図1はこの発明を適用した画像形成装置の一実施形態を示す図である。また、図2は図1の画像形成装置の電気的構成を示すブロック図である。この装置は、イエロー(Y)、シアン(C)、マゼンタ(M)、ブラック(K)の4色のトナー(現像剤)を重ね合わせてフルカラー画像を形成したり、ブラック(K)のトナーのみを用いてモノクロ画像を形成する画像形成装置である。この画像形成装置では、ホストコンピュータなどの外部装置から画像信号がメインコントローラ11に与えられると、このメインコントローラ11からの指令に応じてエンジンコントローラ10に設けられたCPU101がエンジン部EG各部を制御して所定の画像形成動作を実行し、シートSに画像信号に対応する画像を形成する。
このエンジン部EGでは、感光体22が図1の矢印方向D1に回転自在に設けられている。また、この感光体22の周りにその回転方向D1に沿って、帯電ユニット23、ロータリー現像ユニット4およびクリーニング部25がそれぞれ配置されている。帯電ユニット23は所定の帯電バイアスを印加されており、感光体22の外周面を所定の表面電位に均一に帯電させる。クリーニング部25は一次転写後に感光体22の表面に残留付着したトナーを除去し、内部に設けられた廃トナータンクに回収する。これらの感光体22、帯電ユニット23およびクリーニング部25は一体的に感光体カートリッジ2を構成しており、この感光体カートリッジ2は一体として装置本体に対し着脱自在となっている。
そして、この帯電ユニット23によって帯電された感光体22の外周面に向けて露光ユニット6から光ビームLが照射される。この露光ユニット6は、外部装置から与えられた画像信号に応じて光ビームLを感光体22上に露光して画像信号に対応する静電潜像を形成する。
こうして形成された静電潜像は現像ユニット4によってトナー現像される。すなわち、この実施形態では、現像ユニット4は、図1紙面に直交する回転軸中心に回転自在に設けられた支持フレーム40、支持フレーム40に対して着脱自在のカートリッジとして構成されてそれぞれの色のトナーを内蔵するイエロー用の現像器4Y、シアン用の現像器4C、マゼンタ用の現像器4M、およびブラック用の現像器4Kを備えている。この現像ユニット4は、エンジンコントローラ10により制御されている。そして、このエンジンコントローラ10からの制御指令に基づいて、現像ユニット4が回転駆動されるとともにこれらの現像器4Y、4C、4M、4Kが選択的に感光体22と所定のギャップを隔てて対向する所定の現像位置に位置決めされると、当該現像器に設けられて選択された色のトナーを担持する現像ローラ44が感光体22に対し対向配置され、その対向位置において現像ローラ44から感光体22の表面にトナーを付与する。これによって、感光体22上の静電潜像が選択トナー色で顕像化される。
図3は現像器の外観を示す図である。また、図4は現像器の構造および現像バイアス波形を示す図である。より詳しくは、図4(a)は現像器の構造を示す断面図である。また、図4(b)は現像バイアス波形と感光体表面電位との関係を示す図である。各現像器4Y、4C、4M、4Kはいずれも同一構造を有している。したがって、ここでは、現像器4Kの構成について図3および図4(a)を参照しながらさらに詳しく説明するが、その他の現像器4Y、4C、4Mについてもその構造および機能は同じである。
この現像器4Kでは、その内部に非磁性一成分トナーTを収容するハウジング41に供給ローラ43および現像ローラ44が回転自在に軸着されており、当該現像器4Kが上記現像位置に位置決めされると、現像ローラ44が感光体2と現像ギャップDGを隔てて対向位置決めされるとともに、これらのローラ43、44が本体側に設けられた回転駆動部(図示省略)と係合されて所定の方向に回転する。供給ローラ43は例えば発泡ウレタンゴム、シリコンゴムなどの弾性材料により円筒状に形成されている。また、現像ローラ44は、銅、アルミニウム、ステンレス等の金属または合金により円筒状に形成されている。そして、2つのローラ43、44が接触しながら回転することでトナーが現像ローラ44の表面に擦り付けられて所定厚みのトナー層が現像ローラ44表面に形成される。この実施形態では負帯電トナーを用いるが、正帯電トナーであってもよい。
ハウジング41の内部空間は隔壁41aによって第1室411および第2室412に仕切られている。供給ローラ43および現像ローラ44はともに第2室412に設けられており、これらのローラの回転に伴って第2室412内のトナーが流動し攪拌されながら現像ローラ44の表面に供給される。一方、第1室411に貯留されているトナーは、供給ローラ43および現像ローラ44とは隔離されているので、これらの回転によっては流動しない。このトナーは、現像ユニット4が現像器を保持したまま回転することによって、第2室412に貯留されたトナーと混合され攪拌される。
このように、この現像器では、ハウジング内部を2室に仕切り、供給ローラ43および現像ローラ44の周囲をハウジング41の側壁および隔壁41aで囲み比較的容積の小さい第2室412を設けることにより、トナー残量が少なくなった場合でも、トナーが効率よく現像ローラ44の近傍に供給されるようにしている。また、第1室411から第2室412へのトナー供給およびトナー全体の攪拌を現像ユニット4の回転によって行うようにすることで、現像器内部にトナー攪拌のための攪拌部材(オーガ)を省いたオーガレス構造を実現している。
また、この現像器4Kでは、現像ローラ44の表面に形成されるトナー層の厚みを所定厚みに規制するための規制ブレード46が配置されている。この規制ブレード46は、ステンレスやリン青銅などの弾性を有する板状部材461と、板状部材461の先端部に取り付けられたシリコンゴムやウレタンゴムなどの樹脂部材からなる弾性部材462とで構成されている。この板状部材461の後端部はハウジング41に固着されており、図4の矢印に示す現像ローラ44の回転方向D4において、板状部材461の先端部に取り付けられた弾性部材462が板状部材461の後端部よりも上流側に位置するように配設されている。そして、その弾性部材462が現像ローラ44表面に弾性的に当接することで規制ニップを形成し、現像ローラ44の表面に形成されるトナー層を最終的に所定の厚みに規制する。
このようにして現像ローラ44の表面に形成されたトナー層は、現像ローラ44の回転によって順次、その表面に静電潜像が形成されている感光体2との対向位置に搬送される。そして、エンジンコントローラ10に制御されるバイアス用電源140からの現像バイアスが現像ローラ44に印加される。図4(b)に示すように、感光体22の表面電位Vsは、帯電ユニット23により均一に帯電された後露光ユニット6からの光ビームLの照射を受けた露光部では残留電位Vr程度にまで低下し、光ビームLが照射されなかった非露光部ではほぼ均一の電位Voとなっている。一方、現像ローラ44に与えられる現像バイアスVbは直流電位Vaveを重畳した矩形波交流電圧であり、そのピーク間電圧を符号Vppにより表す。このような現像バイアスVbが印加されることにより、現像ローラ44上に担持されたトナーは現像ギャップDGにおいて飛翔して感光体22の表面各部にその表面電位Vsに応じて部分的に付着し、こうして感光体22上の静電潜像が当該トナー色のトナー像として顕像化される。
現像バイアス電圧Vbとしては、例えば、ピーク間電圧Vppが1500V、周波数が3kHz程度の矩形波電圧を用いることができる。また、その直流成分Vaveは、感光体22の残留電位Vrとの電位差がいわゆる現像コントラストとなり画像濃度に影響を与えるので、所定の画像濃度を得るために必要な値とすることができる。
さらに、ハウジング41には、現像ローラ44の回転方向において感光体22との対向位置よりも下流側で現像ローラ44表面に圧接されたシール部材47が設けられている。シール部材47は、詳しくは後述する柔軟性を有する樹脂材料により形成され、現像ローラ44の回転軸に平行な方向Xに沿って延びる帯状のフィルムであり、長手方向Xに直交する短手方向(現像ローラ44の回転方向に沿った方向)における一方端部がハウジング41に固着されるとともに、他方端部が現像ローラ44表面に当接されている。他方端部は現像ローラ44の回転方向D4における下流側に向かうように、いわゆるトレイル方向に現像ローラ44に当接されており、感光体22との対向位置を通過した現像ローラ44表面に残留しているトナーをハウジング41内に案内するともに、ハウジング内のトナーが外部へ漏れ出すのを防止している。
図5は現像ローラおよびその表面の部分拡大図を示す図である。現像ローラ44は略円筒形のローラ状に形成されており、その長手方向の両端にはローラと同軸にシャフト440が設けられており、該シャフト440が現像器本体により軸支されて現像ローラ44全体が回転自在となっている。現像ローラ44表面のうちその中央部44aには、図5の部分拡大図(点線円内)に示すように、規則的に配置された複数の凸部441と、それらの凸部441を取り囲む凹部442とが設けられている。
複数の凸部441のそれぞれは、図5紙面の手前側に向けて突出しており、各凸部441の頂面は、現像ローラ44の回転軸と同軸である単一の円筒面の一部をそれぞれ成している。また、凹部442は凸部441の周りを網目状に取り囲む連続した溝となっており、凹部442全体も現像ローラ44の回転軸と同軸かつ凸部のなす円筒面とは異なる1つの円筒面をなす。そして、凸部441とそれを取り囲む凹部442との間は緩やかな側面443によって繋がれている。すなわち、該側面443の法線は現像ローラ44の半径方向外向き(図において上方)、つまり現像ローラ44の回転軸から遠ざかる方向の成分を有する。
図1に戻って画像形成装置の説明を続ける。上記のようにして現像ユニット4で現像されたトナー像は、一次転写領域TR1で転写ユニット7の中間転写ベルト71上に一次転写される。転写ユニット7は、複数のローラ72〜75に掛け渡された中間転写ベルト71と、ローラ73を回転駆動することで中間転写ベルト71を所定の回転方向D2に回転させる駆動部(図示省略)とを備えている。そして、カラー画像をシートSに転写する場合には、感光体22上に形成される各色のトナー像を中間転写ベルト71上に重ね合わせてカラー画像を形成するとともに、カセット8から1枚ずつ取り出され搬送経路Fに沿って二次転写領域TR2まで搬送されてくるシートS上にカラー画像を二次転写する。
このとき、中間転写ベルト71上の画像をシートS上の所定位置に正しく転写するため、二次転写領域TR2にシートSを送り込むタイミングが管理されている。具体的には、搬送経路F上において二次転写領域TR2の手前側にゲートローラ81が設けられており、中間転写ベルト71の周回移動のタイミングに合わせてゲートローラ81が回転することにより、シートSが所定のタイミングで二次転写領域TR2に送り込まれる。
また、こうしてカラー画像が形成されたシートSは定着ユニット9によりトナー像を定着され、排出前ローラ82および排出ローラ83を経由して装置本体の上面部に設けられた排出トレイ部89に搬送される。また、シートSの両面に画像を形成する場合には、上記のようにして片面に画像を形成されたシートSの後端部が排出前ローラ82後方の反転位置PRまで搬送されてきた時点で排出ローラ83の回転方向を反転し、これによりシートSは反転搬送経路FRに沿って矢印D3方向に搬送される。そして、ゲートローラ81の手前で再び搬送経路Fに乗せられるが、このとき、二次転写領域TR2において中間転写ベルト71と当接し画像を転写されるシートSの面は、先に画像が転写された面とは反対の面である。このようにして、シートSの両面に画像を形成することができる。
また、図2に示すように、各現像器4Y,4C,4Mおよび4Kには該現像器の製造ロットや使用履歴、内蔵トナーの残量などに関するデータを記憶するメモリ91〜94がそれぞれ設けられている。さらに、各現像器4Y,4C,4M、4Kには無線通信器49Y、49C、49M、49Kがそれぞれ設けられている。そして、必要に応じて、これらが選択的に本体側に設けられた無線通信器109と非接触にてデータ通信を行い、インターフェース105を介してCPU101と各メモリ91〜94との間でデータの送受を行って該現像器に関する消耗品管理等の各種情報の管理を行っている。なお、この実施形態では、無線通信等の電磁的手段を用いて非接触にてデータ送受を行っているが、本体側および各現像器側にコネクタ等を設け、コネクタ等を機械的に嵌合させることで相互にデータ送受を行うようにしてもよい。
また、この装置では、図2に示すように、メインコントローラ11のCPU111により制御される表示部12を備えている。この表示部12は、例えば液晶ディスプレイにより構成され、CPU111からの制御指令に応じて、ユーザへの操作案内や画像形成動作の進行状況、さらに装置の異常発生やいずれかのユニットの交換時期などを知らせるための所定のメッセージを表示する。
なお、図2において、符号113はホストコンピュータなどの外部装置よりインターフェース112を介して与えられた画像を記憶するためにメインコントローラ11に設けられた画像メモリである。また、符号106はCPU101が実行する演算プログラムやエンジン部EGを制御するための制御データなどを記憶するためのROM、また符号107はCPU101における演算結果やその他のデータを一時的に記憶するRAMである。
また、ローラ75の近傍には、クリーナ76が配置されている。このクリーナ76は図示を省略する電磁クラッチによってローラ75に対して近接・離間移動可能となっている。そして、ローラ75側に移動した状態でクリーナ76のブレードがローラ75に掛け渡された中間転写ベルト71の表面に当接し、二次転写後に中間転写ベルト71の外周面に残留付着しているトナーを除去する。
さらに、ローラ75の近傍には、濃度センサ60が配置されている。この濃度センサ60は、中間転写ベルト71の表面に対向して設けられており、必要に応じ、中間転写ベルト71の外周面に形成されるトナー像の画像濃度を測定する。そして、その測定結果に基づき、この装置では、画像品質に影響を与える装置各部の動作条件、例えば各現像器に与える現像バイアスや、露光ビームLの強度、さらには装置の階調補正特性などの調整を行っている。
この濃度センサ60は、例えば反射型フォトセンサを用いて、中間転写ベルト71上の所定面積の領域の濃淡に対応した信号を出力するように構成されている。そして、CPU101は、中間転写ベルト71を周回移動させながらこの濃度センサ60からの出力信号を定期的にサンプリングすることで、中間転写ベルト71上のトナー像各部の画像濃度を検出することができる。
次に、上記のように構成された画像形成装置の現像器4K等における、現像ローラ44上のトナー層規制の詳細について説明する。上記のようにトナーを担持する現像ローラ44表面に凹凸を設けた構成においては、その凸部441および凹部442の双方にトナーを担持させることが可能であるが、この実施形態では、規制ブレード46を直接現像ローラ44表面の凸部441に当接することにより凸部441のトナーを除去するようにしている。このようにする理由は以下の通りである。
まず、凸部441に均一なトナー層を形成するためには規制ブレード46と凸部441とのギャップの精密な管理が必要となるが、凹部442のみにトナーを担持させるためには規制ブレード46と凸部442とを当接させて凸部441のトナーを全て除去すればよいので実現が比較的容易である。また、搬送されるトナーの量は規制ブレード46と凹部442との隙間に生じる空間の容積によって決まるので、トナー搬送量を安定させることができる。
また、搬送されるトナー層の良好さという点においても利点がある。すなわち、凸部441にトナーを担持させると規制ブレード46との摺擦に起因するトナーの劣化が起こりやすい。具体的には、トナーの流動性や帯電性が低下したり、トナーが圧粉状態となり凝集したり現像ローラ44に固着してフィルミングを生じさせるなどの問題がある。これに対し、規制ブレード46からの押圧をあまり受けない凹部442にトナーを担持させるとこのような問題が起こりにくい。また、凸部441に担持されるトナーと凹部442に担持されるトナーとでは規制ブレード46との摺接のされ方が大きく異なるため、トナーの帯電量のばらつきが大きくなることが予想されるが、凹部442のみにトナーを担持させることでこのようなばらつきも抑えられる。
特に近年では、画像の高精細化やトナー消費量および消費電力の削減を実現するためにトナーの小粒径化や定着温度の低温化が求められているが、本実施形態の構成はこのような要求にも対応することが可能なものである。小粒径トナーにおいては帯電の立ち上がりが鈍いにもかかわらず飽和帯電量が高いため、凸部441に担持されたトナーは凹部442に担持されたトナーよりも帯電量が著しく高く(過帯電)なる傾向にある。このような帯電量の差はいわゆる現像履歴として画像に現れる。また、低融点トナーでは摺擦によるトナー同士または現像ローラ44等への固着が起きやすい。しかしながら、凹部442のみにトナーを担持する本実施形態の構成ではこのような問題は生じにくい。
図6はこの発明にかかる現像ローラの製造方法の概要を示す図である。本実施形態の現像ローラ44は、銅、アルミニウム、ステンレス等の金属または合金製の円筒または円柱形状を有するローラ素材400に、互いに交わる二種類の溝を形成することによって製造することができる。より具体的には、図6(a)に示すように、互いに同一方向に回転する1対のダイス901、902をローラ素材400の表面に押し当てながら所定方向に送る通し転造加工によって、ローラ素材400の表面につるまき線状の溝を形成する。
ダイス901の回転軸A1とローラ素材400の中心軸A4とは平行ではなくわずかに(例えば1度)傾けられる。また、ダイス902の回転軸A2とローラ素材400の中心軸A4との間も、上記とは反対方向かつ同じ大きさ(例えば−1度)に傾けられる。こうすることにより、ローラ素材400にはダイス901および902の回転に起因するスラスト力が作用することとなり、ダイス901および902を回転させるとローラ素材400が軸方向に沿って送られることになる。図6(a)に示す例では、ダイス901および902の回転によってローラ素材400は矢印方向D8に回転しながら図の矢印方向D9に沿って送られる。
詳細な図示を省略しているが、ダイス901、902それぞれの外周面には、螺旋状の突起が形成されている。これらの突起をローラ素材400に押し当てることにより、ローラ素材400の外周面には格子状に交わる2種類の溝が刻まれて、この溝が現像ローラ表面の凹部442として機能する。また、溝に囲まれた多数の突起部が現像ローラ表面の凸部441として機能することとなる。
また、ローラ素材400の送り方向D9に沿って、ガイド903が延設されている。ガイド903は、図6(b)に示すように、ダイス901、902がそれぞれローラ素材400と当接する当接位置P1、P2とはローラ素材400の中心軸A4を挟んで反対側の第3の位置P3でローラ素材400の表面に当接して、ダイス901、902の押圧に起因するローラ素材400の位置ずれや撓みを防止するバックアップ手段として機能している。
ダイス901、902がローラ素材400の表面に対し転がるように当接されているのに対して、ガイド903は固定されている。このため、ローラ素材400はその表面をガイド903に摺擦されながら、矢印方向D8に回転するとともに矢印方向D9に送られることとなる。このとき、ローラ素材400表面の軸方向に沿った移動量に比べて、周方向の移動量の方が大きい。
図7は通し転造加工により形成される凹凸の断面形状を説明する図である。より詳しくは、ダイス901、902を押圧されたローラ素材400の表面を、その中心軸A4に直交する切断面から見た断面図である。なお、図7では、図面を見やすくするために図6とは上下を逆転させて示している。図7(a)に示すように、突起部を有するダイス901、902を押圧されたローラ素材表面では、突起部が押し当てられた位置に溝402が彫り込まれる一方、突起部と当接しなかった表面401は元の円筒面が保たれて、溝402に対し相対的に突出した凸部の頂面となる。溝402と凸部頂面401とを接続する面403は凸部の側面となる。また、凸部頂面401と側面402とが交わるエッジ部404の周辺では、ダイスにより側方へ押しやられた素材により元の円筒面より盛り上がった盛り上がり部405が生じる。
図7(b)に示すように、この盛り上がり部405はガイド903と摺擦されることによって移動方向における後方側、つまり回転方向D8におけるほぼ上流側に向かう押圧力を受ける。その結果、盛り上がり部405が上流側に押し出されて塑性変形し、図7(c)に示すように、回転に伴う移動方向D8における後方側に相当する凸部頂面401の上流側エッジ部404aでは、上流側に向けてバリ状に突出した突出部406が形成される一方、下流側エッジ部404bではより角が鈍ることになる。
この実施形態では、上記のようにしてローラ素材400に凹凸を形成してなる加工後の金属筒をハウジング41(図4)に回転自在に軸着することで、これを現像ローラ44として機能させる。すなわち、ローラ素材400表面に形成された溝402が現像ローラ44における凹部442に相当し、また元の円筒面401が凸部441に相当している。
そして、上記のように凸部441のエッジ部の形状が加工時の回転方向D8の上流側と下流側とで異なっていることに鑑み、この実施形態では、現像器4K等に組み込まれた現像ローラ44の画像形成動作時における回転方向D4(図4)が通し転造加工時の回転方向D8とは反対となるように、現像ローラ44を現像器4Kに取り付けるようにしている。そのようにする理由について以下に説明する。
図8は現像ローラのエッジ部の形状を示す拡大図である。上記のようにハウジング41に現像ローラ44を取り付けることにより、図8(a)に示すように、現像ローラ44の表面に形成された凸部441の頂面のうち、バリ状の突出部446が形成されたエッジ部444aは、画像形成動作時の移動方向D4において前方側に位置することになる。この前方側エッジ部444aにおいて、凸部441の頂面とこれに接続する側面443とのなす角を符号αにより表す。一方、画像形成動作時の移動方向D4において後方側に位置する後方側エッジ部444bにおいて凸部441の頂面と側面443とのなす角を符号βにより表す。また、後の議論のために、凸部441と凹部442との高低差を符号Hにより表す。
上記した通し転造加工法では、金属筒の外周面にダイスを当てて窪ませることにより凹部442を形成しているため、後方側エッジ部444bにおける角度βは90度より大きい。これに対し、突出部446が生じている前方側エッジ部444aでは、角度αは角度βよりも小さく鋭いエッジとなっている。
このような現像ローラ44表面にシール部材47を当接させて現像ローラ44を回転方向D4に回転させた場合、図8(b)に示すように、凸部441は突出部446側を先頭にしてシール部材47の表面471に接近してゆき当接する。このため、シール部材表面471に何らかの付着物Pが付着していた場合、突出部446により鋭い角度αを有するエッジ部444aがこれを掻き取る作用をすることになる。
これに対して、図8(c)に示すように、現像ローラ44の取り付け方向を反対にして加工時の回転方向D8と動作時の回転方向D4とを同じにした比較例では、より角度の大きい緩やかなエッジ部444bが先頭になってシール部材表面471に当接する。このため、シール部材表面471の付着物Pが効果的に掻き取られず、むしろ凸部441の頂面とシール部材471とが当接するニップ部に押し込まれることになる。
本願発明者らの知見によれば、シール部材47の表面に付着する付着物Pは、主に小径のトナー粒子やトナー粒子から離脱したワックスや外添剤等の微粒子である。これらの粒子は、圧力および摩擦を受けると軟化してシール部材47や現像ローラ44に融着しやすい。また、こうしてシール部材47や現像ローラ44表面に融着した融着物はさらに他のトナー粒子や外添剤等の付着を招き、フィルミングを生じさせる。また、シール部材471表面に厚く固着した付着物が現像ローラ44との間でシール不良を引き起こし、これがトナーの漏れにつながる。特に低融点化が図られたトナーにおいてはこのような問題が顕著である。
本実施形態では、図8(b)に示すように、現像ローラ44の回転に伴う凸部441の移動が突出部446を有するエッジ部444aを先頭にして行われるようにしているため、シール部材表面471に付着した付着物Pを効果的に掻き取ることができ、シール部材47への付着物に起因するトナー漏れやフィルミングを防止することが可能となっている。ここで、先頭側エッジ部444aの角度αは90度以下であることが望ましい。こうすることにより、シール部材表面471の付着物Pをニップ部に送り込んでしまうことが防止される。また、掻き取られた物質をより積極的に当接部位から引き離しニップ部への侵入を確実に防止するためには、先頭側エッジ部444aの角度αは90度よりも小さい鋭角であることが望ましい。なお、突出部446の大きさや前方側への突出の程度は、ローラ素材400へのダイス901、902やガイド903の当接圧によって増減することが可能である。
図9は本実施形態におけるフィルミング防止効果を示す図である。図8(c)に示すように、突出部446が移動方向D4において後方側になるように現像ローラ44をハウジング41に取り付けた比較例における、シール部材表面471および現像ローラ44表面の状態を図9(a)に示す。同図に示すように、顕微鏡観察によれば、シール部材表面471には凸部の配列ピッチに対応する周期的なスジ状の融着物Fが見られた。また、現像ローラ44表面では、移動方向D4における凸部441の前方側頂点の近傍にトナーTが集中的に固着してフィルミングを起こしているのが観察された。
これに対して、図8(b)に示すように突出部446が移動方向D4において前方側になるように現像ローラ44をハウジング41に取り付けた本実施形態では、図9(b)に示すように、シール部材471への融着物および現像ローラ44上への固着トナーのいずれもほとんど観察されなかった。このことから、通し転造加工時に生じた突出部446を先頭側にして現像ローラ44を回転させることが、シール部材47へのトナー等の固着を抑えてトナー漏れやフィルミング等を防止する上で有効であることがわかる。また、現像ローラ44表面へのトナー固着は規制ブレード462や供給ローラ43へのトナー固着の原因ともなるが、本実施形態の構成によれば、このような問題の発生も防止することができる。
また、シール部材47へのトナー等の固着を抑えるためには、現像ローラ44表面の凸部441と凹部442との高低差(図8(a)に示す符号H)も重要である。この高低差Hについては、少なくとも使用トナーの体積平均粒径よりも大きいことが望ましい。というのは、高低差Hがトナーの体積平均粒径以下であるとき、凹部442に担持されたトナーのうち凸部441よりも上方に突出してシール部材47と接触するものが多くなるため、外添剤等のシール部材47への融着が起きやすくなるからである。また、大径のトナーがシール部材47を押し上げてエッジ部444aによる掻き取り効果を減殺してしまうこともある。本願発明者らの実験では、高低差Hをトナーの体積平均粒径の1.5倍程度としたときこのような問題はほとんど生じなかった。
なお、このように鋭いエッジ部444aを先頭側にして現像ローラ44を回転させるため、これに摺擦されるシール部材47の磨耗が装置寿命の点で問題となり得る。したがってシール部材47のうち、少なくとも現像ローラ44と当接する部分に関しては、耐摩耗性の高い材質により形成されることが好ましい。このような材質としては、例えば高分子ポリエチレン樹脂を使用することができる。本願発明者らの実験では、平均分子量が2万〜10万程度の一般的なポリエチレン樹脂やフッ素系樹脂は耐久性の点で十分ではなく、平均分子量が100万以上の架橋ポリエチレン樹脂が望ましい。このような材質は、摩擦係数が低く、高い耐久性および形状安定性を有する点でシール部材として好適である。例えば、日東電工株式会社製超高分子量ポリエチレンフィルムNo.440を好適に用いることができる。
以上のように、この実施形態では、円筒または円柱形状を有する金属製のローラ素材400にダイス901、902およびガイド903を押圧する通し転造加工によってローラ素材400の表面に規則的な凹凸を形成し、これを現像ローラ44として現像器4K等に組み込んでいる。そして、現像器4K等に組み込まれ画像形成動作に使用されるときの現像ローラ44の回転方向D4が、通し転造加工時のローラ素材400の回転方向D8とは反対となるようにしている。そのため、各凸部の頂面とこれに接続する側面とがなす角は、現像ローラ44の移動方向D4における前方側(角度α)でその後方側(角度β)よりも小さくなっている。
このような構成とすることにより、シール部材表面471の付着物に対する凸部441のエッジ部444aによる高い掻き取り効果が得られる。その結果、この実施形態では、シール部材47へのトナー等の固着に起因する現像器からのトナー漏れや、現像ローラ44、供給ローラ43や規制ブレード46上でのフィルミングを効果的に防止することが可能となっている。
以上説明したように、この実施形態では、現像器4C,4K,4M,4Yが本発明の「現像装置」として機能しており、それを構成するハウジング41、現像ローラ44、規制ブレード46およびシール部材47がそれぞれ本発明の「ハウジング」、「トナー担持ローラ」、「規制部材」および「シール部材」として機能している。また、感光体2が本発明の「像担持体」として機能している。また、図6に示した通し転造加工によってローラ素材400表面に凹凸を形成する工程が本発明の「表面加工工程」に相当し、こうして形成された現像ローラ44およびシール部材47をハウジング41に取り付ける工程が本発明の「組立工程」に相当している。
なお、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記実施形態では、現像ローラ44表面に形成された凸部441の配列は現像ローラ44の周方向に沿ったものであるが、例えば次に説明するようにこの方向からずれた方向に配列するようにしてもよい。
図10は凸部の配列の他の例を示す図である。図10に示すように、周方向における凸部541の並びを表す線L1を考えたとき、この例では周方向における凸部541の並びを表す線L1が、現像ローラ44の回転に伴う表面の移動方向D4と平行でなく少しずれている。このようにすると、通し転造加工により形成される突出部546が当接するシール部材47上の位置が、現像ローラ44の回転に伴って少しずつ軸方向に移動してゆくこととなる。すなわち、突出部546による掻き取り効果が発揮されるシール部材47上の位置が、軸方向に分散されることとなる。こうすることで、幅方向におけるシール部材47の全体にわたってトナー等が固着するのを防止することができる。通し転造加工に使用する2つのダイス901、902それぞれに設ける突起部のピッチや角度を互いに異ならせることで、このような凸部の配列を有する現像ローラを作製することが可能である。
また、上記実施形態の画像形成装置は、ロータリー現像ユニット4に現像器4K等を装着したカラー画像形成装置であるが、本発明の適用対象はこれに限定されるものではない。例えば、中間転写ベルトに沿って複数の現像器を並べたいわゆるタンデム方式のカラー画像形成装置や、現像器を1個だけ備えてモノクロ画像を形成するモノクロ画像形成装置に対しても本発明を適用することが可能である。
22…感光体(像担持体)、 41…ハウジング、 44…現像ローラ(トナー担持ローラ)、 46…規制ブレード(規制部材)、 47…シール部材、 441…(現像ローラ表面の)凸部、 442…(現像ローラ表面の)凹部、 901,902…ダイス、 903…ガイド(バックアップ手段)