中1)。
次いで、ウェーハ表面全面に蒸着パターンを形成すべき所定の位置に孔1を有する上記厚さのマスク1を戴置する(図6中2)。この状態ではウェーハ表面に対するマスク1の密着性は悪いため所々に隙間がある。孔部分にも隙間があるため隙間部分に蒸着膜が入り込み形成すべき形状に対しいびつとなり正確な面積測定ができない。また蒸着膜が入り込んだ部分は電極として作用するかどうか不明な部分でもある。この隙間を無くすために、さらに上記マスク1の上に磁性マスク2を戴置する(図6中3)。磁性マスク2とウェーハ下部にあるホルダーの磁石による引力のため、マスク1とウェーハ表面との密着性が良くなり、ウェーハ表面とマスク1の隙間は無くなる。これにより、孔部分の隙間も無くなり所望の電極面積を有する電極形成が可能となる。
Below, with reference to FIG. 6, an example of the work flow which installs a two-layer mask on a vapor deposition surface is demonstrated taking the example that the vapor deposition thing is a semiconductor wafer.
First, the wafer is placed on a wafer holder on which a magnet is installed (1 in FIG. 6).
Next, the mask 1 having the above-described thickness having the holes 1 at a predetermined position where the deposition pattern is to be formed on the entire wafer surface is placed (2 in FIG. 6). In this state, the mask 1 has poor adhesion to the wafer surface, so that there are gaps in some places. Since there is a gap in the hole portion, the vapor deposition film enters the gap portion and becomes distorted with respect to the shape to be formed, and accurate area measurement cannot be performed. Further, the portion where the deposited film enters is also an unclear portion whether or not it acts as an electrode. In order to eliminate this gap, a magnetic mask 2 is further placed on the mask 1 (3 in FIG. 6). Due to the attractive force of the magnetic mask 2 and the magnet of the holder below the wafer, the adhesion between the mask 1 and the wafer surface is improved, and the gap between the wafer surface and the mask 1 is eliminated. Thereby, there is no gap between the hole portions, and an electrode having a desired electrode area can be formed.
磁性体は、磁性金属材料であることが好ましい。なお、本発明において「磁性」とは、磁石により引き寄せられる性質をいい、該性質を有する物質を磁性体という。磁性金属材料としては、SUS430、鉄、ニッケル等が挙げられる。 The magnetic body is preferably a magnetic metal material. In the present invention, “magnetic” means a property attracted by a magnet, and a substance having the property is called a magnetic substance. Examples of the magnetic metal material include SUS430, iron, nickel, and the like.
前記磁性層の厚さは、マスク層と被蒸着面との密着性向上の点からは100μm以上であることが好ましい。厚みの上限は特に限定されるものではないが、作業性の点からは1mm以下であることが好ましい。前記磁性体の厚さは、好ましくは100μm〜300μmの範囲である。 The thickness of the magnetic layer is preferably 100 μm or more from the viewpoint of improving the adhesion between the mask layer and the deposition surface. The upper limit of the thickness is not particularly limited, but is preferably 1 mm or less from the viewpoint of workability. The thickness of the magnetic body is preferably in the range of 100 μm to 300 μm.
前記磁性層が有する貫通孔は、マスク層上に磁性層が配置されても貫通孔の開口状態が維持されるように、マスクが有する貫通孔と一致または重複していればよいが、マスク層が有する貫通孔の開口より大きいことが好ましい。例えば各開口が円形の場合、磁性層の貫通孔の直径が、マスク層の貫通孔の直径よりも大きいことが好ましい。前述のようにマスク層の貫通孔がテーパー状の場合、マスク層の磁性層側開口と比べて磁性層の貫通孔開口が大きいことが好ましい。より詳しくは、マスク層の孔の磁性層側のエッジと蒸着源を直線で結んだ線を遮らないように磁性層の孔エッジが位置するように、磁性層を配置することが好ましい。更には、マスク層が有する貫通孔の開口と磁性層が有する貫通孔の開口は同心円状であることが、開口を維持した状態で両層を容易に積層できるため好ましい。 The through hole of the magnetic layer may be the same as or overlapping with the through hole of the mask so that the open state of the through hole is maintained even when the magnetic layer is disposed on the mask layer. It is preferable that it is larger than the opening of the through-hole which has. For example, when each opening is circular, the diameter of the through hole of the magnetic layer is preferably larger than the diameter of the through hole of the mask layer. As described above, when the through hole of the mask layer is tapered, it is preferable that the through hole opening of the magnetic layer is larger than the magnetic layer side opening of the mask layer. More specifically, it is preferable to arrange the magnetic layer so that the hole edge of the magnetic layer is located so as not to block the line connecting the edge of the mask layer hole on the magnetic layer side and the evaporation source with a straight line. Furthermore, it is preferable that the opening of the through hole of the mask layer and the opening of the through hole of the magnetic layer are concentric, because both layers can be easily stacked while maintaining the opening.
前述のように、マスク層が有する貫通孔は、磁性体側の表面に向かって開口が広くなるテーパー状であることが好ましい。このようなテーパー状の貫通孔を有するマスク層上に磁性層を配置する場合、磁性層の開口も、マスク層と反対の表面に向かって開口が広くなるテーパー状にすることもできる。 As described above, the through hole of the mask layer is preferably tapered so that the opening becomes wider toward the surface on the magnetic body side. When the magnetic layer is arranged on the mask layer having such a tapered through hole, the opening of the magnetic layer can be tapered so that the opening becomes wider toward the surface opposite to the mask layer.
前記マスク層および磁性層は、公知のマスク形成法により作製することができる。本発明では磁力により被蒸着物、マスク層および磁性層を固定することができるため、接着剤によりマスク層と磁性体を接着しなくてもよい。後述の実施例で示すように両層に位置合わせ用の孔を設け、被蒸着物を配置するホルダーの位置合わせ部材を上記位置合わせ用孔に差し込むことで位置合わせも可能である。 The mask layer and the magnetic layer can be produced by a known mask forming method. In the present invention, since the deposition object, the mask layer, and the magnetic layer can be fixed by magnetic force, it is not necessary to bond the mask layer and the magnetic body with an adhesive. As shown in the examples described later, alignment holes can be provided in both layers, and alignment can be performed by inserting an alignment member of a holder for placing the deposition target into the alignment holes.
以上説明した本発明の蒸着用マスクにおいて、前記マスク層および磁性層は、それぞれ単層構造であってもよいが二層以上の積層構造であってもよい。積層構造の場合、含まれる複数の層の材質は必ずしも同じでなくてもよい。積層構造の場合、前述のマスク層の厚さおよび磁性層(磁性体)の厚さは、積層された層の総厚をいうものとする。 In the vapor deposition mask of the present invention described above, each of the mask layer and the magnetic layer may have a single layer structure or a laminated structure of two or more layers. In the case of a laminated structure, the materials of the plurality of layers included are not necessarily the same. In the case of a laminated structure, the thickness of the mask layer and the thickness of the magnetic layer (magnetic material) are the total thickness of the laminated layers.
[蒸着パターン作製方法]
更に本発明は、本発明の蒸着用マスクを被蒸着物の被蒸着面上に配置した後、被蒸着面に蒸着処理を施す蒸着パターン作製方法に関する。本発明の蒸着パターン作製方法では、前記マスクを、被蒸着面とマスク層表面とが対向するように被蒸着物上に配置し、かつ、上記マスクを配置した面とは反対の面上に磁石を配置する。これにより、マスク層を磁性層と磁石の磁力により被蒸着面と密着させることができ、薄いマスク層を介して被蒸着面上に蒸着パターンを形成することが可能となる。
[Vapor deposition pattern production method]
Furthermore, this invention relates to the vapor deposition pattern preparation method which arrange | positions the vapor deposition mask of this invention on the vapor deposition surface of a to-be-deposited object, and then vapor-deposits on the vapor deposition surface. In the vapor deposition pattern manufacturing method of the present invention, the mask is disposed on the vapor deposition target so that the vapor deposition surface and the mask layer surface face each other, and a magnet is disposed on the surface opposite to the surface on which the mask is disposed. Place. As a result, the mask layer can be brought into close contact with the deposition surface by the magnetic force of the magnetic layer and the magnet, and a deposition pattern can be formed on the deposition surface via the thin mask layer.
前記の磁石は、被蒸着物のマスクを配置した面とは反対の面上に配置される。磁石は被蒸着面の一方の面の全面に配置することもでき、部分的に配置することもできる。後述の実施例に示すように被蒸着物を設置するホルダーに磁石設置用の溝を設け、該溝に磁石を配置することが好ましい。配置する磁石の個数、形状、磁力は特に限定されるものではなく、磁力により上記の薄層マスク層を被蒸着面上に固定化できるように適宜設定すればよい。 The said magnet is arrange | positioned on the surface opposite to the surface which has arrange | positioned the mask of to-be-deposited object. The magnet can be disposed on the entire surface of one of the deposition surfaces, or can be partially disposed. As shown in the examples described later, it is preferable to provide a magnet-installing groove in the holder for installing the deposition object, and to dispose the magnet in the groove. The number, shape, and magnetic force of the magnets to be arranged are not particularly limited, and may be set as appropriate so that the thin mask layer can be fixed on the deposition surface by the magnetic force.
蒸着処理に使用する蒸着装置としては、通常使用されている真空蒸着装置を何ら制限なく使用することができる。本発明において使用可能な真空蒸着装置としては、図1に一例を示すような抵抗加熱型装置を挙げることができる。このような抵抗加熱型装置では、抵抗加熱により蒸着源部分が加熱され蒸着材料が蒸発して発生した蒸着流が球状に直進し被蒸着物上に堆積することにより蒸着膜が形成される。 As a vapor deposition apparatus used for the vapor deposition process, a commonly used vacuum vapor deposition apparatus can be used without any limitation. As a vacuum vapor deposition apparatus that can be used in the present invention, a resistance heating type apparatus as shown in FIG. 1 can be exemplified. In such a resistance heating type apparatus, a vapor deposition film is formed by heating a vapor deposition source part by resistance heating and evaporating a vapor deposition material so that the vapor deposition flow advances in a spherical shape and deposits on the deposition target.
先に説明したように蒸着装置には、回転型蒸着装置および固定型蒸着装置があるが、本発明の蒸着パターン作製方法ではいずれも使用可能である。またチャンバー内の蒸着源が1つである装置であっても複数ある装置であってもよい。本発明の蒸着用マスクは、前述のようにマスク層が薄いため、蒸着源が1つの固定型真空蒸着装置を使用する場合でも、マスク厚みに起因する問題を生じることなく蒸着パターンを作製することができる。 As described above, the vapor deposition apparatus includes a rotary vapor deposition apparatus and a fixed vapor deposition apparatus, and any of the vapor deposition pattern manufacturing methods of the present invention can be used. Further, the apparatus may be a single deposition source or a plurality of deposition sources in the chamber. Since the mask for vapor deposition of the present invention has a thin mask layer as described above, a vapor deposition pattern can be produced without causing a problem due to the mask thickness even when a single vapor deposition source is used. Can do.
蒸着に使用する蒸着源は、目的に応じて選択されるものであり、例えば半導体ウェーハの評価用試料作製のためにウェーハ表面に金属電極を形成する場合は、金、アルミニウム、アンチモン等を用いることができる。また、本発明の蒸着パターン作製方法における蒸着処理条件は、所望の蒸着パターンの厚さやサイズ等を考慮して適宜設定すればよい。 The vapor deposition source used for vapor deposition is selected according to the purpose. For example, when a metal electrode is formed on the wafer surface for preparing a sample for evaluation of a semiconductor wafer, gold, aluminum, antimony, or the like is used. Can do. Moreover, the vapor deposition process conditions in the vapor deposition pattern production method of the present invention may be appropriately set in consideration of the thickness and size of the desired vapor deposition pattern.
本発明の蒸着パターン作製方法により蒸着パターンを作製する対象は、通常蒸着処理が施される各種表面を挙げることができるが、半導体ウェーハが好適である。半導体ウェーハの詳細は後述する。半導体ウェーハ上に金属パターンを作製することによりショットキー電極を形成し、ショットキー接合の容量−電圧特性から空間電荷密度[(ドナー濃度)−(アクセプター濃度)]を求め、上記空間電荷密度と電極面積からウェーハの抵抗率を求めることができる。電極面積は通常光学的装置により測定される。しかし、先に説明したようにウェーハ厚みに起因して正確な電極面積を求めることが困難な場合、測定誤差が生じ正確な測定値を得ることができない。これに対し、本発明の蒸着用マスクによれば、光学的装置によって正確な電極面積を測定することが可能であり、これによりウェーハの抵抗率を高精度で求めることができる。 Examples of the target for producing the vapor deposition pattern by the vapor deposition pattern production method of the present invention include various surfaces that are usually subjected to vapor deposition treatment, but a semiconductor wafer is suitable. Details of the semiconductor wafer will be described later. A Schottky electrode is formed by forming a metal pattern on a semiconductor wafer, and a space charge density [(donor concentration) − (acceptor concentration)] is determined from the capacitance-voltage characteristics of the Schottky junction. The resistivity of the wafer can be obtained from the area. The electrode area is usually measured by an optical device. However, as described above, when it is difficult to obtain an accurate electrode area due to the wafer thickness, a measurement error occurs and an accurate measurement value cannot be obtained. On the other hand, according to the vapor deposition mask of the present invention, it is possible to measure an accurate electrode area with an optical device, and thereby, the resistivity of the wafer can be obtained with high accuracy.
蒸着処理後、蒸着用マスク全体を被蒸着面上から除去することにより蒸着パターンが形成された表面を得ることができる。 After the vapor deposition treatment, the surface on which the vapor deposition pattern is formed can be obtained by removing the entire vapor deposition mask from the deposition surface.
[半導体ウェーハ評価用試料の作製方法]
更に本発明は、本発明の蒸着用パターン作製方法によって半導体ウェーハ表面上に金属パターンを作製する半導体ウェーハ評価用試料の作製方法に関する。
半導体ウェーハ評価用試料とは、例えば前述のようにショットキー接合の容量−電圧特性から半導体ウェーハの抵抗率を求めるために使用される試料であることができる。金属パターン(金属電極)を作製する半導体ウェーハとしては、シリコンエピタキシャルウェーハ、鏡面研磨ウェーハ等を挙げることができる。形成された半導体ウェーハ評価用試料は、本発明の半導体ウェーハの評価方法に使用することができる。その詳細は後述する。
[Method for preparing semiconductor wafer evaluation sample]
Furthermore, the present invention relates to a method for producing a semiconductor wafer evaluation sample in which a metal pattern is produced on the surface of a semiconductor wafer by the vapor deposition pattern production method of the present invention.
The semiconductor wafer evaluation sample can be, for example, a sample used for obtaining the resistivity of the semiconductor wafer from the capacitance-voltage characteristics of the Schottky junction as described above. Examples of the semiconductor wafer for producing the metal pattern (metal electrode) include a silicon epitaxial wafer and a mirror polished wafer. The formed semiconductor wafer evaluation sample can be used in the semiconductor wafer evaluation method of the present invention. Details thereof will be described later.
[半導体ウェーハの評価方法]
本発明の半導体ウェーハの評価方法は、本発明の蒸着パターン作製方法によって半導体ウェーハ上に金属パターンを作製し、作製された金属パターンを介して半導体ウェーハの電気的特性を測定するものである。ここで測定される電気的特性としては、半導体ウェーハの抵抗率を挙げることができる。半導体ウェーハの抵抗率は、前述のようにショットキー接合の容量−電圧特性を測定する方法(C-V法)によって求めることができる。蒸着用マスクをウェーハから剥がした後に測定を行うことができる。
[Semiconductor wafer evaluation method]
The semiconductor wafer evaluation method of the present invention is a method in which a metal pattern is produced on a semiconductor wafer by the vapor deposition pattern production method of the present invention, and the electrical characteristics of the semiconductor wafer are measured through the produced metal pattern. The electrical characteristics measured here include the resistivity of the semiconductor wafer. The resistivity of the semiconductor wafer can be obtained by the method (CV method) for measuring the capacitance-voltage characteristics of the Schottky junction as described above. Measurements can be made after the vapor deposition mask has been peeled from the wafer.
[半導体ウェーハの製造方法]
本発明の半導体ウェーハの製造方法は、複数の半導体ウェーハからなる半導体ウェーハのロットを準備する工程と、前記ロットから少なくとも1つの半導体ウェーハを抽出する工程と、前記抽出された半導体ウェーハの品質を評価する工程と、前記評価により良品と判定された半導体ウェーハと同一ロット内の他の半導体ウェーハを製品ウェーハとして出荷することを含み、前記抽出された半導体ウェーハの評価を、本発明の半導体ウェーハの評価方法によって行うものである。
[Semiconductor wafer manufacturing method]
The method of manufacturing a semiconductor wafer according to the present invention includes a step of preparing a lot of semiconductor wafers composed of a plurality of semiconductor wafers, a step of extracting at least one semiconductor wafer from the lot, and evaluating the quality of the extracted semiconductor wafer. And a step of shipping another semiconductor wafer in the same lot as the semiconductor wafer determined to be non-defective by the evaluation, and evaluating the extracted semiconductor wafer as an evaluation of the semiconductor wafer of the present invention. It is done by the method.
本発明の半導体ウェーハの評価方法によれば、ウェーハの電気的特性を高精度で評価することができる。よって、前記評価によって、目標以上の品質を有することが確認されたシリコンウェーハと同ロットの半導体ウェーハを選択し製品ウェーハとして出荷することにより、高品質な半導体ウェーハを提供することが可能である。なお良品と判定される基準は、ウェーハの用途等に応じてウェーハに求められる物性を考慮して設定することができる。また評価用に抽出するウェーハ数は、少なくとも1つであればよく、2つ以上とすることによって高い信頼性をもって製品出荷を行うことが可能となる。なお半導体ウェーハのロットの準備は公知の方法で行うことができ、1ロットに含まれるウェーハ数は生産性等を考慮して決定すればよい。 According to the semiconductor wafer evaluation method of the present invention, the electrical characteristics of the wafer can be evaluated with high accuracy. Therefore, it is possible to provide a high-quality semiconductor wafer by selecting a semiconductor wafer of the same lot as the silicon wafer that has been confirmed to have a quality exceeding the target by the evaluation and shipping it as a product wafer. In addition, the reference | standard determined as a good product can be set in consideration of the physical property calculated | required by the wafer according to the use etc. of a wafer. The number of wafers extracted for evaluation may be at least one, and by setting it to two or more, it becomes possible to ship products with high reliability. The preparation of semiconductor wafer lots can be performed by a known method, and the number of wafers contained in one lot may be determined in consideration of productivity and the like.
以下に、本発明を実施例に基づき更に説明する。但し、本発明は実施例に示す態様に限定されるものではない。 Below, the present invention will be further explained based on examples. However, this invention is not limited to the aspect shown in the Example.
[実施例1]
図7に厚み100μmの磁性体金属マスク(SUS430)、厚み40μmの非磁性体金属マスク(SUS304)、ホルダーの平面図を示す。磁性体金属マスクの孔サイズは5mmφ、非磁性体金属マスクの孔サイズは3mmφとした。非磁性体マスクの貫通孔は磁性体マスク側に向かって開口が広くなるテーパー状であり、ウェーハ表面に接する側の厚みは15μmであった。ホルダーには磁石を設置するための溝が面内に多数ある。これらの溝に磁石を設置した。磁石を設置した状態でホルダー表面に凹凸が生じないように磁石の厚さは溝深さと略同一とした。なお、配置する磁石の個数や配置位置により磁力の調整が可能である。
被蒸着物であるウェーハ(6インチ、n型、(100)、抵抗率6Ωcm)を、上記ホルダー上に配置した後、ウェーハ上に上記マスクを配置した。この状態の概略断面図を図8に示す。
その後、上記マスク付きシリコンウェーハをホルダーとともに真空蒸着装置内に配置し蒸着処理を行った。真空蒸着装置として、図1に示す抵抗加熱型(固定型)装置を使用した。抵抗加熱用フィラメントとしてタングステンフィラメント、蒸着金属は金、フィラメントとウェーハ間距離は20cmとした。蒸着処理後の電極面積をNIKON製コンフォーカルレーザー顕微鏡NEXIVを用いて、直径方向5点(外周より5mm、R/2、中心)の電極面積を測定した。更に、蒸着処理後にマスクを除去し、形成した電極の容量−電圧特性を測定した。解析ソフトに上記コンフォーカルレーザー顕微鏡により測定した電極面積として入力し、抵抗率を求めた。抵抗率測定ごとに金属電極を薬品により剥離除去し、再度電極形成、電極面積測定および抵抗率測定を行う操作を5回繰り返した。容量−電圧測定はアジレント(Agilent)社製4284Aを用いて行い、抵抗率への変換はSEMIの式に従った。電極面積測定の測定ばらつきを図9に、抵抗率値のばらつきを図10に示す。
[Example 1]
FIG. 7 shows a plan view of a magnetic metal mask (SUS430) having a thickness of 100 μm, a nonmagnetic metal mask (SUS304) having a thickness of 40 μm, and a holder. The hole size of the magnetic metal mask was 5 mmφ, and the hole size of the nonmagnetic metal mask was 3 mmφ. The through hole of the nonmagnetic mask had a tapered shape with an opening widened toward the magnetic mask side, and the thickness on the side in contact with the wafer surface was 15 μm. The holder has a number of grooves in the surface for installing magnets. Magnets were installed in these grooves. The thickness of the magnet was substantially the same as the groove depth so that the holder surface was not uneven when the magnet was installed. The magnetic force can be adjusted depending on the number of magnets to be arranged and the arrangement position.
A wafer (6 inches, n-type, (100), resistivity 6 Ωcm), which is a deposition object, was placed on the holder, and then the mask was placed on the wafer. A schematic cross-sectional view of this state is shown in FIG.
Thereafter, the silicon wafer with a mask was placed in a vacuum deposition apparatus together with a holder to perform a deposition process. The resistance heating type (fixed type) apparatus shown in FIG. 1 was used as the vacuum deposition apparatus. The resistance heating filament was a tungsten filament, the deposited metal was gold, and the distance between the filament and the wafer was 20 cm. The electrode area after the vapor deposition treatment was measured at 5 points in the diameter direction (5 mm from the outer periphery, R / 2, center) using a NIKOON confocal laser microscope NEXIV. Further, the mask was removed after the vapor deposition treatment, and the capacitance-voltage characteristics of the formed electrode were measured. The electrode area measured by the confocal laser microscope was input to the analysis software, and the resistivity was obtained. For each resistivity measurement, the metal electrode was peeled and removed with chemicals, and the operations of electrode formation, electrode area measurement, and resistivity measurement were repeated five times. Capacitance-voltage measurement was performed using Agilent 4284A, and conversion to resistivity followed the SEMI equation. 9 shows variation in electrode area measurement, and FIG. 10 shows variation in resistivity value.
[比較例1]
厚さ100μmであって、実施例1のマスクと同様の位置に開口を設けた磁性体金属マスクを使用した点以外は実施例1と同様の方法で、電極面積測定の測定ばらつきおよび抵抗率値のばらつきを求めた。電極面積測定の測定ばらつきを図9に、抵抗率値のばらつきを図10に示す。
[Comparative Example 1]
Measurement variation in electrode area measurement and resistivity value in the same manner as in Example 1 except that a magnetic metal mask having a thickness of 100 μm and having an opening at the same position as in the mask of Example 1 was used. The variation of was calculated. 9 shows variation in electrode area measurement, and FIG. 10 shows variation in resistivity value.
図9および図10は、各点で5回測定を行って得られた平均値と標準偏差より、CV値(相対標準偏差)を計算し、CenterのCV値を1として、他の点のCV値を相対比較した結果を示したものである。値が大きいほどばらつきが大きいことを示す。図9に示すように、実施例1で形成した電極は、どの電極位置においてもばらつきは小さかったのに対し、比較例1で形成した電極では、中心から離れるほどばらつきが大きくなった。これは、ウェーハ中心のほぼ真上に蒸着源が配置されていたため、ウェーハ中心から離れるほど陰部分が多くなったためである。このように電極面積のばらつきは、抵抗率測定における測定誤差の原因となる。そのため、図10に示すように実施例1における抵抗率測定では、面内の位置による抵抗率のばららつきはほぼなかったのに対し、比較例1による抵抗率測定では、中心から離れるほどばらつきが大きくなった。 9 and 10, CV values (relative standard deviations) are calculated from the average value and standard deviation obtained by performing the measurement five times at each point. The result of relative comparison of the values is shown. The larger the value, the greater the variation. As shown in FIG. 9, the electrode formed in Example 1 showed little variation at any electrode position, whereas the electrode formed in Comparative Example 1 showed larger variation as it moved away from the center. This is because the deposition source is arranged almost directly above the center of the wafer, and the shadow portion increases as the distance from the center of the wafer increases. Thus, the variation in the electrode area causes a measurement error in the resistivity measurement. Therefore, as shown in FIG. 10, in the resistivity measurement in Example 1, there was almost no variation in resistivity depending on the position in the plane, whereas in the resistivity measurement in Comparative Example 1, the variation was more away from the center. Became larger.
本発明によれば半導体ウェーハの品質を高い信頼性をもって評価することができる。また本発明によれば簡便な蒸着装置(蒸着源が1つの固定型蒸着装置)により信頼性の高い評価が可能である。 According to the present invention, the quality of a semiconductor wafer can be evaluated with high reliability. Further, according to the present invention, a highly reliable evaluation can be performed by a simple vapor deposition apparatus (a fixed vapor deposition apparatus having one vapor deposition source).
Claims (9)
少なくとも1つの貫通孔を有する厚みが1μm以上50μm以下の非磁性材料からなるマスク層を有し、
上記被蒸着物は半導体ウェーハであり、
上記マスク層上に、該マスク層が有する貫通孔を塞ぐことなく磁性体を有し、
前記磁性体は、少なくとも1つの貫通孔を有する磁性層であり、前記マスク層が有する貫通孔と磁性層が有する貫通孔が一致または重複することにより開口部が形成され、
磁性層が有する貫通孔の開口は、マスク層が有する貫通孔の開口より大きく、
マスク層が有する貫通孔は、磁性体側の表面に向かって開口が広くなるテーパー状であり、
マスク層が有する貫通孔の開口と磁性層が有する貫通孔の開口は同心円状であり、
マスク層と磁性体は別部材であり、
被蒸着物はホルダー上に載置され、該ホルダーには磁石設置用溝に磁石が設置されており、
前記マスク層および磁性体は、被蒸着面上にマスク層と磁性体の順に配置され、
前記マスク層および磁性体は位置合わせ用の孔を有し、前記配置時に、前記孔に前記ホルダーが有する位置合わせ部材を差し込むことにより位置合わせが行われ、
被蒸着物、マスク層および磁性体は、前記磁石による磁力により固定されることを特徴とする蒸着用マスク。 A deposition mask for forming a deposition pattern on a deposition surface of an object to be deposited,
Having a mask layer made of a nonmagnetic material having at least one through hole and a thickness of 1 μm or more and 50 μm or less,
The deposition object is a semiconductor wafer,
On the mask layer, having a magnetic body without blocking the through-holes of the mask layer,
The magnetic body is a magnetic layer having at least one through hole, and an opening is formed by matching or overlapping the through hole of the mask layer and the through hole of the magnetic layer,
The opening of the through hole of the magnetic layer is larger than the opening of the through hole of the mask layer,
The through hole of the mask layer has a tapered shape in which the opening widens toward the surface on the magnetic body side,
The opening of the through hole of the mask layer and the opening of the through hole of the magnetic layer are concentric .
Mask layer and the magnetic body are separate members,
The object to be deposited is placed on a holder, and a magnet is installed in the magnet installation groove in the holder.
The mask layer and the magnetic body are disposed on the deposition surface in the order of the mask layer and the magnetic body,
The mask layer and the magnetic body have alignment holes, and alignment is performed by inserting an alignment member of the holder into the holes at the time of the arrangement.
The vapor deposition mask , wherein the deposition object, the mask layer, and the magnetic body are fixed by the magnetic force of the magnet .
前記マスクを、被蒸着面とマスク層表面とが対向するように被蒸着物上に配置し、かつ、
上記マスクを配置した面とは反対の面上に磁石を配置することを特徴とする蒸着パターン作製方法。 A vapor deposition pattern manufacturing method in which the vapor deposition mask according to any one of claims 1 to 4 is disposed on the vapor deposition surface of the vapor deposition object, and then vapor deposition treatment is performed on the vapor deposition surface,
The mask is disposed on the deposition object such that the deposition surface and the mask layer surface face each other; and
A vapor deposition pattern manufacturing method, comprising: arranging a magnet on a surface opposite to a surface on which the mask is disposed.
作製された金属パターンを介して半導体ウェーハの電気的特性を測定する半導体ウェーハの評価方法。 A metal pattern is produced on a semiconductor wafer surface by the method according to claim 6,
A semiconductor wafer evaluation method for measuring electrical characteristics of a semiconductor wafer through a produced metal pattern.
前記ロットから少なくとも1つの半導体ウェーハを抽出する工程と、
前記抽出された半導体ウェーハの品質を評価する工程と、
前記評価により良品と判定された半導体ウェーハと同一ロット内の他の半導体ウェーハを製品ウェーハとして出荷することを含む、半導体ウェーハの製造方法であって、
前記抽出された半導体ウェーハの評価を、請求項8に記載の方法によって行うことを特徴とする、前記方法。 Preparing a lot of semiconductor wafers comprising a plurality of semiconductor wafers;
Extracting at least one semiconductor wafer from the lot;
Evaluating the quality of the extracted semiconductor wafer;
A method for manufacturing a semiconductor wafer, comprising shipping as a product wafer another semiconductor wafer in the same lot as the semiconductor wafer determined to be non-defective by the evaluation,
9. The method according to claim 8, wherein the evaluation of the extracted semiconductor wafer is performed by the method according to claim 8.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008100925A JP5228586B2 (en) | 2008-04-09 | 2008-04-09 | Vapor deposition mask, vapor deposition pattern production method using the same, semiconductor wafer evaluation sample production method, semiconductor wafer evaluation method, and semiconductor wafer production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008100925A JP5228586B2 (en) | 2008-04-09 | 2008-04-09 | Vapor deposition mask, vapor deposition pattern production method using the same, semiconductor wafer evaluation sample production method, semiconductor wafer evaluation method, and semiconductor wafer production method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009249706A JP2009249706A (en) | 2009-10-29 |
JP5228586B2 true JP5228586B2 (en) | 2013-07-03 |
Family
ID=41310677
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008100925A Active JP5228586B2 (en) | 2008-04-09 | 2008-04-09 | Vapor deposition mask, vapor deposition pattern production method using the same, semiconductor wafer evaluation sample production method, semiconductor wafer evaluation method, and semiconductor wafer production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5228586B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109112476A (en) * | 2013-12-20 | 2019-01-01 | 株式会社V技术 | Form a film exposure mask |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5564928B2 (en) * | 2009-12-16 | 2014-08-06 | 株式会社Sumco | DLTS measurement electrode and manufacturing method thereof |
JP5517308B2 (en) * | 2011-11-22 | 2014-06-11 | 株式会社ブイ・テクノロジー | Mask manufacturing method, mask and mask manufacturing apparatus |
TWI555862B (en) | 2011-09-16 | 2016-11-01 | V科技股份有限公司 | Evaporation mask, method for manufacturing the same and thinfilm pattern forming method |
JP2013173968A (en) * | 2012-02-24 | 2013-09-05 | V Technology Co Ltd | Vapor-deposition mask, and method for manufacturing vapor-deposition mask |
JP5899585B2 (en) * | 2011-11-04 | 2016-04-06 | 株式会社ブイ・テクノロジー | Mask manufacturing method |
WO2013039196A1 (en) * | 2011-09-16 | 2013-03-21 | 株式会社ブイ・テクノロジー | Vapor-deposition mask, vapor-deposition mask manufacturing method, and thin-film pattern forming method |
JP5958804B2 (en) * | 2012-03-30 | 2016-08-02 | 株式会社ブイ・テクノロジー | Vapor deposition mask, vapor deposition mask manufacturing method, and organic EL display device manufacturing method |
JP5884543B2 (en) * | 2011-09-16 | 2016-03-15 | 株式会社ブイ・テクノロジー | Thin film pattern forming method, mask manufacturing method, and organic EL display device manufacturing method |
JP6078741B2 (en) * | 2011-11-04 | 2017-02-15 | 株式会社ブイ・テクノロジー | Thin film pattern forming method and mask |
JP5515025B2 (en) * | 2011-10-06 | 2014-06-11 | 株式会社ブイ・テクノロジー | Mask, mask member used therein, mask manufacturing method, and organic EL display substrate manufacturing method |
TWI456080B (en) * | 2012-07-17 | 2014-10-11 | Wintek Corp | Shadow mask module and organic vapor deposition apparatus and thermal evaporation apparatus using the same |
JP2014088594A (en) * | 2012-10-30 | 2014-05-15 | V Technology Co Ltd | Vapor deposition mask |
JP6197423B2 (en) * | 2013-07-11 | 2017-09-20 | 大日本印刷株式会社 | Vapor deposition mask, vapor deposition mask manufacturing method, and organic semiconductor element manufacturing method |
JP6409701B2 (en) * | 2013-11-14 | 2018-10-24 | 大日本印刷株式会社 | Vapor deposition mask, vapor deposition mask with frame, and method of manufacturing organic semiconductor element |
JP6240960B2 (en) * | 2014-02-03 | 2017-12-06 | 株式会社ブイ・テクノロジー | Method for manufacturing film formation mask and film formation mask |
CN113463017A (en) * | 2016-09-30 | 2021-10-01 | 大日本印刷株式会社 | Frame-integrated vapor deposition mask, production body and production method therefor, and vapor deposition pattern formation method |
JP6521003B2 (en) * | 2017-08-23 | 2019-05-29 | 大日本印刷株式会社 | Vapor deposition mask, method of manufacturing vapor deposition mask, and method of manufacturing organic semiconductor device |
CN108396285B (en) * | 2018-03-19 | 2021-01-26 | 京东方科技集团股份有限公司 | Mask plate, display substrate, manufacturing method of display substrate and display device |
FR3112024B1 (en) * | 2020-06-29 | 2022-10-14 | Aledia | Positioning mask, system and method for manufacturing an optoelectronic device |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5956579A (en) * | 1982-09-24 | 1984-04-02 | Fujitsu Ltd | Compound metal mask |
JPH03180463A (en) * | 1989-12-08 | 1991-08-06 | Nippon Telegr & Teleph Corp <Ntt> | Partial thin film forming device |
JP4058149B2 (en) * | 1997-12-01 | 2008-03-05 | キヤノンアネルバ株式会社 | Mask alignment method for vacuum deposition system |
JP2001003155A (en) * | 1999-06-21 | 2001-01-09 | Matsushita Electric Ind Co Ltd | Vapor deposition device and vapor deposition method |
JP4046269B2 (en) * | 2001-05-24 | 2008-02-13 | 九州日立マクセル株式会社 | Vapor deposition mask for organic EL element and method for producing vapor deposition mask for organic EL element |
JP2003324134A (en) * | 2002-04-26 | 2003-11-14 | Sumitomo Mitsubishi Silicon Corp | Method for forming measuring electrode pattern |
JP3975439B2 (en) * | 2002-12-02 | 2007-09-12 | 日立金属株式会社 | Metal mask |
JP4104964B2 (en) * | 2002-12-09 | 2008-06-18 | 日本フイルコン株式会社 | MASK FOR FORMING THIN FILM PATTERN OF LAMINATED STRUCTURE COMPRISING PATTERNED MASK COATING AND SUPPORT AND METHOD FOR PRODUCING THE SAME |
JP4170179B2 (en) * | 2003-01-09 | 2008-10-22 | 株式会社 日立ディスプレイズ | Organic EL panel manufacturing method and organic EL panel |
JP4547130B2 (en) * | 2003-01-30 | 2010-09-22 | 株式会社アルバック | Manufacturing method of vapor deposition mask |
JP2005154879A (en) * | 2003-11-28 | 2005-06-16 | Canon Components Inc | Metal mask for vapor deposition, and method of producing vapor deposition pattern using the same |
JP2006199998A (en) * | 2005-01-20 | 2006-08-03 | Seiko Epson Corp | Film-forming apparatus and film-forming method |
-
2008
- 2008-04-09 JP JP2008100925A patent/JP5228586B2/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109112476A (en) * | 2013-12-20 | 2019-01-01 | 株式会社V技术 | Form a film exposure mask |
CN109112476B (en) * | 2013-12-20 | 2020-09-15 | 株式会社V技术 | Film forming mask |
Also Published As
Publication number | Publication date |
---|---|
JP2009249706A (en) | 2009-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5228586B2 (en) | Vapor deposition mask, vapor deposition pattern production method using the same, semiconductor wafer evaluation sample production method, semiconductor wafer evaluation method, and semiconductor wafer production method | |
JP2008255433A (en) | Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample of semiconductor wafer for evaluation, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer | |
US20170365562A1 (en) | Patterning graphene with a hard mask coating | |
JP5626491B1 (en) | Metal plate, method for producing metal plate, and method for producing vapor deposition mask using metal plate | |
TWI390651B (en) | Apparatus and methods for evaporation including test wafer holder | |
JP2008255435A (en) | Mask for vapor deposition, method for producing vapor-deposition pattern using the same, method for producing sample of semiconductor wafer for evaluation, method for evaluating semiconductor wafer, and method for manufacturing semiconductor wafer | |
EP3472619A1 (en) | Providing a temporary protective layer on a graphene street | |
US20150059643A1 (en) | Type of fine metal mask (ffm) used in oled production and the method of manufacturing it | |
CN110234783A (en) | Manufacturing method, the manufacturing method of deposition mask and organic semiconductor device of deposition mask | |
JP2010505278A (en) | Offset correction method and apparatus for positioning and inspecting a substrate | |
TW201036100A (en) | Semiconductor manufacturing method and apparatus | |
JP6217197B2 (en) | Vapor deposition mask, metal mask with resin layer, and method of manufacturing organic semiconductor element | |
JP2013083704A5 (en) | Mask, mask member used therein, mask manufacturing method, and organic EL display substrate manufacturing method | |
TWI398538B (en) | Detecting deposition conditions | |
JP7549794B2 (en) | Evaporation mask, method for manufacturing deposition mask, deposition method, method for manufacturing organic semiconductor element, and method for manufacturing organic EL display device | |
CN108010860B (en) | Self-positioning electromigration test structure and transmission electron microscope sample preparation method | |
WO2019072035A1 (en) | Method for measuring thickness of electrochemically deposited nano-film | |
TW201819884A (en) | Sample with sharpening tip, preparing method thereof and analysis method thereof | |
TWI423381B (en) | Auxiliary stage and method of utilizing auxiliary stage | |
US20200152875A1 (en) | Multi array electrode having projecting electrode parts arrayed thereon, method of manufacturing the same, and method of manufacturing organic deposition mask using the multi array electrode | |
JP6819925B2 (en) | Thin-film mask, thin-film mask manufacturing method and organic semiconductor device manufacturing method | |
TWI845852B (en) | Deposition method, method for detecting deposition defect, and deposition system | |
CN105789078A (en) | Measurement method for small-area pattern etching depth | |
JP6885431B2 (en) | Manufacturing method of thin-film mask | |
TWI741259B (en) | Temperature measuring device and method for measuring a temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20110316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121002 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121128 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130304 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160329 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5228586 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |