JP5194862B2 - 二次元画像検出器 - Google Patents

二次元画像検出器 Download PDF

Info

Publication number
JP5194862B2
JP5194862B2 JP2008030632A JP2008030632A JP5194862B2 JP 5194862 B2 JP5194862 B2 JP 5194862B2 JP 2008030632 A JP2008030632 A JP 2008030632A JP 2008030632 A JP2008030632 A JP 2008030632A JP 5194862 B2 JP5194862 B2 JP 5194862B2
Authority
JP
Japan
Prior art keywords
semiconductor layer
temperature
charge
image detector
dimensional image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008030632A
Other languages
English (en)
Other versions
JP2009194021A (ja
Inventor
弘之 岸原
利典 吉牟田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008030632A priority Critical patent/JP5194862B2/ja
Publication of JP2009194021A publication Critical patent/JP2009194021A/ja
Application granted granted Critical
Publication of JP5194862B2 publication Critical patent/JP5194862B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、医療分野や、非破壊検査、異物検査、RI(Radio isotope)検査、および光学検査などの産業分野や、原子力分野などに用いられる光または放射線二次元画像検出器に係り、特に二次元画像検出器の光を検出する変換層の温度を管理する技術に関する。
従来より、光検出器の中でも特に放射線の二次元画像検出器として、フラットパネル型放射線検出器(以下「FPD」という)がある。この検出器は面状に構成されており、放射線を検出する変換層において放射線を取り込んで電荷を生成し、これを電気信号として画像処理手段に送り込む。具体的に説明すると、面状の変換層が基板上に積層されて放射線検出器が構成されており、入射した放射線が変換層にて電荷に変換され、2次元アレイ状に配置されたキャパシタに電荷を蓄積する。蓄積された電荷はスイッチング素子をONにすることで読み出されて、電気信号として画像処理手段に送りこまれる。
現在、放射線検出層としてアモルファスSe半導体が用いられているが、次期放射線検出層としてCdZnTeなどバンドギャップの大きい化合物半導体が有望視されている。ところが、化合物半導体はアモルファスSeに比べ抵抗率が小さいので、化合物半導体からなる半導体層にバイアス電圧をかけると暗電流が流れやすい。半導体層に流れる暗電流が大きいと信号電荷に暗電流が加算された形で読み出される。これより、暗電流が無い時と比べ、扱える電荷量が実質減り入力ダイナミックレンジが減少する。さらに、暗電流が大きいとショットノイズも増加し、S/N劣化にもつながる。
さらに、この暗電流には温度依存性があり、半導体層の温度が上昇すると暗電流も増加する。しかも、FPDには、ゲートドライバやマルチプレクサ、増幅器、A/D変換器などの発熱する電荷読み取り器が設けられており、この発熱部材が半導体層を加温し、暗電流が増加する。
そこで、特許文献1および図8に開示されているようにFPD3の電荷読み取り器(発熱部)33のある面に接して冷却機構13を設けることで発熱部材の温度を冷却し、半導体層の温度上昇を防ぐ方法がとられている。
特開2005−207906号公報
しかしながら、特許文献1に開示されている技術においても、依然、以下に示す解決できない問題点がある。従来技術では、FPDの発熱部のある面に接して冷却機構を設けているので、X線検出部41である半導体層を直接冷却することが困難である。つまり、冷却機構の冷熱は発熱部で吸収され、半導体層まで伝導しない。
また、図9(a)に示すようにX線検出部41の下方に電荷読み取り器33を配置すると、冷却機構13は、電荷読み取り器(発熱部)33の接面であるFPD3の下部の面に接して配置する。このような配置では、電荷読み取り器33を冷却できるものの、X線検出部41である半導体層までますます冷熱が伝導しにくい。このように従来例では、冷熱が半導体層に届くまでに拡散し易く、半導体層を冷却するには効率が悪い。さらには、半導体層だけではなく他の部材も一緒に冷却することになるので半導体層の温度制御の精度も悪い。さらに、図9(b)のようにFPD3の内部に冷却機構13を配置するときは、特にFPD3が小型の場合だとゲート・アンプ回路や電源回路等の回路基板があるので、冷却機構13を限られた空間に組み込むことが難しい。また、組み込めたとしても製造工程での組み立てが困難である。
本発明は、このような事情に鑑みてなされたものであって、光を検出する変換層の温度制御を適切に行うことができ、二次元画像検出器への組み込みも簡易である冷却手段または温度調節手段を備えた二次元画像検出器を提供することを目的とする。
本発明は、このような目的を達成するために、次のような構成をとる。
すなわち、請求項1に記載の発明の二次元画像検出器は、光を電荷に変換する変換層としての半導体層と前記半導体層の光入射側に配置され前記半導体層にバイアス電圧を印加するための共通電極とを有する光検出手段と、前記半導体層の周囲を取り囲むように前記共通電極の光入射側の面に配設された冷却手段または温度調節手段とを備え、前記冷却手段または前記温度調節手段は、前記共通電極を介して前記半導体層に熱的に接触していることを特徴とする。
請求項1に記載の発明によれば、二次元画像検出器の光検出手段の面上に冷却手段または温度調節手段を配設することで、光検出手段が所望の温度以上に加温されるのを防ぐことができる。これにより、二次元画像検出器内の他の部材が発熱しても影響されること無く、光線をより正確に検出できる。また、温度調節手段が備えてあれば光検出手段を冷却するだけでなく、所望の温度にて略一定に保つことができる。ここで、光とは、赤外線、可視光線、紫外線、放射線、γ線等をいう。
上記構成によれば、光検出手段の変換層を半導体層とすることで、薄型の二次元画像検出器を作成することが可能である。また、共通電極を介して半導体層と冷却手段または温度調節手段とが熱的に接触しているので、半導体層を効率良く冷却または温度調節することができる。これにより、暗電流の増加を抑えることができ、光線をより正確に検出できる。
請求項に記載の発明によれば、請求項1に記載の二次元画像検出器において、前記光検出手段は、前記半導体層と前記共通電極との間に設けられた保持基板とを備え、前記冷却手段または前記温度調節手段は、前記共通電極および前記保持基板を介して前記半導体層に熱的に接触していることを特徴とする。
上記構成によれば、半導体層と共通電極との間に保持基板が設けられることで、半導体層がより均一に冷却または温度調節される。さらには、共通電極に印加されるバイアス電圧の面内分布の偏りが低減される。
請求項に記載の発明によれば、請求項または記載の二次元画像検出器において、前記半導体層がCdTe、または、CdZnTe化合物半導体で構成されていることを特徴とする。
上記構成によれば、放射線に感応する半導体の中でもワイドギャップの化合物半導体を用いるので、より感度や検出効率が高く安定性、信頼性の高い二次元放射線画像検出器となる。
請求項に記載の発明によれば、請求項1からのいずれか記載の二次元画像検出器において、格子状に配列された電極配線と、各格子点に設けられた複数のスイッチ素子と、前記スイッチ素子を介して前記電極配線に接続され、かつ前記光検出手段にて変換された電荷を蓄積する電荷蓄積容量とからなるアクティブマトリクス基板と、前記電荷蓄積容量に蓄積された電荷を読み取る電荷読み取り器を備え、前記電荷読み取り器に熱的に接触する別の冷却手段を設けたことを特徴とする。
上記構成によれば、光検出手段にて変換された電荷を格子状に配列された画素ごとに蓄積して読み出すことができるアクティブマトリクス基板を用いるので、より緻密な画素の二次元画像検出器を作製することができる。また、二次元画像検出器内において、変換層側だけではなく、電荷読み取り器にも熱的に接触する別の冷却手段を設けるので、さらに効率の良い冷却効果を得ることができる。
この発明に係る二次元画像検出器によれば、光を検出する光検出手段の面上を冷却または温度調節することにより光検出手段の温度の上昇を抑制または温度を略一定に保持することができるので、精度の高い光検出器を提供することができる。
以下、図面を参照して本発明の実施例を説明する。本実施例では、光検出手段を備えた二次元画像検出器としてFPDを例に採るとともに、このFPDを備えたX線診断装置も例に採って説明する。
図1は、実施例に係るFPD3およびX線診断装置のブロック図であり、図2は、FPD3の構成を示す概略斜視図であり、図3はFPD3の構成を示す概略断面図であり、図4は、FPD3のX線検出部を示す概略断面図であり、図5は、FPD3の一画素当たりの等価回路図である。
《X線診断装置》
本実施例に係るFPD3を備えたX線診断装置は、図1に示すように、被検体Mを載置する天板1と、その被検体Mに向けてX線を照射するX線管2と、被検体Mを透過したX線を検出するFPD3とを備えている。FPD3は、この発明における二次元画像検出器に相当する。
X線診断装置は、他に、天板1の昇降および水平移動を制御する天板制御部4や、FPD3の走査を制御するFPD制御部5や、X線管2の管電圧や管電流を発生させる高電圧発生部6を有するX線管制御部7や、FPD3内の後述するA/D変換器40(図5参照)から出力されたX線検出信号に基づいて種々の処理を行う画像処理部8や、これらの各構成部を統括するコントローラ9や、処理された画像などを記憶するメモリ部10や、オペレータが入力設定を行う入力部11や、処理された画像などを表示するモニタ12などを備えている。
天板制御部4は、天板1を水平移動させて被検体Mを撮像位置にまで収容したり、昇降および水平移動させて被検体Mを所望の位置に設定したり、水平移動させながら撮像を行ったり、撮像終了後に水平移動させて撮像位置から退避させる制御などを行う。FPD制御部5は、FPD3を水平移動させたり、被検体Mの体軸の軸心周りに回転移動させることによる走査に関する制御などを行う。高電圧発生部6は、X線を照射させるための管電圧や管電流を発生してX線管2に与え、X線管制御部7は、X線管2を水平移動させたり、被検体Mの体軸の軸心周りに回転移動させる走査に関する制御や、X線管3側のコリメータ(図示省略)の照視野の設定の制御などを行う。なお、X線管2やFPD3の走査の際には、X線管2から照射されたX線をFPD3が検出できるようにX線管2およびFPD3が互いに対向しながらそれぞれの移動を行う。
コントローラ9は、中央演算処理装置(CPU)などで構成されており、メモリ部10は、ROM(Read−only Memory)やRAM(Random−Access Memory)などに代表される記憶媒体などで構成されている。また、入力部11は、マウスやキーボードやジョイスティックやトラックボールやタッチパネルなどに代表されるポインティングデバイスで構成されている。X線診断装置では、被検体Mを透過したX線をFPD3が検出して、検出されたX線に基づいて画像処理部8で画像処理を行うことで被検体Mの撮像を行う。
《FPD》
図2および図3に示すように、FPD3内の、X線検出部である対向基板17の面上には熱伝導性接合部材16を介して温度調節管13が配設されており、その温度調節管13の内部には、水やガスなどの熱媒体が流れている。この対向基板17は電極基板21上にX線に感応する半導体層23を積層して構成されている。上記構成により、半導体層23は熱伝導性接合部材16および電極基板21を通して温度調節管13により冷却または温度調節される。対向基板17は、本発明における光検出手段に相当する。
電極基板21は本来、半導体層23に後述するバイアス電圧34(図5参照)を印加するための電極基板であるが、本実施例では、半導体層23の面上に均一に冷熱または温熱を伝導させるための熱伝導部材としての機能も有する。そこで、電極基板21は、電気伝導性と熱伝導性に優れ、しかもX線の透過性のよい材質が求められる。本実施例ではグラファイト(カーボン)を用いているが、グラファイト以外にも上記の条件を満たす材質を選択すればよい。また、温度調節管13は半導体層23の周囲をとり囲むようにX線の検出領域外に配設されているので、電極基板21は温度調節管13を設置する分、半導体層23よりも面積が大きい。
半導体層23は、CdTe、または、CdZnTe化合物半導体で構成されている。これにより、X線感度とX線検出効率が高く、安定性、信頼性の高いFPD3を作製できる。
FPD3は筐体15により覆われている。筐体15内には、対向基板17と温度調節管13が配備され、さらに、半導体層23にてX線から変換された電荷を画像データとして送るアクティブマトリクス基板19および電荷読み取り器33が配備されている。また、X線管2から放射されたX線が半導体層23に入射されるように、筐体15には半導体層23面上に開口部が設けられている。つまり、筐体15は温度調節管13に対してはX線入射を遮るためにこれを覆い、半導体層23の面上にはX線が入射されるよう開口部が開けられている。これにより、X線が温度調節管13に反射して半導体層23に入射するのを防いでいる。さらに、筐体15には不必要なX線が筐体15内に入射しないように適宜、鉛等が張られている。
温度調節管13は熱伝導性接合部材16を介して対向基板17の面上に配設されている。熱伝導性接合部材16として本実施例では熱伝導性のシリコーン樹脂を用いているが、熱伝導性に優れていれば他の材質を使用しても良い。熱伝導性接合部材16を介することで温度調節管13が円形であっても、冷熱または温熱を効率よく対向基板17へ伝導することができる。
さらには、半導体層23には表面温度を測定する温度センサ(図示省略)が設けられている。これにより、半導体層23の温度を的確に測定することができ、また、この温度センサに接続されたペルチェ温度調節器(図示省略)等により、温度調節管13内を流れる熱媒体の温度が調節される。ペルチェ温度調節器の場合、熱媒体を冷却することもできるし、加熱することもできる。また、熱媒体の温度制御の方法はペルチェ温度調節器だけでなく、他の方法により制御してもよい。
熱媒体を常に冷媒とすると、半導体層23の温度を所望の温度より常に低く保つことができる。これにより、半導体層23を流れる暗電流の増加を防ぐことができ、ノイズの低下が実現される。
また、熱媒体の温度を冷却または加温することで、半導体層23の温度を所望の温度に略一定に保持することができる。つまり、半導体層23が予め決められた温度よりも高い場合は、半導体層23の温度よりも冷却された熱媒体を温度調節管13に流すことで半導体層23を冷却する。また、半導体層23が予め決められた温度よりも低い場合は、半導体層23の温度よりも加温された熱媒体を温度調節管13に流すことで半導体層23を加温する。こうすることで、半導体層23の温度を略一定に保つことができ、その結果、暗電流を略一定に保つことができる。これより、略一定の暗電流により生じるノイズを画像処理部8にて補正することができるので、環境温度に依存しない安定した画像を得ることができる。熱媒体を常に冷媒とするときは、温度調節管13は本発明における冷却手段に相当する。また、半導体層23の温度により熱媒体を冷却または加温する場合、温度調節管13は本発明における温度調節手段に相当する。
対向基板に貼り合わされたアクティブマトリクス基板19の周囲および下部には電荷読み取り器33が接続されている。電荷読み取り器33には後述するゲートドライバ35とマルチプレクサ37と増幅器38とA/D変換器40とを備えて配設している(図5参照)。
電荷読み取り器33は、その構造上発熱しやすい。この発熱によりアクティブマトリクス基板19を通して半導体層23が加熱され、半導体の性質上、温度が上昇すれば暗電流が増加する。これを防ぐために、温度調節管13を半導体層23を含む対向基板17の面上に半導体層23を取り囲む様に配置して半導体層23を冷却している。
X線が上記FPD3に入射すると、筐体15の開口部を通過したX線が電極基板21を透過し、半導体層23にて電荷に変換される。この変換された電荷をアクティブマトリクス基板19および電荷読み取り器33により画像データとして取り出して画像処理部8へ送られる。この動作説明は後で詳細に説明する。
図4には、対向基板17とアクティブマトリクス基板19との接合が示されている。アクティブマトリクス基板19は絶縁性基板31上に積層された電荷蓄積容量27と、同じく積層された薄膜トランジスタ(以下「TFT」という)29とから構成される。電荷蓄積容量27は半導体層23によりX線から変換された電荷を蓄積する。絶縁性基板31は例えばガラス基板やスーパーエンジニアリングプラスチックなどが採用可能である。TFT29は、XY方向に2次元マトリクス状配列でスイッチング素子として多数個形成されており、電荷蓄積容量27ごとにTFT29が互いに分離形成されている。すなわち、FPD3は、2次元アレイ放射線検出器でもある。
この対向基板17とアクティブマトリクス基板19はバンプ電極25により接着固定されている。バンプ電極25はアクティブマトリクス基板19上にスクリーン印刷やスタッドバンプ工程により形成される。この上に対向基板17を配置し、加圧保持することで接着固定される。
本実施例では半導体層23がCdZnTeまたはCdTe化合物半導体であるので、半導体層23を積層させる温度がTFT29の半導体の融点より高いので、TFT29の上に直接、化合物半導体層を積層することができない。そこで、それぞれの基板で積層させて作製した対向基板17とアクティブマトリクス基板19を、バンプ接合により接着固定している。
この構成によると、対向基板17とアクティブマトリクス基板19のそれぞれのバンプ電極25との接着面積が両基板同士の接触面積となるので、電荷読み取り器33側から冷却または加温すると冷熱または温熱が伝導する領域が基板面積よりも小さくなる。この結果、冷熱または温熱の熱伝導の効率が悪い。また、アクティブマトリクス基板19が冷却または加温されてから半導体層23が冷却または加温されるので、温度調節の反応性が悪い。よって本実施例のように、対向基板17側から冷却または加温する方が、半導体層23を直接冷却または加温するので、効率がよくかつ半導体層23の温度調節も簡易である。
また、対向基板17とアクティブマトリクス基板19との熱膨張率の相違を原因としてバンプ電極25においてそれぞれの基板が剥離するおそれがあるので、半導体層23を過冷却することを避けるのが好ましい。よって、基板剥離の問題が生じない程度に半導体層23を冷却するか、半導体層23の温度を略一定に保つことが好ましい。
図5には、FPD3の1画素当たりの等価回路図を示す。図4および図5を参照してFPD3の動作原理を以下に説明する。半導体層23にX線が入射すると光導電効果により半導体層23内に電荷(電子−正孔対)が発生する。このとき、電荷蓄積容量27と半導体層23とはバンプ電極25を介して直列に接続された構造になっているので、電極基板21にバイアス電圧34を印加しておくと、半導体層23内で発生した電荷がそれぞれ+電極側と−電極側に移動し、その結果、電荷蓄積容量27に電荷が蓄積される。
しかしながら、半導体層23にバイアス電圧34を印加することで、半導体層23は温度変化に影響される可変抵抗器としての性質も同時に併せ持つ。これより、半導体層23の温度に依存する暗電流が、半導体層23に常時流れ、暗電流による電荷が電荷蓄積容量27に蓄積される。
電荷蓄積容量27は、TFT29のソースSに接続されている。ゲートドライバ35からはゲートバスラインがTFT29のゲートGに接続されている。一方、電荷信号を収集して1つに出力するマルチプレクサ37には増幅器38を介してデータバスラインが接続されているとともに、データバスラインはTFT29のドレインDに接続されている。マルチプレクサ37には、電荷信号をアナログからデジタルに変換してデジタル化したX線検出信号を出力するA/D変換器40が接続されている。なお、図5では図示の便宜上、ゲートドライバ35やマルチプレクサ37や増幅器38やA/D変換器40などのデータ読み出しに関する周辺回路を1つだけ図示している。
ゲートバスラインの電圧を印加(または0Vに)することでTFT29のゲート(G)がONされて、電荷蓄積容量27に蓄積された電荷を電荷信号として、TFT29のソース(S)とドレイン(D)とを介してデータバスラインに読み出す。この時、暗電流により蓄積された電荷も一緒に読み出される。
ここで、ゲートバスラインおよびデータバスライン、TFT29、電荷蓄積容量27等は、すべてXY二次元マトリクス状に設けられているので、ゲートバスラインに印加する電圧を線順次に走査することで、二次元的にX線の画像情報を得ることができる。
データバスラインに読み出された電荷を増幅器38で増幅して、マルチプレクサ37で1つの電荷信号にまとめて出力する。出力された電荷信号をA/D変換器40でデジタル化してX線検出信号として出力する。
以上のように構成されたFPD3によれば、FPD3の発熱部(例えばゲートドライバ35やマルチプレクサ37や増幅器38やA/D変換器40など)から熱がアクティブマトリクス基板19とバンプ電極25を通して半導体層23へ伝導する。そこで、電極基板21上に配設された温度調節管13からの冷熱により半導体層23における温度上昇を抑える。その結果、半導体層23の暗電流の増加を防ぐことができる。これにより、暗電流による入力ダイナミックレンジ減少、S/N劣化を防ぐことができる。また、対向基板上17に温度調節管13を配設することで半導体層23の温度調節を簡単に行うことができる。
また、半導体層23の温度を所望する温度に略一定に保つことで、暗電流を一定にすることができる。つまり、FPD3の設置環境または季節による温度変化に関係なく半導体層23の温度が略一定に保たれるので、暗電流も略一定であり、暗電流により生じるノイズに対して常に同じ補正をすればよい。これより、暗電流の補正を簡易に行うことができる。
さらに、対向基板上17に温度調節管13を配設することで、FPD3の組み立ても容易で高感度の二次元画像検出器を製作することが可能になる。従来例で特にFPD3が小型の場合、筐体15内に電荷読出し器33と温度調節管13を併設するのは組み立てが困難である。そこで、本実施例のように対向基板17の面上に温度調節管13を配設すれば、筐体15内への組み立てが容易にできる。
本実施例では、かかるFPD3をX線診断装置に備えているので、X線を検出する半導体層23の温度の変化による撮像の精度の狂いを抑えることができ、撮像を精度よく行うことができる。
本発明は、図6に示すような形態をとることができる。すなわち、対向基板17の面上に温度調節管13を配設するとともに、電荷読出し器33の面上にも温度調節管13を配設する。
上記構成によれば、電荷読み取り器33側(発熱部側)と対向基板17側と両面で冷却するので、半導体層に熱を伝導する発熱源と暗電流が発生する半導体層との両方を冷却することができるので、より半導体層23を精度良く温度調節することができる。特に、光検出面の面積が大きいと、半導体層23の面の中央部と周囲部で温度差が生じやすいので、上記構成がより好ましい。発熱部側を冷却することで、常に一定量の熱を冷却することができ、対向基板17側からの冷却で半導体層23の精度の良い温度調節が可能となる。
また、電荷読み取り器33側(発熱部側)と対向基板17側と両面で冷却するので、両側の温度差が減少する。これより、対向基板17とアクティブマトリクス基板19の温度差が低減されるので基板剥離の問題が生じにくくなる効果もある。
本発明は、上記実施例1および実施例2の実施形態に限られることはなく、下記のように変形実施することができる。
(1)上述した実施例では、図4に示すように半導体層23を含む対向基板17とTFT29を含むアクティブマトリクス基板19とを別々に作製し、それぞれをバンプ電極25により接着した。しかしながら、本発明はバンプ接合だけではなく、アクティブマトリクス基板19上に直接半導体層23を積層させる放射線検出器においても実施できる。化合物半導体の中でも積層させる温度がTFT基板の半導体の融点よりも低い場合に実施できる。
(2)2次元画像検出器において、各光線に感応する半導体層23を適宜選択することで、上述した放射線検出以外にも、赤外線からγ線などの様々な波長の光線の検出器にも適用することができる。上述した実施例では、フラットパネル型X線検出器(FPD)3を例に採って説明したが、例えば、ECT(Emission Computed Tomography)装置のように放射性同位元素(RI)を投与された被検体から放射されるγ線を検出するγ線検出器にでも、この発明は適用することができる。
(3)光感応半導体として、CdTe、CdZnTe以外にも、PbI、PbO、TlCl、TlBr、HgI等のワイドギャップ化合物半導体を用いても良い。
(4)電極基板21としてグラファイトを用いたが、表面にITO等の電極を成膜したアルミナ基板などの電極基板21上に半導体層11を積層したものとしてもよい。また、基板ではなく、半導体層の上にグラファイト等を蒸着させることによって、電極を成膜してもよい。
(5)また、図7のように、熱伝導性と光や放射線の透過性が良く導電率が低い保持基板32を共通電極21と半導体層23の間に一枚挟んでもよい。この場合、共通電極21として、光や放射線の透過性が良く導電率は高いが、熱伝導率が高くない部材でも採用することができる。
上記構成によれば、共通電極21におけるバイアス電圧の面内分布の偏りをなくす効果も得ることができる。また、バイアス電圧の面内分布の偏りが生じにくいのでバイアス電圧を印加するためのケーブルを共通電極の照射領域外に接続することができる。さらに、熱伝導性に優れた保持基板32を一枚挟むことで、温度調節管の冷熱または温熱がより均等に伝導し、対向基板17の中心部と周辺部の温度差をより解消することができる
実施例に係るフラットパネル型X線検出器およびX線診断装置のブロック図である。 フラットパネル型X線検出器の概略斜視図である。 側面視したフラットパネル型X線検出器の概略断面図である。 側面視したフラットパネル型X線検出器のX線検出部の概略断面図である。 平面視したフラットパネル型X線検出器の等価回路である。 実施例2に係るフラットパネル型X線検出器の概略断面図である。 変形例に係るフラットパネル型X線検出器の概略断面図である。 従来例に係るフラットパネル型X線検出器の概略斜視図である。 従来例に係るフラットパネル型X線検出器の概略断面図である。
符号の説明
3 … フラットパネル型X線検出器(FPD)
13 … 温度調節管
15 … 筐体
17 … 対向基板

Claims (4)

  1. を電荷に変換する変換層としての半導体層と前記半導体層の光入射側に配置され前記半導体層にバイアス電圧を印加するための共通電極とを有する光検出手段と、
    前記半導体層の周囲を取り囲むように前記共通電極の光入射側の面に配設された冷却手段または温度調節手段とを備え、
    前記冷却手段または前記温度調節手段は、前記共通電極を介して前記半導体層に熱的に接触している
    ことを特徴とする二次元画像検出器。
  2. 前記光検出手段は、前記半導体層と前記共通電極との間に設けられた保持基板とを備え、
    前記冷却手段または前記温度調節手段は、前記共通電極および前記保持基板を介して前記半導体層に熱的に接触している
    ことを特徴とする請求項に記載の二次元画像検出器。
  3. 前記半導体層がCdTe、または、CdZnTe化合物半導体で構成されている
    ことを特徴とする請求項または記載の二次元画像検出器。
  4. 請求項1からのいずれか記載の二次元画像検出器において、
    格子状に配列された電極配線と、各格子点に設けられた複数のスイッチ素子と、前記スイッチ素子を介して前記電極配線に接続され、かつ前記光検出手段にて変換された電荷を蓄積する電荷蓄積容量とからなるアクティブマトリクス基板と、
    前記電荷蓄積容量に蓄積された電荷を読み取る電荷読み取り器を備え、
    前記電荷読み取り器に熱的に接触する別の冷却手段を設けた
    ことを特徴とする二次元画像検出器。
JP2008030632A 2008-02-12 2008-02-12 二次元画像検出器 Expired - Fee Related JP5194862B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030632A JP5194862B2 (ja) 2008-02-12 2008-02-12 二次元画像検出器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030632A JP5194862B2 (ja) 2008-02-12 2008-02-12 二次元画像検出器

Publications (2)

Publication Number Publication Date
JP2009194021A JP2009194021A (ja) 2009-08-27
JP5194862B2 true JP5194862B2 (ja) 2013-05-08

Family

ID=41075821

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030632A Expired - Fee Related JP5194862B2 (ja) 2008-02-12 2008-02-12 二次元画像検出器

Country Status (1)

Country Link
JP (1) JP5194862B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011194212A (ja) * 2010-02-24 2011-10-06 Fujifilm Corp 放射線検出装置
JP5499851B2 (ja) * 2010-04-07 2014-05-21 株式会社島津製作所 二次元画像検出器
KR101540527B1 (ko) * 2011-04-01 2015-07-29 가부시키가이샤 시마쓰세사쿠쇼 방사선 검출기의 제조 방법 및 방사선 검출기
US20130037251A1 (en) * 2011-08-11 2013-02-14 General Electric Company Liquid cooled thermal control system and method for cooling an imaging detector
JP5917883B2 (ja) * 2011-11-02 2016-05-18 浜松ホトニクス株式会社 固体撮像装置
US20210337650A1 (en) * 2018-08-24 2021-10-28 Radialis Medical, Inc. Liquid cooling system for precise temperature control of radiation detector for positron emission mammography
WO2020085224A1 (ja) * 2018-10-24 2020-04-30 国立研究開発法人産業技術総合研究所 赤外線レーザのビームプロファイルの測定方法及び測定システム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0547972A (ja) * 1991-08-12 1993-02-26 Mitsubishi Electric Corp 半導体装置の実装構造
JP2008232873A (ja) * 2007-03-22 2008-10-02 Fujifilm Corp 放射線固体検出器
JP2009118145A (ja) * 2007-11-06 2009-05-28 Canon Inc 半導体ユニット及びカメラ

Also Published As

Publication number Publication date
JP2009194021A (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5194862B2 (ja) 二次元画像検出器
US10914689B2 (en) Method and system for high-resolution X-ray detection for phase contrast X-ray imaging
US7514692B2 (en) Method and apparatus for reducing polarization within an imaging device
EP3117204B1 (en) Curved digital x-ray detector for weld inspection
JP5694774B2 (ja) 放射線検出装置及び放射線撮影装置
US8550709B2 (en) Imaging area specifying apparatus, radiographic system, imaging area specifying method, radiographic apparatus, and imaging table
US20070158575A1 (en) Temperature-controlled circuit integrated in a semiconductor material, and method for controlling the temperature of a semiconductor material having an integrated circuit
JP5010190B2 (ja) 画像検出装置及び、イメージング・システム
CN105044758A (zh) 光谱成像检测器
JP2017511715A (ja) 一体型の患者テーブルデジタルx線線量計のための方法およびシステム
US9620256B2 (en) X-ray imaging device including anti-scatter grid
EP2854178B1 (en) X-ray detector and x-ray imaging apparatus including the same
US20190353805A1 (en) Digital x-ray detector having polymeric substrate
US9910172B2 (en) Temperature compensation for thin film transistors in digital X-ray detectors
JP5646289B2 (ja) 放射線検出装置
US20150164447A1 (en) Method and system for integrated medical transport backboard digital x-ray imaging detector
JP5499851B2 (ja) 二次元画像検出器
JP4388899B2 (ja) X線検査装置
US9024269B2 (en) High yield complementary metal-oxide semiconductor X-ray detector
Adnani et al. Investigation of position linearity in position-sensitive microstrip amorphous selenium-based detector
JP4096883B2 (ja) 放射線検出器および放射線撮像装置
CN102656478B (zh) 基于辐射剂量的成像探测器瓦片参数补偿
JPWO2007060740A1 (ja) 放射線撮像装置
JP2023117956A (ja) センサ基板、放射線撮像装置、放射線撮像システム、および、センサ基板の製造方法
JP2021032744A (ja) 放射線撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100426

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5194862

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees