JP5190652B2 - Vibration reduction mechanism and specification method thereof - Google Patents

Vibration reduction mechanism and specification method thereof Download PDF

Info

Publication number
JP5190652B2
JP5190652B2 JP2007210214A JP2007210214A JP5190652B2 JP 5190652 B2 JP5190652 B2 JP 5190652B2 JP 2007210214 A JP2007210214 A JP 2007210214A JP 2007210214 A JP2007210214 A JP 2007210214A JP 5190652 B2 JP5190652 B2 JP 5190652B2
Authority
JP
Japan
Prior art keywords
main structure
axial force
force member
axial
vibration reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007210214A
Other languages
Japanese (ja)
Other versions
JP2008163727A (en
Inventor
和彦 磯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2007210214A priority Critical patent/JP5190652B2/en
Publication of JP2008163727A publication Critical patent/JP2008163727A/en
Application granted granted Critical
Publication of JP5190652B2 publication Critical patent/JP5190652B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高層建物等の曲げ変形が卓越する構造物の振動を低減させるための振動低減機構、およびその諸元設定方法に関する。   The present invention relates to a vibration reduction mechanism for reducing vibration of a structure such as a high-rise building where bending deformation is dominant, and a specification setting method thereof.

塔状の高層建物のように曲げ変形が卓越する構造物の振動を抑制するために、たとえば特許文献1に示されているように、構造物の頂部に所謂チューンド・マス・ダンパー(Tunned Mass Damper:TMD)を設置するという手法が知られている。これは、構造物に付加バネを介して付加質量を接続し、それら付加バネと付加質量により定まる固有振動数を構造物の固有振動数に同調させることにより構造物の共振点近傍における応答を低減させるというものである。
また、特許文献2には、構造物をコア(主構造体)と外周フレーム(または外周壁)とにより構成し、それらのいずれか一方の頂部にトップガーダーを張り出すように設けて、コアと外周フレームとの間にトップガーダーを介して制震装置を架設することにより、コアが曲げ変形した際には制震装置を作動させてその振動を減衰させるという曲げ変形制御型制震構造物の提案がある。
特開昭63−156171号公報 特開平7−26786号公報
In order to suppress the vibration of a structure such as a tower-like high-rise building where bending deformation is dominant, as shown in Patent Document 1, for example, a so-called Tuned Mass Damper is provided at the top of the structure. : TMD) is known. This reduces the response near the resonance point of the structure by connecting the additional mass to the structure via an additional spring and tuning the natural frequency determined by the additional spring and the additional mass to the natural frequency of the structure. It is to let you.
Further, in Patent Document 2, a structure is configured by a core (main structure) and an outer peripheral frame (or outer peripheral wall), and a top girder is provided so as to project over the top of any one of the core, By installing a vibration control device between the outer frame and the outer frame via a top girder, a bending deformation control type vibration control structure that operates the vibration control device to attenuate the vibration when the core is bent and deformed. I have a suggestion.
JP-A 63-156171 Japanese Unexamined Patent Publication No. 7-26786

特許文献1に示されるような従来一般のTMDは、十分な振動低減効果を得るためには付加質量を大きくする必要があり、必然的に大型大重量とならざるを得ないが、構造物にあまり大きな質量を付加することは好ましくないし、TMDが大型大重量になるほど設置位置や設置スペースに関しての制約も大きくなるので、通常は付加質量を構造物の全質量の1〜2%程度とすることが現実的であり、したがって振動低減効果にも自ずと限界がある。
また、特許文献2に示される曲げ変形制御型制震構造物では、頂部の曲げ戻しを利用することから大きな減衰を付与する割には振動低減効果は限定的で小さなものにしかならない。
The conventional general TMD as shown in Patent Document 1 needs to increase the additional mass in order to obtain a sufficient vibration reduction effect, which inevitably becomes large and heavy, It is not preferable to add too much mass, and the larger the TMD, the greater the restrictions on the installation position and installation space. Therefore, the added mass should normally be about 1-2% of the total mass of the structure. Therefore, the vibration reducing effect is naturally limited.
Moreover, in the bending deformation control type damping structure shown in Patent Document 2, the vibration reduction effect is limited and small for giving a large damping because the bending back of the top portion is used.

上記事情に鑑み、本発明は従来一般のTMDのように過大な付加質量を必要とせず、また振動低減効果を飛躍的に向上させることのできる有効な振動低減機構とその諸元設定方法を提供することを目的としている。   In view of the above circumstances, the present invention provides an effective vibration reduction mechanism and its specification setting method that do not require an excessive additional mass like conventional TMD and can dramatically improve the vibration reduction effect. The purpose is to do.

本発明の振動低減機構およびその諸元設定方法は、曲げ変形が卓越する高層建物等の構造物を対象とするものであって、振動低減対象の構造物における主構造体に対してその周囲に跳ね出す剛性部材を主構造体と一体に設けるとともに、主構造体の周囲には該主構造体に対して独立している軸力部材を並設してその一端部を固定するとともに、該軸力部材の他端部と前記剛性部材との間に、主構造体の曲げ変形が剛性部材を介して伝達されることにより錘が回転して回転慣性質量を生じる回転慣性質量ダンパーを介装し、該回転慣性質量ダンパーにより生じる回転慣性質量と前記軸力部材の軸剛性とにより定まる固有振動数を前記主構造体の固有振動数に同調させるべく、前記軸力部材の軸剛性を前記回転慣性質量ダンパーの回転慣性質量で除した値を前記主構造体の固有1次角振動数の二乗にほぼ一致させるようにしたものである。
本発明においては、必要に応じて、軸力部材の軸剛性を調整するための付加バネを該軸力部材と直列に設置しても良い。
The vibration reduction mechanism and its specification setting method according to the present invention are intended for structures such as high-rise buildings where bending deformation is outstanding, and around the main structure in the structure to be reduced in vibration. A rigid member that protrudes is provided integrally with the main structure, and an axial force member that is independent of the main structure is provided around the main structure to fix one end thereof, and the shaft Between the other end of the force member and the rigid member, a rotational inertia mass damper is provided that generates a rotational inertia mass by rotating the weight when the bending deformation of the main structure is transmitted through the rigid member. In order to synchronize the natural frequency determined by the rotational inertia mass generated by the rotational inertia mass damper and the axial rigidity of the axial force member with the natural frequency of the main structure, the axial rigidity of the axial force member is changed to the rotational inertia. The mass inertia of the mass damper Is the value which was set to be substantially matched to the square of intrinsic primary angular frequency of the main structure.
In the present invention, if necessary, an additional spring for adjusting the axial rigidity of the axial force member may be installed in series with the axial force member.

本発明によれば次のような格別顕著な効果を奏する。
曲げ変形の卓越する構造物における主構造体に対し剛性部材を跳ね出させて設けるとともに軸力部材と直列に回転慣性質量ダンパーを付加するだけで、主構造体の共振特性を十分に改善でき、大幅な応答低減効果が得られ、地震動のみならず風や交通振動などの外乱に対しても振動を有効に抑制でき、居住性の改善に寄与する。
回転慣性質量と軸力部材の軸剛性とにより定まる振動数を主構造体の固有振動数に同調させるべく、軸力部材の軸剛性を回転慣性質量ダンパーの回転慣性質量で除した値を主構造体の固有1次角振動数の二乗にほぼ一致させることで、構造物の応答を大幅に低減できる。また、高振動領域においてもダンパー反力や軸力部材の反力が増大しない。
回転慣性質量ダンパーは実際の錘の質量の10〜500倍もの回転慣性質量が得られ、したがって小質量の錘による小型軽量かつ小容量の回転慣性質量ダンパーであっても大きな質量を有するTMD等の他の振動低減機構と同等ないしそれ以上の性能が得られ、コスト的にも設置スペースの点でも有利である。
必要に応じて軸力部材に付加バネを直列に設置することにより、それらの全体の軸剛性を最適にかつ容易に設定することができ、振動数同調を確実にかつ精度良く行うことができる。
According to the present invention, the following remarkable effects can be obtained.
Resonance characteristics of the main structure can be sufficiently improved simply by adding a rotary inertia mass damper in series with the axial force member while providing a rigid member to the main structure in a structure with excellent bending deformation. A significant response reduction effect can be obtained, and vibrations can be effectively suppressed against disturbances such as wind and traffic vibrations as well as seismic motion, contributing to improved comfort.
In order to synchronize the frequency determined by the rotary inertia mass and the axial stiffness of the axial force member with the natural frequency of the main structure, the value obtained by dividing the axial stiffness of the axial force member by the rotary inertia mass of the rotary inertia mass damper is the main structure. By substantially matching the square of the natural primary angular frequency of the body, the response of the structure can be greatly reduced. Further, the damper reaction force and the reaction force of the axial force member do not increase even in a high vibration region.
A rotary inertia mass damper can obtain a rotary inertia mass of 10 to 500 times the mass of an actual weight. Therefore, even a small, lightweight and small capacity rotary inertia mass damper with a small mass weight has a large mass such as TMD. Performance equivalent to or better than other vibration reduction mechanisms can be obtained, which is advantageous in terms of cost and installation space.
By installing additional springs in series with the axial force member as necessary, the overall axial rigidity can be set optimally and easily, and frequency tuning can be performed reliably and accurately.

本発明の振動低減機構の一実施形態を図1に示す。
本実施形態は、曲げ変形が卓越する塔状の高層建物への適用例であって、図1(a)は全体の概要図、(b)はその振動モデルである。
本実施形態における振動低減対象の構造物としての高層建物は、コア部を構成している主構造体1と、その頂部から周囲に跳ね出す形態で構造的には主構造体1と一体に設けられている剛性部材2と、主構造体1の周囲に構造的には独立に立設されて外周フレームを構成している軸力部材3とからなり、軸力部材3の上端部と剛性部材2の先端部との間に回転慣性質量ダンパー4を介装したことを主眼とするものである。
これは基本的には特許文献2に示されている曲げ変形制御型制震構造物と同様の構造のものであり、本実施形態における主構造体1、剛性部材2、軸力部材3、回転慣性質量ダンパー4は、それぞれ特許文献2に示される制震構造物におけるコア、トップガーダー、外周フレーム(ないし外周壁)、制震装置に相当するものである。
One embodiment of the vibration reducing mechanism of the present invention is shown in FIG.
The present embodiment is an application example to a tower-like high-rise building where bending deformation is dominant, and FIG. 1A is an overall schematic diagram, and FIG. 1B is a vibration model thereof.
A high-rise building as a vibration reduction target structure in the present embodiment is structurally provided integrally with the main structure 1 in a form in which the main structure 1 that constitutes the core portion and the top part of the structure jump out to the periphery. A rigid member 2 and an axial force member 3 that stands up structurally independently around the main structure 1 and constitutes an outer peripheral frame. The upper end portion of the axial force member 3 and the rigid member The main purpose is that a rotary inertia mass damper 4 is interposed between the two tip portions.
This is basically the same structure as the bending deformation control type damping structure shown in Patent Document 2, and the main structure 1, the rigid member 2, the axial force member 3, and the rotation in this embodiment. The inertia mass damper 4 corresponds to the core, the top girder, the outer peripheral frame (or outer peripheral wall), and the vibration control device in the vibration control structure disclosed in Patent Document 2, respectively.

但し、上記従来の制震構造物における制震装置はたとえばオイルダンパー等の単なる一般的なダンパーであるのに対し、本実施形態における回転慣性質量ダンパー4は主構造体1の曲げ変形が剛性部材2の回転を介して軸力として伝達されることによって錘が回転して所望の回転慣性質量を生じる構成のものとされている。   However, the vibration control device in the conventional vibration control structure is a simple damper such as an oil damper, whereas the rotary inertia mass damper 4 in the present embodiment is a member whose bending deformation of the main structure 1 is a rigid member. By being transmitted as an axial force through the rotation of 2, the weight rotates to generate a desired rotational inertial mass.

すなわち、本実施形態において使用する回転慣性質量ダンパー4は、主構造体1の曲げ変形に伴う剛性部材2の鉛直面内での回転により軸方向(上下方向)に変形するような力を受けて作動し、それにより小質量の錘が水平面内において回転するものであって、その錘の回転慣性モーメントと回転角加速度とにより錘に生じる慣性モーメントを制御力として利用して振動低減効果を得る構成のものである。
具体的には、回転慣性質量ダンパー4に生じる加力(加振)方向の相対変位をx、その際の錘の回転角をφとし、それら相対変位xと回転角φとの間に x=αφ の関係があるとき、摩擦等による回転ロスを無視すると、この回転慣性質量ダンパー4の変位方向の慣性力(制御力)Pは次式で表される。

Figure 0005190652
上式は、一般的なバネが相対変位にバネ定数を乗じて負担力とするのと同様に、相対加速度に回転慣性質量を乗じて負担力とすることを意味しており、相対変位ではなく相対加速度を乗じる点で通常のバネによる場合と大きく異なるものである。 That is, the rotary inertia mass damper 4 used in the present embodiment receives a force that is deformed in the axial direction (vertical direction) by the rotation of the rigid member 2 in the vertical plane accompanying the bending deformation of the main structure 1. A configuration in which a mass with a small mass rotates in a horizontal plane, and a vibration reducing effect is obtained by using the moment of inertia generated in the weight due to the rotational moment of inertia and angular acceleration of the weight as a control force. belongs to.
Specifically, the relative displacement in the force (vibration) direction generated in the rotary inertia mass damper 4 is x, and the rotation angle of the weight at that time is φ, and between these relative displacement x and the rotation angle φ, x = When there is a relationship of αφ, ignoring the rotation loss due to friction or the like, the inertia force (control force) P in the displacement direction of the rotary inertia mass damper 4 is expressed by the following equation.
Figure 0005190652
The above equation means that the general spring multiplies the relative displacement by the spring constant to make the burden force, which means that the relative acceleration is multiplied by the rotational inertia mass to make the burden force. This is very different from the case of using a normal spring in that it is multiplied by relative acceleration.

上記のような回転慣性質量ダンパー4が発生する回転慣性質量Ψの大きさは、回転する錘の実際の質量に対して10〜500倍にもなるので、小質量の錘を回転させることのみで極めて大きな慣性回転質量Ψを得ることができ、したがって錘が小質量であっても充分な制御力、つまりは充分な振動低減効果が得られるものである。
しかも、回転慣性質量Ψの大きさは、錘の質量のみならずその径寸法および径方向の質量分布により決定されるものであり、錘の質量が大きいほど、径寸法が大きいほど、質量が内周部よりも外周部に分布しているほど回転慣性質量Ψは大きくなるから、それらを適正に設定することによって回転慣性質量Ψを所望の大きさに設定することができ、所望の振動低減効果を得られる。
The magnitude of the rotational inertia mass Ψ generated by the rotary inertia mass damper 4 as described above is 10 to 500 times as large as the actual mass of the rotating weight. Therefore, only by rotating the small mass weight. An extremely large inertial rotating mass Ψ can be obtained. Therefore, even if the weight is small, a sufficient control force, that is, a sufficient vibration reducing effect can be obtained.
Moreover, the magnitude of the rotational inertia mass Ψ is determined not only by the mass of the weight but also by its diameter and radial mass distribution. The larger the weight, the larger the diameter, Since the rotational inertial mass Ψ increases as it is distributed in the outer peripheral part rather than the peripheral part, the rotational inertial mass Ψ can be set to a desired size by appropriately setting them, and the desired vibration reduction effect Can be obtained.

なお、この種の回転慣性質量ダンパーとしてはたとえば特許第3250795号公報や特開2004−44748号公報に免震装置として使用されるものが公知であり、本実施形態においてはそれらに示されているようなボールネジ式の回転慣性質量ダンパーが好適に採用可能であるが、回転慣性質量ダンパー4の構成は特に限定されるものではなく、所望の形式、特性のものを任意に採用することができる。   In addition, as this kind of rotary inertia mass damper, what is used as a seismic isolation device is known, for example in patent 3250795 and Unexamined-Japanese-Patent No. 2004-44748, and is shown in them in this embodiment. Such a ball screw type rotational inertial mass damper can be suitably employed, but the configuration of the rotational inertial mass damper 4 is not particularly limited, and a desired type and characteristics can be arbitrarily employed.

そして本発明では、そのような回転慣性質量ダンパー4を用いたうえで、その回転慣性質量ダンパー4により生じる回転慣性質量Ψと、軸力部材3の軸剛性k(後述するように付加バネ5を設置する場合にはそのバネ剛性も考慮した総合的な軸剛性)により定まる固有振動数を主構造体1の固有振動数に同調させるようにそれらの諸元を設定することを要旨としている。
すなわち、一般に質量mとバネkによる振動系における固有角振動数ωは
ω=k/m
なる関係で定まるのと同様に、本発明のような回転慣性質量ダンパー4と軸力部材3とによる振動系においては、その固有角振動数ωは回転慣性質量Ψおよび軸力部材の軸剛性kから
ω =k/Ψ
なる関係で定まる。したがって、その固有角振動数ωを主構造体1の固有1次角振動数ωにほぼ一致させれば、つまり
ω =k/Ψ≒ω
の関係が成り立つようにΨおよびkの値を設定すれば、主構造体1の固有1次モードの振動に対する応答を大きく低減させることができる。
In the present invention, after using such a rotary inertia mass damper 4, the rotary inertia mass Ψ generated by the rotary inertia mass damper 4 and the axial rigidity k v of the axial force member 3 (addition spring 5 as will be described later). The gist is to set the specifications so that the natural frequency determined by the natural rigidity of the main structure 1 is synchronized with the natural frequency of the main structure 1 when the spring is installed.
That is, in general, the natural angular frequency ω in the vibration system with the mass m and the spring k is ω 2 = k / m
In the vibration system composed of the rotary inertia mass damper 4 and the axial force member 3 as in the present invention, the natural angular frequency ω 0 is equal to the rotational inertia mass Ψ and the axial rigidity of the axial force member. From k v ω 0 2 = k v / Ψ
It is determined by the relationship. Therefore, if the natural angular frequency ω 0 is substantially matched with the natural primary angular frequency ω 1 of the main structure 1, that is, ω 0 2 = k v / Ψ≈ω 1 2.
If the values of Ψ and k v are set so that the relationship of is established, the response of the main structure 1 to the vibration of the natural first mode can be greatly reduced.

なお、上記の軸剛性kは軸力部材3自体の軸剛性kをそのまま利用しても良いが、その軸剛性kを調整するために図1(b)に示すように軸力部材3の要所に適宜の付加バネ5を直列に組み込むようにしても良く、それにより軸力部材3全体の総合的な軸剛性kの設定をより容易にかつ確実に行うことができる。そのような付加バネ5を付加する場合における軸力部材3の総合的な軸剛性kは次式で求められる。

Figure 0005190652
The shaft stiffness k v The above may be used as it is axial stiffness k c of the axial force member 3 itself, axial force member as shown in FIG. 1 (b) in order to adjust its axial stiffness k v may an appropriate additional spring 5 to 3 strategic points so as to incorporate in series, whereby the axial force member 3 can set the overall axial stiffness k v a whole more easily and reliably. Overall axial stiffness k v axial force member 3 in case of adding such an additional spring 5 is given by the following equation.
Figure 0005190652

また、図1(b)に示すようにこの振動低減機構には付加減衰6も必要であり、その付加減衰6は図示例のように回転慣性質量ダンパー4に対して並列に設置すれば良いが、あるいは上記の付加バネ5を設置する場合にはそれに並列に設置することでも良い。もしくは、回転慣性質量ダンパー4として付加減衰を並列に組み込み一体化したものを用いても良く、その場合には他に格別の付加減衰を設置する必要はない。いずれにしても、そのような付加減衰6があることによってこの振動低減機構の固有角振動数ωは主構造体1の固有1次角振動数ωとは厳密には一致しないが、実質的にほぼ同等とすることができる。 Further, as shown in FIG. 1B, this vibration reduction mechanism also requires an additional damping 6, and the additional damping 6 may be installed in parallel with the rotary inertia mass damper 4 as in the illustrated example. Alternatively, when the additional spring 5 is installed, it may be installed in parallel therewith. Alternatively, a rotary inertia mass damper 4 may be used in which additional damping is incorporated in parallel and integrated, and in that case, it is not necessary to install any other additional damping. In any case, the natural angular frequency ω of the vibration reducing mechanism does not exactly match the natural primary angular frequency ω 1 of the main structure 1 due to such additional damping 6, but substantially. Can be almost equivalent.

なお、本実施形態における剛性部材2は主構造体1の頂部から側方に水平に跳ね出すように設けることが好ましいものの、それに限るものではなく、主構造体1の中間部分から跳ね出すことでも良いし、水平に限らず斜め上方や斜め下方に跳ね出すことでも良い。また、軸力部材3の固定端は基礎等の不動点でなくても良く、構造体の低層部のように変形が小さい箇所でも良い。さらに、剛性部材2を主構造体1の中間部に多段に設けても良く、その場合は固定端と各段の剛性部材2の間のそれぞれに軸力部材3と回転慣性質量ダンパー4を設ければ良い。   In addition, although it is preferable to provide the rigid member 2 in this embodiment so that it may protrude horizontally from the top part of the main structure 1, it is not restricted to it, and it may also be protruded from the intermediate part of the main structure 1. It is good, and it is not limited to the horizontal, but may be slanted upward or obliquely downward. Further, the fixed end of the axial force member 3 may not be a fixed point such as a foundation, and may be a place where deformation is small, such as a low-layer part of a structure. Further, the rigid member 2 may be provided in multiple stages in the intermediate portion of the main structure 1, and in that case, the axial force member 3 and the rotary inertia mass damper 4 are provided between the fixed end and the rigid member 2 at each stage. Just do it.

以上のように、本実施形態の振動低減機構は、塔状の主構造体1および剛性部材2からなる主振動系に対して、軸力部材3と回転慣性質量ダンパー4とによる付加振動系を付加し、その付加振動系の固有角振動数ωを主振動系の固有1次角振動数ωに同調させるべく、軸力部材3の軸剛性k を回転慣性質量ダンパー4の回転慣性質量Ψで除した値を主構造体の固有1次角振動数ω の二乗にほぼ一致させることによって、主振動系(すなわち主構造体1)の曲げ振動に対する共振特性および応答を有効に改善でき、大幅な振動低減効果が得られるものである。 As described above, the vibration reduction mechanism of the present embodiment has an additional vibration system including the axial force member 3 and the rotary inertia mass damper 4 with respect to the main vibration system including the tower-like main structure 1 and the rigid member 2. In addition, the axial rigidity k v of the axial force member 3 is made to tune the rotational inertia mass of the rotary inertia mass damper 4 in order to synchronize the natural angular frequency ω of the additional vibration system with the natural primary angular frequency ω 1 of the main vibration system. By making the value divided by Ψ substantially equal to the square of the natural primary frequency ω 1 of the main structure, the resonance characteristics and response to bending vibration of the main vibration system (ie, main structure 1) can be effectively improved. A great vibration reduction effect can be obtained.

この点に関し、特許文献2に示されている従来の曲げ変形制御型制震構造物と対比すれば、従来の制震構造物では外周フレームと制震装置による付加振動系によりコアの曲げ変形に対する振動低減効果を得る点では本発明と共通するが、その制震装置としてはオイルダンパー等の単なるダンパーを用いるものに過ぎず、したがってその制震装置を全振動数領域において単に作動させるのみであって本発明のように主振動系との同調を行うものでもそれが可能なものでもなく、当然に本発明のような優れた共振特性の改善効果や応答低減効果が得られるものではない。
しかも、上記従来の制震構造物では、本発明における軸力部材3に相当する外周フレームないし外周壁の軸変形は制震効果を低下させるロスでしかなく、したがってそれらは十分に高軸剛性とする必要があるが、本発明においては軸力部材3の総合的な軸剛性kを適切に設定して振動数同調に有効に利用するものであるし、必要に応じて軸力部材3自体の軸剛性kを補完するように付加バネ5を設置してその総合的な軸剛性kを最適に調整でき、それにより最適な振動数同調を容易に行い得るので構造的に極めて合理的である。
In this regard, in contrast to the conventional bending deformation control type damping structure shown in Patent Document 2, the conventional damping structure is resistant to bending deformation of the core by the additional vibration system by the outer peripheral frame and the damping device. Although it is the same as the present invention in that the vibration reduction effect is obtained, the vibration control device is merely a simple damper such as an oil damper. Therefore, the vibration control device is merely operated in the entire frequency range. Thus, neither tuning with the main vibration system as in the present invention is possible, nor is it possible to obtain excellent resonance characteristic improvement effect or response reduction effect as in the present invention.
In addition, in the above conventional vibration control structure, the axial deformation of the outer peripheral frame or the outer peripheral wall corresponding to the axial force member 3 in the present invention is only a loss that reduces the vibration control effect, so that they have sufficiently high axial rigidity. it is necessary to, but to in the present invention is to effectively use the overall shaft stiffness k v properly set to the frequency tuning of the axial force member 3, the axial force member 3 optionally itself the additional spring 5 installed so as to complement the axial stiffness k c of can adjust the overall axial stiffness k v optimally, thereby structurally quite reasonable because the optimum can easily be performed frequency tuning It is.

また、従来一般のTMDと対比すれば、従来一般のTMDは付加振動系により振動数同調を行うものである点で本発明と共通するといえるが、上述したように従来一般のTMDでは十分な振動低減効果を得るためには大きな付加質量を必要とする点で難があるのに対し、本発明では小質量の錘を回転させる構成の回転慣性質量ダンパー4を用いることでその錘の10〜500倍にも及ぶ大きな回転慣性質量が得られることから、従来一般のTMDに比べて遙かに小型軽量の回転慣性質量ダンパー4で同等ないしそれ以上の振動低減効果が得られる。換言すれば、従来一般のTMDにより本発明と同等の効果を得ようとすれば、それに必要となる付加質量は著しく大きなものとなってしまって現実的ではない。   In contrast to the conventional general TMD, the conventional general TMD is common to the present invention in that the frequency tuning is performed by the additional vibration system. However, as described above, the conventional general TMD has sufficient vibration. In order to obtain a reduction effect, there is a difficulty in that a large additional mass is required, but in the present invention, by using the rotary inertia mass damper 4 configured to rotate a small mass weight, the weight is 10 to 500. Since a rotational inertia mass as much as twice as large can be obtained, a vibration inertia effect equivalent to or higher than that of a rotational inertia mass damper 4 that is much smaller and lighter than that of a conventional general TMD can be obtained. In other words, if an effect equivalent to that of the present invention is to be obtained by a conventional general TMD, the additional mass required for it becomes extremely large, which is not realistic.

以下、本実施形態の振動低減機構の効果を確認するための解析手法とその結果について図2を参照して詳細に説明する。
図1(b)に示す振動モデルにおいて、主構造体1の曲げ剛性EI、その等価質量m、回転慣性モーメントIθ、軸力部材3の総合的な軸剛性k、軸力部材3自体の軸剛性k、付加バネk、回転慣性質量ダンパー4による回転慣性質量Ψ、付加減衰c(回転慣性質量ダンパー4と並列に設置)とする。また、この構造物の全高H、主構造体1と軸力部材3との間の距離bとする。なお、主構造体1(具体的にはコア部)が全てのせん断力を負担し、軸力部材3(具体的には外周フレーム)は軸方向力のみを負担するものとする。
Hereinafter, an analysis method for confirming the effect of the vibration reduction mechanism of the present embodiment and the result thereof will be described in detail with reference to FIG.
In the vibration model shown in FIG. 1B, the bending rigidity EI of the main structure 1, its equivalent mass m, the rotational moment of inertia I θ , the total axial rigidity k v of the axial force member 3, the axial force member 3 itself The axial stiffness k c , the additional spring k 0 , the rotational inertia mass Ψ by the rotary inertia mass damper 4, and the additional damping c 0 (installed in parallel with the rotary inertia mass damper 4). Further, the total height H of the structure is a distance b between the main structure 1 and the axial force member 3. The main structure 1 (specifically, the core portion) bears all the shearing force, and the axial force member 3 (specifically, the outer peripheral frame) bears only the axial force.

頂部質点の水平変位をx、回転角θとし、構造物に作用するせん断力をQ,主構造体1の頂部で負担する曲げモーメントをMとすると次式が成り立つ。

Figure 0005190652
The horizontal displacement of the top mass x, as the rotation angle theta, the shear forces acting on the structure Q, the following equation holds when the bending moment and M 1 to bear at the top of the main structure 1.
Figure 0005190652

主構造体1の脚部の固定端の水平変位x、主構造体1の減衰係数をCとすると、振動方程式は次の(1)式で表される。ここで、Zは回転慣性質量ダンパー4と軸力部材3の軸剛性kの直列バネである。

Figure 0005190652
When the horizontal displacement x 0 of the fixed end of the leg portion of the main structure 1 and the damping coefficient of the main structure 1 are C, the vibration equation is expressed by the following equation (1). Here, Z k is a series spring of the axial rigidity k v of the rotary inertia mass damper 4 and the axial force member 3.
Figure 0005190652

変位xおよび回転角θが角振動数ωで正弦波振動するとして、x=xiωt、θ=θeiωt(j=0,1)を用いて加振点変位xに対する頂部応答変位xの比率(応答倍率)は次の(2)式で表される。

Figure 0005190652
Assuming that the displacement x and the rotation angle θ are sinusoidal vibrations at an angular frequency ω, the top response displacement with respect to the excitation point displacement x 0 using x j = x j e iωt and θ = θe iωt (j = 0, 1). The ratio of x (response magnification) is expressed by the following equation (2).
Figure 0005190652

上記の(2)式より

Figure 0005190652
From equation (2) above
Figure 0005190652

これを(1)式に代入して(3)式が得られる。

Figure 0005190652
By substituting this into equation (1), equation (3) is obtained.
Figure 0005190652

故に、応答倍率( ̄x)=x/xは次の(4)式で求められる。なお、( ̄x)は、xの上部に ̄(バー)がつくことを表すものである(以下、他の記号についても同様)。

Figure 0005190652
Therefore, the response magnification ( ̄x) = x / x 0 is obtained by the following equation (4). In addition, (を x) represents that a  ̄ (bar) is added to the upper part of x (hereinafter, the same applies to other symbols).
Figure 0005190652

ここで、検討を単純化するために構造物の回転慣性モーメントを無視し、Iθ=0、
ω =3EI/(mH)とする。なお、ωは剛性部材2の曲げ戻し効果を無視したときの構造物の固有1次角振動数である。
これに対する構造物の減衰定数h=c/(2mω)とする。また、付加振動系に対して

Figure 0005190652
とすると、応答倍率は次の(5)式あるいは(6)式により求められる。なお、これらの式は複素数表示しているので、( ̄x)の絶対値が応答倍率となる。 Here, to simplify the study, the rotational moment of inertia of the structure is ignored, and I θ = 0,
Let ω 1 2 = 3EI / (mH 3 ). Note that ω 1 is the natural primary angular frequency of the structure when the bending back effect of the rigid member 2 is ignored.
The damping constant h = c / (2 mω 1 ) of the structure against this. Also, for the additional vibration system
Figure 0005190652
Then, the response magnification is obtained by the following equation (5) or (6). Since these expressions are expressed in complex numbers, the absolute value of ( ̄x) is the response magnification.

Figure 0005190652
Figure 0005190652

次に、比較のために、回転慣性質量ダンパー4を設置せずに付加減衰のみを付加した場合を検討する。検討を単純化するため、軸力部材3の軸伸縮や剛性部材2の曲げ変形を無視して、(5)式において、Ψ=0、k→∞ とし、構造物の1次モードに対する付加減衰の減衰定数をh01=c/(2mω)とおくと、回転慣性質量ダンパー4を使用しない場合の応答倍率は次式で求められる。

Figure 0005190652
Next, for comparison, a case where only the additional attenuation is added without installing the rotary inertia mass damper 4 will be considered. In order to simplify the examination, ignoring the axial expansion and contraction of the axial force member 3 and the bending deformation of the rigid member 2, in equation (5), Ψ = 0, k v → ∞, and addition to the primary mode of the structure When the attenuation constant of attenuation is set to h 01 = c 0 / (2 mω 1 ), the response magnification when the rotary inertia mass damper 4 is not used is obtained by the following equation.
Figure 0005190652

一方、回転慣性質量ダンパー4の負担力Pは、Iθを無視して頂部回転角θより次式で求められる。

Figure 0005190652
On the other hand, the burden force P of the rotational inertia mass damper 4 is determined by the following equation from the theta top rotation angle ignoring I theta.
Figure 0005190652

さらに、( ̄b)=b/Hとして、加振力mxω に対するダンパー反力倍率は、(7)式で求められる。

Figure 0005190652
Further, assuming that ( ̄b) = b / H, the damper reaction force magnification with respect to the excitation force mx 0 ω 1 2 is obtained by the equation (7).
Figure 0005190652

この式は複素数表示しているので、この絶対値が反力倍率となる。
また、回転慣性質量ダンパー4を使用せず付加減衰だけの場合は、(7)式においてΨ=0、k→∞として

Figure 0005190652
となる。 Since this expression is expressed as a complex number, this absolute value is the reaction force magnification.
In addition, when only the additional damping is not used without using the rotary inertia mass damper 4, Ψ = 0, k v → ∞ in the equation (7)
Figure 0005190652
It becomes.

以上の説明において、主系のb/H=0.1、構造減衰h=0.02、付加減衰系の
Ψ/m=0.2、( ̄ω)=ω/ω=1.01、付加減衰h=c/(2Ψω)=0.07(これは、h01=c/(2mω)=( ̄Ψ)( ̄ω)h=0.014に相当)とした場合を例にとって、その場合の頂部応答倍率(加振振幅に対する頂部応答の比)を図2に示し、ダンパー反力倍率(軸力部材3の負担力でもある)を図3に示す。
また、図2〜図3には比較のために回転慣性質量ダンパーを使用せず減衰のみで構成した場合についても併せて示しているが、これは頂部の応答倍率が回転慣性質量ダンパー4を使用した場合と同等になるように減衰h01=0.7とした場合である。
In the above description, b / H = 0.1 for the main system, structural damping h = 0.02, Ψ / m = 0.2 for the additional damping system, ( ̄ω 0 ) = ω 0 / ω 1 = 1. 01, additional attenuation h 0 = c 0 / (2Ψω 0 ) = 0.07 (this corresponds to h 01 = c 0 / (2mω 1 ) = ( ̄Ψ) ( ̄ω 0 ) h 0 = 0.014 2), the top response magnification (ratio of the top response to the excitation amplitude) in that case is shown in FIG. 2, and the damper reaction force magnification (which is also a burden force of the axial force member 3) is shown in FIG. .
In addition, FIGS. 2 to 3 also show a case in which only a damping is used without using a rotary inertia mass damper for comparison, but this uses a rotary inertia mass damper 4 with a top response magnification. This is a case where attenuation h 01 = 0.7 so as to be equivalent to the above case.

以上の検討により、図2に示されるように回転慣性質量ダンパー4を使用することでそれを使用しない場合に比較して頂部応答を6割程度も低減できることがわかる。そして、これと同等の応答低減効果を減衰だけで得るためには減衰h01を50倍(=0.7/0.014)とする必要があり、そのためには格段に大容量のオイルダンパーを必要とすることがわかる。
また、図3に示すように、共振振動数におけるダンパー反力(回転慣性質量と減衰の合計)は、回転慣性質量ダンパー4を使用した場合も減衰のみを付与した場合と同等であるが、前者では共振点近傍以外ではほとんどダンパーが反力を負担しないのに対し、後者では加振振動数の増大に伴いダンパーの負担力が増大している。したがって、地震のように種々の振動数成分をもつ加振の場合は、本発明の方がダンパーや軸力部材に作用する反力が小さくなり、より合理的な設計ができる。
From the above examination, it can be seen that the top response can be reduced by about 60% by using the rotary inertia mass damper 4 as shown in FIG. 2 as compared with the case where it is not used. In order to obtain a response reduction effect equivalent to this only by attenuation, it is necessary to increase the attenuation h 01 by 50 times (= 0.7 / 0.014). For that purpose, an extremely large capacity oil damper is required. I understand that I need it.
Further, as shown in FIG. 3, the damper reaction force (the sum of the rotational inertial mass and the damping) at the resonance frequency is equivalent to the case where only the damping is applied even when the rotating inertial mass damper 4 is used. However, the damper hardly bears the reaction force except in the vicinity of the resonance point, whereas in the latter, the burden force of the damper increases as the vibration frequency increases. Therefore, in the case of excitation having various frequency components such as an earthquake, the reaction force acting on the damper and the axial force member becomes smaller in the present invention, and a more rational design can be achieved.

本発明の実施形態である振動低減機構の概念図および振動モデルである。It is the conceptual diagram and vibration model of the vibration reduction mechanism which are embodiment of this invention. 同、応答倍率についての解析結果を示す図である。It is a figure which shows the analysis result about a response magnification similarly. 同、反力倍率についての解析結果を示す図である。It is a figure which shows the analysis result about reaction force magnification.

符号の説明Explanation of symbols

1 主構造体
2 剛性部材
3 軸力部材
4 回転慣性質量ダンパー
5 付加バネ
6 付加減衰
DESCRIPTION OF SYMBOLS 1 Main structure 2 Rigid member 3 Axial force member 4 Rotary inertia mass damper 5 Additional spring 6 Additional damping

Claims (4)

曲げ変形が卓越する高層建物等の構造物を対象とする振動低減機構であって、
振動低減対象の構造物における主構造体に対してその周囲に跳ね出す剛性部材を主構造体と一体に設け、
主構造体の周囲には、該主構造体に対して独立している軸力部材を並設してその一端部を固定するとともに、該軸力部材の他端部と前記剛性部材との間に、主構造体の曲げ変形が剛性部材を介して伝達されることにより錘が回転して回転慣性質量を生じる回転慣性質量ダンパーを介装し、
該回転慣性質量ダンパーにより生じる回転慣性質量と前記軸力部材の軸剛性とにより定まる固有振動数を前記主構造体の固有振動数に同調させるべく、前記軸力部材の軸剛性を前記回転慣性質量ダンパーの回転慣性質量で除した値を前記主構造体の固有1次角振動数の二乗にほぼ一致させてなることを特徴とする振動低減機構。
A vibration reduction mechanism for structures such as high-rise buildings where bending deformation is outstanding,
A rigid member that jumps out around the main structure in the vibration reduction target structure is provided integrally with the main structure,
Around the main structure, an axial force member independent of the main structure is juxtaposed to fix one end thereof, and between the other end of the axial force member and the rigid member. In addition, a rotation inertia mass damper that generates a rotation inertia mass by rotating the weight by transmitting the bending deformation of the main structure through the rigid member,
In order to synchronize the natural frequency determined by the rotational inertial mass generated by the rotational inertial mass damper and the axial stiffness of the axial force member with the natural frequency of the main structure, the axial stiffness of the axial force member is set to the rotational inertial mass. A vibration reduction mechanism characterized in that a value obtained by dividing a damper's rotational inertial mass substantially coincides with the square of the natural primary angular frequency of the main structure .
請求項1記載の振動低減機構であって、
軸力部材の軸剛性を調整するための付加バネを該軸力部材と直列に設置してなることを特徴とする振動低減機構。
The vibration reduction mechanism according to claim 1,
A vibration reduction mechanism characterized in that an additional spring for adjusting the axial rigidity of the axial force member is installed in series with the axial force member.
曲げ変形が卓越する高層建物等の構造物を対象とする振動低減機構の諸元設定方法であって、
振動低減対象の構造物における主構造体に対してその周囲に跳ね出す剛性部材を主構造体と一体に設け、
主構造体の周囲には、該主構造体に対して独立している軸力部材を並設してその一端部を固定するとともに、該軸力部材の他端部と前記剛性部材との間に、主構造体の曲げ変形が剛性部材を介して伝達されることにより錘が回転して回転慣性質量を生じる回転慣性質量ダンパーを介装し、
該回転慣性質量ダンパーにより生じる回転慣性質量と前記軸力部材の軸剛性とにより定まる固有振動数を前記主構造体の固有振動数に同調させるべく、前記軸力部材の軸剛性を前記回転慣性質量ダンパーの回転慣性質量で除した値を前記主構造体の固有1次角振動数の二乗にほぼ一致させるように、回転慣性質量ダンパーと軸力部材の諸元を設定することを特徴とする振動低減機構の諸元設定方法。
A specification setting method of a vibration reduction mechanism for a structure such as a high-rise building where bending deformation is outstanding,
A rigid member that jumps out around the main structure in the vibration reduction target structure is provided integrally with the main structure,
Around the main structure, an axial force member independent of the main structure is juxtaposed to fix one end thereof, and between the other end of the axial force member and the rigid member. In addition, a rotation inertia mass damper that generates a rotation inertia mass by rotating the weight by transmitting the bending deformation of the main structure through the rigid member,
In order to synchronize the natural frequency determined by the rotational inertial mass generated by the rotational inertial mass damper and the axial stiffness of the axial force member with the natural frequency of the main structure, the axial stiffness of the axial force member is set to the rotational inertial mass. Vibrations characterized by setting the specifications of the rotary inertia mass damper and the axial force member so that the value divided by the rotary inertia mass of the damper substantially matches the square of the natural primary angular frequency of the main structure. Specification method for reduction mechanism.
請求項3記載の振動低減機構の諸元設定方法であって、
軸力部材に付加バネを直列に設置することによって軸力部材全体の軸剛性を調整することを特徴とする振動低減機構の諸元設定方法。
A specification setting method for a vibration reduction mechanism according to claim 3,
A specification setting method for a vibration reduction mechanism, wherein the axial rigidity of the entire axial force member is adjusted by installing an additional spring in series with the axial force member.
JP2007210214A 2006-12-04 2007-08-10 Vibration reduction mechanism and specification method thereof Active JP5190652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007210214A JP5190652B2 (en) 2006-12-04 2007-08-10 Vibration reduction mechanism and specification method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006326982 2006-12-04
JP2006326982 2006-12-04
JP2007210214A JP5190652B2 (en) 2006-12-04 2007-08-10 Vibration reduction mechanism and specification method thereof

Publications (2)

Publication Number Publication Date
JP2008163727A JP2008163727A (en) 2008-07-17
JP5190652B2 true JP5190652B2 (en) 2013-04-24

Family

ID=39693549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007210214A Active JP5190652B2 (en) 2006-12-04 2007-08-10 Vibration reduction mechanism and specification method thereof

Country Status (1)

Country Link
JP (1) JP5190652B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5123623B2 (en) * 2007-09-15 2013-01-23 株式会社Nttファシリティーズ Seismic isolation devices and vibration control devices
JP5318483B2 (en) * 2008-07-25 2013-10-16 学校法人日本大学 Vibration control device
JP5146770B2 (en) * 2009-02-17 2013-02-20 清水建設株式会社 Damping structure and its specification method
JP5601488B2 (en) * 2009-05-20 2014-10-08 清水建設株式会社 Suspension damping structure
JP5327647B2 (en) * 2010-02-01 2013-10-30 清水建設株式会社 Damping structure
JP6297424B2 (en) * 2014-06-23 2018-03-20 株式会社免制震ディバイス Vibration suppression device
JP6434343B2 (en) * 2015-03-16 2018-12-05 株式会社免制震ディバイス Mass damper

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3026110B2 (en) * 1991-01-22 2000-03-27 清水建設株式会社 Damping device
JP2842159B2 (en) * 1993-07-08 1998-12-24 鹿島建設株式会社 Bending deformation control type vibration control structure
JP2970476B2 (en) * 1995-07-13 1999-11-02 株式会社大林組 Damping device and damping method
JPH0941715A (en) * 1995-08-01 1997-02-10 Ohbayashi Corp Vibration mitigation method
JP3718683B2 (en) * 1995-12-27 2005-11-24 学校法人早稲田大学 Vibration isolation connection device and structure vibration isolation connection mechanism
JPH11201224A (en) * 1998-01-14 1999-07-27 Sumitomo Constr Co Ltd Damping piece, damping rod and damping device using the same
JP3736279B2 (en) * 2000-04-14 2006-01-18 株式会社大林組 Structural vibration control device
JP2002121704A (en) * 2000-10-18 2002-04-26 Kajima Corp Vibration control device for diagonal bracing cable
JP4515220B2 (en) * 2004-10-29 2010-07-28 学校法人日本大学 Vibration control device

Also Published As

Publication number Publication date
JP2008163727A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP5190652B2 (en) Vibration reduction mechanism and specification method thereof
JP5062561B2 (en) Vibration reduction mechanism and specification method thereof
JP5218805B2 (en) Vibration reduction mechanism and specification method thereof
JP2008133947A (en) Vibration reducing mechanism and its specification setting method
JP5146757B2 (en) Beam vibration reduction mechanism
JP5725331B2 (en) Beam vibration reduction mechanism
JP5516934B2 (en) Vibration control mechanism
JP4743439B2 (en) Vibration reduction mechanism and specification method thereof
JP2009007916A (en) Vibration damping structure and its specification setting method
JP5777044B2 (en) Beam vibration reduction mechanism
JPWO2009017162A1 (en) Damping structure and method for designing damping structure
JP4936174B2 (en) Excitation reaction force reduction mechanism and setting method thereof
JP2001349094A (en) Synchronous pendulum type vibration control device
JP5787933B2 (en) Tower structure
JP2014132201A (en) Vibration reduction mechanism and its specification setting method
JPH09177875A (en) Vibration shut-off connection mechanism
JP5146770B2 (en) Damping structure and its specification method
JP2010070908A (en) Seismic control structure
JP5023129B2 (en) Mass damper and damping device using mass damper
JP6289929B2 (en) Structure damping device and specification setting method thereof
JP2011017167A (en) Vibration control system
JP5123772B2 (en) Seismic isolation devices and vibration control devices
JP5483097B2 (en) Vibration control structure
JP3835143B2 (en) Vibration control device
JP2009180346A (en) Base isolation mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130116

R150 Certificate of patent or registration of utility model

Ref document number: 5190652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3