JP5219332B2 - Coated stainless steel foil and thin film solar cell - Google Patents

Coated stainless steel foil and thin film solar cell Download PDF

Info

Publication number
JP5219332B2
JP5219332B2 JP2005272359A JP2005272359A JP5219332B2 JP 5219332 B2 JP5219332 B2 JP 5219332B2 JP 2005272359 A JP2005272359 A JP 2005272359A JP 2005272359 A JP2005272359 A JP 2005272359A JP 5219332 B2 JP5219332 B2 JP 5219332B2
Authority
JP
Japan
Prior art keywords
stainless steel
steel foil
convex
film
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005272359A
Other languages
Japanese (ja)
Other versions
JP2007088044A (en
Inventor
紀子 山田
祐治 久保
勉 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Chemical and Materials Co Ltd
Original Assignee
Nippon Steel and Sumikin Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Materials Co Ltd filed Critical Nippon Steel and Sumikin Materials Co Ltd
Priority to JP2005272359A priority Critical patent/JP5219332B2/en
Publication of JP2007088044A publication Critical patent/JP2007088044A/en
Application granted granted Critical
Publication of JP5219332B2 publication Critical patent/JP5219332B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells

Description

本発明は、シリカ系無機ポリマー膜で被覆したステンレス箔及び薄膜太陽電池に関するものである。   The present invention relates to a stainless steel foil and a thin film solar cell coated with a silica-based inorganic polymer film.

太陽光発電は、新しいエネルギー源の1つとして注目されている。太陽電池としては、単結晶Si又は多結晶Siのバルク型太陽電池が主流であるが、軽量化・大面積化・量産による低価格化等、薄膜太陽電池の方が有利と考えられる点も多い。   Solar power generation is attracting attention as one of the new energy sources. As solar cells, bulk solar cells of single crystal Si or polycrystal Si are the mainstream, but there are many points where thin film solar cells are considered to be more advantageous, such as weight reduction, large area, and cost reduction by mass production. .

薄膜太陽電池の基板としては、ガラスが用いられているが、軽量化・フレキシビリティの観点から、樹脂基板も検討されている。しかしながら、樹脂は耐熱性が低いため、薄膜太陽電池の製造プロセス温度が制限される。このため、表面に絶縁膜をつけたステンレス箔基板が提案されている(特許文献1)。太陽電池基板としては、複数のセルを配列して一定の性能が得られるように、少なくともMΩ・cm2オーダーの絶縁性が求められるので、ステンレス箔上の膜にもこのレベルの絶縁性が求められる。金属箔の上に、絶縁性の高いポリイミド塗料等の有機樹脂塗料を塗布したものを使用する例がある(特許文献2)が、有機樹脂は、太陽電池セル形成時の200〜350℃の熱処理で劣化するものが多い。 Glass is used as the substrate of the thin film solar cell, but a resin substrate is also being studied from the viewpoint of weight reduction and flexibility. However, since the resin has low heat resistance, the manufacturing process temperature of the thin film solar cell is limited. For this reason, a stainless steel foil substrate with an insulating film on the surface has been proposed (Patent Document 1). As a solar cell substrate, insulation of at least MΩ · cm 2 order is required so that a certain performance can be obtained by arranging a plurality of cells. Therefore, this level of insulation is also required for the film on the stainless steel foil. It is done. There is an example using a metal foil coated with an organic resin paint such as a highly insulating polyimide paint (Patent Document 2), but the organic resin is a heat treatment at 200 to 350 ° C. during the formation of solar cells. There are many things that deteriorate.

薄膜太陽電池の中でも、高い変換効率が期待される結晶系Si薄膜太陽電池が、最近、注目されている。従来、この材料は、可視域での吸収係数が小さいので、薄膜材料には適さないと考えられていたが、結晶系Siにおいても、長い光路長を得られるよう、結晶系Si層の裏面及び表面に光を反射させて、中に閉じ込めることにより、高い変換効率を実現することが判ってきた。例えば、ガラス基板の上に、凹凸テクスチャ構造を有する裏面反射層としてSnO2を設け、その上にn型Si層、活性層となるi層、p型Si層、ITO膜を順次積層し、セルを作製している。裏面反射層は、電極も兼ねた構造になっている(非特許文献1)。また、アモルファスSiにおいても、変換効率を上げるために、アモルファスSi層の表面、裏面のそれぞれに凹凸テクスチャ構造を持たせて、光路長を稼いだ場合についてシミュレーションした結果、凹凸テクスチャ構造の有効性が示されている(非特許文献2)。 Among thin film solar cells, crystalline Si thin film solar cells that are expected to have high conversion efficiency have recently attracted attention. Conventionally, this material has been considered to be unsuitable for thin film materials because of its small absorption coefficient in the visible region. However, in order to obtain a long optical path length even in crystalline Si, the backside of the crystalline Si layer and It has been found that high conversion efficiency is achieved by reflecting light on the surface and confining it inside. For example, SnO 2 is provided on a glass substrate as a back reflective layer having an uneven texture structure, and an n-type Si layer, an i layer serving as an active layer, a p-type Si layer, and an ITO film are sequentially stacked on the glass substrate. Is making. The back reflective layer has a structure that also serves as an electrode (Non-Patent Document 1). In addition, in order to increase the conversion efficiency in amorphous Si, as a result of simulating the case where the surface of the amorphous Si layer has an uneven texture structure on each of the back surface and earning the optical path length, the effectiveness of the uneven texture structure is confirmed. (Non-Patent Document 2).

現在のところ、凹凸テクスチャ構造は、ガラス基板上に透明電極としてSnO2又はZnOをCVD又はスパッタリングで作製後、酸によるウエットエッチングで得ているものが主流である。しかしながら、軽量化・フレキシビリティ・耐熱性等の観点から金属箔基板の採用を考えた場合、SnO2やZnOの酸によるウエットエッチングプロセスでは、金属自体の腐食が問題になるため、凹凸テクスチャ構造を作ることができなかった。裏面電極として、Al等の金属を凹凸テクスチャ構造を有する形に成膜することも考えられるが、現実には、光閉じ込め効果が発現するようなサブミクロンレベルの凹凸を有する電極膜をAl等で成膜する技術は確立していない。 At present, the uneven texture structure is mainly obtained by producing SnO 2 or ZnO as a transparent electrode on a glass substrate by CVD or sputtering and then wet etching with acid. However, when considering the use of metal foil substrates from the viewpoint of weight reduction, flexibility, heat resistance, etc., the wet etching process with SnO 2 or ZnO acid causes a problem of corrosion of the metal itself, so that an uneven texture structure is used. I couldn't make it. Although it is conceivable to form a metal such as Al in a shape having a concavo-convex texture structure as the back electrode, in reality, an electrode film having concavo-convex of submicron level that exhibits a light confinement effect is formed of Al or the like. The technology for film formation has not been established.

特開2003-247078号公報JP2003-247078 特開2001-127323号公報JP 2001-127323 A K. Yamamoto, et al., IEEE Trans. Elect. Devices, vol.46, p.2041 (1999)K. Yamamoto, et al., IEEE Trans. Elect. Devices, vol.46, p.2041 (1999) 太陽光発電技術研究組合監修、薄膜太陽電池の基礎と応用、p82〜91、オーム社 (2001)Supervised by Photovoltaic Technology Research Association, Basics and Applications of Thin Film Solar Cells, p82-91, Ohmsha (2001)

本発明は、1MΩ・cm2オーダー以上の絶縁性、熱安定性、及び、薄膜太陽電池として凹凸テクスチャ構造を有する裏面反射層が作製可能な、シリカ系無機ポリマー膜で被覆されたステンレス箔及び薄膜太陽電池を提供するものである。 The present invention relates to a stainless steel foil and thin film coated with a silica-based inorganic polymer film, capable of producing a back reflection layer having an uneven texture structure as an insulating property, thermal stability, and a thin film solar cell of 1 MΩ · cm 2 order or more. A solar cell is provided.

前記課題は、上記目的を達成するために以下のような手段を用いる。
(1) 表面に絶縁膜を有するステンレス箔であって、絶縁膜の最表面が、Si−R結合(Rは有機基又は水素)を含むシロキサン結合を主体とし、かつ、径300nm以上3μm以下の球の一部として近似される凸部による表面凹凸構造を有し、その凸部はゾルゲル法によって凸部をその場形成したものであり、
直径300nm以上3μm以下の球の一部として近似される凸部の凸部面積が全凸部面積の90%以上、かつ、任意に設定した5μm角の領域内に前記凸部の少なくとも一部が存在する無機ポリマー膜であることを特徴とする被覆ステンレス箔。
(2) 前記任意に設定した5μm角の領域内において、球の一部として近似される凸部の凸部面積の割合が5%以上90%以下であることを特徴とする(1)に記載の被覆ステンレス箔。
(3) 前記Si−R結合のRがメチル基又はフェニル基の一方又は両方であり、かつ、Siに対するRのモル比が0.5以上2.2以下であることを特徴とする(1)または(2)に記載の被覆ステンレス箔。
(4) 前記絶縁膜の厚さが4μm以上300μm以下であることを特徴とする(1)〜(3)のいずれかに記載の被覆ステンレス箔。
(5) (1)〜(4)のいずれかに記載の被覆ステンレス箔を基板に用いてなることを特徴とする薄膜太陽電池。
The above object uses the following means in order to achieve the above object.
(1) A stainless steel foil having an insulating film on the surface, the outermost surface of the insulating film, Si-R bond (R is an organic group or hydrogen) composed mainly of siloxane bonds containing, and, 3 [mu] m inclusive diameter 300nm It has a surface uneven structure with convex portions approximated as a part of the sphere, and the convex portions are formed in situ by a sol-gel method,
The convex part area of the convex part approximated as a part of a sphere having a diameter of 300 nm or more and 3 μm or less is 90% or more of the total convex part area, and at least a part of the convex part is in a 5 μm square region arbitrarily set. A coated stainless steel foil characterized by being an existing inorganic polymer film.
(2) The ratio of the convex part area of the convex part approximated as a part of a sphere in the arbitrarily set 5 μm square region is 5% or more and 90% or less. (1) Coated stainless steel foil.
(3) R in the Si-R bond is one or both of a methyl group and a phenyl group, and a molar ratio of R to Si is 0.5 or more and 2.2 or less (1) Or the coated stainless steel foil as described in (2).
(4) The coated stainless steel foil according to any one of (1) to (3), wherein the insulating film has a thickness of 4 μm to 300 μm.
(5) A thin film solar cell comprising the coated stainless steel foil according to any one of (1) to (4) as a substrate.

本発明によれば、表面に凹凸構造を有するシロキサン結合を主体とする無機ポリマー膜で被覆されたステンレス箔が得られ、太陽電池をはじめ各種電気・電子部品用に軽量で可とう性を備えた絶縁基板を提供することができる。本発明のステンレス箔は、特に、薄膜太陽電池、中でもシリコン薄膜太陽電池基板として用いた場合、凹凸構造を有する裏面反射層が得られるので光路長を稼ぐことができる。したがって、本発明のステンレス箔により、薄膜太陽電池の電流密度が上がり、太陽電池としての変換効率を向上させることができる。   According to the present invention, a stainless steel foil coated with an inorganic polymer film mainly composed of a siloxane bond having a concavo-convex structure on its surface is obtained, and it is lightweight and flexible for various electric and electronic parts including solar cells. An insulating substrate can be provided. Especially when the stainless steel foil of the present invention is used as a thin film solar cell, especially a silicon thin film solar cell substrate, a back surface reflection layer having a concavo-convex structure can be obtained, so that the optical path length can be increased. Therefore, with the stainless steel foil of the present invention, the current density of the thin film solar cell is increased, and the conversion efficiency as the solar cell can be improved.

本発明において、ステンレス箔の表面に絶縁膜を形成する。絶縁膜としては種々の材料が想定されるが、太陽電池形成プロセスに耐えられる耐熱性を有する点で、ポリイミド等の耐熱性樹脂材料、シリカ、アルミナ等のセラミックス材料、シロキサン系の無機ポリマー等が望ましい。シロキサン系の無機ポリマーとは、三次元網目状に発達したシロキサン骨格が水素や有機基で修飾されているものである。シロキサン骨格の有機基による修飾は、Si-R結合(Rは有機基又は水素)によるものである。Rの種類としては、具体的に、メチル基、エチル基、プロピル基、フェニル基、グリシドキシプロピル基、アミノ基、トリフルオロプロピル基等が挙げられる。Rを含むことにより、セラミックスに比べて膜が柔軟化するため、耐クラック性が向上する。無機の主成分はシリカガラスであるが、Si以外にTi、Zr、Al、Ta、Nb、W等を含んでもよい。   In the present invention, an insulating film is formed on the surface of the stainless steel foil. Although various materials are assumed as the insulating film, heat-resistant resin materials such as polyimide, ceramic materials such as silica and alumina, siloxane-based inorganic polymers, etc. are used in terms of heat resistance that can withstand the solar cell formation process. desirable. The siloxane-based inorganic polymer is a polymer in which a siloxane skeleton developed in a three-dimensional network is modified with hydrogen or an organic group. The modification of the siloxane skeleton with an organic group is due to a Si—R bond (R is an organic group or hydrogen). Specific examples of R include methyl group, ethyl group, propyl group, phenyl group, glycidoxypropyl group, amino group, and trifluoropropyl group. By including R, the film becomes softer than ceramics, so that the crack resistance is improved. The inorganic main component is silica glass, but may contain Ti, Zr, Al, Ta, Nb, W, etc. in addition to Si.

絶縁膜は単層である必要はない。多層膜である場合、絶縁膜の最表面は熱分解による脱ガス発生の少ないシロキサン系無機ポリマー層とする。絶縁膜としては、例えば、ポリイミド層の上にシロキサン系無機ポリマーを重ねた二層構造、異なる組成のシロキサン系無機ポリマー2種を重ねた二層構造、ポリイミドの上に異なる組成のシロキサン系無機ポリマー2種を重ねた三層構造、ポリイミド、アルミナと成膜した上にシロキサン系無機ポリマーを重ねた三層構造になっていてもよい。   The insulating film does not need to be a single layer. In the case of a multilayer film, the outermost surface of the insulating film is a siloxane-based inorganic polymer layer that generates less degassing due to thermal decomposition. As an insulating film, for example, a two-layer structure in which a siloxane-based inorganic polymer is superimposed on a polyimide layer, a two-layer structure in which two siloxane-based inorganic polymers having different compositions are stacked, and a siloxane-based inorganic polymer having a different composition on a polyimide A three-layer structure in which two kinds are stacked, or a three-layer structure in which a siloxane-based inorganic polymer is stacked on a film formed of polyimide and alumina may be used.

本発明では、凸部のない平坦面と球が交わった面から上の部分を凸部とする。凸部の曲率からその凸部を球の一部として近似する。絶縁膜の最表面は、図1に示すように、表面凹凸構造11を有しており、それぞれの凸部は、球12及び13で近似されるような形状である。凸部を近似する球の直径は20nm以上10μm以下である。この直径が20nmより小さい場合、表面凹凸構造への寄与が認められない。直径10μmより大きい場合は、太陽電池のセル形成が困難になる。凸部を近似する球の直径の好ましい範囲は100nm以上5μm以下、さらに好ましい範囲は300nm以上3μm以下である。凸部は、任意に設定した5μm角の領域内に、凸部の少なくとも一部が必ず存在するように、一様に分布させる。   In the present invention, the upper part from the plane where the flat surface without the convex part and the sphere intersect is defined as the convex part. The convex part is approximated as a part of a sphere from the curvature of the convex part. As shown in FIG. 1, the outermost surface of the insulating film has a surface concavo-convex structure 11, and each convex portion has a shape approximated by spheres 12 and 13. The diameter of the sphere approximating the convex part is 20 nm or more and 10 μm or less. When this diameter is smaller than 20 nm, no contribution to the surface relief structure is observed. When the diameter is larger than 10 μm, it becomes difficult to form a solar cell. A preferable range of the diameter of the sphere that approximates the convex portion is 100 nm to 5 μm, and a more preferable range is 300 nm to 3 μm. The convex portions are uniformly distributed so that at least a part of the convex portions is always present in an arbitrarily set 5 μm square region.

球の一部として近似される凸部の大きさについてであるが、300nm以上3μm以下の直径を有する球の一部として近似される凸部の凸部面積が、全凸部面積の90%以上100%以下であることが望ましい。凸部面積とは、凸部を球で近似したとき、平坦面と交わってできた円の面積である。全凸部面積とは、全ての凸部について凸部面積を合計したものである。300nm以上3μm以下の直径を有する球の一部として近似される凸部の凸部面積が、全凸部面積の90%未満であるとき、表面凹凸構造を反映した光閉じ込めが不十分に成り易い。   Regarding the size of the convex portion approximated as a part of a sphere, the convex area of the convex portion approximated as a part of a sphere having a diameter of 300 nm to 3 μm is 90% or more of the total convex area. It is desirable that it is 100% or less. The convex area is the area of a circle formed by intersecting the flat surface when the convex is approximated by a sphere. The total convex area is the sum of the convex areas for all the convex portions. When the convex part area of the convex part approximated as a part of a sphere having a diameter of 300 nm or more and 3 μm or less is less than 90% of the total convex part area, light confinement reflecting the surface concave-convex structure tends to be insufficient. .

任意に設定した5μm角の領域内において、球の一部として近似される凸部の凸部面積の割合が5%以上90%以下であることが望ましい。凸部面積の割合が5%未満であるとき、その5μm角領域の光閉じ込めは平坦面と同レベルになる。この割合が90%を超えるときは、巨大な凸部が存在しているか、種々の大きさの凸部が凝集していることを意味しており、光閉じ込め効果が得られ難かったり、良好なセルの形成が困難になったりする。任意に設定した5μ角の領域内において、球の一部として近似される凸部の凸部面積の割合の好ましい範囲は10%以上70%以下、より好ましくは20%以上60%以下である。   In an arbitrarily set 5 μm square region, it is desirable that the ratio of the convex portion area of the convex portion approximated as a part of a sphere is 5% or more and 90% or less. When the ratio of the convex area is less than 5%, the light confinement in the 5 μm square region is at the same level as the flat surface. When this ratio exceeds 90%, it means that there are huge projections or projections of various sizes are aggregated, and it is difficult to obtain the light confinement effect or good Cell formation may be difficult. A preferable range of the ratio of the convex area of the convex portion approximated as a part of a sphere in an arbitrarily set 5 μ square region is 10% or more and 70% or less, more preferably 20% or more and 60% or less.

Si-R結合のRは、メチル基又はフェニル基の一方又は両方であることが望ましい。メチル基、フェニル基は共に、Siと結合し易く、熱分解温度の高い有機基であるため、太陽電池形成プロセス中に熱分解する恐れがない。Siに対するRのモル比は0.5以上2.2以下であることが望ましい。このとき、Rはメチル基又はフェニル基の一方又は両方を意味している。Siに対するRのモル比は0.5未満であるとき、有機成分による耐クラック性向上効果が現れ難い。この比が2.2を超えるときは、膜が柔らか過ぎて疵が入り易くなる。Siに対するRの好ましい範囲は1.9以上2.1以下である。   R in the Si—R bond is preferably one or both of a methyl group and a phenyl group. Both the methyl group and the phenyl group are easily bonded to Si and are organic groups having a high thermal decomposition temperature, and therefore there is no risk of thermal decomposition during the solar cell formation process. The molar ratio of R to Si is preferably 0.5 or more and 2.2 or less. At this time, R means one or both of a methyl group and a phenyl group. When the molar ratio of R to Si is less than 0.5, the effect of improving crack resistance due to organic components hardly appears. When this ratio exceeds 2.2, the film is too soft and wrinkles easily occur. A preferable range of R with respect to Si is 1.9 or more and 2.1 or less.

絶縁膜の厚さは4μm以上300μm以下であることが望ましい。絶縁膜の厚さとは、SUS箔表面から平坦面までの厚さである。ここで、平坦面とは図1の14で表される面である。絶縁膜の厚さが4μm未満であるとき十分な絶縁効果が得られ難い。300μmを超えると特性上の差は出ないが、絶縁膜材料費コストが増大する。   The thickness of the insulating film is desirably 4 μm or more and 300 μm or less. The thickness of the insulating film is the thickness from the SUS foil surface to the flat surface. Here, the flat surface is a surface represented by 14 in FIG. When the thickness of the insulating film is less than 4 μm, it is difficult to obtain a sufficient insulating effect. If it exceeds 300 μm, there will be no difference in characteristics, but the cost of the insulating film material will increase.

本発明の絶縁膜は単層でも良いが、最表面層は球の一部として近似される凸部による表面凹凸構造を有することが必要である。しかも凸部の分布は一様であることが望ましい。そのような表面凹凸構造を有する膜の作製は、ゾルゲル法を利用し、塗布液を塗布し、乾燥・熱処理にというプロセスを経て成膜することが可能である。凹凸構造を付与するために、適当な大きさの球状微粒子を添加した塗布液を塗布すると、添加粒子の凝集を防止するための塗布液の成分設計に多大な労力を必要とする。 Although the insulating film of the present invention may be a single layer, it is necessary that the outermost surface layer has a surface uneven structure with convex portions approximated as a part of a sphere. Moreover, it is desirable that the distribution of the convex portions is uniform. A film having such a surface concavo-convex structure can be formed using a sol-gel method, applying a coating liquid, and performing a process of drying and heat treatment . When a coating solution to which spherical fine particles of an appropriate size are added is applied in order to impart a concavo-convex structure , a great deal of effort is required for designing the component of the coating solution to prevent aggregation of the added particles.

本発明では、シロキサンポリマーとSi、Al、Ti、Zr、Nb、Ta、Wから選ばれる1種類以上の金属アルコキシドを出発原料として、酸触媒下で加水分解して調製したゾルを用いて、塗布・乾燥工程で球状の凸部をその場形成させることが可能になり、凝集なく球状の凸部が分散した膜が得られることを見出した。シロキサンポリマーとしては、ポリジメチルシロキサン、ポリメチルフェニルシロキサン、ポリジフェニルシロキサン、ポリジメチルジフェニルシロキサン等が挙げられる。ポリシロキサンの両末端は、シラノール基の他、カルビノール変性、アミノ変性等でもよい。ポリシロキサンの質量平均分子量は500以上15000以下であることが望ましく、特に2500以上10000以下であることが望ましい。質量平均分子量が500より小さい場合は、低粘度の塗布液となるため、十分な膜厚を得ることが難しい。質量平均分子量が15000を超える場合は、膜硬化に時間がかかる上、得られる膜も柔らかく傷つき易い。   In the present invention, a siloxane polymer and one or more metal alkoxides selected from Si, Al, Ti, Zr, Nb, Ta, and W are used as starting materials, and a sol prepared by hydrolysis under an acid catalyst is used for coating. It was found that spherical protrusions can be formed in-situ in the drying step, and a film in which spherical protrusions are dispersed without aggregation is found. Examples of the siloxane polymer include polydimethylsiloxane, polymethylphenylsiloxane, polydiphenylsiloxane, and polydimethyldiphenylsiloxane. Both ends of the polysiloxane may be modified with carbinol or amino, in addition to a silanol group. The mass average molecular weight of the polysiloxane is preferably 500 or more and 15000 or less, and particularly preferably 2500 or more and 10,000 or less. When the mass average molecular weight is smaller than 500, it becomes a low-viscosity coating solution, and it is difficult to obtain a sufficient film thickness. When the mass average molecular weight exceeds 15000, it takes time to cure the film, and the resulting film is also soft and easily damaged.

シロキサンポリマー中のSiに対するSi、Al、Ti、Zr、Nb、Ta、Wから選ばれる1種類以上の金属アルコキシドのモル比が1/40以上1/4以下であるように、有機溶媒中に分散させてから加水分解させることが特に望ましい。シロキサンポリマー中のSiに対する金属アルコキシドのモル比が1/40より小さい場合は、三次元網目構造が発達し難いため、膜の硬化が不十分になり易い。このモル比が1/4を超える場合は、膜が硬くなり過ぎるため、クラックが入り易い。   Dispersed in an organic solvent so that the molar ratio of one or more metal alkoxides selected from Si, Al, Ti, Zr, Nb, Ta, and W to Si in the siloxane polymer is from 1/40 to 1/4. It is particularly desirable to hydrolyze after it has been allowed to. If the molar ratio of metal alkoxide to Si in the siloxane polymer is less than 1/40, the three-dimensional network structure is difficult to develop, and the film is likely to be insufficiently cured. If this molar ratio exceeds 1/4, the film becomes too hard and cracks are likely to occur.

Siのアルコキシドとしては、テトラエトキシシラン、テトラメトキシシランの他に、オルガノアルコキシシランを用いることができる。オルガノアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、ジメトキシジメチルシラン、ジエトキシジメチルシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン等が挙げられる。Al、Ti、Zr、Nb、Ta、Wの金属アルコキシドは、いずれもアルコキシシランに比べて反応性が高いため、アルコキシ基の一部をβ-ジケトン、β-ケトエステル、アルカノールアミン、アルキルアルカノールアミン、有機酸等で置換したアルコキシド誘導体を使用してもよい。   As Si alkoxide, organoalkoxysilane can be used in addition to tetraethoxysilane and tetramethoxysilane. Examples of the organoalkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, isobutyltriethoxysilane, dimethoxydimethylsilane, Diethoxydimethylsilane, phenyltrimethoxysilane, phenyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, aminopropyltrimethoxysilane And aminopropyltriethoxysilane. Since all metal alkoxides of Al, Ti, Zr, Nb, Ta, and W are more reactive than alkoxysilane, some alkoxy groups are β-diketone, β-ketoester, alkanolamine, alkylalkanolamine, An alkoxide derivative substituted with an organic acid or the like may be used.

前述したアルコキシド、ポリシロキサン等の膜固形分を生成するための出発原料を均一に分散、溶解できる有機溶媒中で、加水分解を行い、ゾルを調製することができる。有機溶媒として、例えば、メタノール、エタノール、プロパノール、ブタノール等の各種アルコール、アセトン、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン等を用いることができる。凸部をその場形成するには、乾燥の速い方が凸部を球形近似したときの径が揃う傾向があるので、沸点の低い溶媒を利用した方が作製し易い。   A sol can be prepared by performing hydrolysis in an organic solvent capable of uniformly dispersing and dissolving the starting material for producing the above-described film solids such as alkoxide and polysiloxane. As the organic solvent, for example, various alcohols such as methanol, ethanol, propanol and butanol, acetone, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone and the like can be used. In order to form the convex portions in-situ, the faster drying tends to have a uniform diameter when the convex portions are approximated to a sphere, so that it is easier to produce using a solvent having a low boiling point.

加水分解は、出発原料中の全アルコキシ基のモル数に対して0.5〜2倍の水を添加して行う。   Hydrolysis is performed by adding 0.5 to 2 times as much water as the number of moles of all alkoxy groups in the starting material.

加水分解の触媒として酸を添加することが必須である。酸の添加を行わない場合は、凸部形状が生じない。酸としては、無機酸、有機酸とも使用可能である。特に塩酸が望ましく、塩酸の場合、Si、Al、Ti、Zr、Nb、Ta、Wから選ばれる1種類以上の金属アルコキシドに対してモル比で0.01以上0.5以下、特に0.1以上0.35以下であるとき、20nm以上10μm以下の球で近似される凸部の形成が容易になる。   It is essential to add an acid as a catalyst for hydrolysis. When no acid is added, the convex shape is not generated. As the acid, both inorganic acids and organic acids can be used. Hydrochloric acid is particularly desirable, and in the case of hydrochloric acid, the molar ratio is 0.01 or more and 0.5 or less, particularly 0.1 or more and 0.35 or less with respect to one or more metal alkoxides selected from Si, Al, Ti, Zr, Nb, Ta, and W. Then, it becomes easy to form a convex portion approximated by a sphere having a diameter of 20 nm to 10 μm.

ステンレス箔へのコーティングは、バーコート法、ロールコート法、スプレーコート法、ディップコート法、スピンコート法等で行うことができる。特に、ステンレス箔がコイル形状の場合は、オフセット方式又はグラビア方式によるロールコータで塗布することが連続処理が容易で好ましい。いずれの方式においても、ゾルを薄く塗布することにより、20nm以上10μm以下の球で近似される凸部の形成が容易になる。1μm以下の薄膜を形成した方が、径が揃い、かつ、径が小さくなる傾向がある。   Coating on the stainless steel foil can be performed by a bar coating method, a roll coating method, a spray coating method, a dip coating method, a spin coating method, or the like. In particular, when the stainless steel foil has a coil shape, it is preferable to apply with a roll coater by an offset method or a gravure method because continuous processing is easy. In any method, by forming a thin sol, it is easy to form a convex portion approximated by a sphere having a diameter of 20 nm to 10 μm. Forming a thin film of 1 μm or less tends to have a uniform diameter and a small diameter.

凸部をその場形成した表面凹凸構造を有する膜のみで十分な絶縁性が得られない場合は、多層膜構造とし、下地膜としてポリイミド膜やシロキサン系の無機ポリマー膜等を用いることができる。下地膜として用いるシロキサン系の無機ポリマーは、凸部をその場形成するタイプのシロキサンポリマー系の膜とほぼ同じプロセスで作製することができるが、下地膜として用いる場合は酸を添加することなく加水分解を行うことができる。   In the case where sufficient insulation cannot be obtained only by a film having a surface uneven structure in which convex portions are formed in situ, a multilayer film structure can be used, and a polyimide film, a siloxane inorganic polymer film, or the like can be used as a base film. The siloxane-based inorganic polymer used as the base film can be prepared by almost the same process as the type of siloxane polymer-based film that forms the protrusions in situ. Decomposition can be performed.

ステンレス箔に対して、特に前処理を行わなくても良好な密着性を示すが、必要に応じて、塗布前に前処理を行うこともできる。代表的な前処理としては、酸洗、アルカリ脱脂、クロメート等の化成処理、研削、研磨、ブラスト処理等があり、必要に応じてこれらを単独もしくは組み合わせて行うことができる。   The stainless steel foil exhibits good adhesion without any pretreatment, but it can be pretreated before application, if necessary. Typical pretreatment includes pickling, alkali degreasing, chemical conversion treatment such as chromate, grinding, polishing, blasting, and the like, and these can be performed alone or in combination as necessary.

ステンレス箔材としては、フェライト系ステンレス箔、マルテンサイト系ステンレス箔、オーステナイト系ステンレス箔等が挙げられる。ステンレス箔の表面は、ブライトアニール、バフ研磨等の表面処理を施してあってもよい。   Examples of the stainless steel foil material include ferritic stainless steel foil, martensitic stainless steel foil, and austenitic stainless steel foil. The surface of the stainless steel foil may be subjected to a surface treatment such as bright annealing or buffing.

本発明の被覆ステンレス箔を基板に用いた場合、例えば、Al電極、n型シリコン層、活性層となるi層、p型シリコン層、ITO膜を順次積層し、最後に、くし型電極を形成して薄膜微結晶シリコンによる太陽電池セルを作製することができる。本発明によれば、従来のSnO2テクスチャ付きガラス基板と同等の特性の太陽電池が、被覆ステンレス箔上に形成可能となる。被覆ステンレス箔は、ガラス基板に比べて、軽量で割れ難く、大面積化が容易であるので、屋根等の建材向けの太陽電池基板として適している。また、フレキシブル太陽電池としての応用も期待される。 When the coated stainless steel foil of the present invention is used for a substrate, for example, an Al electrode, an n-type silicon layer, an i layer serving as an active layer, a p-type silicon layer, and an ITO film are sequentially laminated, and finally a comb-shaped electrode is formed. Thus, a solar battery cell using thin film microcrystalline silicon can be manufactured. According to the present invention, a solar cell having characteristics equivalent to those of a conventional SnO 2 textured glass substrate can be formed on the coated stainless steel foil. Since the coated stainless steel foil is lighter and harder to break than a glass substrate and can be easily increased in area, it is suitable as a solar cell substrate for building materials such as a roof. Moreover, application as a flexible solar cell is also expected.

(実施例1)
アセト酢酸エチル2モルとテトライソプロポキシチタン1モルを2モルの2-エトキシエタノールに分散させ、両末端シラノール変性で平均分子量6000のポリジメチルジフェニルシロキサン0.2モルを加え、攪拌した。そこに、2モルの2-エトキシエタノールと2モルの水の混合溶液を滴下し、攪拌しながら加水分解を行った。その後、5モルのメチルイソブチルケトンを添加して、下地膜用ゾルを調製した。厚さ120μm、表面をスーパーブライトで仕上げたYUS190(SUS444規格相当)の基板の上に、引き上げ速度20mm/sでディップコーターにより塗布を行い、150℃で2分乾燥後、150℃で2時間、続いて300℃で6時間の熱処理を行い、下地膜を作製した。得られた下地膜の厚さは約6μmであった。下地膜形成用のゾルも下地膜も透明であった。
(Example 1)
2 moles of ethyl acetoacetate and 1 mole of tetraisopropoxytitanium were dispersed in 2 moles of 2-ethoxyethanol, and 0.2 moles of polydimethyldiphenylsiloxane having an average molecular weight of 6000 by silanol modification at both ends was added and stirred. Thereto, a mixed solution of 2 mol of 2-ethoxyethanol and 2 mol of water was dropped, and hydrolysis was performed while stirring. Thereafter, 5 mol of methyl isobutyl ketone was added to prepare an underlayer sol. It is coated on a YUS190 (SUS444 standard) substrate with a thickness of 120μm and finished with Super Bright, using a dip coater at a lifting speed of 20mm / s, dried at 150 ° C for 2 minutes, and then at 150 ° C for 2 hours. Subsequently, heat treatment was performed at 300 ° C. for 6 hours to produce a base film. The thickness of the obtained base film was about 6 μm. Both the sol for forming the base film and the base film were transparent.

次に、アセト酢酸エチル5.6gとテトライソプロポキシチタン17.1gを2-エトキシエタノール10.8gに分散させ、両末端シラノール変性で平均分子量6000のポリジメチルジフェニルシロキサン27gを加え、攪拌した。そこに、2-エトキシエタノール10.8gと水0.54gと8Nの塩酸2.8gの混合溶液を滴下しながら、加水分解を行った。さらに、メチルイソブチルケトン12.0gを添加して、ゾルAを調製した。調製したゾルは黄色で透明であった。   Next, 5.6 g of ethyl acetoacetate and 17.1 g of tetraisopropoxytitanium were dispersed in 10.8 g of 2-ethoxyethanol, and 27 g of polydimethyldiphenylsiloxane having an average molecular weight of 6000 modified with silanol at both ends was added and stirred. Hydrolysis was performed while dropwise adding a mixed solution of 10.8 g of 2-ethoxyethanol, 0.54 g of water, and 2.8 g of 8N hydrochloric acid. Further, 12.0 g of methyl isobutyl ketone was added to prepare Sol A. The prepared sol was yellow and transparent.

得られたゾルを番手3番のバーコータで下地膜上に塗布し、150℃で2分乾燥した後、150℃2時間、300℃2時間の焼き付けを行った。得られた膜厚は約0.8μmであった。ゾルAは透明であったが、膜表面は目視でも乳白色の濁りが認められた。   The obtained sol was applied onto the base film with a No. 3 bar coater, dried at 150 ° C. for 2 minutes, and then baked at 150 ° C. for 2 hours and 300 ° C. for 2 hours. The film thickness obtained was about 0.8 μm. Although sol A was transparent, milky white turbidity was observed visually on the film surface.

作製した膜表面のSEM写真と表面を斜め上方から見たSEM写真をそれぞれ図2及び図3に示す。得られた凸部は、直径0.1〜3.0μmのほぼ半球状の形状である。凸部は面内に一様に分布しており、任意に設定した5μm角の領域内に直径20nm以上10μm以下の球の一部として近似される凸部の少なくとも一部が必ず存在する。   2 and 3 show an SEM photograph of the produced film surface and an SEM photograph of the surface as viewed obliquely from above. The obtained convex part has a substantially hemispherical shape with a diameter of 0.1 to 3.0 μm. The convex portions are uniformly distributed in the plane, and at least a part of the convex portion that is approximated as a part of a sphere having a diameter of 20 nm or more and 10 μm or less always exists in an arbitrarily set region of 5 μm square.

膜の絶縁抵抗は、電極面積1cm2の白金電極を10個形成したものを上部電極とし、ステンレス箔を下部電極として1000Vの電圧をかけて流れる微小電流から抵抗値を求めた。形成した上部電極10個について測定した結果、いずれも面積抵抗が1MΩ・cm2以上であった。 The insulation resistance of the film was obtained from a minute current flowing with a voltage of 1000 V using 10 platinum electrodes with an electrode area of 1 cm 2 as the upper electrode and stainless steel foil as the lower electrode. As a result of measuring 10 formed upper electrodes, the sheet resistance of each was 1 MΩ · cm 2 or more.

(比較例1)
実施例1と同じ下地膜を作製した。
(Comparative Example 1)
The same base film as in Example 1 was produced.

次に、テトラエトキシチタン0.07モルと酢酸0.21モルとグリシドキシプロピルトリエトキシシラン0.7モルを24時間混合後、テトラエトキシシラン0.3モルを添加し、1モルの水と6モルのエタノールを混合した溶液をゆっくりと添加して、加水分解を行った。得られた加水分解溶液58.0gに対して,アミノプロピルトリエトキシシランを7.7g、水を270.0g、エタノール184.3gを添加してゾルCを作製した。ゾルC100gに対して、直径1μmの球状シリカを1.5g添加した。   Next, 0.07 mol of tetraethoxytitanium, 0.21 mol of acetic acid and 0.7 mol of glycidoxypropyltriethoxysilane were mixed for 24 hours, then 0.3 mol of tetraethoxysilane was added, and 1 mol of water and 6 mol of ethanol were mixed. Was added slowly to effect hydrolysis. A sol C was prepared by adding 7.7 g of aminopropyltriethoxysilane, 270.0 g of water, and 184.3 g of ethanol to 58.0 g of the obtained hydrolysis solution. 1.5 g of spherical silica having a diameter of 1 μm was added to 100 g of sol C.

このゾルをディップコーターを用いて引き上げ速度1mm/sで下地膜上に塗布し、100℃5分で乾燥後、250℃5分で焼き付けた。形成した凹凸膜の厚みはいずれも0.5μmであった。   This sol was applied onto the base film using a dip coater at a lifting speed of 1 mm / s, dried at 100 ° C. for 5 minutes, and baked at 250 ° C. for 5 minutes. The thickness of each of the formed uneven films was 0.5 μm.

表面のSEM写真を図5に示す。得られた凸部は直径1μmの球状粒子の一部が平坦面の上に現れた形状である。凸部には凝集が見られ、例えば、図5に白い四角で示したように5μm角を設定すると、その領域内に直径20nm以上10μm以下の球の一部は存在せず、平坦面になっている。   A SEM photograph of the surface is shown in FIG. The obtained convex portion has a shape in which a part of spherical particles having a diameter of 1 μm appears on a flat surface. Aggregation is seen in the convex part.For example, when a 5 μm square is set as shown by a white square in FIG. 5, a part of a sphere having a diameter of 20 nm or more and 10 μm or less does not exist in the region, and a flat surface is obtained. ing.

(比較例2)
実施例1の下地膜まで作製したSUS箔をそのまま太陽電池形成用の基板として用いた。
(Comparative Example 2)
The SUS foil produced up to the base film of Example 1 was used as it was as a substrate for solar cell formation.

上記の実施例及び比較例で作製した絶縁膜を有するステンレス箔について、シリコン薄膜太陽電池セルを形成し、SnO2によるテクスチャー付きガラス基板上に作製したシリコン薄膜太陽電池セルと効率の比較を行った。効率が1の場合、テクスチャー付きガラス基板と同等の性能であり、1を超えた場合はそれよりも効率が高いことを意味する。結果を表1に示す。 About the stainless steel foil having the insulating film produced in the above-mentioned Examples and Comparative Examples, a silicon thin film photovoltaic cell was formed, and the efficiency was compared with the silicon thin film photovoltaic cell produced on the glass substrate with texture by SnO 2 . . When the efficiency is 1, the performance is the same as that of the textured glass substrate, and when it exceeds 1, the efficiency is higher than that. The results are shown in Table 1.

凸部分布は、任意に設定した5μm角10個の内、直径20nm以上10μm以下の球の一部として近似される凸部の一部が存在する5μm角の個数を表しており、10/10の場合は、全ての5μm角に直径20nm以上10μm以下の球の一部として近似される凸部の一部が存在していることを示す。本発明の実施例においては、凸部分布がよいために、SnO2付きガラス基板よりも高い効率の太陽電池セルの作製ができた。一方、比較例では、いずれも十分な凹凸を得ることができず、効率が低かった。 The convexity distribution represents the number of 5 μm squares that have some convex parts that are approximated as part of a sphere having a diameter of 20 nm or more and 10 μm or less, out of 10 arbitrarily set 5 μm squares. In the case of (5), it is shown that there is a part of a convex portion approximated as a part of a sphere having a diameter of 20 nm or more and 10 μm or less in all 5 μm squares. In the example of the present invention, since the convex portion distribution was good, a solar cell with higher efficiency than the glass substrate with SnO 2 could be produced. On the other hand, in the comparative examples, sufficient unevenness could not be obtained, and the efficiency was low.

本発明の凹凸表面構造。The uneven surface structure of the present invention. 実施例1で作製した膜表面を真上から見たSEM写真。2 is an SEM photograph of the film surface produced in Example 1 as seen from directly above. 実施例1で作製した膜表面を斜め上方から見たSEM写真。The SEM photograph which looked at the film | membrane surface produced in Example 1 from diagonally upward. 比較例1で作製した膜表面を真上から見たSEM写真。The SEM photograph which looked at the film surface produced in comparative example 1 from right above.

符号の説明Explanation of symbols

11 最表面の凹凸構造
12 凸部を近似した球
13 凸部を近似した球
14 平坦面
11 Uneven structure on the outermost surface
12 Sphere approximating convex part
13 Sphere approximating convex part
14 Flat surface

Claims (5)

表面に絶縁膜を有するステンレス箔であって、絶縁膜の最表面が、Si−R結合(Rは有機基又は水素)を含むシロキサン結合を主体とし、かつ、直径300nm以上3μm以下の球の一部として近似される凸部による表面凹凸構造を有し、その凸部はゾルゲル法によってその場形成したものであり、
直径300nm以上3μm以下の球の一部として近似される凸部の凸部面積が全凸部面積の90%以上、かつ、任意に設定した5μm角の領域内に前記凸部の少なくとも一部が存在する無機ポリマー膜であることを特徴とする被覆ステンレス箔。
It is a stainless steel foil having an insulating film on the surface, and the outermost surface of the insulating film is a sphere having a Si—R bond (R is an organic group or hydrogen) as a main component and a diameter of 300 nm to 3 μm. It has a surface concavo-convex structure with a convex part approximated as a part, and the convex part is formed in situ by a sol-gel method,
The convex part area of the convex part approximated as a part of a sphere having a diameter of 300 nm or more and 3 μm or less is 90% or more of the total convex part area, and at least a part of the convex part is in a 5 μm square region arbitrarily set. A coated stainless steel foil characterized by being an existing inorganic polymer film.
前記任意に設定した5μm角の領域内において、球の一部として近似される凸部の凸部面積の割合が5%以上90%以下であることを特徴とする請求項1に記載の被覆ステンレス箔。   2. The coated stainless steel according to claim 1, wherein in the arbitrarily set 5 μm square region, the ratio of the convex portion area of the convex portion approximated as a part of a sphere is 5% or more and 90% or less. Foil. 前記Si−R結合のRがメチル基又はフェニル基の一方又は両方であり、かつ、Siに対するRのモル比が0.5以上2.2以下であることを特徴とする請求項1または2に記載の被覆ステンレス箔。   The R of the Si-R bond is one or both of a methyl group and a phenyl group, and the molar ratio of R to Si is 0.5 or more and 2.2 or less. The coated stainless steel foil described. 前記絶縁膜の厚さが4μm以上300μm以下であることを特徴とする請求項1〜3のいずれか1項に記載の被覆ステンレス箔。   The thickness of the said insulating film is 4 micrometers or more and 300 micrometers or less, The covering stainless steel foil of any one of Claims 1-3 characterized by the above-mentioned. 請求項1〜4のいずれか1項に記載の被覆ステンレス箔を基板に用いてなることを特徴とする薄膜太陽電池。   A thin film solar cell comprising the coated stainless steel foil according to any one of claims 1 to 4 as a substrate.
JP2005272359A 2005-09-20 2005-09-20 Coated stainless steel foil and thin film solar cell Expired - Fee Related JP5219332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005272359A JP5219332B2 (en) 2005-09-20 2005-09-20 Coated stainless steel foil and thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005272359A JP5219332B2 (en) 2005-09-20 2005-09-20 Coated stainless steel foil and thin film solar cell

Publications (2)

Publication Number Publication Date
JP2007088044A JP2007088044A (en) 2007-04-05
JP5219332B2 true JP5219332B2 (en) 2013-06-26

Family

ID=37974759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005272359A Expired - Fee Related JP5219332B2 (en) 2005-09-20 2005-09-20 Coated stainless steel foil and thin film solar cell

Country Status (1)

Country Link
JP (1) JP5219332B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5127277B2 (en) * 2007-04-05 2013-01-23 新日鉄住金マテリアルズ株式会社 Surface flatness insulating film forming coating solution, surface flatness insulating film coated base material, and method for producing surface flatness insulating film coated base material
JP5103145B2 (en) * 2007-11-15 2012-12-19 シャープ株式会社 Substrate for photoelectric conversion device and photoelectric conversion device using the same
JP5863380B2 (en) * 2011-10-14 2016-02-16 新日鉄住金マテリアルズ株式会社 Stainless steel foil with insulating coating for solar cell and method for producing the same
KR101482446B1 (en) * 2013-10-29 2015-01-14 주식회사 포스코 Thin film type ci(g)s solar cell substrate and method for manufacturing the same
WO2021162992A1 (en) * 2020-02-14 2021-08-19 Evonik Corporation Anti-corrosion kit and anti-corrosion agent formed therefrom

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6450472A (en) * 1987-08-20 1989-02-27 Taiyo Yuden Kk Amorphous semiconductor solar cell
JP2000183376A (en) * 1998-12-17 2000-06-30 Nisshin Steel Co Ltd Insulation base material for solar cell and manufacturing method for the board
JP2001102605A (en) * 1999-09-29 2001-04-13 Tdk Corp Solar cell
JP4865119B2 (en) * 1999-12-24 2012-02-01 日新製鋼株式会社 Insulating substrate for solar cell having excellent heat resistance and method for producing the same
JP4526197B2 (en) * 2000-07-18 2010-08-18 日新製鋼株式会社 Method for manufacturing insulating substrate for thin film polycrystalline silicon solar cell
JP2002097365A (en) * 2000-09-25 2002-04-02 Nisshin Steel Co Ltd Insulating substrate for thin-film polycrystal silicon solar battery, and method for producing the same
JP2003264302A (en) * 2002-03-11 2003-09-19 Nisshin Steel Co Ltd Insulating substrate for thin film solar battery superior in dielectric strength
JP2003303979A (en) * 2002-04-08 2003-10-24 Nisshin Steel Co Ltd Insulating substrate for thin-film polycrystalline silicon solar battery, and method for manufacturing the same
US20070111014A1 (en) * 2003-08-01 2007-05-17 Dow Corning Corporation Silicone based dielectric coatings and films for photovoltaic applications
JP4676686B2 (en) * 2003-09-01 2011-04-27 新日本製鐵株式会社 Stainless steel foil coated with silica-based inorganic polymer film and method for producing the same
JP4889259B2 (en) * 2005-02-28 2012-03-07 新日鉄マテリアルズ株式会社 Coated stainless steel foil for silicon thin film solar cell and silicon thin film solar cell using the same

Also Published As

Publication number Publication date
JP2007088044A (en) 2007-04-05

Similar Documents

Publication Publication Date Title
JP4676686B2 (en) Stainless steel foil coated with silica-based inorganic polymer film and method for producing the same
Fillion et al. A review of icing prevention in photovoltaic devices by surface engineering
CN103421423B (en) A kind of in-situ preparation method of resistant to elevated temperatures super-hydrophobic coat
JP4860448B2 (en) Insulated metal foil for electronic device fabrication
JP5219332B2 (en) Coated stainless steel foil and thin film solar cell
JP5814512B2 (en) OPTICAL MEMBER, ITS MANUFACTURING METHOD, AND OPTICAL SYSTEM
US8586190B2 (en) Inorganic—organic hybrid-film-coated stainless-steel foil
JP4889259B2 (en) Coated stainless steel foil for silicon thin film solar cell and silicon thin film solar cell using the same
Heale et al. Slippery liquid infused porous TiO2/SnO2 nanocomposite thin films via aerosol assisted chemical vapor deposition with anti-icing and fog retardant properties
JP5004623B2 (en) Insulating coated stainless steel foil for amorphous silicon solar cell and method for producing the same
JP6328885B2 (en) Coating composition and laminate
WO2012030696A1 (en) Process for particle doping of scattering superstrates
JP2011107359A5 (en) Optical article and method of manufacturing optical article
JP5251904B2 (en) Stainless foil coated with silica-based inorganic polymer film and silicon thin film solar cell using the same
CN107474594B (en) A kind of anti-corrosion, high temperature resistant, ageing-resistant aluminium sheet and aluminium alloy plate and preparation method thereof
JP5863380B2 (en) Stainless steel foil with insulating coating for solar cell and method for producing the same
JP2011003932A (en) Coated stainless foil for silicon thin film solar battery and silicon thin film solar battery utilizing the same
JP2012094830A (en) Transparent conductive film composition for solar battery and transparent conductive film
JP2012151387A (en) Composition for transparent conductive film of solar cell and transparent conductive film
CN102005492B (en) High-fluorine mixcrystal coating solar photovoltaic cell back panel and manufacture method thereof
TW201245215A (en) Composition for conductive film of solar cell and conductive film
CN110546117B (en) Transparent substrate with low-reflection film, photoelectric conversion device, coating liquid for forming low-reflection film of transparent substrate with low-reflection film, and method for producing transparent substrate with low-reflection film
JP2012094828A (en) Transparent conductive film composition for solar battery and transparent conductive film
JP7213177B2 (en) Film-coated transparent substrate, coating solution for forming film on film-coated transparent substrate, and method for producing film-coated transparent substrate
JP2010036470A (en) Laminated structure having ultra-fine particle film layer and production method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070725

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5219332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees