JP5123623B2 - Seismic isolation devices and vibration control devices - Google Patents

Seismic isolation devices and vibration control devices Download PDF

Info

Publication number
JP5123623B2
JP5123623B2 JP2007240283A JP2007240283A JP5123623B2 JP 5123623 B2 JP5123623 B2 JP 5123623B2 JP 2007240283 A JP2007240283 A JP 2007240283A JP 2007240283 A JP2007240283 A JP 2007240283A JP 5123623 B2 JP5123623 B2 JP 5123623B2
Authority
JP
Japan
Prior art keywords
target structure
specific direction
spring element
damper
linear motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007240283A
Other languages
Japanese (ja)
Other versions
JP2009068659A (en
Inventor
賢二 斎藤
義文 杉村
滋樹 中南
英範 木田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Sumitomo Mitsui Construction Co Ltd
Original Assignee
NTT Facilities Inc
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc, Sumitomo Mitsui Construction Co Ltd filed Critical NTT Facilities Inc
Priority to JP2007240283A priority Critical patent/JP5123623B2/en
Publication of JP2009068659A publication Critical patent/JP2009068659A/en
Application granted granted Critical
Publication of JP5123623B2 publication Critical patent/JP5123623B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、対象構造物の振動を免震する免震装置、または制振する制振装置に係る。特に、地震等によって揺すられた対象構造物の振動エネルギーを免震する免震装置、または制振する制振装置に関する。   The present invention relates to a seismic isolation device that isolates vibrations of a target structure or a damping device that suppresses vibrations. In particular, the present invention relates to a seismic isolation device that isolates vibration energy of a target structure that is shaken by an earthquake or the like, or a vibration suppression device that controls vibration.

地震が発生すると、建物、構造物等の対象構造物が水平、垂直に揺すられる。
地震等による加速度レベルが大きいと、対象構造物が損傷をうけたり、対象構造物の中にあるものが予想を越えて加速度を受けたり、予想を超える変位をうけたりする。
そこで、基礎から対象構造物へ伝達する振動エネルギーを減少させて振動を免震する免震装置、または対象構造物が振動した際に振動エネルギーを吸収し振動レベルを小さくして振動を制振する制振装置として各種の構造の装置が試されている。
構造とその構造を構成する要素の諸元を適正に設定することにより、所望の免震性能や制振性能を発揮できる。
When an earthquake occurs, target structures such as buildings and structures are shaken horizontally and vertically.
If the acceleration level due to an earthquake or the like is large, the target structure may be damaged, or an object in the target structure may receive an acceleration exceeding the expectation, or may be displaced beyond the expectation.
Therefore, the seismic isolation device that reduces the vibration energy transmitted from the foundation to the target structure or isolates the vibration, or absorbs the vibration energy when the target structure vibrates and reduces the vibration level to control the vibration. Devices having various structures have been tried as vibration damping devices.
By appropriately setting the specifications of the structure and the elements constituting the structure, desired seismic isolation performance and damping performance can be exhibited.

特開平10−100945号Japanese Patent Laid-Open No. 10-100955 特開平10−184757号JP-A-10-184757 特開2000−017885号JP 2000-017885 A 特開2003−138784号JP 2003-138784 A 特開2004−239411号JP 2004-239411 A 特開2005−180492号JP 2005-180492 A 特開2005−207547号JP 2005-207547 A

しかし、所望の免震性能または制振性能を発揮するための構造とその構造を構成する要素の諸元を適正に設定することは容易ではなかった。   However, it is not easy to appropriately set the structure for exhibiting the desired seismic isolation performance or damping performance and the specifications of the elements constituting the structure.

本発明は以上に述べた問題点に鑑み案出されたもので、簡易な構造により所望の免震性能または制振性能を発揮できる装置とその装置を構成する要素の諸元を容易に設定できる免震装置と制振装置とを提供しようとする。   The present invention has been devised in view of the above-described problems, and it is possible to easily set the specifications of a device capable of exhibiting a desired seismic isolation performance or damping performance with a simple structure and the elements constituting the device. Try to provide seismic isolation devices and vibration control devices.

上記目的を達成するため、本発明に係る支持体を基礎として主架構に支持される対象構造物の特定方向の変位を免震する免震装置を、特定方向の相対変位を回転体の回転量に変換する慣性接続要素と、特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と、特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素と、を備え、前記慣性接続要素と前記ダンパー要素とを並列接続した系と前記バネ要素とを直列接続した系であるバネ付き粘性マスダンパーが支持体と対象構造物との間に連結される、ものとした。   In order to achieve the above object, a seismic isolation device for isolating a displacement in a specific direction of a target structure supported by a main frame on the basis of a support according to the present invention, and a relative displacement in a specific direction as a rotation amount of a rotating body. An inertial connection element that converts to, a spring element that generates an elastic reaction force that acts along a specific direction corresponding to a relative displacement in a specific direction, and a specific direction that corresponds to a relative velocity in a specific direction A damper element for generating a damping resistance, and a viscous mass damper with a spring, which is a system in which the inertial connection element and the damper element are connected in parallel and the spring element in series, includes a support and a target structure. It was supposed to be connected between things.

上記本発明の構成により、慣性接続要素が特定方向の相対変位を回転体の回転量に変換する。バネ要素が特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生する。ダンパー要素が特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生する。前記慣性接続要素と前記ダンパー要素とを並列接続した系と前記バネ要素とを直列接続した系であるバネ付き粘性マスダンパーが、支持体と対象構造物との間に連結する。
その結果、対象構造物が特定方向に振動運動すると、前記慣性接続要素と前記バネ要素とで構成される振動系が連成振動し、前記慣性接続要素が相対変位し、並列接続された前記ダンパー要素が相対変位して振動エネルギーを吸収する。
With the above-described configuration of the present invention, the inertia connecting element converts the relative displacement in the specific direction into the rotation amount of the rotating body. The spring element generates an elastic reaction force acting along a specific direction corresponding to the relative displacement in the specific direction. The damper element generates a damping resistance that acts along a specific direction corresponding to a relative speed in the specific direction. A viscous mass damper with a spring which is a system in which the inertia connecting element and the damper element are connected in parallel and the spring element is connected in series is connected between the support and the target structure.
As a result, when the target structure vibrates in a specific direction, a vibration system composed of the inertia connecting element and the spring element vibrates, the inertia connecting element is relatively displaced, and the dampers connected in parallel The element displaces and absorbs vibration energy.

以下に、本発明の実施形態に係る免震装置を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。   Below, the seismic isolation apparatus which concerns on embodiment of this invention is demonstrated. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、本発明の実施形態に係る免震装置は、前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωnとの比を調整し、加振周波数ωと固有振動数ωnとの比ω/ωnを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値である減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる様にし、前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である絶対応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである、ものとした。
上記本発明に係る実施形態の構成により、前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωnとの比を調整して、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値である減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくする。
その結果、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
The seismic isolation device according to the embodiment of the present invention includes a natural frequency ωr corresponding to an elastic coefficient kb of the spring element and an apparent inertial mass mr with respect to a relative acceleration in a specific direction of the inertia connecting element, a main frame, The ratio of the natural frequency ωn of the vibration mode displaced in a specific direction of the system composed of the target structure is adjusted, and the ratio ω / ωn between the excitation frequency ω and the natural frequency ωn is taken as the horizontal axis. When the response magnification of the structure is the vertical axis, it is constant regardless of the value of the damping coefficient c that is a value obtained by dividing the damping resistance force of the damper element by the relative speed on the line indicating the response magnification. The values at the two fixed points are substantially equal, and the response magnification is the target that vibrates in response to the static displacement of the target structure due to the excitation force when the target structure is forcibly excited. Absolute response magnification, which is the ratio to the amplitude of the structure, strong support Object that vibrates in response to the displacement response magnification, which is the ratio of the displacement of the support when it is vibrated and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced It is assumed that it is one of the acceleration response magnifications that is a ratio with the acceleration of the object.
With the configuration of the embodiment according to the present invention, the natural frequency ωr corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in a specific direction of the inertial connection element, the main frame, and the target structure The ratio of the natural frequency ωn of the vibration mode displaced in a specific direction of the system composed of the Is a constant value regardless of the value of the damping coefficient c, which is a value obtained by dividing the damping resistance force of the damper element by the relative speed on the line indicating the response magnification. The value at the fixed point should be approximately equal.
As a result, at a frequency in the vicinity of the excitation frequency ω corresponding to two fixed points, the response magnification determined by the elastic coefficient Kb of the spring element and the inertia mass mr of the inertia connecting element is substantially equal, and the damper element is The vibration energy can be absorbed along with the relative displacement along the specific direction of the inertial connection element, and the level of the vibration response of the target structure based on the support can be reduced.

さらに、本発明の実施形態に係る免震装置は、前記減衰係数cを調整し、2つの前記定点での値が各々に実質的に略極大になる様にした。
上記本発明に係る実施形態の構成により、前記減衰係数cを調整し、2つの前記定点での値が各々に実質的に略極大になる。
その結果、前記ダンパー要素が、適切な減衰係数cを持ち、前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の絶対変位に対応する振幅、相対変位、または加速度をより小さくし、支持体を基礎とする対象構造物の振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
Furthermore, in the seismic isolation device according to the embodiment of the present invention, the damping coefficient c is adjusted so that the values at the two fixed points are substantially substantially maximal.
With the configuration of the embodiment according to the present invention, the attenuation coefficient c is adjusted, and the values at the two fixed points are substantially substantially maximized respectively.
As a result, the damper element has an appropriate damping coefficient c, absorbs vibrational energy along with the relative displacement along a specific direction of the inertial connection element, and is used for absolute displacement of the target structure based on the support. The corresponding amplitude, relative displacement, or acceleration can be made smaller so that the vibration response level of the target structure based on the support does not exceed the response magnification corresponding to the two fixed points.

また、本発明の実施形態に係る免震装置は、前記バネ要素の弾性係数kbがk×(1−2μ−sqrt(1−4μ))/2μの90%から110%までの間の値であって、
前記ダンパー要素の減衰係数cが2×(31.095μ−12.041μ+2.581μ+0.038)×ωr×mrの90%から110%までの間の値、または、
前記バネ要素の弾性係数kbがk×(1−2μ+sqrt(1−4μ))/2μの70%から160%までの間の値であって、
前記ダンパー要素の減衰係数cが2×(−18.558μ+4.880μ−0.717μ+0.612)×ωr×mrの70%から160%までの間の値、のうちのいっぽうであって、
ここで、
0<μ≦0.25、
μ=mr/m、
kは主架構の特定方位に沿った変位に係る弾性係数、mは対象構造物の主架構に支持される質量、
mrは前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量、
kbは前記バネ要素の弾性係数、
ωr=sqrt(kb/mr)、
sqrt(x)はxの平方根、であるものとした。
上記実施形態の構成により、
前記バネ要素の弾性係数kbがk×(1−2μ−sqrt(1−4μ))/2μの90%から110%までの間の値であり、
前記ダンパー要素の減衰係数cが2×(31.095μ−12.041μ+2.581μ+0.038)×ωr×mrの90%から110%までの間の値である。
または、
前記バネ要素の弾性係数kbがk×(1−2μ+sqrt(1−4μ))/2μの70%から160%までの間の値であり、
前記ダンパー要素の減衰係数cが2×(−18.558μ+4.880μ−0.717μ+0.612)×ωr×mrの70%から160%までの間の値である。
その結果、前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωnとの比を調整して、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の変位応答倍率を縦軸としたとき、前記変位応答倍率を示す線の上で前記ダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなり、変位応答倍率が1つの定点での値を越えないので、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記変位応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
In the seismic isolation device according to the embodiment of the present invention, the elastic coefficient kb of the spring element is a value between 90% and 110% of k × (1-2μ-sqrt (1-4μ)) / 2μ. There,
A value between 90% and 110% of the damping coefficient c of the damper element is 2 × (31.095 μ 3 -12.04 μ 2 +2.581 μ + 0.038) × ωr × mr, or
The elastic coefficient kb of the spring element is a value between 70% and 160% of k × (1-2μ + sqrt (1-4μ)) / 2μ,
The damping coefficient c of the damper element is 2 × (−18.558 μ 3 +4.880 μ 2 −0.717 μ + 0.612) × ωr × mr between 70% and 160%. ,
here,
0 <μ ≦ 0.25,
μ = mr / m,
k is an elastic coefficient related to displacement along a specific direction of the main frame, m is a mass supported by the main frame of the target structure,
mr is the apparent inertial mass relative to the relative acceleration in a specific direction of the inertial connecting element;
kb is the elastic coefficient of the spring element,
ωr = sqrt (kb / mr),
sqrt (x) is the square root of x.
With the configuration of the above embodiment,
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (1-2μ-sqrt (1-4μ)) / 2μ;
The damping coefficient c of the damper element is a value between 90% and 110% of 2 × (31.095 μ 3 −12.041 μ 2 +2.581 μ + 0.038) × ωr × mr.
Or
The elastic coefficient kb of the spring element is a value between 70% and 160% of k × (1-2μ + sqrt (1-4μ)) / 2μ,
The damping coefficient c of the damper element is a value between 70% and 160% of 2 × (−18.558 μ 3 +4.880 μ 2 −0.717 μ + 0.612) × ωr × mr.
As a result, the system comprising the natural frequency ωr corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in the specific direction of the inertia connecting element, the main frame, and the target structure is specified. When the ratio of the natural frequency ωn of the vibration mode displaced in the direction is adjusted, the ratio of the excitation frequency ω and the natural frequency ωn is the horizontal axis, and the displacement response magnification of the target structure is the vertical axis, On the line indicating the displacement response magnification, the values at the two fixed points that are constant regardless of the value of the damping coefficient c of the damper element are substantially equal, and the displacement response magnification is the value at one fixed point. Therefore, at a frequency in the vicinity of the excitation frequency ω corresponding to two fixed points, the displacement response magnification determined by the elastic coefficient Kb of the spring element and the inertia mass mr of the inertia connecting element becomes substantially equal, and the damper The element is The vibration energy can be absorbed with the relative displacement along the specific direction of the conductive connecting element, and the level of the vibration response of the target structure based on the support can be reduced.

また、本発明の実施形態に係る免震装置は、
前記バネ要素の弾性係数kbがk×(2μ−1+sqrt(1−2μ))/(1−2μ)の90%から110%までの間の値であって、
前記ダンパー要素の減衰係数cが2×(4.436μ−3.619μ+1.729μ+0.056)×ωr×mrの90%から110%までの間の値であって、
ここで、
0<μ≦0.5、
μ=mr/m、
kは主架構の特定方位に沿った変位に係る弾性係数、
mは対象構造物の質量、
mrは前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量、
kbは前記バネ要素の弾性係数、
ωr=sqrt(kb/mr)、
sqrt(x)はxの平方根、
であるものとした。
上記実施形態の構成により、
前記バネ要素の弾性係数kbがk×(2μ−1+sqrt(1−2μ))/(1−2μ)の90%から110%までの間の値であり、
前記ダンパー要素の減衰係数cが2×(4.436μ−3.619μ+1.729μ+0.056)×ωr×mrの90%から110%までの間の値である。
その結果、前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωnとの比を調整して、
加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の加速度応答倍率を縦軸としたとき、前記加速度応答倍率を示す線の上で前記ダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなり、加速度応答倍率が2つの定点での値を越えないので、
2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記加速度応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
In addition, the seismic isolation device according to the embodiment of the present invention,
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (2μ-1 + sqrt (1-2μ)) / (1-2μ),
The damping coefficient c of the damper element is a value between 90% and 110% of 2 × (4.436 μ 3 −3.619 μ 2 +1.729 μ + 0.056) × ωr × mr,
here,
0 <μ ≦ 0.5,
μ = mr / m,
k is an elastic coefficient relating to displacement along a specific direction of the main frame,
m is the mass of the target structure,
mr is the apparent inertial mass relative to the relative acceleration in a specific direction of the inertial connecting element;
kb is the elastic coefficient of the spring element,
ωr = sqrt (kb / mr),
sqrt (x) is the square root of x,
It was supposed to be.
With the configuration of the above embodiment,
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (2μ-1 + sqrt (1-2μ)) / (1-2μ);
The damping coefficient c of the damper element is a value between 90% and 110% of 2 × (4.436 μ 3 −3.619 μ 2 +1.729 μ + 0.056) × ωr × mr.
As a result, the system comprising the natural frequency ωr corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in the specific direction of the inertia connecting element, the main frame, and the target structure is specified. Adjusting the ratio of the natural frequency ωn of the vibration mode displaced in the direction,
The value of the damping coefficient c of the damper element on the line indicating the acceleration response magnification, where the horizontal axis is the ratio of the excitation frequency ω and the natural frequency ωn and the acceleration response magnification of the target structure is the vertical axis. Because the values at the two fixed points, which are constant regardless of whether, are almost equal, and the acceleration response magnification does not exceed the values at the two fixed points,
At a frequency in the vicinity of the excitation frequency ω corresponding to two fixed points, the acceleration response magnification determined by the elastic coefficient Kb of the spring element and the inertial mass mr of the inertial connection element is substantially equal, and the damper element has the inertial force. Vibration energy is absorbed with relative displacement along a specific direction of the connecting element, and the level of vibration response of the target structure based on the support can be reduced.

上記目的を達成するため、本発明に係る支持体を基礎として主架構に支持される対象構造物の特定方向の変位を免震する免震装置を、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを有する粘性マスダンパーと、弾性体と該弾性体を間に挟んだ第一部材と第二部材とを有するバネ要素と、を備え、前記直動軸の直動方向と特定方向とが略一致し、前記粘性マスダンパーのフレームまたは直動軸の一方を支持体又は対象構造物の一方に連結し、前記粘性マスダンパーのフレームまたは直動軸の他方を前記バネ要素の第一部材に連結し、前記バネ要素の第二部材を支持体又は対象構造物の他方に連結する、のとした。   In order to achieve the above object, a seismic isolation device for isolating displacement in a specific direction of a target structure supported by a main frame on the basis of a support according to the present invention, a linear motion shaft provided with a male screw, and the male screw A viscous mass damper having a rotating body provided with a female screw that fits into the frame, a frame that rotatably supports the rotating body, an inner surface of the frame, and a viscous fluid sealed in a gap between the rotating body, an elastic body, A spring element having a first member and a second member sandwiched between the elastic bodies, wherein the linear motion direction of the linear motion shaft substantially coincides with the specific direction, and the frame or straight One of the dynamic shafts is connected to one of the support or the target structure, the other of the viscous mass damper frame or the linear motion shaft is connected to the first member of the spring element, and the second member of the spring element is supported. Connected to the other of the body or the target structure It was.

本発明の構成により、前記粘性マスダンパーが、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と回転体を回転自在に支持するフレームと該フレームの内面と該回転体のとの隙間に封入された粘性流体とを有する。前記バネ要素が、弾性体と該弾性体を間に挟んだ第一部材と第二部材とを有する。前記粘性マスダンパーのフレームを支持体又は対象構造物の一方に連結する。前記粘性マスダンパーの直動軸と前記バネ要素の第一部材とを連結する。前記バネ要素の第二部材を支持体又は対象構造物の他方に連結する。
その結果、対象構造物が特定方向に振動運動すると、前記粘性マスダンパーと前記バネ要素とで構成される振動系が連成振動し、前記直動軸が直動方向に相対変位して前記回転体が回転し、前記粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
According to the configuration of the present invention, the viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the A viscous fluid enclosed in a gap with the rotating body. The spring element includes an elastic body and a first member and a second member sandwiching the elastic body. A frame of the viscous mass damper is connected to one of the support and the target structure. The linear motion shaft of the viscous mass damper is connected to the first member of the spring element. The second member of the spring element is connected to the other of the support or the target structure.
As a result, when the target structure vibrates and moves in a specific direction, a vibration system composed of the viscous mass damper and the spring element vibrates, and the linear motion shaft relatively displaces in the linear motion direction and rotates. The body rotates, a shearing force is generated in the viscous fluid, and the viscous fluid absorbs vibration energy.

以下に、本発明の実施形態に係る免震装置を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。   Below, the seismic isolation apparatus which concerns on embodiment of this invention is demonstrated. The present invention includes any of the embodiments described below, or a combination of two or more of them.

本発明の実施形態に係る免震装置は、前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させたさいに前記直動方向に作用する反力を前記相対加速度で割った値であるみかけの慣性質量mrとに対応する固有振動数ωrと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωnとの比を調整し、加振周波数ωと固有振動数ωnとの比ω/ωnを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で前記粘性マスダンパーの前記直動軸を一定に相対速度で直動させた際に前記直動方向に作用する反力を前記相対速度で割った値である減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる様にし、前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である絶対応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である前記変位応答該率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である前記加速度応答倍率のうちのひとつである。
上記実施形態の構成により、前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させたさいに前記直動方向に作用する反力を前記相対加速度で割った値であるみかけの慣性質量mrとに対応する固有振動数ωrと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωnとの比を調整する。加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の絶対応答倍率、相対変位応答倍率、または加速度応答倍率のうちのひとつの応答倍率を縦軸としたとき、前記応答倍率を示す線の上で前記粘性マスダンパーの前記直動軸を相対速度で直動させた際に前記直動方向に作用する反力を前記相対速度で割った値である減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる。
その結果、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記粘性マスダンパーの慣性質量mrとで定まる前記応答倍率が略等しくなり、前記前記粘性マスダンパーが前記フレームと前記直動軸との相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
The seismic isolation device according to an embodiment of the present invention includes an elastic coefficient kb that is a value obtained by dividing a reaction force generated when the spring element is displaced by a relative distance in the linear motion direction by the relative distance, and the viscous mass damper. When the linear motion shaft is linearly moved in the linear motion direction at a predetermined relative acceleration, the inherent inertia mass mr corresponding to the apparent inertial mass mr, which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration. The ratio between the vibration frequency ωr and the natural frequency ωn of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is adjusted, and the ratio ω / of the excitation frequency ω and the natural frequency ωn is adjusted. When ωn is the horizontal axis and the response magnification of the target structure is the vertical axis, the linear motion axis of the viscous mass damper is linearly moved at a constant relative speed on a line indicating the response magnification. Of the damping coefficient c, which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative speed. The values at the two fixed points, which are constant regardless of whether or not, are substantially equal, and the response magnification is the static displacement of the target structure due to the excitation force when the target structure is forcibly excited. The absolute response magnification, which is the ratio of the amplitude of the target structure that vibrates in response, and the displacement that is the ratio of the displacement of the target structure that vibrates in response to the displacement of the support when the support is forcibly vibrated This is one of the response response rate or the acceleration response magnification which is a ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.
With the configuration of the above embodiment, the elastic coefficient kb, which is a value obtained by dividing the reaction force generated when the spring element is displaced by the relative distance in the linear motion direction, by the relative distance, and the linear motion shaft of the viscous mass damper. The natural frequency ωr corresponding to the apparent inertial mass mr, which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration, The ratio of the natural frequency ωn of the vibration mode displaced in a specific direction of the system composed of the frame and the target structure is adjusted. When the horizontal axis represents the ratio of the excitation frequency ω and the natural frequency ωn, and the vertical axis represents one of the absolute response magnification, relative displacement response magnification, or acceleration response magnification of the target structure, the response The value of the damping coefficient c, which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the linear motion shaft of the viscous mass damper is linearly moved at a relative speed on a line indicating the magnification. Regardless of the time, the values at the two fixed points that are constant values are substantially equal.
As a result, at the frequency near the excitation frequency ω corresponding to two fixed points, the response magnification determined by the elastic coefficient Kb of the spring element and the inertia mass mr of the viscous mass damper becomes substantially equal, and the viscous mass The damper absorbs vibration energy with relative displacement between the frame and the linear motion shaft, and the vibration response level of the target structure based on the support can be reduced.

さらに、本発明の実施形態に係る免震装置は、前記減衰係数cを調整し、2つの前記定点での値が各々に実質的に略極大になる様にした。
上記実施形態の構成により、前記減衰係数cを調整し、2つの前記定点での値が各々に実質的に略極大になる。
その結果、前記粘性マスダンパーが、適切な減衰係数cを持ち、前記フレームと前記直同軸の相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の絶対変位に対応する振幅、相対変位、または加速度をより小さくし、支持体を基礎とする対象構造物の振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
Furthermore, in the seismic isolation device according to the embodiment of the present invention, the damping coefficient c is adjusted so that the values at the two fixed points are substantially substantially maximal.
According to the configuration of the above embodiment, the attenuation coefficient c is adjusted, and the values at the two fixed points are substantially substantially maximized respectively.
As a result, the viscous mass damper has an appropriate damping coefficient c, absorbs vibration energy with the relative displacement of the frame and the direct coaxial, and corresponds to the absolute displacement of the target structure based on the support. The amplitude, relative displacement, or acceleration can be further reduced so that the vibration response level of the target structure based on the support does not exceed the response magnification corresponding to the two fixed points.

上記目的を達成するため、本発明に係る対象構造物の特定方向の相対変形伴う振動を制振する制振装置を、特定方向の相対変位を回転体の回転量に変換する慣性接続要素と、特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と、特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素と、
を備え、前記慣性接続要素と前記ダンパー要素とを並列接続した系と前記バネ要素とを直列接続した系であるバネ付き粘性マスダンパーが対象構造物の特定方向に離間する一対の箇所の間に連結される、ものとした。
In order to achieve the above object, a damping device for damping vibrations with relative deformation in a specific direction of a target structure according to the present invention, an inertia connecting element that converts a relative displacement in a specific direction into a rotation amount of a rotating body, A spring element that generates an elastic reaction force that operates along a specific direction corresponding to a relative displacement in a specific direction, and a damper element that generates a damping resistance force that operates along a specific direction corresponding to a relative velocity in a specific direction When,
Between a pair of locations in which a viscous mass damper with a spring, which is a system in which the inertia connecting element and the damper element are connected in parallel, and a system in which the spring element is connected in series, is separated in a specific direction of the target structure. To be connected.

上記本発明の構成により、前記慣性接続要素が、特定方向の相対変位を回転体の回転量に変換する。前記バネ要素が、特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生する。前記ダンパー要素が、特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生する。前記慣性接続要素と前記ダンパー要素とを並列接続した系と前記バネ要素とを直列接続した系であるバネ付き粘性マスダンパーが、対象構造物の特定方向に離間する一対の箇所に連結される。
その結果、対象構造物が特定方向に相対運動するモードで振動すると、前記慣性接続要素と前記バネ要素とで構成される振動系が連成振動し、前記慣性接続要素の相対変位し、並列接続された前記ダンパー要素が相対変位して振動エネルギーを吸収する。
With the above-described configuration of the present invention, the inertial connection element converts the relative displacement in a specific direction into the rotation amount of the rotating body. The spring element generates an elastic reaction force acting along a specific direction corresponding to a relative displacement in the specific direction. The damper element generates a damping resistance force acting along a specific direction corresponding to a relative speed in the specific direction. A viscous mass damper with a spring which is a system in which the inertia connecting element and the damper element are connected in parallel and the spring element is connected in series is connected to a pair of locations spaced apart in a specific direction of the target structure.
As a result, when the target structure vibrates in a mode in which it moves relative to a specific direction, a vibration system composed of the inertia connecting element and the spring element vibrates, the relative displacement of the inertia connecting element, and parallel connection The formed damper element is relatively displaced to absorb vibration energy.

以下に、本発明の実施形態に係る制振装置を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。   Hereinafter, a vibration damping device according to an embodiment of the present invention will be described. The present invention includes any of the embodiments described below, or a combination of two or more of them.

本発明の実施形態に係る制振装置は、前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと対象構造物の特定方向に変位する振動モードの固有振動数ωnとの比を調整し、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値である減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる様にし、前記応答倍率は、対象構造物の一方の前記箇所を強制加振させた際の加振力による対象構造物の一方の前記箇所の静的変位と応答して振動した対象構造物の一方の前記箇所の振幅の比である絶対応答倍率、対象構造物の一方の前記箇所を強制加振した際の一方の前記箇所の変位と応答して振動した対象構造物の他方の前記箇所の変位との比である記変位応答倍率、または対象構造物の一方の前記箇所を強制加振した際の対象構造物の一方の前記箇所の加速度と応答して振動した対象構造物の他方の前記箇所の加速度との比である加速度応答倍率のうちのひとつである。   The vibration damping device according to the embodiment of the present invention specifies the natural frequency ωr corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in the specific direction of the inertial connection element, and the target structure. When the ratio between the natural frequency ωn of the vibration mode displaced in the direction is adjusted, the ratio between the excitation frequency ω and the natural frequency ωn is taken as the horizontal axis, and the response magnification of the target structure is taken as the vertical axis, the response The values at two fixed points that are constant regardless of the value of the damping coefficient c, which is a value obtained by dividing the damping resistance of the damper element by the relative speed on the line indicating the magnification, are substantially equal. The response magnification is one of the target structures that vibrates in response to the static displacement of the one part of the target structure due to the excitation force when the one part of the target structure is forcibly vibrated. Absolute response magnification, which is the ratio of the amplitudes of Displacement response magnification, which is a ratio of the displacement of one of the locations when the one of the locations of the elephant structure is forcibly excited to the displacement of the other location of the target structure that vibrated in response, or the target structure Of the acceleration response magnification that is the ratio of the acceleration of one of the locations of the target structure and the acceleration of the other location of the target structure that vibrated in response to the forced excitation of one location of the object One.

上記実施形態の構成により、前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと対象構造物の特定方向に変位する振動モードの固有振動数ωnとの比を調整する。加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の絶対応答倍率、相対変位応答倍率、または加速度応答倍率のうちのひとつの応答倍率を縦軸としたとき、前記応答倍率を示す線の上で前記ダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる。
その結果、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくできる。
According to the configuration of the above embodiment, the natural frequency ωr corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in the specific direction of the inertial connection element and the vibration that is displaced in the specific direction of the target structure. The ratio of the mode to the natural frequency ωn is adjusted. When the horizontal axis represents the ratio of the excitation frequency ω and the natural frequency ωn, and the vertical axis represents one of the absolute response magnification, relative displacement response magnification, or acceleration response magnification of the target structure, the response On the line indicating the magnification, the values at the two fixed points that are constant regardless of the value of the damping coefficient c of the damper element are substantially equal.
As a result, at a frequency in the vicinity of the excitation frequency ω corresponding to two fixed points, the response magnification determined by the elastic coefficient Kb of the spring element and the inertia mass mr of the inertia connecting element is substantially equal, and the damper element is The vibration energy is absorbed in accordance with the relative displacement along the specific direction of the inertial connection element, and the level of the relative vibration response of the pair of locations separated in the specific direction of the target structure can be reduced.

さらに、本発明の実施形態に係る制振装置は、 前記減衰係数cを調整し、2つの前記定点での値が各々に実質的に略極大になる様にした。
上記本発明の構成により、前記減衰係数cを調整し、2つの前記定点での値が各々に実質的に略極大になる。
その結果、前記ダンパー要素が、適切な減衰係数cを持ち、前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物の振幅、相対変位、または加速度をより小さくし、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
Furthermore, in the vibration damping device according to the embodiment of the present invention, the damping coefficient c is adjusted so that the values at the two fixed points are substantially substantially maximized.
According to the configuration of the present invention, the attenuation coefficient c is adjusted, and the values at the two fixed points are substantially substantially maximized respectively.
As a result, the damper element has an appropriate damping coefficient c, absorbs vibration energy along with the relative displacement along a specific direction of the inertial connection element, and further increases the amplitude, relative displacement, or acceleration of the target structure. The relative vibration response level of a pair of locations that are separated in a specific direction of the target structure can be reduced so as not to exceed the response magnification corresponding to the two fixed points.

また、本発明の実施形態に係る制振装置は、
前記バネ要素の弾性係数kbがk×(1−2μ−sqrt(1−4μ))/2μの90%から110%の間の値であって、
前記ダンパー要素の減衰係数cが2×(31.095μ−12.041μ+2.581μ+0.038)×ωr×mrの90%から110%の間の値、
または、
前記バネ要素の弾性係数kbがk×(1−2μ+sqrt(1−4μ))/2μの70%から160%の間の値であって、
前記ダンパー要素の減衰係数cが2×(−18.558μ+4.880μ−0.717μ+0.612)×ωr×mrの70%から160%の間の値、
のうちのいっぽうであって、
ここで、
0<μ≦0.25、
μ=mr/m、
ωr=sqrt(kb/mr)
kは対象構造物の特定方向の相対変形を伴う振動をばねと質点との1質点系に模しときの該ばねの弾性係数、
mは前記1質点系の前記質点の質量、
mrは前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量、
kbは前記バネ要素の弾性係数、
sqrt(x)はxの平方根、
であるものとした。
上記実施形態の構成により、
前記バネ要素の弾性係数kbがk×(1−2μ−sqrt(1−4μ))/2μの90%から110%の間の値であり、
前記ダンパー要素の減衰係数cが2×(31.095μ−12.041μ+2.581μ+0.038)×ωr×mrの90%から110%の間の値である。
または、
前記バネ要素の弾性係数kbがk×(1−2μ+sqrt(1−4μ))/2μの70%から160%の間の値であり、
前記ダンパー要素の減衰係数cが2×(−18.558μ+4.880μ−0.717μ+0.612)×ωr×mrの70%から160%の間の値である。
その結果、前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと対象構造物の特定方向に変位する振動モードの固有振動数ωnとの比を調整して、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の変位応答倍率を縦軸としたとき、前記変位応答倍率を示す線の上で前記ダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなるので、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記変位応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った変位相対変位に伴って振動エネルギーを吸収し、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくすることをできる。
The vibration damping device according to the embodiment of the present invention is
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (1-2μ-sqrt (1-4μ)) / 2μ,
A value between 90% and 110% of the damping coefficient c of the damper element is 2 × (31.095 μ 3 -12.04 μ 2 +2.581 μ + 0.038) × ωr × mr,
Or
The elastic coefficient kb of the spring element is a value between 70% and 160% of k × (1-2μ + sqrt (1-4μ)) / 2μ,
The damping element c has a value between 70% and 160% of 2 × (−18.558 μ 3 +4.880 μ 2 −0.717 μ + 0.612) × ωr × mr,
It seems like
here,
0 <μ ≦ 0.25,
μ = mr / m,
ωr = sqrt (kb / mr)
k is an elastic coefficient of the spring when imitating vibration with relative deformation in a specific direction of the target structure in a one-mass system of spring and mass;
m is the mass of the mass point of the one mass system,
mr is the apparent inertial mass relative to the relative acceleration in a specific direction of the inertial connecting element;
kb is the elastic coefficient of the spring element,
sqrt (x) is the square root of x,
It was supposed to be.
With the configuration of the above embodiment,
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (1-2μ-sqrt (1-4μ)) / 2μ;
The damping coefficient c of the damper element is a value between 90% and 110% of 2 × (31.095 μ 3 −12.041 μ 2 +2.581 μ + 0.038) × ωr × mr.
Or
The elastic coefficient kb of the spring element is a value between 70% and 160% of k × (1-2μ + sqrt (1-4μ)) / 2μ;
The damping coefficient c of the damper element is a value between 70% and 160% of 2 × (−18.558 μ 3 +4.880 μ 2 −0.717 μ + 0.612) × ωr × mr.
As a result, the natural frequency ωr corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in the specific direction of the inertial connection element and the natural vibration of the vibration mode displaced in the specific direction of the target structure. When the ratio between the excitation frequency ω and the natural frequency ωn is plotted on the horizontal axis and the displacement response magnification of the target structure is plotted on the vertical axis, the ratio to the number ωn is adjusted. Since the values at the two fixed points that are constant regardless of the value of the damping coefficient c of the damper element are substantially equal, the spring element at a frequency near the excitation frequency ω corresponding to the two fixed points. The displacement response magnification determined by the elastic coefficient Kb of the inertial connection element and the inertial mass mr of the inertial connection element are substantially equal, and the damper element absorbs vibration energy along with the displacement relative displacement along a specific direction of the inertial connection element. It is possible to reduce the relative vibration response level of a pair of locations that are separated and separated in a specific direction of the target structure.

本発明の実施形態に係る制振装置は、
前記バネ要素の弾性係数kbがk×(2μ−1+sqrt(1−2μ))/(1−2μ)の90%から110%までの間の値であって、
前記ダンパー要素の減衰係数cが2×(4.436μ−3.619μ+1.729μ+0.056)×ωr×mrの90%から110%までの間の値であって、
ここで、
0<μ≦0.5、
μ=mr/m、
ωr=sqrt(kb/mr)、
kは対象構造物の特定方向の相対変形を伴う振動をばねと質点との1質点系に模しときの該ばねの弾性係数、
mは前記1質点系の前記質点の質量、
mrは前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量、
kbは前記バネ要素の弾性係数、
sqrt(x)はxの平方根、
であるものとした。
上記実施形態の構成により、
前記バネ要素の弾性係数kbがk×(2μ−1+sqrt(1−2μ))/(1−2μ)の90%から110%までの間の値であり、
前記ダンパー要素の減衰係数cが2×(4.436μ−3.619μ+1.729μ+0.056)×ωr×mrの90%から110%までの間の値である。
その結果、前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと対象構造物の特定方向に変位する振動モードの固有振動数ωnとの比を調整して、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の加速度応答倍率を縦軸としたとき、前記加速度応答倍率を示す線の上で前記ダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなるので、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記加速度応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくすることをできる。
The vibration damping device according to the embodiment of the present invention,
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (2μ-1 + sqrt (1-2μ)) / (1-2μ),
The damping coefficient c of the damper element is a value between 90% and 110% of 2 × (4.436 μ 3 −3.619 μ 2 +1.729 μ + 0.056) × ωr × mr,
here,
0 <μ ≦ 0.5,
μ = mr / m,
ωr = sqrt (kb / mr),
k is an elastic coefficient of the spring when imitating vibration with relative deformation in a specific direction of the target structure in a one-mass system of spring and mass;
m is the mass of the mass point of the one mass system,
mr is the apparent inertial mass relative to the relative acceleration in a specific direction of the inertial connecting element;
kb is the elastic coefficient of the spring element,
sqrt (x) is the square root of x,
It was supposed to be.
With the configuration of the above embodiment,
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (2μ-1 + sqrt (1-2μ)) / (1-2μ);
The damping coefficient c of the damper element is a value between 90% and 110% of 2 × (4.436 μ 3 −3.619 μ 2 +1.729 μ + 0.056) × ωr × mr.
As a result, the natural frequency ωr corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in the specific direction of the inertial connection element and the natural vibration of the vibration mode displaced in the specific direction of the target structure. When the ratio between the excitation frequency ω and the natural frequency ωn is adjusted on the horizontal axis and the acceleration response magnification of the target structure is plotted on the vertical axis, the ratio to the number ωn is adjusted. Since the values at the two fixed points that are constant regardless of the value of the damping coefficient c of the damper element are substantially equal, the spring element at a frequency near the excitation frequency ω corresponding to the two fixed points. The acceleration response magnification determined by the elastic coefficient Kb of the inertial connection element and the inertial mass mr of the inertial connection element are substantially equal, and the damper element generates vibration energy along with a relative displacement along a specific direction of the inertial connection element. It is possible to reduce the level of the relative vibration response of the pair of portions that absorb and separate in the specific direction of the target structure.

上記目的を達成するため、本発明に係る対象構造物の特定方向の相対変形を伴う振動を制振する制振装置を、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを有する粘性マスダンパーと、弾性体と該弾性体を間に挟んだ第一部材と第二部材とを有するバネ要素と、を備え、対象構造物が特定方向に離間した一対の取付部を有し、前記直動軸の直動方向と特定方向とが略一致し、前記粘性マスダンパーのフレームまたは直動軸の一方を一対の前記取付部の一方に連結し、前記粘性マスダンパーのフレームまたは直動軸の他方を前記バネ要素の前記第一部材に連結し、前記バネ要素の前記第二部材を一対の前記取付部の他方に連結する、ものとした。   In order to achieve the above object, a vibration damping device for damping vibrations involving relative deformation in a specific direction of a target structure according to the present invention is provided with a linear motion shaft provided with a male screw and a female screw that fits the male screw. A viscous mass damper having a rotating body, a frame that rotatably supports the rotating body, an inner surface of the frame, and a viscous fluid sealed in a gap between the rotating body, an elastic body, and the elastic body sandwiched therebetween A spring element having a first member and a second member, and the target structure has a pair of attachment portions separated in a specific direction, and the linear motion direction and the specific direction of the linear motion shaft are substantially the same. Then, one of the frame or the linear motion shaft of the viscous mass damper is connected to one of the pair of mounting portions, and the other of the frame or the linear motion shaft of the viscous mass damper is connected to the first member of the spring element. A pair of the second members of the spring element Connected to the other attachment portions, and the things.

上記本発明の構成により、前記粘性マスダンパーが、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを有する。前記バネ要素が、弾性体と該弾性体を間に挟んだ第一部材と第二部材とを有する。前記粘性マスダンパーのフレームまたは直動軸の一方を一対の前記取付部の一方に連結する。前記粘性マスダンパーのフレームまたは直動軸の他方を前記バネ要素の第一部材に連結する。前記バネ要素の第二部材を一対の前記取付部の他方に連結する、
その結果、対象構造物が特定方向に相対運動するモードで振動すると、前記粘性マスダンパーと前記バネ要素とで構成される振動系が連成振動し、前記直動軸が直動方向に相対変位して前記回転体が回転し、前記粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
According to the configuration of the present invention, the viscous mass damper has a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, and an inner surface of the frame And a viscous fluid sealed in a gap between the rotating body. The spring element includes an elastic body and a first member and a second member sandwiching the elastic body. One of the frame or the linear motion shaft of the viscous mass damper is connected to one of the pair of mounting portions. The other of the viscous mass damper frame and the linear motion shaft is connected to the first member of the spring element. Connecting the second member of the spring element to the other of the pair of attachment parts;
As a result, when the target structure vibrates in a mode in which it moves relative to a specific direction, the vibration system composed of the viscous mass damper and the spring element oscillates, and the linear motion shaft is relatively displaced in the linear motion direction. Then, the rotating body rotates, a shearing force is generated in the viscous fluid, and the viscous fluid absorbs vibration energy.

上記目的を達成するため、本発明に係る対象構造物の特定方向の相対変形を伴う振動を制振する制振装置を、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを有する粘性マスダンパーと、特定方向に交差する方向に延びた板材を有するバネ要素と、を備え、対象構造物が離間した一対の取付部を有し、前記直動軸の直動方向と特定方向とが略一致し、前記バネ要素の前記板材の一端が一対の前記取付部の一方に固定され、前記粘性マスダンパーのフレーム又は直動軸の一方が前記バネ要素の前記板材の他端に連結され、前記粘性マスダンパーのフレーム又は直動軸の他方が対象構造物の一対の前記取付部の他方に連結し、一対の前記取付部の他方が前記板材の他端から特定方向に離間した位置にある、ものとした。   In order to achieve the above object, a vibration damping device for damping vibrations involving relative deformation in a specific direction of a target structure according to the present invention is provided with a linear motion shaft provided with a male screw and a female screw that fits the male screw. A viscous mass damper having a rotating body, a frame that rotatably supports the rotating body, an inner surface of the frame, and a viscous fluid sealed in a gap between the rotating body, and a plate member that extends in a direction crossing a specific direction. A spring element having a pair of attachment portions separated from each other by a target structure, the linear movement direction of the linear movement shaft substantially coincides with the specific direction, and one end of the plate member of the spring element is a pair of One of the viscous mass damper frame or linear motion shaft is fixed to one of the mounting portions, and one end of the plate member of the spring element is connected to the other end of the plate, and the other of the viscous mass damper frame or linear motion shaft is the target structure. Other than the pair of attachment parts of the object Linked, the other of the pair of the attachment portion is in a position spaced apart in a specific direction from the other end of the plate, and the things in.

上記本発明の構成により、前記粘性マスダンパーが、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と回転体を回転自在に支持するフレームと該フレームの内面と該回転体の隙間に封入された粘性流体とを有する。バネ要素が特定方向に交差する方向に延びた板材を有する。前記バネ要素の前記板材の一端が一対の前記取付部の一方に固定される。前記粘性マスダンパーのフレーム又は直動軸の一方が前記バネ要素の前記板材の他端に連結される。前記粘性マスダンパーのフレーム又は直動軸の他方が対象構造物の一対の前記取付部の他方に連結する。
その結果、対象構造物が特定方向に相対運動するモードで振動すると、前記粘性マスダンパーと前記バネ要素とで構成される振動系が連成振動し、前記直動軸が直動方向に相対変位して前記回転体が回転し、前記粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
According to the configuration of the present invention, the viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, and an inner surface of the frame. And a viscous fluid enclosed in a gap between the rotating bodies. The spring element has a plate material extending in a direction crossing a specific direction. One end of the plate member of the spring element is fixed to one of the pair of attachment portions. One of the frame or the linear motion shaft of the viscous mass damper is connected to the other end of the plate member of the spring element. The other of the frame or the linear motion shaft of the viscous mass damper is connected to the other of the pair of attachment portions of the target structure.
As a result, when the target structure vibrates in a mode in which it moves relative to a specific direction, the vibration system composed of the viscous mass damper and the spring element oscillates, and the linear motion shaft is relatively displaced in the linear motion direction. Then, the rotating body rotates, a shearing force is generated in the viscous fluid, and the viscous fluid absorbs vibration energy.

上記目的を達成するため、本発明に係る対象構造物の特定方向の相対変形を伴う振動を制振する制振装置を、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と回転体を回転自在に支持するフレームと該フレームの内面と該回転体の外面との間に封入された粘性流体とを有する粘性マスダンパーと、弾性体と該弾性体を間に挟んだ第一部材と第二部材とを有するバネ要素と、を備え、対象構造物が特定方向に離間した一対の取付部を有し、前記直動軸の直動方向と特定方向とが略一致し、前記バネ要素の前記第二部材を一対の前記取付部の一方に連結し、前記バネ要素の前記第一部材を前記粘性マスダンパーのフレームに連結し、前記粘性マスダンパーの直動軸の一方の端部を一対の前記取付部の他方に連結し、前記粘性マスダンパーの直動軸の他方の端部を対象構造物の一対の前記取付部の一方を挟んで他方の反対側に連結する、ものとした。   In order to achieve the above object, a vibration damping device for damping vibrations involving relative deformation in a specific direction of a target structure according to the present invention is provided with a linear motion shaft provided with a male screw and a female screw that fits the male screw. A viscous mass damper having a rotating body, a frame that rotatably supports the rotating body, a viscous fluid sealed between an inner surface of the frame and an outer surface of the rotating body, and an elastic body and the elastic body A spring element having a sandwiched first member and a second member, wherein the target structure has a pair of attachment portions spaced apart in a specific direction, and the linear motion direction and the specific direction of the linear motion shaft are approximately And the second member of the spring element is connected to one of the pair of mounting portions, the first member of the spring element is connected to the frame of the viscous mass damper, and the linear motion shaft of the viscous mass damper One end of the pair is connected to the other of the pair of mounting portions, and the front Across the one of the pair of the attachment portions of the objective structure to the other end of the linear axis of the viscous mass damper is connected to the other opposite side, and the things.

上記本発明の構成により、前記粘性マスダンパーが、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と回転体を回転自在に支持するフレームと該フレームの内面と該回転体の外面との間に封入された粘性流体とを有する。バネ要素が、弾性体と該弾性体を間に挟んだ第一部材と第二部材とを有する。前記バネ要素の前記第一部材を一対の前記取付部の一方に連結する。前記バネ要素の前記第二部材を前記粘性マスダンパーのフレームに連結する。前記粘性マスダンパーの直動軸の一方の端部を一対の前記取付部の他方に連結する。前記粘性マスダンパーの直動軸の他方の端部を対象構造物の一対の前記取付部の一方を挟んで他方の反対側に連結する。
その結果、対象構造物が特定方向に相対運動するモードで振動すると、前記粘性マスダンパーと前記バネ要素とで構成される振動系が連成振動し、前記直動軸が直動方向に相対変位して前記回転体が回転し、前記粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
According to the configuration of the present invention, the viscous mass damper has a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, and an inner surface of the frame. And a viscous fluid enclosed between the outer surface of the rotating body. The spring element has an elastic body and a first member and a second member sandwiching the elastic body. The first member of the spring element is coupled to one of the pair of attachment portions. The second member of the spring element is coupled to the frame of the viscous mass damper. One end portion of the linear motion shaft of the viscous mass damper is connected to the other of the pair of attachment portions. The other end of the linear motion shaft of the viscous mass damper is connected to the opposite side of the other of the pair of attachment portions of the target structure.
As a result, when the target structure vibrates in a mode in which it moves relative to a specific direction, the vibration system composed of the viscous mass damper and the spring element oscillates, and the linear motion shaft is relatively displaced in the linear motion direction. Then, the rotating body rotates, a shearing force is generated in the viscous fluid, and the viscous fluid absorbs vibration energy.

以下に、本発明の実施形態に係る制振装置を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。   Hereinafter, a vibration damping device according to an embodiment of the present invention will be described. The present invention includes any of the embodiments described below, or a combination of two or more of them.

本発明の実施形態にかかる制振装置は、前記バネ要素を特定方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させたさいに前記直動方向に作用する反力を前記相対加速度で割った値であるみかけの慣性質量mrとに対応する固有振動数ωrと対象構造物の特定方向に変位する振動モードの固有振動数ωnとの比を調整し、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する反力を前記相対速度で割った値である減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる様にし、前記応答倍率は、対象構造物の一方の前記取付部を強制加振させた際の加振力による対象構造物の一方の前記取付部の静的変位と応答して振動した対象構造物の一方の前記取付部の振幅の比である絶対応答倍率、対象構造物の一方の前記取付部を強制加振した際の一方の前記取付部の変位と応答して振動した対象構造物の他方の前記取付部の変位との比である変位応答倍率、または対象構造物の一方の前記取付部を強制加振した際の対象構造物の一方の前記取付部の加速度と応答して振動した対象構造物の他方の前記取付部の加速度との比である加速度応答倍率のうちのひとつである。   The vibration damping device according to the embodiment of the present invention includes an elastic coefficient kb, which is a value obtained by dividing the reaction force generated when the spring element is displaced by a relative distance in a specific direction, and the viscous mass damper. Natural vibration corresponding to the apparent inertial mass mr, which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration when the linear motion shaft is linearly moved in the linear motion direction at a predetermined relative acceleration. The ratio between the number ωr and the natural frequency ωn of the vibration mode displaced in a specific direction of the target structure is adjusted, the ratio between the excitation frequency ω and the natural frequency ωn is taken as the horizontal axis, and the response magnification of the target structure is When the vertical axis is taken, the reaction force acting in the linear motion direction when the linear motion shaft of the viscous mass damper is linearly moved at a constant relative speed on the line indicating the response magnification is the relative speed. Constant value regardless of the value of the damping coefficient c, which is the divided value The values at the two fixed points are substantially equal, and the response magnification is set so that one of the attachment portions of the target structure is subjected to an excitation force when the one attachment portion of the target structure is forcibly excited. Absolute response magnification, which is a ratio of amplitudes of one of the mounting parts of the target structure that vibrates in response to static displacement, of one of the mounting parts when the one mounting part of the target structure is forcibly excited The displacement response magnification, which is the ratio of the displacement and the displacement of the other mounting portion of the target structure that vibrates in response, or one of the target structures when the one mounting portion of the target structure is forcibly excited This is one of the acceleration response magnifications which is a ratio between the acceleration of the attachment portion and the acceleration of the other attachment portion of the target structure that vibrates in response.

前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させたさいに前記直動方向に作用する反力を前記相対加速度で割った値であるみかけの慣性質量mrとに対応する固有振動数ωrと対象構造物の特定方向に変位する振動モードの固有振動数ωnとの比を調整する。加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の絶対応答倍率、相対変位応答倍率、または加速度応答倍率のうちのひとつの応答倍率を縦軸としたとき、前記応答倍率を示す線の上で前記粘性マスダンパーの前記直動軸を相対速度で直動させた際に前記直動方向に作用する反力を前記相対速度で割った値である減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる。
その結果、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記粘性マスダンパーの慣性質量mrとで定まる前記応答倍率が略等しくなり、前記前記粘性マスダンパーが前記フレームと前記直動軸との相対変位に伴って振動エネルギーを吸収し、対象構造物の特定方向に離間する一対の取付部の相対的な振動応答のレベルを小さくすることをできる。
The elastic coefficient kb, which is a value obtained by dividing the reaction force generated when the spring element is displaced by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper are predetermined in the linear motion direction. When the linear motion is caused by the relative acceleration, the natural frequency ωr corresponding to the apparent inertial mass mr, which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration, and the displacement in the specific direction of the target structure. The ratio of the vibration mode to the natural frequency ωn is adjusted. When the horizontal axis represents the ratio of the excitation frequency ω and the natural frequency ωn, and the vertical axis represents one of the absolute response magnification, relative displacement response magnification, or acceleration response magnification of the target structure, the response The value of the damping coefficient c, which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the linear motion shaft of the viscous mass damper is linearly moved at a relative speed on a line indicating the magnification. Regardless of the time, the values at the two fixed points that are constant values are substantially equal.
As a result, at the frequency near the excitation frequency ω corresponding to two fixed points, the response magnification determined by the elastic coefficient Kb of the spring element and the inertia mass mr of the viscous mass damper becomes substantially equal, and the viscous mass The damper absorbs vibration energy with relative displacement between the frame and the linear motion shaft, and the level of relative vibration response of the pair of attachment portions that are separated in a specific direction of the target structure can be reduced.

さらに、本発明の実施形態に係る制振装置は、 前記減衰係数cを調整し、2つの前記定点での値が各々に実質的に略極大になる様にした。
上記実施形態の構成により、前記減衰係数cを調整し、2つの前記定点での値が各々に実質的に略極大になる。
その結果、前記粘性マスダンパーが、適切な減衰係数cを持ち、前記フレームと前記直同軸の相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の絶対変位に対応する振幅、相対変位、または加速度をより小さくし、対象構造物の特定方向に離間する一対の取付部の相対的な振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
Furthermore, in the vibration damping device according to the embodiment of the present invention, the damping coefficient c is adjusted so that the values at the two fixed points are substantially substantially maximized.
According to the configuration of the above embodiment, the attenuation coefficient c is adjusted, and the values at the two fixed points are substantially substantially maximized respectively.
As a result, the viscous mass damper has an appropriate damping coefficient c, absorbs vibration energy with the relative displacement of the frame and the direct coaxial, and corresponds to the absolute displacement of the target structure based on the support. Amplitude, relative displacement, or acceleration can be further reduced so that the relative vibration response level of the pair of mounting portions separated in a specific direction of the target structure does not exceed the response magnification corresponding to the two fixed points.

以上説明したように、本発明に係る免震装置は、その構成により、以下の効果を有する。
相対変位を回転量に変換する慣性接続要素と減衰抵抗力を発生するダンパー要素とを並列接続した系と弾性反力を発生するバネ要素とを直列接続したバネ付き粘性マスダンパーが支持体と対象構造物とを連結する様にしたので、対象構造物が振動運動すると、前記慣性接続要素と前記バネ要素とで構成される振動系が連成振動し、前記慣性接続要素が相対変位し、並列接続された前記ダンパー要素が相対変位して振動エネルギーを吸収する。
また、バネ付き粘性マスダンパーの諸元を対象構造物の振動特性に対応させて設定し、対象構造物の応答倍率を最適化し、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記応答倍率が略等しくなる様にしたので、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
また、前記減衰係数cを調整し、2つの前記定点での値が各々に略極大になる様にしたので、前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の絶対変位に対応する振幅、相対変位、または加速度をより小さくし、支持体を基礎とする対象構造物の振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
また、バネ要素の弾性係数kbを質量比μと主架構の弾性係数kから求め、ダンパー要素の減衰係数cを質量比μと慣性接続要素のみかけの慣性質量mrとバネ付き粘性マスダンパーの固有振動数ωrとから求めて、対象構造物の変位応答倍率を最適化する様にしたので、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
また、また、バネ要素の弾性係数kbを質量比μと主架構の弾性係数kから求め、ダンパー要素の減衰係数cを質量比μと慣性接続要素のみかけの慣性質量mrとバネ付き粘性マスダンパーの固有振動数ωrとから求めて、対象構造物の加速度応答倍率を最適化する様にしたので、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
また、直動軸の雄ねじに嵌め合った回転体を回転自在に支持してフレームと回転体との間に粘性流体を封入した粘性マスダンパーと弾性体でできたバネ要素とを直接接続したバネ付き粘性マスダンパーが支持体と対象構造物とを連結する様にしたので、対象構造物が特定方向に振動運動すると、前記粘性マスダンパーと前記バネ要素とで構成される振動系が連成振動し、前記直動軸が直動方向に相対変位して前記回転体が回転し、前記粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
また、バネ付き粘性マスダンパーの諸元を対象構造物の振動特性に対応させて設定し、対象構造物の応答倍率を最適化し、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記粘性マスダンパーの慣性質量mrとで定まる前記応答倍率が略等しくなり、前記前記粘性マスダンパーが前記フレームと前記直動軸との相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
また、前記減衰係数cを調整し、2つの前記定点での値が各々に略極大になる様にしたので、前記フレームと前記直同軸の相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の絶対変位に対応する振幅、相対変位、または加速度をより小さくし、支持体を基礎とする対象構造物の振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
As described above, the seismic isolation device according to the present invention has the following effects due to its configuration.
The support and target are a viscous mass damper with a spring in which an inertia connecting element that converts relative displacement into a rotation amount and a damper element that generates a damping resistance force are connected in parallel and a spring element that generates an elastic reaction force is connected in series. Since the structure is coupled, when the target structure vibrates, the vibration system composed of the inertia connecting element and the spring element oscillates, and the inertia connecting element relatively displaces in parallel. The connected damper elements are relatively displaced to absorb vibration energy.
In addition, the specifications of the viscous mass damper with spring are set according to the vibration characteristics of the target structure, the response magnification of the target structure is optimized, and the frequency near the excitation frequency ω corresponding to the two fixed points is Since the response magnification determined by the elastic coefficient Kb of the spring element and the inertial mass mr of the inertial connection element is set to be substantially equal, the damper element is moved along with a relative displacement along a specific direction of the inertial connection element. By absorbing vibration energy, the level of vibration response of the target structure based on the support can be reduced.
In addition, the damping coefficient c is adjusted so that the values at the two fixed points are each substantially maximum, so that vibration energy is absorbed along with the relative displacement along the specific direction of the inertial connection element, A response magnification corresponding to two fixed points where the amplitude, relative displacement, or acceleration corresponding to the absolute displacement of the target structure based on the support is made smaller, and the level of vibration response of the target structure based on the support corresponds to two fixed points. Can not be exceeded.
In addition, the elastic coefficient kb of the spring element is obtained from the mass ratio μ and the elastic coefficient k of the main frame, and the damping coefficient c of the damper element is determined from the mass ratio μ, the apparent inertia mass mr of the inertia connecting element, and the inherent viscosity mass damper with the spring. Since the displacement response magnification of the target structure is optimized based on the frequency ωr, the elastic coefficient Kb of the spring element and the inertia are obtained at frequencies near the excitation frequency ω corresponding to two fixed points. The response magnification determined by the inertial mass mr of the connecting element is substantially equal, and the damper element absorbs vibration energy with relative displacement along a specific direction of the inertial connecting element, and the target structure based on the support The level of vibration response of an object can be reduced.
Further, the elastic coefficient kb of the spring element is obtained from the mass ratio μ and the elastic coefficient k of the main frame, and the damping coefficient c of the damper element is determined from the mass ratio μ, the apparent inertia mass mr of the inertia connecting element, and the viscous mass damper with spring. Since the acceleration response magnification of the target structure is optimized based on the natural frequency ωr of the target element, the elastic coefficient Kb of the spring element is obtained at a frequency in the vicinity of the excitation frequency ω corresponding to two fixed points. The response magnifications determined by the inertial mass mr of the inertial connection element are substantially equal, and the damper element absorbs vibration energy with relative displacement along a specific direction of the inertial connection element, and is based on a support. The level of vibration response of the target structure can be reduced.
In addition, a spring that directly connects a viscous mass damper in which a viscous fluid is sealed between the frame and the rotating body and a spring element made of an elastic body, which rotatably supports the rotating body fitted to the male screw of the linear motion shaft. Since the attached viscous mass damper connects the support and the target structure, when the target structure vibrates in a specific direction, the vibration system composed of the viscous mass damper and the spring element is coupled with vibration. Then, the linear motion shaft is relatively displaced in the linear motion direction, the rotating body rotates, a shearing force is generated in the viscous fluid, and the viscous fluid absorbs vibration energy.
In addition, the specifications of the viscous mass damper with spring are set according to the vibration characteristics of the target structure, the response magnification of the target structure is optimized, and the frequency near the excitation frequency ω corresponding to the two fixed points is The response magnification determined by the elastic coefficient Kb of the spring element and the inertial mass mr of the viscous mass damper becomes substantially equal, and the viscous mass damper absorbs vibration energy along with the relative displacement between the frame and the linear motion shaft. It can absorb and reduce the level of vibration response of the target structure based on the support.
In addition, since the damping coefficient c is adjusted so that the values at the two fixed points are substantially maximum, the vibration energy is absorbed along with the relative displacement of the frame and the direct coaxial, The amplitude, relative displacement, or acceleration corresponding to the absolute displacement of the underlying target structure is made smaller, and the vibration response level of the target structure based on the support does not exceed the response magnification corresponding to the two fixed points. You can

以上説明したように、本発明に係る制振装置は、その構成により、以下の効果を有する。
相対変位を回転量に変換する慣性接続要素と減衰抵抗力を発生するダンパー要素とを並列接続した系と弾性反力を発生するバネ要素とを直列接続したバネ付き粘性マスダンパーが対象構造物の特定方向に離間する一対の箇所を連結したので、対象構造物が特定方向に相対運動するモードで振動すると、前記慣性接続要素と前記バネ要素とで構成される振動系が連成振動し、前記慣性接続要素の相対変位し、並列接続された前記ダンパー要素が相対変位して振動エネルギーを吸収する。
また、バネ付き粘性マスダンパーの諸元を対象構造物の振動特性に対応させて設定し、対象構造物の応答倍率を最適化し、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記応答倍率が略等しくなる様にしたので、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくできる。
また、前記減衰係数cを調整し、2つの前記定点での値が各々に略極大になる様にしたので、前記ダンパー要素が、適切な減衰係数cを持ち、前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物の振幅、相対変位、または加速度をより小さくし、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
また、バネ要素の弾性係数kbを質量比μと主架構の弾性係数kから求め、ダンパー要素の減衰係数cを質量比μと慣性接続要素のみかけの慣性質量mrとバネ付き粘性マスダンパーの固有振動数ωrとから求めて、対象構造物の変位応答倍率を最適化する様にしたので、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくすることをできる。
また、バネ要素の弾性係数kbを質量比μと主架構の弾性係数kから求め、ダンパー要素の減衰係数cを質量比μと慣性接続要素のみかけの慣性質量mrとバネ付き粘性マスダンパーの固有振動数ωrとから求めて、対象構造物の加速度応答倍率を最適化する様にしたので、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記慣性接続要素の慣性質量mrとで定まる前記応答倍率が略等しくなり、前記ダンパー要素が前記慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくすることをできる。
また、直動軸の雄ねじに嵌め合った回転体を回転自在に支持してフレームと回転体との間に粘性流体を封入した粘性マスダンパーと弾性体でできたバネ要素とを直接接続したバネ付き粘性マスダンパーが対象構造物の特定方向に離間する一対の取付部に連結する様にしたので、対象構造物が特定方向に相対運動するモードで振動すると、前記粘性マスダンパーと前記バネ要素とで構成される振動系が連成振動し、前記直動軸が直動方向に相対変位して前記回転体が回転し、前記粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
また、直動軸の雄ねじに嵌め合った回転体を回転自在に支持してフレームと回転体との間に粘性流体を封入した粘性マスダンパーと板材でできたバネ要素とを直接接続したバネ付き粘性マスダンパーが対象構造物の特定方向に離間する一対の取付部に連結する様にしたので、対象構造物が特定方向に相対運動するモードで振動すると、前記粘性マスダンパーと前記バネ要素とで構成される振動系が連成振動し、前記直動軸が直動方向に相対変位して前記回転体が回転し、前記粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
また、直動軸の雄ねじに嵌め合った回転体を回転自在に支持してフレームと回転体との間に粘性流体を封入した粘性マスダンパーをバネ要素を解して対象構造物に連結し、直動軸の両端を対象構造物の他の取付部の連結する様にし、連結した取付部が特定方向に並んでいる様にしたので、対象構造物が特定方向に相対運動するモードで振動すると、前記粘性マスダンパーと前記バネ要素とで構成される振動系が連成振動し、前記直動軸が直動方向に相対変位して前記回転体が回転し、前記粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
また、バネ付き粘性マスダンパーの諸元を対象構造物の振動特性に対応させて設定し、対象構造物の応答倍率を最適化し、2つの定点に対応する加振周波数ωの付近の周波数において、前記バネ要素の弾性係数Kbと前記粘性マスダンパーの慣性質量mrとで定まる前記応答倍率が略等しくなり、前記前記粘性マスダンパーが前記フレームと前記直動軸との相対変位に伴って振動エネルギーを吸収し、象構造物の特定方向に離間する一対の取付部の相対的な振動応答のレベルを小さくすることをできる。
また、前記減衰係数cを調整し、2つの前記定点での値が各々に略極大になる様にしたので、前記フレームと前記直同軸の相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の絶対変位に対応する振幅、相対変位、または加速度をより小さくし、支持体を基礎とする象構造物の特定方向に離間する一対の取付部の相対的な振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
従って、簡易な構造により所望の免震性能または制振性能を発揮できる装置とその装置を構成する要素の諸元を容易に設定できる免震装置と制振装置とを提供できる。
As described above, the vibration damping device according to the present invention has the following effects due to its configuration.
A viscous mass damper with a spring in which an inertial connection element that converts relative displacement into a rotation amount and a damper element that generates damping resistance and a spring element that generates elastic reaction force are connected in series Since a pair of locations separated in a specific direction are connected, when the target structure vibrates in a mode in which the target structure moves relative to the specific direction, a vibration system composed of the inertia connecting element and the spring element vibrates, Relative displacement of the inertial connecting element causes the damper elements connected in parallel to relatively displace to absorb vibration energy.
In addition, the specifications of the viscous mass damper with spring are set according to the vibration characteristics of the target structure, the response magnification of the target structure is optimized, and the frequency near the excitation frequency ω corresponding to the two fixed points is Since the response magnification determined by the elastic coefficient Kb of the spring element and the inertial mass mr of the inertial connection element is set to be substantially equal, the damper element is moved along with a relative displacement along a specific direction of the inertial connection element. The level of the relative vibration response of a pair of locations that absorb vibration energy and are separated in a specific direction of the target structure can be reduced.
In addition, since the damping coefficient c is adjusted so that the values at the two fixed points are substantially maximum respectively, the damper element has an appropriate damping coefficient c and is in a specific direction of the inertial connection element. The vibration energy is absorbed along with the relative displacement along, the amplitude, relative displacement, or acceleration of the target structure is made smaller, and the relative vibration response level of a pair of points separated in a specific direction of the target structure is reduced. It is possible to avoid exceeding the response magnification corresponding to the two fixed points.
In addition, the elastic coefficient kb of the spring element is obtained from the mass ratio μ and the elastic coefficient k of the main frame, and the damping coefficient c of the damper element is determined from the mass ratio μ, the apparent inertia mass mr of the inertia connecting element, and the inherent viscosity mass damper with the spring. Since the displacement response magnification of the target structure is optimized based on the frequency ωr, the elastic coefficient Kb of the spring element and the inertia are obtained at frequencies near the excitation frequency ω corresponding to two fixed points. The response magnifications determined by the inertial mass mr of the connection element are substantially equal, and the damper element absorbs vibration energy along with the relative displacement along the specific direction of the inertial connection element and is separated in the specific direction of the target structure. It is possible to reduce the relative vibration response level of the pair of locations.
In addition, the elastic coefficient kb of the spring element is obtained from the mass ratio μ and the elastic coefficient k of the main frame, and the damping coefficient c of the damper element is determined from the mass ratio μ, the apparent inertia mass mr of the inertia connecting element, and the inherent viscosity mass damper with the spring. Since the acceleration response magnification of the target structure is optimized from the frequency ωr, the elastic coefficient Kb of the spring element and the inertia are obtained at frequencies near the excitation frequency ω corresponding to two fixed points. The response magnifications determined by the inertial mass mr of the connection element are substantially equal, and the damper element absorbs vibration energy along with the relative displacement along the specific direction of the inertial connection element and is separated in the specific direction of the target structure. It is possible to reduce the relative vibration response level of the pair of locations.
In addition, a spring that directly connects a viscous mass damper in which a viscous fluid is sealed between the frame and the rotating body and a spring element made of an elastic body, which rotatably supports the rotating body fitted to the male screw of the linear motion shaft. Since the attached viscous mass damper is connected to a pair of mounting portions that are separated in a specific direction of the target structure, when the target structure vibrates in a mode in which the target structure moves relative to the specific direction, the viscous mass damper, the spring element, The vibration system constituted by the above is coupled with vibration, the linear motion shaft is relatively displaced in the linear motion direction, the rotating body rotates, shear force is generated in the viscous fluid, and the viscous fluid absorbs vibration energy. .
Also, with a spring that directly connects a viscous mass damper that encloses a viscous fluid between the frame and the rotating body, and a spring element made of a plate material, rotatably supporting the rotating body fitted to the male screw of the linear motion shaft Since the viscous mass damper is connected to a pair of mounting portions that are separated in a specific direction of the target structure, when the target structure vibrates in a mode in which the target structure moves relative to the specific direction, the viscous mass damper and the spring element The configured vibration system vibrates, the linear motion shaft relatively displaces in the linear motion direction, the rotating body rotates, shear force is generated in the viscous fluid, and the viscous fluid absorbs vibration energy.
In addition, a rotating mass fitted to the male screw of the linear motion shaft is rotatably supported, and a viscous mass damper in which a viscous fluid is sealed between the frame and the rotating body is connected to the target structure via a spring element. Since both ends of the linear motion shaft are connected to other mounting parts of the target structure, and the connected mounting parts are arranged in a specific direction, if the target structure vibrates in a mode in which it moves relative to the specific direction, The vibration system composed of the viscous mass damper and the spring element oscillates, the linear motion shaft is relatively displaced in the linear motion direction, the rotating body rotates, and shearing force is generated in the viscous fluid. The viscous fluid absorbs vibration energy.
In addition, the specifications of the viscous mass damper with spring are set according to the vibration characteristics of the target structure, the response magnification of the target structure is optimized, and the frequency near the excitation frequency ω corresponding to the two fixed points is The response magnification determined by the elastic coefficient Kb of the spring element and the inertial mass mr of the viscous mass damper becomes substantially equal, and the viscous mass damper absorbs vibration energy with relative displacement between the frame and the linear motion shaft. It is possible to reduce the relative vibration response level of the pair of attachment portions that absorb and separate in the specific direction of the elephant structure.
In addition, since the damping coefficient c is adjusted so that the values at the two fixed points are substantially maximum, the vibration energy is absorbed along with the relative displacement of the frame and the direct coaxial, The amplitude, relative displacement, or acceleration corresponding to the absolute displacement of the underlying target structure is made smaller, and the relative vibration response of a pair of mounting parts spaced apart in a specific direction of the support-based elephant structure is reduced. It is possible to prevent the level from exceeding the response magnification corresponding to the two fixed points.
Therefore, it is possible to provide a device capable of exhibiting a desired seismic isolation performance or vibration suppression performance with a simple structure, and a seismic isolation device and a vibration suppression device capable of easily setting the specifications of elements constituting the device.

以下、本発明を実施するための最良の形態を、図面を参照して説明する。
説明の便宜のために、地震の加速度が建物を揺する場合を例に、説明する。
The best mode for carrying out the present invention will be described below with reference to the drawings.
For convenience of explanation, the case where the acceleration of the earthquake shakes the building will be described as an example.

最初に、本発明の第一の実施形態に係る免震装置を、図を基に、説明する
図1は、本発明の第一または第四の実施形態に係る免震装置・制振装置の概念図である。
First, the seismic isolation device according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1 illustrates the seismic isolation device / vibration control device according to the first or fourth embodiment of the present invention. It is a conceptual diagram.

免震装置は、支持体5を基礎として主架構20に支持される対象構造物10の特定方向の変位を免震する装置である。
例えば、主架構20は複数の樹脂製板材を積層したものである。
免震装置は、慣性接続要素30とバネ要素40とダンパー要素50とで構成され、慣性接続要素30とダンパー要素50とを並列接続した系とバネ要素40とを直列接続した系が支持体と対象構造物との間に連結される。
便宜上、慣性接続要素30とダンパー要素50とを並列接続した系を粘性マスダンパーと呼称し、その粘性マスダンパーとバネ要素40とを直列接続した系をバネ付き粘性マスダンパーと呼称する。
例えば、バネ付き粘性マスダンパーは、支持体と対象構造物との間に置かれ、支持体と対象構造物とに両端部を直列に連結される。
The seismic isolation device is a device for isolating the displacement in a specific direction of the target structure 10 supported by the main frame 20 on the basis of the support 5.
For example, the main frame 20 is a laminate of a plurality of resin plate materials.
The seismic isolation device includes an inertia connecting element 30, a spring element 40, and a damper element 50. A system in which the inertia connecting element 30 and the damper element 50 are connected in parallel and a system in which the spring element 40 is connected in series is a support. Connected to the target structure.
For convenience, a system in which the inertia connecting element 30 and the damper element 50 are connected in parallel is referred to as a viscous mass damper, and a system in which the viscous mass damper and the spring element 40 are connected in series is referred to as a spring-attached viscous mass damper.
For example, a viscous mass damper with a spring is placed between a support and a target structure, and both ends are connected in series to the support and the target structure.

慣性接続要素30は、特定方向の相対変位を回転体の回転量に変換する要素である。
例えば、慣性接続要素30は特定方向の相対変位を螺旋構造により回転体の回転量に変換する。例えば、回転体が所定の回転慣性能率をもつときに、慣性接続要素は特定方向の相対加速度に比例して回転慣性能率に対応した慣性力を発生する。
バネ要素40は、特定方向の相対変位に対応して特定方向にそった弾性反力を発生する要素である。例えば、バネ要素40が所定の弾性係数をもつときに、バネ要素40は相対変位に比例して弾性係数に対応した弾性力を発生する。
ダンパー要素50は、特定方向の相対速度に対応して減衰抵抗力を発生する要素である。例えば、ダンパー要素50が所定の減衰係数cをもつときに、ダンパー要素50は、相対速度に比例して減衰係数に対応した減衰力を発生する。
The inertia connecting element 30 is an element that converts a relative displacement in a specific direction into a rotation amount of the rotating body.
For example, the inertia connecting element 30 converts the relative displacement in a specific direction into a rotation amount of the rotating body by a spiral structure. For example, when the rotating body has a predetermined rotational inertia ratio, the inertia connecting element generates an inertia force corresponding to the rotational inertia ratio in proportion to the relative acceleration in a specific direction.
The spring element 40 is an element that generates an elastic reaction force along a specific direction corresponding to a relative displacement in a specific direction. For example, when the spring element 40 has a predetermined elastic coefficient, the spring element 40 generates an elastic force corresponding to the elastic coefficient in proportion to the relative displacement.
The damper element 50 is an element that generates a damping resistance force corresponding to the relative speed in a specific direction. For example, when the damper element 50 has a predetermined damping coefficient c, the damper element 50 generates a damping force corresponding to the damping coefficient in proportion to the relative speed.

以下に、免震装置の諸元を決定する方法を説明する。
バネ要素の弾性係数kbと慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωnとの比ωr/ωnを調整し、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上でダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる様にする。
ここで、応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である絶対応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである。
The method for determining the specifications of the seismic isolation device will be described below.
The natural frequency ωr corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in the specific direction of the inertia connecting element, the vibration displaced in the specific direction of the system composed of the main frame and the target structure The ratio ωr / ωn with respect to the natural frequency ωn of the mode is adjusted, the ratio between the excitation frequency ω and the natural frequency ωn is taken as the horizontal axis, and the response magnification of the target structure is taken as the vertical axis, showing the response magnification. Regardless of the value of the damping coefficient c of the damper element on the line, the values at the two fixed points that are constant values are made substantially equal.
Here, the response magnification is the absolute response magnification, which is the ratio of the static displacement of the target structure due to the excitation force when the target structure is forced to vibrate and the amplitude of the target structure that vibrates in response. In response to the displacement response magnification, which is the ratio of the displacement of the support body when the body is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support body when the body is forced This is one of the acceleration response magnifications that is a ratio with the acceleration of the object to be vibrated.

上記の方法により諸元を求める手順は以下の通りである。
免震装置と主架構と対象構造物とで構成される構造を質点モデルして表す。
質点モデルを運動方程式を作成する。
応答倍率が絶対応答倍率である場合は、質点モデルの対象構造物に変位強制加振動を加える運動方程式を作成する。
応答倍率が変位応答倍率である場合は、質点モデルの主架構の端部に変位強制振動を加える運動方程式を作成する。
応答倍率が加速度応答倍率である場合は、質点モデルの主架構の端部に加速度強制振動を加える運動方程式を作成する。
運動方程式を解いて、応答倍率を求める方程式を作成する。
減衰係数c=0の応答倍率のカーブと減衰係数c=∞の応答倍率のカーブとの2つの交点P、Q求める。
カーブは、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の応答倍率を縦軸としたグラフに、描いた応答倍率である。
P点での応答倍率とQ点での応答倍率とを等しくする固有振動数ωrと固有振動数ωnとの比の値を決定する。
ωr/ωnの値から免震装置を構成する要素の諸元を決定する。
ωrは、バネ要素の弾性係数kbと慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数である。
ωnは、主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数である。
The procedure for obtaining the specifications by the above method is as follows.
The structure composed of the seismic isolation device, the main frame, and the target structure is represented as a mass point model.
Create an equation of motion for the mass model.
When the response magnification is an absolute response magnification, an equation of motion for applying displacement forced vibration to the target structure of the mass model is created.
When the response magnification is the displacement response magnification, an equation of motion for applying displacement forced vibration to the end of the main frame of the mass model is created.
When the response magnification is the acceleration response magnification, an equation of motion is created that applies acceleration forced vibration to the end of the main frame of the mass model.
Solve the equation of motion and create an equation to find the response magnification.
Two intersection points P and Q of a response magnification curve with an attenuation coefficient c = 0 and a response magnification curve with an attenuation coefficient c = ∞ are obtained.
The curve is a response magnification drawn on a graph with the horizontal axis representing the ratio between the excitation frequency ω and the natural frequency ωn and the vertical axis representing the response magnification of the target structure.
A ratio value between the natural frequency ωr and the natural frequency ωn that makes the response magnification at the point P and the response magnification at the point Q equal is determined.
The specifications of the elements constituting the seismic isolation device are determined from the value of ωr / ωn.
ωr is a natural frequency corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in a specific direction of the inertial connection element.
ωn is a natural frequency of a vibration mode that is displaced in a specific direction of a system composed of the main frame and the target structure.

対象構造物の変位を小さくしたいときには、応答倍率は変位応答倍率であるとよい。
対象構造物の加速度を小さくしたいときは、応答倍率は加速度応答倍率であるとよい。
When it is desired to reduce the displacement of the target structure, the response magnification is preferably the displacement response magnification.
When it is desired to reduce the acceleration of the target structure, the response magnification is preferably the acceleration response magnification.

さらに、減衰係数cを調整し、2つの定点での値が各々に実質的に略極大になる様にする。例えば、減衰係数cはカーブがP点で極値をとる減衰係数cpとカーブがQ点で極値をとる減衰係数cqとの平均値である。
この様にすると、応答倍率が、定点での値を越えない。
Further, the attenuation coefficient c is adjusted so that the values at the two fixed points are substantially substantially maximized respectively. For example, the attenuation coefficient c is an average value of an attenuation coefficient cp that takes an extreme value at a point P and an attenuation coefficient cq that takes an extreme value at a point Q.
In this way, the response magnification does not exceed the value at the fixed point.

上記の方法により減衰係数を求める手順は、以下の通りである。
上記の手順により求めた諸元を代入された応答倍率の式を作成する。
P点を応答倍率の極値とする減衰係数cpを求める。
Q点を応答倍率の極値とする減衰係数cqを求める。
減衰係数cpと減衰係数cqとの平均値を、2つの定点での値が各々に略極大にする減衰係数cとして採用する。
平均値は、加算平均による値であっても、乗算平均による値であっても、その他の平均による値であってもよい。
The procedure for obtaining the attenuation coefficient by the above method is as follows.
Create a formula for the response magnification into which the specifications obtained by the above procedure are substituted.
An attenuation coefficient cp with the point P as an extreme value of the response magnification is obtained.
An attenuation coefficient cq with the Q point as an extreme value of the response magnification is obtained.
The average value of the attenuation coefficient cp and the attenuation coefficient cq is adopted as the attenuation coefficient c that makes the values at the two fixed points approximately maximum.
The average value may be a value based on addition average, a value based on multiplication average, or a value based on other averages.

以下に、対象構造物の支持体に対する変位応答倍率を小さくすることを重視した諸元の決定方法を説明する。
バネ要素の弾性係数kbがk×(1−2μ−sqrt(1−4μ))/2μの90%から110%までの間の値であって、
ダンパー要素の減衰係数cが2×(31.095μ−12.041μ+2.581μ+0.038)×ωr×mrの90%から110%までの間の値、または
バネ要素の弾性係数kbがk×(1−2μ+sqrt(1−4μ))/2μの70%から160%までの間の値であって、
ダンパー要素の減衰係数cが2×(−18.558μ+4.880μ−0.717μ+0.612)×ωr×mrの70%から160%までの間の値のうちのひとつである。
ここで、
0<μ≦0.25、
μ=mr/m、
kは主架構20の特定方位に沿った変位に係る弾性係数、
mは対象構造物10の質量、
mrは慣性接続要素30の特定方向の相対加速度に対するみかけの慣性質量、
kbはバネ要素40の弾性係数、
ωr=sqrt(kb/mr)、
sqrt(x)はxの平方根、である。
Hereinafter, description will be given of a method for determining specifications with an emphasis on reducing the displacement response magnification of the target structure with respect to the support.
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (1-2μ-sqrt (1-4μ)) / 2μ,
The damping coefficient c of the damper element is 2 × (31.095 μ 3 -12.04 μ 2 +2.581 μ + 0.038) × ωr × mr between 90% and 110%, or the elastic coefficient kb of the spring element is k X (1-2μ + sqrt (1-4μ)) / 2μ between 70% and 160%,
The damping coefficient c of the damper element is one of values between 70% and 160% of 2 × (−18.558 μ 3 +4.880 μ 2 −0.717 μ + 0.612) × ωr × mr.
here,
0 <μ ≦ 0.25,
μ = mr / m,
k is an elastic coefficient related to displacement along a specific direction of the main frame 20,
m is the mass of the target structure 10,
mr is the apparent inertial mass relative to the relative acceleration of the inertial connecting element 30 in a specific direction,
kb is the elastic coefficient of the spring element 40,
ωr = sqrt (kb / mr),
sqrt (x) is the square root of x.

上記の弾性係数kbと減衰係数cとを決定する過程を、図を基に、説明する。
図15は、本発明の実施形態に係る振動数比・減衰定数−質量比のグラフ3である。
グラフ3は、対象構造物の変位応答倍率を小さくする様に最適化された振動数比βoptと質量比μとの関係、最適化された付加系6の減衰定数ζoptと質量比μとの関係を示す。
βopt=sqrt{(1−2μ−sqrt(1−4μ))/2μ}、
βopt=sqrt{(1−2μ+sqrt(1−4μ))/2μ}、
ζopt=31.095μ−12.041μ+2.581μ+0.038、
ζopt=−18.558μ+4.880μ−0.717μ+0.612、
最初に質量比μを決定する。但し、質量比は0.25を越えない。
図15に示す、振動数比・減衰定数−質量比のグラフから振動数比μに対応する最適化された振動数比βoptと最適化された減衰定数ζoptを決定する。
以下の式により、諸元を決定する
Kb=k×βopt×μ
c=2×ζopt×ωr×mr
A process of determining the elastic coefficient kb and the damping coefficient c will be described with reference to the drawings.
FIG. 15 is a graph 3 of the frequency ratio / damping constant-mass ratio according to the embodiment of the present invention.
Graph 3 shows the relationship between the frequency ratio βopt and the mass ratio μ optimized so as to reduce the displacement response magnification of the target structure, and the relationship between the optimized additional system 6 damping constant ζopt and the mass ratio μ. Indicates.
βopt = sqrt {(1-2μ-sqrt (1-4μ)) / 2μ 2 },
βopt = sqrt {(1-2μ + sqrt (1-4μ)) / 2μ 2 },
ζopt = 31.095μ 3 -12.04μ 2 + 2.581μ + 0.038,
ζopt = −18.558 μ 3 +4.880 μ 2 −0.717 μ + 0.612,
First, the mass ratio μ is determined. However, the mass ratio does not exceed 0.25.
The optimized frequency ratio βopt corresponding to the frequency ratio μ and the optimized damping constant ζopt are determined from the frequency ratio / damping constant-mass ratio graph shown in FIG.
The specifications are determined by the following equation: Kb = k × βopt 2 × μ
c = 2 × ζopt × ωr × mr

免震装置が上記の式を満足するバネ要素の弾性係数kbを持つと、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の変位応答倍率を縦軸としたとき、変位応答倍率を示す線の上でダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる。
さらに、免震装置が上記の式を満足するバネ要素の弾性係数kbと減衰係数cを持つと、2つの定点での値が各々に実質的に略極大になる。
従って、対象構造物の変位応答倍率を小さくすることをできる。
When the seismic isolation device has the elastic coefficient kb of the spring element that satisfies the above formula, when the ratio of the excitation frequency ω and the natural frequency ωn is the horizontal axis and the displacement response magnification of the target structure is the vertical axis On the line indicating the displacement response magnification, the values at the two fixed points that are constant regardless of the value of the damping coefficient c of the damper element are substantially equal.
Further, if the seismic isolation device has the elastic coefficient kb and the damping coefficient c of the spring element that satisfies the above formula, the values at the two fixed points are substantially substantially maximized respectively.
Therefore, the displacement response magnification of the target structure can be reduced.

以下に、対象構造物の支持体に対する加速度応答を小さくすることを重視した諸元の決定方法を説明する。
バネ要素の弾性係数kbがk×(2μ−1+sqrt(1−2μ))/(1−2μ)の90%から110%までの間の値であって、
ダンパー要素の減衰係数cが2×(4.436μ−3.619μ+1.729μ+0.056)×ωr/mrの90%から110%までの間の値である。
ここで、
0<μ≦0.5、
μ=mr/m、
kは主架構20の特定方位に沿った変位に係る弾性係数、
mは対象構造物10の質量
mrは慣性接続要素30の特定方向の相対加速度に対するみかけの慣性質量
kbはバネ要素40の弾性係数、
ωr=sqrt(kb/mr)
sqrt(x)はxの平方根、である。
Below, the determination method of the specification which attaches importance to making the acceleration response with respect to the support body of a target structure small is demonstrated.
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (2μ-1 + sqrt (1-2μ)) / (1-2μ),
The damping coefficient c of the damper element is a value between 90% and 110% of 2 × (4.436 μ 3 −3.619 μ 2 +1.729 μ + 0.056) × ωr / mr.
here,
0 <μ ≦ 0.5,
μ = mr / m,
k is an elastic coefficient related to displacement along a specific direction of the main frame 20,
m is the mass mr of the target structure 10, the apparent inertial mass kb relative to the relative acceleration in a specific direction of the inertial connection element 30 is the elastic coefficient of the spring element 40,
ωr = sqrt (kb / mr)
sqrt (x) is the square root of x.

上記の弾性係数kbと減衰係数cとを決定する過程を図を基に、説明する。
図16は、本発明の実施形態に係る振動数比・減衰定数−質量比のグラフ4である。
グラフ4は、対象構造物の加速度応答倍率を小さくする様に最適化された振動数比βoptと質量比μとの関係、最適化された減衰定数ζoptと質量比μとの関係を示す。
βopt=sqrt{(2μ−1+sqrt(1−2μ))/μ(1−2μ)}、
ζopt=4.436μ−3.619μ+1.729μ+0.056、
最初に質量比μを決定する。但し、質量比は0.5を越えない。
図16に示す、振動数比・減衰定数−質量比のグラフから質量比μに対応する最適化された振動数比βoptと最適化された減衰定数ζoptを決定する。
以下の式により
以下の計算により
Kb=k×βopt×μ
c=2×ζopt×ωr×mr
The process of determining the elastic coefficient kb and the damping coefficient c will be described with reference to the drawings.
FIG. 16 is a graph 4 of the frequency ratio / damping constant-mass ratio according to the embodiment of the present invention.
Graph 4 shows the relationship between the frequency ratio βopt and the mass ratio μ optimized so as to reduce the acceleration response magnification of the target structure, and the relationship between the optimized damping constant ζopt and the mass ratio μ.
βopt = sqrt {(2μ-1 + sqrt (1-2μ)) / μ (1-2μ)},
ζopt = 4.436 μ 3 −3.619 μ 2 +1.729 μ + 0.056,
First, the mass ratio μ is determined. However, the mass ratio does not exceed 0.5.
The optimized frequency ratio βopt and the optimized damping constant ζopt corresponding to the mass ratio μ are determined from the frequency ratio / damping constant-mass ratio graph shown in FIG.
According to the following formula: Kb = k × βopt 2 × μ
c = 2 × ζopt × ωr × mr

免震装置が上記の式を満足するバネ要素の弾性係数kbを持つと、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の加速度応答倍率を縦軸としたとき、加速度応答倍率を示す線の上でダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる。
さらに、免震装置が上記の式を満足するバネ要素の弾性係数kbと減衰係数cを持つと、2つの定点での値が各々に実質的に略極大になる。
従って、対象構造物の加速度応答倍率を小さくすることをできる。
When the seismic isolation device has the elastic coefficient kb of the spring element that satisfies the above formula, when the ratio of the excitation frequency ω and the natural frequency ωn is on the horizontal axis and the acceleration response magnification of the target structure is on the vertical axis On the line indicating the acceleration response magnification, the values at the two fixed points that are constant regardless of the value of the damping coefficient c of the damper element are substantially equal.
Further, if the seismic isolation device has the elastic coefficient kb and the damping coefficient c of the spring element that satisfies the above formula, the values at the two fixed points are substantially substantially maximized respectively.
Therefore, the acceleration response magnification of the target structure can be reduced.

次に、本発明の第二の実施形態に係る免震装置を、図を基に、説明する。
図2は、本発明の第二の実施形態に係る免震装置の概念図である。
図12は、本発明の対象構造物の概念図である。
免震装置は、支持体を基礎として主架構に支持される対象構造物の特定方向の変位を免震する装置である。
免震装置は、粘性マスダンパー100とバネ要素200とクレビス300とで構成され、粘性マスダンパー100とバネ要素200とクレビス300とを直列接続した系が支持体と対象構造物とを連結する。
図12は、免震装置が、建物の基礎に設けられるのを示している。
Next, the seismic isolation device according to the second embodiment of the present invention will be described with reference to the drawings.
FIG. 2 is a conceptual diagram of the seismic isolation device according to the second embodiment of the present invention.
FIG. 12 is a conceptual diagram of the target structure of the present invention.
The seismic isolation device is a device for isolating a displacement in a specific direction of a target structure supported by a main frame on the basis of a support.
The seismic isolation device includes a viscous mass damper 100, a spring element 200, and a clevis 300, and a system in which the viscous mass damper 100, the spring element 200, and the clevis 300 are connected in series connects the support and the target structure.
FIG. 12 shows that the seismic isolation device is provided on the foundation of the building.

粘性マスダンパー100を、図を基に、説明する。
図10は、本発明の実施形態に係る粘性マスダンパーの断面図である。
図10は、粘性マスダンパーの構造の一例を示している。
粘性マスダンパー100は、直動軸120と回転体130とフレーム140と粘性流体150とで構成される。
The viscous mass damper 100 will be described with reference to the drawings.
FIG. 10 is a cross-sectional view of a viscous mass damper according to an embodiment of the present invention.
FIG. 10 shows an example of the structure of the viscous mass damper.
The viscous mass damper 100 includes a linear motion shaft 120, a rotating body 130, a frame 140, and a viscous fluid 150.

直動軸120は、雄ねじを設けられた軸体である。
直動軸120の両端のうち少なくとも1端は後述するフレーム140の外部へ露出する。
The linear motion shaft 120 is a shaft body provided with a male screw.
At least one end of the linear motion shaft 120 is exposed to the outside of the frame 140 described later.

回転体130は、雄ねじに嵌めあう雌ねじを設けられた部材である。
回転体130は、ねじナット131と回転円筒132とで構成される。
ねじナット131は、後述するフレーム140に回転自在に支持され、雄ねじに嵌め合う雌ねじを設けられる。雄ねじと雌ねじとは、一列に並んだベアリング球を介して嵌め合っていてもよい。
回転円筒132は、後述するフレーム140に回転自在に支持された中空の円筒部材である。
ねじナット131と回転円筒132とは、各々の回転中心を一致させて連結される。
ねじナット131が回転すると、回転円筒132も回転する。
フレーム140は、回転体を回転自在に支持する部材であり、ねじナットフレーム141と回転円筒フレーム142と軸受143とで構成される。
ねじナットフレーム141は軸受143と介してねじナット131を回転自在に支持する。回転円筒フレーム142は、軸受143を介して回転円筒132を回転自在に支持する。
粘性流体150は、フレーム140の内面と該回転体との隙間に封入された液体である。
例えば、粘性流体150は、フレーム140の内面と該回転体の外周との隙間に封入される。
The rotating body 130 is a member provided with a female screw that fits into the male screw.
The rotating body 130 includes a screw nut 131 and a rotating cylinder 132.
The screw nut 131 is rotatably supported by a frame 140, which will be described later, and is provided with a female screw that fits into the male screw. The male screw and the female screw may be fitted together via bearing balls arranged in a row.
The rotating cylinder 132 is a hollow cylindrical member that is rotatably supported by a frame 140 described later.
The screw nut 131 and the rotating cylinder 132 are connected with their respective rotation centers coincident.
When the screw nut 131 rotates, the rotating cylinder 132 also rotates.
The frame 140 is a member that rotatably supports the rotating body, and includes a screw nut frame 141, a rotating cylindrical frame 142, and a bearing 143.
The screw nut frame 141 rotatably supports the screw nut 131 via the bearing 143. The rotating cylindrical frame 142 rotatably supports the rotating cylinder 132 via the bearing 143.
The viscous fluid 150 is a liquid sealed in a gap between the inner surface of the frame 140 and the rotating body.
For example, the viscous fluid 150 is sealed in a gap between the inner surface of the frame 140 and the outer periphery of the rotating body.

粘性マスダンパー100は、本発明の第一の実施形態にかかる免震装置で説明した「慣性接続要素とダンパー要素とを並列接続した系」に相当する。
フレーム140と直動軸120との軸心の回りの回転を拘束した状態で、直動軸120を直動方向に相対変位させると、回転体130が雄ねじと雌ねじのねじの傾斜角に対応した回転角だけ回転する。
慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrは、直動軸を直動方向に所定の相対加速度で直動させたさいに直動方向に作用する反力を相対加速度で割った値であるみかけの慣性質量mrに一致する。
回転体130が回転する際に、回転円筒132と回転円筒フレーム142との隙間に封入された粘性流体150が、回転円筒に132に粘性力を作用させる。
ダンパー要素の特定方向の相対速度に対応して減衰抵抗力は、その粘性力により直動軸120の直動方向に作用する力に一致する。
ダンパー要素の減衰抵抗力を相対速度で割った値である減衰係数cは、粘性マスダンパーの直動軸120を相対速度で直動させた際に直動方向に作用する反力を相対速度で割った値である減衰係数cに一致する。
The viscous mass damper 100 corresponds to the “system in which inertia connection elements and damper elements are connected in parallel” described in the seismic isolation device according to the first embodiment of the present invention.
When the linear motion shaft 120 is relatively displaced in the linear motion direction in a state where the rotation of the frame 140 and the linear motion shaft 120 around the axis is constrained, the rotating body 130 corresponds to the inclination angle of the male screw and the female screw. Rotate by the rotation angle.
The apparent inertial mass mr with respect to the relative acceleration in a specific direction of the inertia connecting element is obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration when the linear motion shaft is linearly moved in the linear motion direction at a predetermined relative acceleration. The value corresponds to the apparent inertial mass mr.
When the rotating body 130 rotates, the viscous fluid 150 enclosed in the gap between the rotating cylinder 132 and the rotating cylinder frame 142 causes a viscous force to act on the rotating cylinder 132.
The damping resistance force corresponding to the relative speed of the damper element in a specific direction matches the force acting in the linear motion direction of the linear motion shaft 120 by the viscous force.
The damping coefficient c, which is a value obtained by dividing the damping resistance force of the damper element by the relative speed, is the reaction force acting in the linear motion direction when the linear motion shaft 120 of the viscous mass damper is linearly moved at the relative speed. It corresponds to the attenuation coefficient c which is a divided value.

バネ要素200は、弾性体210と弾性体を間に挟んだ第一部材220と第二部材230とを有する要素である。
図11は、本発明の実施形態に係るバネ要素の概念図である。
弾性体210は、弾性変形する要素である。
例えば、弾性体210は、剪断力を受けて弾性変形する柔軟材料性の板形状の部材である。
第一部材220は、フランジ221とフランジに固定された一対の弾性体支持部材222とで構成される。
第二部材230は、フランジ231とフランジに固定された弾性体支持部材232とで構成される。
弾性体支持部材222と弾性体支持部材232とが弾性体210を挟む。
第一部材220と第二部材230とが、互いに離間する方向へ移動すると、弾性体に剪断力が発生する。
バネ要素は、第一部材220と第二部材230とが互いに離間する方向を特定方向に一致させる。
The spring element 200 is an element having a first member 220 and a second member 230 sandwiching the elastic body 210 and the elastic body.
FIG. 11 is a conceptual diagram of a spring element according to an embodiment of the present invention.
The elastic body 210 is an element that is elastically deformed.
For example, the elastic body 210 is a flexible material plate-shaped member that is elastically deformed by receiving a shearing force.
The first member 220 includes a flange 221 and a pair of elastic body support members 222 fixed to the flange.
The second member 230 includes a flange 231 and an elastic body support member 232 fixed to the flange.
The elastic body support member 222 and the elastic body support member 232 sandwich the elastic body 210.
When the first member 220 and the second member 230 move in directions away from each other, a shearing force is generated in the elastic body.
The spring element matches the direction in which the first member 220 and the second member 230 are separated from each other in a specific direction.

バネ要素200は、本発明の第一の実施形態にかかる免震装置で説明したバネ要素40に相当する。
バネ要素40の弾性係数kbは、バネ要素200を直動方向に相対距離だけ変位させた際に発生する反力を相対距離で割った値である弾性係数kbに一致する。
The spring element 200 corresponds to the spring element 40 described in the seismic isolation device according to the first embodiment of the present invention.
The elastic coefficient kb of the spring element 40 coincides with the elastic coefficient kb, which is a value obtained by dividing the reaction force generated when the spring element 200 is displaced by the relative distance in the linear motion direction by the relative distance.

クレビス300は、2つの機械要素の間に介在し、2つの要素を繋ぐ向きに直交する軸の回りに回転自在になった機械要素である。
例えば、クレビズ300は、粘性マスダンパー100のフレーム140と支持体5との間に介在する。
例えば、クレビス300は、粘性マスダンパー100の直動軸120とバネ要素200との間に介在する。
The clevis 300 is a machine element that is interposed between two machine elements and is rotatable around an axis orthogonal to the direction connecting the two elements.
For example, the clevis 300 is interposed between the frame 140 of the viscous mass damper 100 and the support 5.
For example, the clevis 300 is interposed between the linear motion shaft 120 of the viscous mass damper 100 and the spring element 200.

以下に、バネ付き粘性マスダンパーの取り付け構造を説明する。
直動軸120の直動方向と特定方向とが略一致し、粘性マスダンパー100のフレーム140または直動軸120の一方を支持体5又は対象構造物10の一方に連結し、粘性マスダンパー100のフレーム140または直動軸120の他方をバネ要素の第一部材220に連結し、バネ要素200の第二部材230を支持体又は対象構造物の他方に連結する。
図2は、粘性マスダンパー100のフレーム140がクレビス300を介して支持体5に連結され、粘性マスダンパー100の直動軸120がクレビス300を介してバネ要素200の第一部材220に連結され、バネ要素200の第二部材230が対象構造物10の一取付部11に固定される。
支持体5は、対象構造物が設置される基礎から立ち上がった基礎の一部である。
対象構造物の一取付部は、対象構造物の底面かた下方に張りだした対象構造物の一部である。
Below, the attachment structure of the viscous mass damper with a spring is demonstrated.
The linear movement direction of the linear movement shaft 120 and the specific direction substantially coincide with each other, one of the frame 140 or the linear movement shaft 120 of the viscous mass damper 100 is connected to one of the support 5 and the target structure 10, and the viscous mass damper 100 is connected. The other of the frame 140 or the linear motion shaft 120 is connected to the first member 220 of the spring element, and the second member 230 of the spring element 200 is connected to the other of the support or the target structure.
In FIG. 2, the frame 140 of the viscous mass damper 100 is connected to the support 5 via the clevis 300, and the linear movement shaft 120 of the viscous mass damper 100 is connected to the first member 220 of the spring element 200 via the clevis 300. The second member 230 of the spring element 200 is fixed to one attachment portion 11 of the target structure 10.
The support 5 is a part of a foundation that rises from the foundation on which the target structure is installed.
One attachment portion of the target structure is a part of the target structure that projects downward from the bottom surface of the target structure.

以下に、ばね付き粘性マスダンパーの諸元の設定方法につき、説明する。
バネ要素200を直動方向に相対距離だけ変位させた際に発生する反力を相対距離で割った値である弾性係数kbと粘性マスダンパーの直動軸120を直動方向に所定の相対加速度で直動させたさいに直動方向に作用する反力を相対加速度で割った値であるみかけの慣性質量mrとに対応する固有振動数ωrと主架構20と対象構造物10とで構成される系の特定方向に変位する振動モードの固有振動数ωnとの比を調整し、加振周波数ωと固有振動数ωnとω/ωnの比を横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上で粘性マスダンパーの直動軸を相対速度で直動させた際に直動方向に作用する反力を相対速度で割った値である減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる様にする。
Below, the setting method of the specification of the viscous mass damper with a spring is demonstrated.
The elastic coefficient kb, which is a value obtained by dividing the reaction force generated when the spring element 200 is displaced by the relative distance in the linear motion direction, and the linear motion shaft 120 of the viscous mass damper in the linear motion direction is a predetermined relative acceleration. The natural frequency ωr corresponding to the apparent inertial mass mr, which is the value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration, the main frame 20 and the target structure 10. The ratio of the natural frequency ωn of the vibration mode displaced in a specific direction of the system is adjusted, the ratio of the excitation frequency ω and the natural frequency ωn and ω / ωn is taken as the horizontal axis, and the response magnification of the target structure is A damping coefficient c that is a value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the linear motion shaft of the viscous mass damper is linearly moved at the relative speed on the line indicating the response magnification. The values at the two fixed points that are constant regardless of the value of To.

ここで、応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である絶対応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答該率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである。   Here, the response magnification is the absolute response magnification, which is the ratio of the static displacement of the target structure due to the excitation force when the target structure is forced to vibrate and the amplitude of the target structure that vibrates in response. Response to the displacement response ratio, which is the ratio of the displacement of the support when the body is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced This is one of the acceleration response magnifications that is a ratio with the acceleration of the object that vibrates.

減衰係数cを調整し、2つの定点での値が各々に実質的に略極大になる様にする。   The attenuation coefficient c is adjusted so that the values at the two fixed points are each substantially substantially maximal.

上記の粘性マスダンパーとバネ要素とで構成される振動系の固有振動数ωrと主架構20と対象構造物10とで構成される振動系の固有振動数ωnとを調整する方法を、図を基に、説明する。
図13は、本発明の第一の実施形態に係る振動数比−変位応答倍率のグラフ1である。
グラフ1は、横軸に振動数比ω/ωnをとり、縦軸に変位応答倍率をとった際の、支持体の特定方向の変位と対象構造物10の一取付部11の特定方向の変位の比を示している。
実線は、バネ付き粘性マスダンパーが上記の手法で設定され最適化された減衰係数cをもった場合の、変位応答倍率を示している。
破線は、バネ付き粘性マスダンパーが上記の手法で設定されるが減衰係数cがゼロではないが極めて小さな値である場合の、変位応答倍率を示している。
一点破線は、比較のために、バネ要素を除いた場合を示している。
P点、Q点が、2つの定点である。
主架構20と対象構造物10とで構成される系の特定方向に変位する振動モードの固有振動数ωnは、加振実験により求めてよいし、地震時の対象構造物に設けた加速度計による特定方向の加速度データを解析して求めてもよいし、主架構の弾性係数kと対象構造物mの質量から固有振動数を求める数式を用いて演算により求めてもよい。
一般には、c=0の変位応答倍率のカーブとc=∞の変位応答倍率のカーブの交差する2つの定点P点とP点の値が等しく成るように、粘性マスダンパーとバネ要素の諸元を選定する。
カーブが2つの定点P1とP2とで実質的に極値をとる様に、減衰係数cを選定する。
例えば、減衰係数cはカーブがP点で極値をとる減衰係数cpとカーブがQ点で極値をとる減衰係数cqとの平均値である。
A method of adjusting the natural frequency ωr of the vibration system composed of the viscous mass damper and the spring element and the natural frequency ωn of the vibration system composed of the main frame 20 and the target structure 10 is shown in the figure. Based on this, a description will be given.
FIG. 13 is a graph 1 of the frequency ratio-displacement response magnification according to the first embodiment of the present invention.
In graph 1, the horizontal axis represents the frequency ratio ω / ωn, and the vertical axis represents the displacement response magnification, and the displacement in the specific direction of the support and the displacement in the specific direction of the mounting portion 11 of the target structure 10. The ratio is shown.
The solid line indicates the displacement response magnification when the spring-equipped viscous mass damper has the damping coefficient c set and optimized by the above method.
The broken line indicates the displacement response magnification when the spring-equipped viscous mass damper is set by the above method but the damping coefficient c is not zero but is an extremely small value.
The dashed line shows the case where the spring element is removed for comparison.
P point and Q point are two fixed points.
The natural frequency ωn of the vibration mode displaced in a specific direction of the system composed of the main frame 20 and the target structure 10 may be obtained by an excitation experiment or by an accelerometer provided in the target structure at the time of an earthquake. The acceleration data in a specific direction may be obtained by analysis, or may be obtained by calculation using a mathematical formula for obtaining the natural frequency from the elastic modulus k of the main frame and the mass of the target structure m.
In general, the specifications of the viscous mass damper and the spring element are such that the values of the two fixed points P and P at which the displacement response magnification curve of c = 0 and the displacement response magnification curve of c = ∞ intersect are equal. Is selected.
The attenuation coefficient c is selected so that the curve is substantially extreme at the two fixed points P1 and P2.
For example, the attenuation coefficient c is an average value of an attenuation coefficient cp that takes an extreme value at a point P and an attenuation coefficient cq that takes an extreme value at a point Q.

図14は、本発明の実施形態に係る振動数比−加速度応答倍率のグラフ2である。
グラフ2は、横軸に振動数比ω/ωnをとり、縦軸に加速度応答倍率をとった際の、支持体の特定方向の加速度と対象構造物10の取付部11の特定方向の加速度の比を示している。
実線は、バネ付き粘性マスダンパーが上記の手法で設定され最適化された減衰係数cをもった場合の、加速度応答倍率を示している。
破線は、バネ付き粘性マスダンパーが上記の手法で設定されるが減衰係数cがゼロではないが極めて小さな値である場合の、加速度応答倍率を示している。
一点破線は、比較のために、バネ要素を除いた場合を示している。
P点、Q点が、2つの定点である。
主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωnは、加振実験により求めてよいし、地震時の対象構造物に設けた加速度計による特定方向の加速度データを解析して求めてもよいし、主架構の弾性係数kと対象構造物mの質量から固有振動数を求める数式を用いて演算により求めてもよい。
一般には、c=0の加速度応答倍率のカーブとc=∞の加速度応答倍率のカーブの交差する2つの定点P1とP2の値が等しく成るように、粘性マスダンパーとバネ要素の諸元を選定する。
カーブが2つの定点P点とQ点とで実質的に極値をとる様に、減衰係数cを選定する。例えば、減衰係数cはカーブがP点で極値をとる減衰係数cpとカーブがQ点で極値をとる減衰係数cqとの平均値である。
FIG. 14 is a graph 2 of the frequency ratio-acceleration response magnification according to the embodiment of the present invention.
In graph 2, the horizontal axis represents the frequency ratio ω / ωn, and the vertical axis represents the acceleration response magnification, and the acceleration in the specific direction of the support and the acceleration in the specific direction of the mounting portion 11 of the target structure 10 are shown. The ratio is shown.
The solid line represents the acceleration response magnification when the viscous mass damper with spring has the damping coefficient c set and optimized by the above method.
The broken line indicates the acceleration response magnification when the spring-equipped viscous mass damper is set by the above method but the damping coefficient c is not zero but is an extremely small value.
The dashed line shows the case where the spring element is removed for comparison.
P point and Q point are two fixed points.
The natural frequency ωn of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure may be obtained by an excitation experiment, or a specific direction by an accelerometer provided in the target structure at the time of an earthquake. May be obtained by analyzing the acceleration data, or may be obtained by calculation using an equation for obtaining the natural frequency from the elastic modulus k of the main frame and the mass of the target structure m.
In general, the specifications of the viscous mass damper and the spring element are selected so that the values of two fixed points P1 and P2 at which the acceleration response magnification curve of c = 0 and the acceleration response magnification curve of c = ∞ intersect are equal. To do.
The attenuation coefficient c is selected so that the curve is substantially extreme at the two fixed points P and Q. For example, the attenuation coefficient c is an average value of an attenuation coefficient cp that takes an extreme value at a point P and an attenuation coefficient cq that takes an extreme value at a point Q.

ばね付き粘性マスダンパーの諸元を求めるのに、本発明の第一の実施形態に係る免震装置で説明した様に、振動数比・減衰定数−質量比のグラフから質量比μに対応する最適化された振動数比βoptと最適化された減衰定数ζoptとを決定し、そのβoptとζoptから諸元を求めてもよい。   As described in the seismic isolation device according to the first embodiment of the present invention, the specifications of the viscous mass damper with spring correspond to the mass ratio μ from the graph of frequency ratio / damping constant-mass ratio. The optimized frequency ratio βopt and the optimized damping constant ζopt may be determined, and the specifications may be obtained from the βopt and ζopt.

次に、本発明の第三の実施形態に係る免震装置を、図を基に、説明する。
図3は、本発明の第三の実施形態に係る免震装置の概念図である。
免震装置は、支持体を基礎として主架構20に支持される対象構造物10の特定方向の変位を免震する装置である。
免震装置は、粘性マスダンパー100とバネ要素200とクレビス300とで構成され、粘性マスダンパー100とバネ要素200とクレビス300とを直列接続した系が支持体と対象構造物とを連結する。
Next, a seismic isolation device according to a third embodiment of the present invention will be described with reference to the drawings.
FIG. 3 is a conceptual diagram of the seismic isolation device according to the third embodiment of the present invention.
The seismic isolation device is a device for isolating the displacement in a specific direction of the target structure 10 supported by the main frame 20 on the basis of the support.
The seismic isolation device includes a viscous mass damper 100, a spring element 200, and a clevis 300, and a system in which the viscous mass damper 100, the spring element 200, and the clevis 300 are connected in series connects the support and the target structure.

粘性マスダンパー100は、リニアガイド110と直動軸120と回転体130とフレーム140と粘性流体150とで構成される。
図10はリニアガイド110の付いていない粘性マスダンパー100を示している。
リニアガイド110はオプションであり、直動軸120の軸心回りの回転を拘束する機械要素である。
例えば、リニアガイド110は、フレーム140に固定され、直動軸120の側面に長手方向に沿って設けられた溝または突起に噛みあい、直動軸120の軸心回りの回転を拘束しつつ、長手方向への移動を許容する。
The viscous mass damper 100 includes a linear guide 110, a linear motion shaft 120, a rotating body 130, a frame 140, and a viscous fluid 150.
FIG. 10 shows the viscous mass damper 100 without the linear guide 110.
The linear guide 110 is an option, and is a mechanical element that restrains rotation of the linear motion shaft 120 around the axis.
For example, the linear guide 110 is fixed to the frame 140, meshes with a groove or a protrusion provided along the longitudinal direction on the side surface of the linear motion shaft 120, and restrains rotation around the axis of the linear motion shaft 120, Allow movement in the longitudinal direction.

直動軸120と回転体130とフレーム140と粘性流体150の構造は、第二の実施形態にかかる免震装置のものと同じなので、説明を省略する。   Since the structure of the linear motion shaft 120, the rotating body 130, the frame 140, and the viscous fluid 150 is the same as that of the seismic isolation device according to the second embodiment, the description thereof is omitted.

バネ要素200は、弾性体210と弾性体を間に挟んだ第一部材220と第二部材230とを有する要素である。
バネ要素200は、第二の実施形態に係る免震装置で説明したものでもよいし、他の形式のものでよい。
以下では、他の形式のものを説明する。
弾性体210は、弾性変形する要素である。
例えば、弾性体210は、特定方向に延びたコイルスプリング(図示せず)である。
第一部材220は、フランジ221とフランジに固定された一対の弾性体支持部材222とで構成される。
第二部材230は、フランジ231とフランジに固定された弾性体支持部材232とで構成される。
弾性体支持部材222と弾性体支持部材232とがコイルスプリングを挟む。
第一部材220と第二部材230とが、互いに離間する方向へ移動すると、コイルスプリングが撓む。
バネ要素は、第一部材220と第二部材230とが互いに離間する方向を特定方向に一致させる。
The spring element 200 is an element having a first member 220 and a second member 230 sandwiching the elastic body 210 and the elastic body.
The spring element 200 may be the one described in the seismic isolation device according to the second embodiment, or may be of another type.
In the following, other types will be described.
The elastic body 210 is an element that is elastically deformed.
For example, the elastic body 210 is a coil spring (not shown) extending in a specific direction.
The first member 220 includes a flange 221 and a pair of elastic body support members 222 fixed to the flange.
The second member 230 includes a flange 231 and an elastic body support member 232 fixed to the flange.
The elastic body support member 222 and the elastic body support member 232 sandwich the coil spring.
When the first member 220 and the second member 230 move in directions away from each other, the coil spring is bent.
The spring element matches the direction in which the first member 220 and the second member 230 are separated from each other in a specific direction.

クレビス300は、本発明の第二の実施形態に係る免震装置のものと同じなので、説明を省略する。   Since the clevis 300 is the same as that of the seismic isolation device according to the second embodiment of the present invention, description thereof is omitted.

第三の実施形態にかかる免震装置の使用方法と諸元の設定方法は、第二の実施形態に係る免震装置の場合と同じなので、説明を省略する。   Since the method of using the seismic isolation device according to the third embodiment and the method of setting the specifications are the same as those of the seismic isolation device according to the second embodiment, description thereof is omitted.

次に、本発明の第四の実施形態に係る制振装置を、図を基に、説明する。
図1は、本発明の第一または第四の実施形態に係る免震装置・制振装置の概念図である。
Next, a vibration damping device according to a fourth embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a conceptual diagram of a seismic isolation device / damping device according to a first or fourth embodiment of the present invention.

制振装置は、対象構造物の特定方向の相対変形を伴う振動を制振する装置である。
例えば、制振装置は、対象構造物の特定方向に離間した一対の取付部の間に設置され、一対の取付部に連結されて、対象構造物の特定方向の相対変形を伴う振動の振動エネルギーを吸収し、制振する。
制振装置は、慣性接続要素30とバネ要素40とダンパー要素50とで構成される。慣性接続要素30とダンパー要素50とを並列接続した系とバネ要素40とを直列接続した系が対象構造物の特定方向に離間する一対の取付部に連結される。
便宜上、慣性接続要素30とダンパー要素50とを並列接続した系を粘性マスダンパーと呼称し、その粘性マスダンパーとバネ要素40とを直列接続した系をバネ付き粘性マスダンパーと呼称する。
例えば、バネ付き粘性マスダンパーを対象構造物の特定方向に離間する一対の取付部の間に置かれ、一対の取付部に両端部を直列に連結される。
The vibration damping device is a device that dampens vibration accompanied by relative deformation in a specific direction of the target structure.
For example, the vibration damping device is installed between a pair of mounting portions that are separated in a specific direction of the target structure, and is connected to the pair of mounting portions, and vibration energy of vibration accompanied by relative deformation in the specific direction of the target structure. Absorbs and suppresses vibration.
The vibration damping device includes an inertia connecting element 30, a spring element 40, and a damper element 50. A system in which the inertia connecting element 30 and the damper element 50 are connected in parallel and a system in which the spring element 40 is connected in series are coupled to a pair of attachment portions that are separated in a specific direction of the target structure.
For convenience, a system in which the inertia connecting element 30 and the damper element 50 are connected in parallel is referred to as a viscous mass damper, and a system in which the viscous mass damper and the spring element 40 are connected in series is referred to as a spring-attached viscous mass damper.
For example, a viscous mass damper with a spring is placed between a pair of attachment portions that are separated in a specific direction of the target structure, and both ends are connected in series to the pair of attachment portions.

バネ付き粘性マスダンパーの構造は、本発明の第一の実施形態にかかる免震装置のものと同じなので、説明を省略する。   Since the structure of the viscous mass damper with a spring is the same as that of the seismic isolation device according to the first embodiment of the present invention, description thereof is omitted.

以下に、制振装置の諸元を決定する方法を説明する。
バネ要素の弾性係数kbと慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数ωrと対象構造物の特定方向に変位する振動モードの固有振動数ωnとの比を調整し、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上でダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる様にする。
ここで、応答倍率は、対象構造物の一方の箇所を強制加振させた際の加振力による対象構造物の一方の箇所の静的変位と応答して振動した対象構造物の一方の箇所の振幅の比である絶対応答倍率、対象構造物の一方の箇所を強制加振した際の一方の箇所の変位と応答して振動した対象構造物の他方の箇所の変位との比である変位応答該率、または対象構造物の一方の箇所を強制加振した際の対象構造物の一方の箇所の加速度と応答して振動した対象構造物の他方の箇所の加速度との比である加速度応答倍率のうちのひとつである。
Hereinafter, a method for determining the specifications of the vibration control device will be described.
The ratio between the natural frequency ωr corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in the specific direction of the inertia connecting element and the natural frequency ωn of the vibration mode displaced in the specific direction of the target structure , The ratio of the excitation frequency ω and the natural frequency ωn is the horizontal axis, and the response magnification of the target structure is the vertical axis, the value of the damping coefficient c of the damper element on the line indicating the response magnification Regardless of whether or not, the values at the two fixed points that are constant values are made substantially equal.
Here, the response magnification is the one location of the target structure that vibrates in response to the static displacement of one location of the target structure due to the excitation force when one location of the target structure is forcibly excited. The absolute response magnification, which is the ratio of the amplitude of the target structure, and the displacement, which is the ratio of the displacement of one location when one location of the target structure is forcibly vibrated and the displacement of the other location of the target structure that vibrates in response Acceleration response which is a ratio between the response rate or the acceleration of one part of the target structure when one part of the target structure is forcibly excited and the acceleration of the other part of the target structure that vibrates in response One of the magnifications.

上記の方法により諸元を求める手順は以下の通りである。
対象構造物の制振装置を取り付けた箇所を、対象構造物の特定方向に変位する振動モードとその固有振動数ωnから1質点系にモデル化する。
免震装置と対象構造物とで構成される構造を質点モデルして表す。
質点モデルを運動方程式を作成する。
応答倍率が絶対応答倍率である場合は、質点モデルの対象構造物に変位強制加振動を加える運動方程式を作成する。
応答倍率が変位応答倍率である場合は、質点モデルの主架構の端部に変位強制振動を加える運動方程式を作成する。
応答倍率が加速度応答倍率である場合は、質点モデルの主架構の端部に加速度強制振動を加える運動方程式を作成する。
運動方程式を解いて、応答倍率を求める方程式を作成する。
減衰係数c=0の応答倍率のカーブと減衰係数c=∞の応答倍率のカーブとの2つの交点P、Q求める。
カーブは、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の応答倍率を縦軸としたグラフに描かれた応答倍率である。
P点での応答倍率とQ点での応答倍率とを等しくする様に、固有振動数ωrと固有振動数ωnとの比の値を決定する。
ωr/ωnの値から免震装置を構成する要素の諸元を決定する。
ωrは、バネ要素の弾性係数kbと慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mrとに対応する固有振動数である。
ωnは、対象構造物の特定方向に変位する振動モードの固有振動数である。
The procedure for obtaining the specifications by the above method is as follows.
A location where the vibration control device for the target structure is attached is modeled into a one-mass system from a vibration mode that is displaced in a specific direction of the target structure and its natural frequency ωn.
The structure composed of the seismic isolation device and the target structure is expressed as a mass point model.
Create an equation of motion for the mass model.
When the response magnification is an absolute response magnification, an equation of motion for applying displacement forced vibration to the target structure of the mass model is created.
When the response magnification is the displacement response magnification, an equation of motion for applying displacement forced vibration to the end of the main frame of the mass model is created.
When the response magnification is the acceleration response magnification, an equation of motion is created that applies acceleration forced vibration to the end of the main frame of the mass model.
Solve the equation of motion and create an equation to find the response magnification.
Two intersection points P and Q of a response magnification curve with an attenuation coefficient c = 0 and a response magnification curve with an attenuation coefficient c = ∞ are obtained.
The curve is a response magnification drawn on a graph with the horizontal axis representing the ratio between the excitation frequency ω and the natural frequency ωn and the vertical axis representing the response magnification of the target structure.
The value of the ratio between the natural frequency ωr and the natural frequency ωn is determined so that the response magnification at the point P and the response magnification at the point Q are equal.
The specifications of the elements constituting the seismic isolation device are determined from the value of ωr / ωn.
ωr is a natural frequency corresponding to the elastic coefficient kb of the spring element and the apparent inertial mass mr with respect to the relative acceleration in a specific direction of the inertial connection element.
ωn is a natural frequency of a vibration mode that is displaced in a specific direction of the target structure.

対象構造物の変位応答を小さくしたいときには、応答倍率は変位応答倍率であるとよい。
対象構造物の加速度応答を小さくしたいときは、応答倍率は加速度応答倍率であるという。
When it is desired to reduce the displacement response of the target structure, the response magnification is preferably the displacement response magnification.
When it is desired to reduce the acceleration response of the target structure, the response magnification is said to be the acceleration response magnification.

さらに、減衰係数cを調整し、2つの定点での値が各々に実質的に略極大になる様にする。例えば、減衰係数cはカーブがP点で極値をとる減衰係数cpとカーブがQ点で極値をとる減衰係数cqとの平均値である。   Further, the attenuation coefficient c is adjusted so that the values at the two fixed points are substantially substantially maximized respectively. For example, the attenuation coefficient c is an average value of an attenuation coefficient cp that takes an extreme value at a point P and an attenuation coefficient cq that takes an extreme value at a point Q.

上記の方法により減衰係数を求める手順は以下の通りである。
上記の手順により求めた諸元を代入された応答倍率の式を作成する。
P点を応答倍率の極値とする減衰係数cpを求める。
Q点を応答倍率の極値とする減衰係数cqを求める。
減衰係数cpと減衰係数cqとの平均値を、2つの定点での値が各々に略極大にする減衰係数cとして採用する。
平均値は、加算平均による値であっても、乗算平均による値であっても、その他の平均による値であってもよい。
この様にすると、応答倍率が、2つの定点での値を実質的に越えない。
The procedure for obtaining the attenuation coefficient by the above method is as follows.
Create a formula for the response magnification into which the specifications obtained by the above procedure are substituted.
An attenuation coefficient cp with the point P as an extreme value of the response magnification is obtained.
An attenuation coefficient cq with the Q point as an extreme value of the response magnification is obtained.
The average value of the attenuation coefficient cp and the attenuation coefficient cq is adopted as the attenuation coefficient c that makes the values at the two fixed points approximately maximum.
The average value may be a value based on addition average, a value based on multiplication average, or a value based on other averages.
In this way, the response magnification does not substantially exceed the values at the two fixed points.

以下に、対象構造物の一対の箇所の特定方向の変位応答を小さくすることを重視した諸元の決定方法を説明する。
バネ要素の弾性係数kbがk×(1−2μ−sqrt(1−4μ))/2μの90%から110%までの間の値であって、
ダンパー要素の減衰係数cが2×(31.095μ−12.041μ+2.581μ+0.038)×ωr×mrの90%から110%までの間の値、または
バネ要素の弾性係数kbがk×(1−2μ+sqrt(1−4μ))/2μの70%から160%までの間の値であって、
ダンパー要素の減衰係数cが2×(−18.558μ+4.880μ−0.717μ+0.612)×ωr×mrの70%から160%までの間の値のうちのひとつであってもよい。
ここで、
0<μ≦0.25、
μ=mr/m、
ωr=sqrt(kb/mr)
kは対象構造物の特定方向の相対変形を伴う振動をばねと質点との1質点系に模しときの該ばねの弾性係数、
mは前記1質点系の前記質点の質量、
mrは慣性接続要素30の特定方向の相対加速度に対するみかけの慣性質量
kbはバネ要素40の弾性係数、
sqrt(x)はxの平方根、である。
この様にすると、対象構造物の変位応答倍率を小さくすることをできる。
A description will be given below of a method for determining specifications with an emphasis on reducing the displacement response in a specific direction at a pair of locations of the target structure.
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (1-2μ-sqrt (1-4μ)) / 2μ,
The damping coefficient c of the damper element is 2 × (31.095 μ 3 -12.04 μ 2 +2.581 μ + 0.038) × ωr × mr between 90% and 110%, or the elastic coefficient kb of the spring element is k X (1-2μ + sqrt (1-4μ)) / 2μ between 70% and 160%,
The damping coefficient c of the damper element may be one of values between 70% and 160% of 2 × (−18.558 μ 3 +4.880 μ 2 −0.717 μ + 0.612) × ωr × mr. .
here,
0 <μ ≦ 0.25,
μ = mr / m,
ωr = sqrt (kb / mr)
k is an elastic coefficient of the spring when imitating vibration with relative deformation in a specific direction of the target structure in a one-mass system of spring and mass;
m is the mass of the mass point of the one mass system,
mr is the apparent inertial mass kb relative to the relative acceleration in a specific direction of the inertia connecting element 30 is the elastic coefficient of the spring element 40;
sqrt (x) is the square root of x.
In this way, the displacement response magnification of the target structure can be reduced.

上記の弾性係数kbと減衰係数cとを決定する過程は、本発明の第一の実施形態に係る免震装置のものと同じなので、説明を省略する。
対象構造物の弾性係数kと質量mは、対象構造物の一対の箇所の特定方向の振動を質量とばねで構成される1質点系に模したときのばねの弾性係数と質点の質量とである。
ここで、対象構造物の質量mを求めるのに、対象構造物の設計データを用いて演算により求めてもよい。
Since the process of determining the elastic coefficient kb and the damping coefficient c is the same as that of the seismic isolation device according to the first embodiment of the present invention, the description thereof is omitted.
The elastic coefficient k and mass m of the target structure are the elastic coefficient of the spring and the mass of the mass when imitating the vibration in a specific direction of a pair of locations of the target structure in a one-mass system composed of the mass and the spring. is there.
Here, the mass m of the target structure may be obtained by calculation using the design data of the target structure.

免震装置が上記の式を満足するバネ要素の弾性係数kbを持つと、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の特定方向に離間した一対の箇所の変位応答倍率を縦軸としたとき、変位応答倍率を示す線の上でダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる。
さらに、免震装置が上記の式を満足するバネ要素の弾性係数kbと減衰係数cを持つと、2つの定点での値が各々に実質的に略極大になる。
従って、対象構造物の変位応答倍率を小さくすることをできる。
When the seismic isolation device has the elastic coefficient kb of the spring element that satisfies the above equation, the ratio of the excitation frequency ω and the natural frequency ωn is taken as the horizontal axis, and a pair of locations separated in a specific direction of the target structure When the displacement response magnification is taken as the vertical axis, the values at two fixed points that are constant values are substantially equal on the line indicating the displacement response magnification regardless of the value of the damping coefficient c of the damper element.
Further, if the seismic isolation device has the elastic coefficient kb and the damping coefficient c of the spring element that satisfies the above formula, the values at the two fixed points are substantially substantially maximized respectively.
Therefore, the displacement response magnification of the target structure can be reduced.

以下に、対象構造物の支持体に対する加速度応答を小さくすることを重視した諸元の決定方法を説明する。
バネ要素の弾性係数kbがk×(2μ−1+sqrt(1−2μ))/(1−2μ)の90%から110%までの間の値であって、
ダンパー要素の減衰係数cが2×(4.436μ−3.619μ+1.729μ+0.056)×ωr×mrの90%から110%までの間の値であってもよい。
ここで、
0<μ≦0.5、
μ=mr/m、
ωr=sqrt(kb/mr)、
kは対象構造物の特定方向の相対変形を伴う振動をばねと質点との1質点系に模しときの該ばねの弾性係数、
mは前記1質点系の前記質点の質量、
mrは慣性接続要素30の特定方向の相対加速度に対するみかけの慣性質量
kbはバネ要素40の弾性係数、
sqrt(x)はxの平方根である。
この様にすると、対象構造物の加速度応答倍率を小さくすることをできる。
Below, the determination method of the specification which attaches importance to making the acceleration response with respect to the support body of a target structure small is demonstrated.
The elastic coefficient kb of the spring element is a value between 90% and 110% of k × (2μ-1 + sqrt (1-2μ)) / (1-2μ),
The damping coefficient c of the damper element may be a value between 90% and 110% of 2 × (4.436 μ 3 −3.619 μ 2 +1.729 μ + 0.056) × ωr × mr.
here,
0 <μ ≦ 0.5,
μ = mr / m,
ωr = sqrt (kb / mr),
k is an elastic coefficient of the spring when imitating vibration with relative deformation in a specific direction of the target structure in a one-mass system of spring and mass;
m is the mass of the mass point of the one mass system,
mr is the apparent inertial mass kb relative to the relative acceleration in a specific direction of the inertia connecting element 30 is the elastic coefficient of the spring element 40;
sqrt (x) is the square root of x.
In this way, the acceleration response magnification of the target structure can be reduced.

上記の弾性係数kbと減衰係数cとを決定する過程は、本発明の第一の実施形態に係る免震装置のものと同じなので、説明を省略する。   Since the process of determining the elastic coefficient kb and the damping coefficient c is the same as that of the seismic isolation device according to the first embodiment of the present invention, the description thereof is omitted.

免震装置が上記の式を満足するバネ要素の弾性係数kbを持つと、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の加速度応答倍率を縦軸としたとき、加速度応答倍率を示す線の上でダンパー要素の減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる。
さらに、免震装置が上記の式を満足するバネ要素の弾性係数kbと減衰係数cを持つと、2つの定点での値が各々に実質的に略極大になる。
従って、対象構造物の加速度応答倍率を小さくすることをできる。
When the seismic isolation device has the elastic coefficient kb of the spring element that satisfies the above formula, when the ratio of the excitation frequency ω and the natural frequency ωn is on the horizontal axis and the acceleration response magnification of the target structure is on the vertical axis On the line indicating the acceleration response magnification, the values at the two fixed points that are constant regardless of the value of the damping coefficient c of the damper element are substantially equal.
Further, if the seismic isolation device has the elastic coefficient kb and the damping coefficient c of the spring element that satisfies the above formula, the values at the two fixed points are substantially substantially maximized respectively.
Therefore, the acceleration response magnification of the target structure can be reduced.

次に、本発明の第五の実施形態に係る制振装置を、図を基に、説明する。
図4は、本発明の第五の実施形態に係る制振装置の概念図である。
図12は、本発明の対象構造物の概念図である。
制振装置は、対象構造物の特定方向の相対変形を伴う振動を制振する装置である。
制振装置は、粘性マスダンパー100とバネ要素200とクレビス300とで構成され、粘性マスダンパー100とバネ要素200とクレビス300とを直列接続した系が対象構造物の一対の取付部を連結する。
図12は、制振装置が、建物の3階に設けられるのを示している。
Next, a vibration control device according to a fifth embodiment of the present invention will be described with reference to the drawings.
FIG. 4 is a conceptual diagram of a vibration damping device according to the fifth embodiment of the present invention.
FIG. 12 is a conceptual diagram of the target structure of the present invention.
The vibration damping device is a device that dampens vibration accompanied by relative deformation in a specific direction of the target structure.
The vibration damping device includes a viscous mass damper 100, a spring element 200, and a clevis 300, and a system in which the viscous mass damper 100, the spring element 200, and the clevis 300 are connected in series connects a pair of attachment portions of the target structure. .
FIG. 12 shows that the vibration damping device is provided on the third floor of the building.

粘性マスダンパー100とバネ要素200とクレビス300の構造は、本発明の第二の実施態様に係る免震装置で使用したものと同じなので、説明を省略する。   Since the structures of the viscous mass damper 100, the spring element 200, and the clevis 300 are the same as those used in the seismic isolation device according to the second embodiment of the present invention, description thereof is omitted.

以下に、バネ付き粘性マスダンパーの取り付け構造を説明する。
対象構造物が特定方向に離間した一対の取付部12,13を有し、
直動軸の直動方向と特定方向とが略一致し、
粘性マスダンパーのフレームまたは直動軸の一方を一対の取付部の一方に連結し、
粘性マスダンパーのフレームまたは直動軸の他方をバネ要素の第一部材に連結し、
バネ要素の第二部材を一対の取付部の他方に連結する。
図4は、粘性マスダンパー100のフレーム140がクレビス300を介して対象構造物の一対の取付部の一方の取付部12に連結され、粘性マスダンパー100の直動軸120がバネ要素200の第一部材220に連結され、バネ要素の第二部材230が対象構造物10の他の取付部13に固定される。
対象構造物の一方の取付部12は、対象構造物の梁材に固定された取り付け座である。
対象構造物の他方の取付部13は、対象物の梁材の2箇所から斜めに突き出た一対の斜材の下端の交点である。
バネ付き粘性マスダンパーを取り付ける向きは反対であっても良い。
Below, the attachment structure of the viscous mass damper with a spring is demonstrated.
The target structure has a pair of attachment parts 12, 13 spaced apart in a specific direction,
The linear motion direction of the linear motion shaft and the specific direction are approximately the same,
Connect one of the viscous mass damper frame or linear motion shaft to one of the pair of mounting parts,
Connect the other of the viscous mass damper frame or the linear motion shaft to the first member of the spring element,
The second member of the spring element is connected to the other of the pair of attachment portions.
In FIG. 4, the frame 140 of the viscous mass damper 100 is connected to one mounting portion 12 of the pair of mounting portions of the target structure via the clevis 300, and the linear movement shaft 120 of the viscous mass damper 100 is connected to the first of the spring elements 200. The second member 230 of the spring element is connected to the one member 220 and is fixed to the other attachment portion 13 of the target structure 10.
One mounting portion 12 of the target structure is a mounting seat fixed to a beam member of the target structure.
The other attachment portion 13 of the target structure is an intersection of the lower ends of a pair of diagonal members protruding obliquely from two locations of the beam material of the target object.
The direction of attaching the viscous mass damper with the spring may be opposite.

以下に、バネ付き粘性マスダンパーの諸元の設定方法につき、説明する。
バネ要素を特定方向に相対距離だけ変位させた際に発生する反力を相対距離で割った値である弾性係数kbと粘性マスダンパーの直動軸を直動方向に所定の相対加速度で直動させたさいに直動方向に作用する反力を相対加速度で割った値であるみかけの慣性質量mrとに対応する固有振動数ωrと対象構造物の特定方向に変位する振動モードの固有振動数ωnとの比を調整し、加振周波数ωと固有振動数ωnとの比を横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上で粘性マスダンパーの直動軸を相対速度で直動させた際に直動方向に作用する反力を相対速度で割った値である減衰係数cの値のいかんにかかわらず一定値となる2つの定点での値が略等しくなる様にしてもよい。
Below, the setting method of the specification of a viscous mass damper with a spring is demonstrated.
Linearly move the elastic force kb, which is the reaction force generated when the spring element is displaced by a relative distance in a specific direction, divided by the relative distance, and the linear motion axis of the viscous mass damper in the linear motion direction at a predetermined relative acceleration. The natural frequency ωr corresponding to the apparent inertial mass mr, which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration, and the natural frequency of the vibration mode displaced in a specific direction of the target structure. The ratio of ωn is adjusted, the ratio of excitation frequency ω and natural frequency ωn is the horizontal axis, and the response magnification of the target structure is the vertical axis. Values at two fixed points that are constant regardless of the value of the damping coefficient c, which is the value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the linear motion shaft is linearly moved at the relative velocity. May be substantially equal.

ここで、応答倍率は、対象構造物の一方の箇所を強制加振させた際の加振力による対象構造物の一方の取付部の静的変位と応答して振動した対象構造物の一方の箇所の振幅の比である絶対応答倍率、対象構造物の一方の箇所を強制加振した際の一方の箇所の変位と応答して振動した対象構造物の他方の箇所の変位との比である変位応答倍率、または対象構造物の一方の箇所を強制加振した際の対象構造物の一方の箇所の加速度と応答して振動した対象構造物の他方の箇所の加速度との比である加速度応答倍率のうちのひとつである、   Here, the response magnification is the one of the target structure that vibrates in response to the static displacement of one mounting portion of the target structure due to the excitation force when one part of the target structure is forcibly excited. Absolute response magnification, which is the ratio of the amplitudes of the parts, and the ratio of the displacement of one part when one part of the target structure is forcibly excited to the displacement of the other part of the target structure that has vibrated in response Acceleration response, which is the ratio between the displacement response magnification or the acceleration of one part of the target structure when one part of the target structure is forcibly excited and the acceleration of the other part of the target structure that has vibrated in response One of the magnifications,

減衰係数cを調整し、2つの定点での値が各々に実質的に略極大になる様にする。     The attenuation coefficient c is adjusted so that the values at the two fixed points are each substantially substantially maximal.

上記の粘性マスダンパーとバネ要素とで構成される振動系の固有振動数ωrと対象構造物の特定方向に変位する振動モードの固有振動数ωnとを調整する方法を、図を基に、説明する。
図13は、本発明の実施形態に係る振動数比−変位応答倍率のグラフ1である。
図13は、横軸に振動数比ω/ωnをとり、縦軸に変位応答倍率をとった際の、対象構造物の一対の取付部の一方の取付部12の特定方向の変位と対象構造物10の他方の取付部13の特定方向の変位の比を示している。
実線は、バネ付き粘性マスダンパーが上記の手法で設定され最適化された減衰係数cをもった場合の、変位応答倍率を示している。
破線は、バネ付き粘性マスダンパーが上記の手法で設定されるが減衰係数cが限りなくゼロに近い小さな値である場合の、変位応答倍率を示している。
一点破線は、比較のために、バネ要素を除いた場合を示している。
P点、Q点が、2つの定点である。
対象構造物の特定方向に変位する振動モードの固有振動数ωnは、加振実験により求めてよいし、地震時の対象構造物に設けた加速度計による一対の取付部の特定方向の加速度データを解析して求めてもよいし、対象構造物の設計データから固有振動数を求めてもよい。
一般には、c=0の変位応答倍率のカーブとc=∞の変位応答倍率のカーブの交差する2つの定点P点とP点の値が等しく成るように、粘性マスダンパーとバネ要素の諸元を選定する。
その後、カーブが2つの定点P1とP2とで実質的に極値をとる様に、減衰係数cを選定する。
A method of adjusting the natural frequency ωr of the vibration system composed of the viscous mass damper and the spring element and the natural frequency ωn of the vibration mode displaced in a specific direction of the target structure will be described with reference to the drawings. To do.
FIG. 13 is a graph 1 of the frequency ratio-displacement response magnification according to the embodiment of the present invention.
FIG. 13 shows the displacement in a specific direction of one attachment portion 12 of a pair of attachment portions of the target structure and the target structure when the frequency ratio ω / ωn is taken on the horizontal axis and the displacement response magnification is taken on the vertical axis. The ratio of the displacement of the other attachment part 13 of the thing 10 in the specific direction is shown.
The solid line indicates the displacement response magnification when the spring-equipped viscous mass damper has the damping coefficient c set and optimized by the above method.
The broken line indicates the displacement response magnification when the spring-equipped viscous mass damper is set by the above method, but the damping coefficient c is a small value close to zero.
The dashed line shows the case where the spring element is removed for comparison.
P point and Q point are two fixed points.
The natural frequency ωn of the vibration mode that is displaced in a specific direction of the target structure may be obtained by an excitation experiment, or acceleration data in a specific direction of a pair of attachment portions by an accelerometer provided in the target structure at the time of an earthquake. It may be obtained by analysis, or the natural frequency may be obtained from design data of the target structure.
In general, the specifications of the viscous mass damper and the spring element are such that the values of the two fixed points P and P at which the displacement response magnification curve of c = 0 and the displacement response magnification curve of c = ∞ intersect are equal. Is selected.
Thereafter, the attenuation coefficient c is selected so that the curve substantially takes extreme values at the two fixed points P1 and P2.

図14は、本発明の実施形態に係る振動数比−加速度応答倍率のグラフ1である。
図14は、横軸に振動数比ω/ωnをとり、縦軸に加速度応答倍率をとった際の、対象構造物の一対の取付部の一方の取付部12の加速度と対象構造物10の他方の取付部13の特定方向の加速度の比を示している。
実線は、バネ付き粘性マスダンパーが上記の手法で設定され最適化された減衰係数cをもった場合の、変位応答倍率を示している。
破線は、バネ付き粘性マスダンパーが上記の手法で設定されるが減衰係数cが限りなくゼロに近い小さな値である場合の、変位応答倍率を示している。
一点破線は、比較のために、バネ要素を除いた場合を示している。
P点、Q点が、2つの定点である。
主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωnは、加振実験により求めてよいし、地震時の対象構造物に設けた加速度計による特定方向の加速度データを解析して求めてもよいし、主架構の弾性係数kと対象構造物mの質量から固有振動数を求める数式を用いて演算により求めてもよい。
一般には、c=0の変位応答倍率のカーブとc=∞の変位応答倍率のカーブの交差する2つの定点P1とP2の値が等しく成るように、粘性マスダンパーとバネ要素の諸元を選定する。
カーブが2つの定点P1とP2とで実質的に極値をとる様に、減衰係数cを選定する。例えば、減衰係数cはカーブがP点で極値をとる減衰係数cpとカーブがQ点で極値をとる減衰係数cqとの平均値である。
FIG. 14 is a graph 1 of the frequency ratio-acceleration response magnification according to the embodiment of the present invention.
In FIG. 14, the horizontal axis represents the frequency ratio ω / ωn, and the vertical axis represents the acceleration response magnification, and the acceleration of one mounting portion 12 of the pair of mounting portions of the target structure and the target structure 10 The ratio of the acceleration of the specific direction of the other attaching part 13 is shown.
The solid line indicates the displacement response magnification when the spring-equipped viscous mass damper has the damping coefficient c set and optimized by the above method.
The broken line indicates the displacement response magnification when the spring-equipped viscous mass damper is set by the above method, but the damping coefficient c is a small value close to zero.
The dashed line shows the case where the spring element is removed for comparison.
P point and Q point are two fixed points.
The natural frequency ωn of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure may be obtained by an excitation experiment, or a specific direction by an accelerometer provided in the target structure at the time of an earthquake. May be obtained by analyzing the acceleration data, or may be obtained by calculation using an equation for obtaining the natural frequency from the elastic modulus k of the main frame and the mass of the target structure m.
In general, the specifications of the viscous mass damper and spring element are selected so that the values of the two fixed points P1 and P2 at which the displacement response magnification curve of c = 0 and the displacement response magnification curve of c = ∞ intersect are equal. To do.
The attenuation coefficient c is selected so that the curve is substantially extreme at the two fixed points P1 and P2. For example, the attenuation coefficient c is an average value of an attenuation coefficient cp that takes an extreme value at a point P and an attenuation coefficient cq that takes an extreme value at a point Q.

ばね付き粘性マスダンパーの諸元を求めるのに、本発明の実施形態に係る制振装置で説明した様に、振動数比・減衰定数−質量比のグラフから質量比μに対応する最適化された振動数比βoptと最適化された減衰定数ζoptとを決定し、そのβoptとζoptから諸元を求めてもよい。   As described in the vibration damping device according to the embodiment of the present invention, the specifications of the viscous mass damper with spring are optimized corresponding to the mass ratio μ from the graph of the frequency ratio / damping constant-mass ratio. Alternatively, the frequency ratio βopt and the optimized damping constant ζopt may be determined, and the specifications may be obtained from the βopt and ζopt.

次に、本発明の第六の実施形態にかかる制振装置を、図を基に、説明する。
図5は、本発明の第六の実施形態に係る制振装置の概念図である。
Next, a vibration control device according to a sixth embodiment of the present invention will be described with reference to the drawings.
FIG. 5 is a conceptual diagram of a vibration damping device according to the sixth embodiment of the present invention.

制振装置は、対象構造物の特定方向の相対変形を制振する装置である。
制振装置は、粘性マスダンパー100とバネ要素400とクレビス300とで構成され、粘性マスダンパー100とバネ要素400とクレビス300とを直列接続した系を対象構造物の一対の取付部に連結する。
図12は、制振装置が建物の4階に設けられるのを示している。
The vibration damping device is a device for damping relative deformation in a specific direction of the target structure.
The vibration damping device includes a viscous mass damper 100, a spring element 400, and a clevis 300, and connects a system in which the viscous mass damper 100, the spring element 400, and the clevis 300 are connected in series to a pair of attachment portions of the target structure. .
FIG. 12 shows that the vibration damping device is provided on the fourth floor of the building.

粘性マスダンパー100の構造は、本発明の第五の実施形態にかかる免震装置のものと同じなので、説明を省略する。   Since the structure of the viscous mass damper 100 is the same as that of the seismic isolation device according to the fifth embodiment of the present invention, the description thereof is omitted.

バネ要素400は、特定方向に交差する方向に延びた板材410と板材の一方の端部に固定された取り付けフランジ420とを有する。
板材410は、板厚方向へ弾性限度内で曲る。
例えば、板材410は、ばね鋼でできた板材である。
例えば、板材410は、複数の板材を板厚方向に積層した板材である。
例えば、板材410は、金属板と樹脂板とを板厚方向に積層した複合材である。
The spring element 400 includes a plate member 410 extending in a direction crossing a specific direction and a mounting flange 420 fixed to one end of the plate member.
The plate material 410 bends within the elastic limit in the plate thickness direction.
For example, the plate material 410 is a plate material made of spring steel.
For example, the plate material 410 is a plate material in which a plurality of plate materials are stacked in the plate thickness direction.
For example, the plate material 410 is a composite material in which a metal plate and a resin plate are laminated in the plate thickness direction.

以下に、バネ付き粘性マスダンパーの取り付け構造を説明する。
対象構造物10が離間した一対の取付部を有し、直動軸120の直動方向と特定方向とが略一致し、バネ要素400の板材410の一端411が一対の取付部の一方の取付部に固定され、粘性マスダンパー100のフレーム140又は直動軸120の一方がバネ要素400の板材の他端412に連結され、粘性マスダンパー100のフレーム140又は直動軸120の他方が対象構造物10の一対の取付部の他方の取付部に連結し、一対の取付部の他方が板材の他端412から特定方向に離間した位置にある。
図5は、バネ要素400の取り付け用フランジ420が対象構造物の上方の梁材に固定され、板材410の下端が下方に垂れ下がるのを示している。
粘性マスダンパー100のフレーム140がクレビス300を介して対象構造物の下方の梁材の取付部12に連結され、粘性マスダンパー100の直動軸120がクレビス300を介してバネ要素400の板材410の下端412に連結される。
Below, the attachment structure of the viscous mass damper with a spring is demonstrated.
The target structure 10 has a pair of mounting portions spaced apart from each other, the linear motion direction of the linear motion shaft 120 and the specific direction substantially coincide with each other, and one end 411 of the plate 410 of the spring element 400 is one mounting of the pair of mounting portions. One of the frame 140 and the linear motion shaft 120 of the viscous mass damper 100 is connected to the other end 412 of the plate of the spring element 400, and the other of the frame 140 and the linear motion shaft 120 of the viscous mass damper 100 is the target structure. It connects with the other attachment part of a pair of attachment part of the thing 10, and the other of a pair of attachment part exists in the position spaced apart in the specific direction from the other end 412 of a board | plate material.
FIG. 5 shows that the mounting flange 420 of the spring element 400 is fixed to the beam material above the target structure, and the lower end of the plate material 410 hangs downward.
The frame 140 of the viscous mass damper 100 is connected to the beam member mounting portion 12 below the target structure via the clevis 300, and the linear movement shaft 120 of the viscous mass damper 100 is connected to the plate member 410 of the spring element 400 via the clevis 300. Connected to the lower end 412.

ばね付き粘性マスダンパーの諸元の設定方法は、第五の実施形態に係る制振装置のものと同じなので、説明を省略する。   Since the specification method of the specification of the spring-loaded viscous mass damper is the same as that of the vibration damping device according to the fifth embodiment, the description thereof is omitted.

次に、本発明の第七の実施形態に係る制振装置を、図を基に、説明する。
図6は、本発明の第七の実施形態に係る制振装置の概念図である。
図12は、本発明の対象構造物の概念図である。
制振装置は、粘性マスダンパー100とバネ要素400と一対のクレビス300とで構成され、粘性マスダンパー100とバネ要素400とクレビス300とを直列接続した系が対象構造物の一対の取付部に連結される。
図12は、制振装置が、建物の4階に設けられるのを示している。
Next, a vibration control device according to a seventh embodiment of the present invention will be described with reference to the drawings.
FIG. 6 is a conceptual diagram of a vibration damping device according to the seventh embodiment of the present invention.
FIG. 12 is a conceptual diagram of the target structure of the present invention.
The vibration damping device includes a viscous mass damper 100, a spring element 400, and a pair of clevises 300, and a system in which the viscous mass damper 100, the spring element 400, and the clevis 300 are connected in series is a pair of attachment portions of the target structure. Connected.
FIG. 12 shows that the vibration damping device is provided on the fourth floor of the building.

粘性マスダンパー100とバネ要素400とクレビス300の構造は、本発明の第一の免震装置で使用したものと同じなので、説明を省略する。   Since the structure of the viscous mass damper 100, the spring element 400, and the clevis 300 is the same as that used in the first seismic isolation device of the present invention, the description thereof is omitted.

以下に、バネ付き粘性マスダンパーの取り付け構造を説明する。
対象構造物10が離間した一対の取付部を有し、直動軸120の直動方向と特定方向とが略一致し、粘性マスダンパー100のフレーム140または直動軸120の一方を一対の取付部の一方の取付部12に連結し、粘性マスダンパー100のフレーム140または直動軸120の他方をバネ要素200の第一部材220に連結し、バネ要素200の第二部材230を一対の取付部の他方の取付部13に連結する。
図6は、粘性マスダンパー100のフレーム140が対象構造物の一対の取付部の一方12に固定され、粘性マスダンパー100の直動軸120が直列に連なった2つのクレビス300を介してバネ要素400の他端412に連結されるのを、示している。
Below, the attachment structure of the viscous mass damper with a spring is demonstrated.
The target structure 10 has a pair of mounting portions spaced apart from each other, the linear motion direction of the linear motion shaft 120 and the specific direction substantially coincide, and one of the frame 140 of the viscous mass damper 100 or the linear motion shaft 120 is attached to a pair. The other of the viscous mass damper 100 is connected to the first member 220 of the spring element 200, and the second member 230 of the spring element 200 is connected to a pair of attachments. It connects with the other attachment part 13 of a part.
FIG. 6 shows a spring element via two clevises 300 in which the frame 140 of the viscous mass damper 100 is fixed to one of a pair of attachment portions 12 of the target structure and the linear motion shaft 120 of the viscous mass damper 100 is connected in series. It is shown being connected to the other end 412 of 400.

ばね付き粘性マスダンパーの諸元の設定方法は、第五の実施形態に係る制振装置のものと同じなので、説明を省略する。   Since the specification method of the specification of the spring-loaded viscous mass damper is the same as that of the vibration damping device according to the fifth embodiment, the description thereof is omitted.

次に、本発明の第八の実施形態に係る制振装置を、図を基に、説明する。
図7は、本発明の第八の実施形態に係る制振装置の概念図である。
図12は、本発明の対象構造物の概念図である。
制振装置は、粘性マスダンパー100とバネ要素200と一対のクレビス300とで構成され、粘性マスダンパー100とバネ要素200とクレビス300とを直列接続した系が対象構造物の一対の取付部に連結される。
図12は、制振装置が、建物の2階に設けられるのを示している。
Next, a vibration control device according to an eighth embodiment of the present invention will be described with reference to the drawings.
FIG. 7 is a conceptual diagram of a vibration damping device according to the eighth embodiment of the present invention.
FIG. 12 is a conceptual diagram of the target structure of the present invention.
The vibration damping device includes a viscous mass damper 100, a spring element 200, and a pair of clevises 300. A system in which the viscous mass damper 100, the spring element 200, and the clevis 300 are connected in series is a pair of attachment portions of the target structure. Connected.
FIG. 12 shows that the vibration damping device is provided on the second floor of the building.

粘性マスダンパー100とバネ要素200とクレビス300の構造は、本発明の第一の免震装置で使用したものと同じなので、説明を省略する。   Since the structures of the viscous mass damper 100, the spring element 200, and the clevis 300 are the same as those used in the first seismic isolation device of the present invention, description thereof is omitted.

以下に、バネ付き粘性マスダンパーの取り付け構造を説明する。
対象構造物10が特定方向に離間した一対の取付部12、13を有し、直動軸120の直動方向と特定方向とが略一致し、粘性マスダンパー100のフレーム140または直動軸120の一方を一対の取付部の一方の取付部12に連結し、粘性マスダンパー100のフレーム140または直動軸120の他方をバネ要素200の第一部材220に連結し、バネ要素200の第二部材230を一対の取付部の他方の取付部13に連結する。
特定方向が、対象構造物の斜め方向に向いている。
対象構造物の一方の取付部12が下段の梁の上部に位置し、他方の取付部13が上段の梁の下面に位置する。
図7は、直動方向が斜めになった粘性マスダンパー100のフレーム140がクレビス300を介して対象構造物の一対の取付部の一方の取付部12に固定され、粘性マスダンパー100の直動軸120がバネ要素200を介して対象構造物10の第一部材に連結されるのを、示している。
Below, the attachment structure of the viscous mass damper with a spring is demonstrated.
The target structure 10 has a pair of mounting portions 12 and 13 that are spaced apart in a specific direction. The linear movement direction of the linear motion shaft 120 and the specific direction substantially coincide with each other, and the frame 140 or the linear motion shaft 120 of the viscous mass damper 100 is obtained. Is connected to one mounting portion 12 of the pair of mounting portions, the other of the frame 140 of the viscous mass damper 100 or the linear motion shaft 120 is connected to the first member 220 of the spring element 200, and the second of the spring element 200 is connected. The member 230 is connected to the other attachment portion 13 of the pair of attachment portions.
The specific direction is directed to the oblique direction of the target structure.
One attachment portion 12 of the target structure is located on the upper portion of the lower beam, and the other attachment portion 13 is located on the lower surface of the upper beam.
In FIG. 7, the frame 140 of the viscous mass damper 100 in which the linear motion direction is inclined is fixed to one mounting portion 12 of the pair of mounting portions of the target structure via the clevis 300, and the linear motion of the viscous mass damper 100 is performed. The shaft 120 is shown connected to the first member of the target structure 10 via the spring element 200.

ばね付き粘性マスダンパーの諸元の設定方法は、第五の実施形態に係る制振装置のものと同じなので、説明を省略する。   Since the specification method of the specification of the spring-loaded viscous mass damper is the same as that of the vibration damping device according to the fifth embodiment, the description thereof is omitted.

次に、本発明の第九の実施形態に係る制振装置を、図を基に、説明する。
図8は、本発明の第九の実施形態に係る制振装置の概念図である。
図12は、本発明の対象構造物の概念図である。
制振装置は、粘性マスダンパー100とバネ要素200と一対のクレビス300とで構成され、粘性マスダンパー100とバネ要素200とクレビス300とを直列接続した系が対象構造物の一対の箇所を連結する。
図12は、制振装置が、建物の1階に設けられるのを示している。
Next, a vibration damping device according to a ninth embodiment of the present invention will be described with reference to the drawings.
FIG. 8 is a conceptual diagram of a vibration damping device according to the ninth embodiment of the present invention.
FIG. 12 is a conceptual diagram of the target structure of the present invention.
The vibration damping device includes a viscous mass damper 100, a spring element 200, and a pair of clevises 300, and a system in which the viscous mass damper 100, the spring element 200, and the clevis 300 are connected in series connects a pair of locations of the target structure. To do.
FIG. 12 shows that the vibration damping device is provided on the first floor of the building.

粘性マスダンパー100とバネ要素200とクレビス300の構造は、本発明の第一の免震装置で使用したものと同じなので、説明を省略する。   Since the structures of the viscous mass damper 100, the spring element 200, and the clevis 300 are the same as those used in the first seismic isolation device of the present invention, description thereof is omitted.

以下に、バネ付き粘性マスダンパーの取り付け構造を説明する。
対象構造物が特定方向に離間した一対の取付部を有し、
直動軸120の直動方向と特定方向とが略一致し、粘性マスダンパー100のフレーム140または直動軸120の一方を一対の取付部の一方の取付部12に連結し、粘性マスダンパー100のフレーム140または直動軸120の他方をバネ要素200の第一部材220に連結し、バネ要素200の第二部材を230一対の取付部の他方の取付部13に連結する。
特定方向が、対象構造物の上下方向に向いている。
対象構造物の一方の取付部12が下段の梁の上部に位置し、他方の取付部13が上段の梁の下面に位置する。
図8は、直動方向が上下方向に沿った粘性マスダンパー100のフレーム140がクレビス300を介して対象構造物の一対の取付部の一方の取付部12に固定され、粘性マスダンパー100の直動軸120がバネ要素を介して対象構造物10の第一部材に連結されるのを、示している。
Below, the attachment structure of the viscous mass damper with a spring is demonstrated.
The target structure has a pair of attachment parts spaced apart in a specific direction,
The linear movement direction of the linear motion shaft 120 and the specific direction substantially coincide with each other, and one of the frame 140 of the viscous mass damper 100 or the linear motion shaft 120 is connected to one mounting portion 12 of the pair of mounting portions. The other of the frame 140 or the linear motion shaft 120 is connected to the first member 220 of the spring element 200, and the second member of the spring element 200 is connected to the other attachment portion 13 of the pair of attachment portions 230.
The specific direction is directed in the vertical direction of the target structure.
One attachment portion 12 of the target structure is located on the upper portion of the lower beam, and the other attachment portion 13 is located on the lower surface of the upper beam.
FIG. 8 shows that the frame 140 of the viscous mass damper 100 whose linear motion direction is in the vertical direction is fixed to one mounting portion 12 of the pair of mounting portions of the target structure via the clevis 300, and It shows that the moving shaft 120 is connected to the first member of the target structure 10 via a spring element.

ばね付き粘性マスダンパーの諸元の設定方法は、第五の実施形態に係る制振装置のものと同じなので、説明を省略する。   Since the specification method of the specification of the spring-loaded viscous mass damper is the same as that of the vibration damping device according to the fifth embodiment, the description thereof is omitted.

次に、本発明の第十の実施形態に係る制振装置を、図を基に、説明する。
図9は、本発明の第九の実施形態に係る制振装置の概念図である。
図12は、本発明の対象構造物の概念図である。
制振装置は、粘性マスダンパー100とバネ要素200とで構成され、粘性マスダンパー100とバネ要素200とクレビス300とを直列接続した系が対象構造物の一対の取付部に連結される。
図12は、制振装置が、建物の1階に設けられるのを示している。
Next, a vibration damping device according to a tenth embodiment of the present invention will be described with reference to the drawings.
FIG. 9 is a conceptual diagram of a vibration damping device according to the ninth embodiment of the present invention.
FIG. 12 is a conceptual diagram of the target structure of the present invention.
The vibration damping device includes a viscous mass damper 100 and a spring element 200, and a system in which the viscous mass damper 100, the spring element 200, and the clevis 300 are connected in series is coupled to a pair of attachment portions of the target structure.
FIG. 12 shows that the vibration damping device is provided on the first floor of the building.

粘性マスダンパー100とバネ要素200とクレビス300の構造は、本発明の第一の免震装置で使用したものとほとんど同じなので、同一の説明を省略し、異なる点を説明する。
異なるのは、直動軸の両端が各々のフレームから露出する点である。
The structures of the viscous mass damper 100, the spring element 200, and the clevis 300 are almost the same as those used in the first seismic isolation device of the present invention.
The difference is that both ends of the linear motion shaft are exposed from each frame.

以下に、バネ付き粘性マスダンパーの取り付け構造を説明する。
対象構造物10が特定方向に離間した一対の取付部を有し、直動軸120の直動方向と特定方向とが略一致し、バネ要素200の第一部材220を一対の取付部の一方に連結し、バネ要素200の第二部材230を粘性マスダンパー100のフレームに連結し、粘性マスダンパー100の直動軸120の一方の端部を一対の取付部の他方に連結し、粘性マスダンパー100の直動軸120の他方の端部を対象構造物10の一対の取付部の一方の取付部13を挟んでの反対側の取付部14に連結する。
図9は、バネ要素200の第一部材220が直動方向が水平方向に沿った粘性マスダンパー100のフレーム140に固定し、バネ要素200の第二部材230が対象構造物の一対の取付部の一方の取付部12に固定され、直動軸の両端が各々に対象構造物に固定されるのを、示している。
Below, the attachment structure of the viscous mass damper with a spring is demonstrated.
The target structure 10 has a pair of attachment portions that are spaced apart in a specific direction, and the linear movement direction of the linear movement shaft 120 and the specific direction substantially coincide with each other, and the first member 220 of the spring element 200 is connected to one of the pair of attachment portions. And the second member 230 of the spring element 200 is connected to the frame of the viscous mass damper 100, and one end of the linear motion shaft 120 of the viscous mass damper 100 is connected to the other of the pair of attachment parts. The other end portion of the linear motion shaft 120 of the damper 100 is connected to the mounting portion 14 on the opposite side across the one mounting portion 13 of the pair of mounting portions of the target structure 10.
FIG. 9 shows that the first member 220 of the spring element 200 is fixed to the frame 140 of the viscous mass damper 100 whose linear movement direction is in the horizontal direction, and the second member 230 of the spring element 200 is a pair of attachment portions of the target structure. It shows that the both ends of the linear motion shaft are fixed to the target structure respectively.

ばね付き粘性マスダンパーの諸元の設定方法は、第五の実施形態に係る制振装置のものと同じなので、説明を省略する。   Since the specification method of the specification of the spring-loaded viscous mass damper is the same as that of the vibration damping device according to the fifth embodiment, the description thereof is omitted.

第一または第四の実施形態にかかる免震装置・制振装置の諸元を、3つの形式の応答倍率の毎に、最適化して評価した数値解析結果を説明する。
図17は、本発明の実施例1の数値解析結果を示すグラフである。
図17の上のグラフが変位応答倍率を示す。
図17の下のグラフが加速度応答倍率を示す。
図17の凡例において、動的最適設計時は絶対応答倍率を小さくすることの重点をおいて諸元を決定した場合、変位最適設計時は変位応答倍率を小さくすることに重点をおいて諸元を決定した場合、加速度最適設計時は加速度応答倍率を小さくすることに重点をおいて諸元を決定した場合、である。
質量比μが0.1と0.2との場合を評価した。
図17から、動的最適設計の系のピークは変位、加速度ともに最もピークが大きい、変位最適設計と加速度最適設計を比較すると、共振曲線のピーク値は低い法の共振点では加速度最適設計の方が、高い方の共振点では変位最適設計のほうがピーク値が小さい。最適設計としてどちらがより適切かは、系の外乱の特性による。ことが判明した。
Numerical analysis results obtained by optimizing and evaluating the specifications of the seismic isolation device / damping device according to the first or fourth embodiment for each of the three types of response magnification will be described.
FIG. 17 is a graph showing the numerical analysis results of Example 1 of the present invention.
The upper graph in FIG. 17 shows the displacement response magnification.
The lower graph of FIG. 17 shows the acceleration response magnification.
In the legend of FIG. 17, when the specifications are determined with an emphasis on reducing the absolute response magnification at the time of the dynamic optimum design, the specifications with an emphasis on reducing the displacement response magnification at the time of the optimum displacement design. Is determined when specifications are determined with an emphasis on reducing the acceleration response magnification at the time of optimum acceleration design.
The case where the mass ratio μ was 0.1 and 0.2 was evaluated.
From FIG. 17, the peak of the dynamic optimal design system has the largest peak for both displacement and acceleration. Comparing the optimal displacement design with the optimal acceleration design, the peak value of the resonance curve is low. However, the peak value is smaller in the optimal displacement design at the higher resonance point. Which is more appropriate as the optimum design depends on the characteristics of the system disturbance. It has been found.

第七の実施形態にかかる制振装置の制振性能を模型試験により確認した。
図18は、本発明の実施例2の模型試験装置の外観図である。
図19は、本発明の実施例2の模型試験の結果表である。
模型試験装置では、LMガイドに支持された鋼板が対象構造物を模擬し、コイルバネが主架構または対象構造物の一対の箇所の間の弾性を模擬する。バネ要素の板材の上端が鋼板の下面に固定される。慣性接続要素の端部が、バネ要素の板材の下端に連結される。
べースを加振し、鋼板の上部においた加速度計で鋼板の加速度を測定する。加速度を積分して変位に変換する。
図19が、設計用人工地震波(BCL−L2)と4つの実地震波における最適設計システムの最大応答値と応答低減率を示す。
図19の表から、変位応答倍率を最適化した場合、または加速度応答倍率を最適化した場合に、対象構造物の振動をよく免震または制振できることが明らかである。
The damping performance of the damping device according to the seventh embodiment was confirmed by a model test.
FIG. 18 is an external view of a model test apparatus according to Embodiment 2 of the present invention.
FIG. 19 is a result table of a model test of Example 2 of the present invention.
In the model test apparatus, the steel plate supported by the LM guide simulates the target structure, and the coil spring simulates elasticity between a pair of locations of the main frame or the target structure. The upper end of the plate material of the spring element is fixed to the lower surface of the steel plate. The end of the inertia connecting element is connected to the lower end of the plate of the spring element.
The base is vibrated and the acceleration of the steel plate is measured with an accelerometer placed on top of the steel plate. Integrate acceleration and convert to displacement.
FIG. 19 shows the maximum response value and response reduction rate of the optimum design system in the design artificial seismic wave (BCL-L2) and the four actual seismic waves.
From the table of FIG. 19, it is clear that the vibration of the target structure can be well isolated or controlled when the displacement response magnification is optimized or the acceleration response magnification is optimized.

以上説明したように、本発明に係る免震装置は、その構成により、以下の効果を有する。
相対変位を回転量に変換する慣性接続要素30と減衰抵抗力を発生するダンパー要素50とを並列接続した系と弾性反力を発生するバネ要素40とを直列接続したバネ付き粘性マスダンパーが支持体5と対象構造物10とを連結する様にしたので、主架構に支持される対象構造物10が振動運動すると、慣性接続要素30とバネ要素40とで構成される振動系が連成振動し、慣性接続要素30が相対変位し、並列接続されたダンパー要素50が相対変位して振動エネルギーを吸収する。
また、バネ付き粘性マスダンパーの諸元を対象構造物の振動特性に対応させて設定し、対象構造物の応答倍率を最適化し、2つの定点に対応する加振周波数ωの付近の周波数において、バネ要素40の弾性係数Kbと慣性接続要素30の慣性質量mrとで定まる応答倍率が略等しくなる様にしたので、ダンパー要素50が慣性接続要素30の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体5を基礎とする対象構造物10の振動応答のレベルを小さくすることをできる。
また、減衰係数cを調整し、2つの定点P、Qでの値が各々に略極大になる様にしたので、慣性接続要素30の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体5を基礎とする対象構造物10の絶対変位に対応する振幅、相対変位、または加速度をより小さくし、支持体5を基礎とする対象構造物10の振動応答のレベルが2つの定点p、Qに対応する応答倍率を越えないようにできる。
また、バネ要素の弾性係数kbを質量比μと主架構の弾性係数kから求め、ダンパー要素の減衰係数cを質量比μと慣性接続要素のみかけの慣性質量mrとバネ付き粘性マスダンパーの固有振動数ωrとから求めて、対象構造物の変位応答倍率を最適化する様にしたので、2つの定点に対応する加振周波数ωの付近の周波数において、バネ要素の弾性係数Kbと慣性接続要素の慣性質量mrとで定まる応答倍率が略等しくなり、ダンパー要素が慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
また、また、バネ要素の弾性係数kbを質量比μと主架構の弾性係数kから求め、ダンパー要素の減衰係数cを質量比μと慣性接続要素のみかけの慣性質量mrとバネ付き粘性マスダンパーの固有振動数ωrとから求めて、対象構造物の加速度応答倍率を最適化する様にしたので、2つの定点に対応する加振周波数ωの付近の周波数において、バネ要素の弾性係数Kbと慣性接続要素の慣性質量mrとで定まる応答倍率が略等しくなり、ダンパー要素が慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
また、直動軸120の雄ねじに嵌め合った回転体130を回転自在に支持してフレーム130と回転体130との間に粘性流体150を封入した粘性マスダンパーと弾性体でできたバネ要素200とを直接接続したバネ付き粘性マスダンパーが支持体5と対象構造物10とを連結する様にしたので、対象構造物10が特定方向に振動運動すると、粘性マスダンパー100とバネ要素200とで構成される振動系が連成振動し、直動軸120が直動方向に相対変位して回転体130が回転し、粘性流体150に剪断力が発生し、粘性流体150が振動エネルギーを吸収する。
また、バネ付き粘性マスダンパーの諸元を対象構造物10の振動特性に対応させて設定し、対象構造物10の応答倍率を最適化し、2つの定点に対応する加振周波数ωの付近の周波数において、バネ要素の弾性係数Kbと粘性マスダンパーの慣性質量mrとで定まる応答倍率が略等しくなり、粘性マスダンパーがフレームと直動軸との相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の振動応答のレベルを小さくすることをできる。
また、減衰係数cを調整し、2つの定点での値が各々に略極大になる様にしたので、フレームと直同軸の相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の絶対変位に対応する振幅、相対変位、または加速度をより小さくし、支持体を基礎とする対象構造物の振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
As described above, the seismic isolation device according to the present invention has the following effects due to its configuration.
A viscous mass damper with a spring in which a system in which an inertial connection element 30 that converts relative displacement into a rotation amount and a damper element 50 that generates a damping resistance force are connected in parallel and a spring element 40 that generates an elastic reaction force is connected in series is supported. Since the body 5 and the target structure 10 are connected to each other, when the target structure 10 supported by the main frame vibrates, a vibration system including the inertia connecting element 30 and the spring element 40 is coupled to vibration. Then, the inertia connecting element 30 is relatively displaced, and the damper elements 50 connected in parallel are relatively displaced to absorb vibration energy.
In addition, the specifications of the viscous mass damper with spring are set according to the vibration characteristics of the target structure, the response magnification of the target structure is optimized, and the frequency near the excitation frequency ω corresponding to the two fixed points is Since the response magnification determined by the elastic coefficient Kb of the spring element 40 and the inertial mass mr of the inertial connection element 30 is made substantially equal, the damper element 50 vibrates with relative displacement along the specific direction of the inertial connection element 30. The level of vibration response of the target structure 10 based on the support 5 can be reduced by absorbing energy.
In addition, since the damping coefficient c is adjusted so that the values at the two fixed points P and Q are substantially maximized, the vibration energy is absorbed along with the relative displacement along the specific direction of the inertial connection element 30. The amplitude, relative displacement, or acceleration corresponding to the absolute displacement of the target structure 10 based on the support 5 is made smaller, and the level of vibration response of the target structure 10 based on the support 5 is two fixed points. It is possible to avoid exceeding the response magnification corresponding to p and Q.
In addition, the elastic coefficient kb of the spring element is obtained from the mass ratio μ and the elastic coefficient k of the main frame, and the damping coefficient c of the damper element is determined from the mass ratio μ, the apparent inertia mass mr of the inertia connecting element, and the inherent viscosity mass damper with the spring. Since the displacement response magnification of the target structure is optimized based on the frequency ωr, the elastic coefficient Kb of the spring element and the inertia connecting element are used at frequencies near the excitation frequency ω corresponding to the two fixed points. The response magnification determined by the inertia mass mr is substantially equal, the damper element absorbs vibration energy with relative displacement along the specific direction of the inertia connection element, and the vibration response of the target structure based on the support The level can be reduced.
Further, the elastic coefficient kb of the spring element is obtained from the mass ratio μ and the elastic coefficient k of the main frame, and the damping coefficient c of the damper element is determined from the mass ratio μ, the apparent inertia mass mr of the inertia connecting element, and the viscous mass damper with spring. Since the acceleration response magnification of the target structure is optimized from the natural frequency ωr of the object, the elastic coefficient Kb and inertia of the spring element are obtained at frequencies near the excitation frequency ω corresponding to the two fixed points. The response magnification determined by the inertial mass mr of the connecting element becomes substantially equal, and the damper element absorbs vibration energy along with the relative displacement along the specific direction of the inertial connecting element, and the vibration of the target structure based on the support body. The level of response can be reduced.
In addition, a spring element 200 made of an elastic body and a viscous mass damper in which a viscous fluid 150 is sealed between the frame 130 and the rotating body 130 by rotatably supporting the rotating body 130 fitted to the male screw of the linear motion shaft 120. Since the viscous mass damper with a spring directly connecting the support body 5 and the target structure 10 is coupled, when the target structure 10 vibrates in a specific direction, the viscous mass damper 100 and the spring element 200 The configured vibration system vibrates, the linear motion shaft 120 is relatively displaced in the linear motion direction, the rotating body 130 rotates, a shearing force is generated in the viscous fluid 150, and the viscous fluid 150 absorbs vibration energy. .
In addition, the specifications of the viscous mass damper with spring are set in accordance with the vibration characteristics of the target structure 10, the response magnification of the target structure 10 is optimized, and the frequencies near the excitation frequency ω corresponding to the two fixed points. , The response magnification determined by the elastic coefficient Kb of the spring element and the inertial mass mr of the viscous mass damper is substantially equal, and the viscous mass damper absorbs vibration energy in association with the relative displacement between the frame and the linear motion shaft. The level of the vibration response of the target structure based on can be reduced.
In addition, the damping coefficient c is adjusted so that the values at the two fixed points are substantially maximum, so that the vibration energy is absorbed along with the relative displacement of the frame and the direct coaxial, and the object is based on the support. The amplitude, relative displacement, or acceleration corresponding to the absolute displacement of the structure can be further reduced so that the vibration response level of the target structure based on the support does not exceed the response magnification corresponding to the two fixed points.

また、以上説明したように、本発明に係る制振装置は、その構成により、以下の効果を有する。
相対変位を回転量に変換する慣性接続要素30と減衰抵抗力を発生するダンパー要素50とを並列接続した系と弾性反力を発生するバネ要素40とを直列接続したバネ付き粘性マスダンパーが対象構造物10の特定方向に離間する一対の箇所を連結したので、対象構造物10が特定方向に相対運動するモードで振動すると、慣性接続要素とバネ要素とで構成される振動系が連成振動し、慣性接続要素の相対変位し、並列接続されたダンパー要素が相対変位して振動エネルギーを吸収する。
また、バネ付き粘性マスダンパーの諸元を対象構造物の振動特性に対応させて設定し、対象構造物の応答倍率を最適化し、2つの定点P、Qに対応する加振周波数ωの付近の周波数において、バネ要素40の弾性係数Kbと慣性接続要素30の慣性質量mrとで定まる応答倍率が略等しくなる様にしたので、ダンパー要素50が慣性接続要素30の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物10の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくできる。
また、減衰係数cを調整し、2つの定点P、Qでの値が各々に実質的に略極大になる様にしたので、ダンパー要素50が、適切な減衰係数cを持ち、慣性接続要素30の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物10の振幅、相対変位、または加速度をより小さくし、対象構造物10の特定方向に離間する一対の箇所の相対的な振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
また、バネ要素の弾性係数kbを質量比μと主架構の弾性係数kから求め、ダンパー要素の減衰係数cを質量比μと慣性接続要素のみかけの慣性質量mrとバネ付き粘性マスダンパーの固有振動数ωrとから求めて、対象構造物の変位応答倍率を最適化する様にしたので、2つの定点に対応する加振周波数ωの付近の周波数において、バネ要素の弾性係数Kbと慣性接続要素の慣性質量mrとで定まる応答倍率が略等しくなり、ダンパー要素が慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくすることをできる。
また、バネ要素の弾性係数kbを質量比μと主架構の弾性係数kから求め、ダンパー要素の減衰係数cを質量比μと慣性接続要素のみかけの慣性質量mrとバネ付き粘性マスダンパーの固有振動数ωrとから求めて、対象構造物の加速度応答倍率を最適化する様にしたので、2つの定点に対応する加振周波数ωの付近の周波数において、バネ要素の弾性係数Kbと慣性接続要素の慣性質量mrとで定まる応答倍率が略等しくなり、ダンパー要素が慣性接続要素の特定方向に沿った相対変位に伴って振動エネルギーを吸収し、対象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくすることをできる。
また、直動軸120の雄ねじに嵌め合った回転体130を回転自在に支持してフレーム140と回転体130との間に粘性流体150を封入した粘性マスダンパー100と弾性体でできたバネ要素200とを直接接続したバネ付き粘性マスダンパーが対象構造物10の特定方向に離間する一対の箇所に連結する様にしたので、対象構造物10が特定方向に相対運動するモードで振動すると、粘性マスダンパー100とバネ要素200とで構成される振動系が連成振動し、直動軸120が直動方向に相対変位して回転体が回転し、粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
また、直動軸120の雄ねじに嵌め合った回転体130を回転自在に支持してフレーム140と回転体130との間に粘性流体150を封入した粘性マスダンパー100と板材でできたバネ要素200とを直接接続したバネ付き粘性マスダンパーが対象構造物の特定方向に離間する一対の箇所に連結する様にしたので、対象構造物10が特定方向に相対運動するモードで振動すると、粘性マスダンパー100とバネ要素200とで構成される振動系が連成振動し、直動軸が直動方向に相対変位して回転体が回転し、粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
また、直動軸120の雄ねじに嵌め合った回転体130を回転自在に支持してフレーム140と回転体130との間に粘性流体150を封入した粘性マスダンパー100をバネ要素200を介して対象構造物10に連結し、直動軸120の両端を対象構造物10の他の箇所の連結する様にし、連結した箇所が特定方向に並んでいる様にしたので、対象構造物が特定方向に相対運動するモードで振動すると、粘性マスダンパー100とバネ要素200とで構成される振動系が連成振動し、直動軸120が直動方向に相対変位して回転体が回転し、粘性流体に剪断力が発生し、粘性流体が振動エネルギーを吸収する。
また、バネ付き粘性マスダンパーの諸元を対象構造物の振動特性に対応させて設定し、対象構造物10の応答倍率を最適化し、2つの定点に対応する加振周波数ωの付近の周波数において、バネ要素の弾性係数Kbと粘性マスダンパーの慣性質量mrとで定まる応答倍率が略等しくなり、粘性マスダンパーがフレームと直動軸との相対変位に伴って振動エネルギーを吸収し、象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルを小さくすることをできる。
また、減衰係数cを調整し、2つの定点での値が各々に略極大になる様にしたので、フレームと直同軸の相対変位に伴って振動エネルギーを吸収し、支持体を基礎とする対象構造物の絶対変位に対応する振幅、相対変位、または加速度をより小さくし、支持体を基礎とする象構造物の特定方向に離間する一対の箇所の相対的な振動応答のレベルが2つの定点に対応する応答倍率を越えないようにできる。
As described above, the vibration damping device according to the present invention has the following effects due to its configuration.
A viscous mass damper with a spring in which a system in which an inertia connecting element 30 that converts relative displacement into a rotation amount and a damper element 50 that generates a damping resistance force are connected in parallel and a spring element 40 that generates an elastic reaction force is connected in series is an object. Since a pair of locations separated in a specific direction of the structure 10 are connected, when the target structure 10 vibrates in a mode in which the target structure 10 moves relative to the specific direction, a vibration system including an inertia connecting element and a spring element is coupled. Then, the inertia connecting element is relatively displaced, and the damper elements connected in parallel are relatively displaced to absorb the vibration energy.
In addition, the specifications of the viscous mass damper with spring are set corresponding to the vibration characteristics of the target structure, the response magnification of the target structure is optimized, and the vibration frequency ω corresponding to the two fixed points P and Q is Since the response magnification determined by the elastic coefficient Kb of the spring element 40 and the inertial mass mr of the inertial connection element 30 is made substantially equal at the frequency, the damper element 50 is relatively displaced along the specific direction of the inertial connection element 30. Accordingly, the vibration energy is absorbed, and the level of the relative vibration response of the pair of portions that are separated in the specific direction of the target structure 10 can be reduced.
Further, since the damping coefficient c is adjusted so that the values at the two fixed points P and Q are substantially substantially maximal, the damper element 50 has an appropriate damping coefficient c, and the inertia connecting element 30 The vibration energy is absorbed in accordance with the relative displacement along the specific direction, the amplitude, the relative displacement, or the acceleration of the target structure 10 is further reduced, and the relative relationship between the pair of locations separated in the specific direction of the target structure 10 It is possible to prevent the level of the vibration response from exceeding the response magnification corresponding to the two fixed points.
In addition, the elastic coefficient kb of the spring element is obtained from the mass ratio μ and the elastic coefficient k of the main frame, and the damping coefficient c of the damper element is determined from the mass ratio μ, the apparent inertia mass mr of the inertia connecting element, and the inherent viscosity mass damper with the spring. Since the displacement response magnification of the target structure is optimized based on the frequency ωr, the elastic coefficient Kb of the spring element and the inertia connecting element are used at frequencies near the excitation frequency ω corresponding to the two fixed points. The response magnifications determined by the inertial mass mr of the inertial connection element are substantially equal, and the damper element absorbs vibration energy along with the relative displacement along the specific direction of the inertial connection element, and the pair of locations separated in the specific direction of the target structure. The level of relative vibration response can be reduced.
In addition, the elastic coefficient kb of the spring element is obtained from the mass ratio μ and the elastic coefficient k of the main frame, and the damping coefficient c of the damper element is determined from the mass ratio μ, the apparent inertia mass mr of the inertia connecting element, and the inherent viscosity mass damper with the spring. Since the acceleration response magnification of the target structure is optimized based on the frequency ωr, the elastic coefficient Kb of the spring element and the inertia connecting element are used at frequencies near the excitation frequency ω corresponding to the two fixed points. The response magnifications determined by the inertial mass mr of the inertial connection element are substantially equal, and the damper element absorbs vibration energy along with the relative displacement along the specific direction of the inertial connection element, and the pair of locations separated in the specific direction of the target structure. The level of relative vibration response can be reduced.
A spring element made of an elastic body and a viscous mass damper 100 in which a rotating body 130 fitted to the male screw of the linear motion shaft 120 is rotatably supported and a viscous fluid 150 is sealed between the frame 140 and the rotating body 130. Since the viscous mass damper with a spring directly connected to 200 is connected to a pair of locations separated in a specific direction of the target structure 10, if the target structure 10 vibrates in a mode in which the target structure 10 moves relative to the specific direction, The vibration system composed of the mass damper 100 and the spring element 200 oscillates in combination, the linear motion shaft 120 is relatively displaced in the linear motion direction, the rotating body rotates, shear force is generated in the viscous fluid, and the viscous fluid Absorbs vibration energy.
In addition, the rotating element 130 fitted to the male screw of the linear motion shaft 120 is rotatably supported, and the viscous mass damper 100 in which the viscous fluid 150 is sealed between the frame 140 and the rotating body 130 and the spring element 200 made of a plate material. Are connected to a pair of locations separated in a specific direction of the target structure, so that the viscous mass damper is vibrated when the target structure 10 vibrates in a mode of relative movement in the specific direction. The vibration system composed of 100 and the spring element 200 oscillates, the linear motion shaft is relatively displaced in the linear motion direction, the rotating body rotates, shearing force is generated in the viscous fluid, and the viscous fluid is subjected to vibration energy. To absorb.
Further, the viscous mass damper 100 in which the rotating body 130 fitted to the male screw of the linear motion shaft 120 is rotatably supported and the viscous fluid 150 is sealed between the frame 140 and the rotating body 130 is targeted via the spring element 200. Since it is connected to the structure 10 and both ends of the linear motion shaft 120 are connected to other parts of the target structure 10, and the connected parts are arranged in a specific direction, the target structure is in a specific direction. When vibrating in the mode of relative motion, the vibration system composed of the viscous mass damper 100 and the spring element 200 vibrates, the linear motion shaft 120 is relatively displaced in the linear motion direction, the rotating body rotates, and the viscous fluid A shearing force is generated in the viscous fluid, and the viscous fluid absorbs vibration energy.
In addition, the specifications of the viscous mass damper with spring are set in accordance with the vibration characteristics of the target structure, the response magnification of the target structure 10 is optimized, and the frequency near the excitation frequency ω corresponding to the two fixed points is set. The response magnifications determined by the elastic coefficient Kb of the spring element and the inertia mass mr of the viscous mass damper are substantially equal, and the viscous mass damper absorbs vibration energy with relative displacement between the frame and the linear motion shaft, It is possible to reduce the level of relative vibration response of a pair of locations separated in a specific direction.
In addition, the damping coefficient c is adjusted so that the values at the two fixed points are substantially maximum, so that the vibration energy is absorbed along with the relative displacement of the frame and the direct coaxial, and the object is based on the support. The amplitude, relative displacement, or acceleration corresponding to the absolute displacement of the structure is made smaller, and the level of the relative vibration response of a pair of points separated in a specific direction of the support-based elephant structure is two fixed points. It is possible not to exceed the response magnification corresponding to.

本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない歯非で各種の変更が可能である。   The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the spirit of the invention.

本発明の第一・第四の実施形態に係る免震装置・制振装置の概念図である。It is a conceptual diagram of the seismic isolation device and the vibration damping device according to the first and fourth embodiments of the present invention. 本発明の第二の実施形態に係る免震装置の概念図である。It is a conceptual diagram of the seismic isolation apparatus which concerns on 2nd embodiment of this invention. 本発明の第三の実施形態に係る免震装置の概念図である。It is a conceptual diagram of the seismic isolation apparatus which concerns on 3rd embodiment of this invention. 本発明の第五の実施形態に係る制振装置の概念図である。It is a conceptual diagram of the vibration damping device which concerns on 5th embodiment of this invention. 本発明の第六の実施形態に係る制振装置の概念図である。It is a conceptual diagram of the vibration damping device which concerns on 6th embodiment of this invention. 本発明の第七の実施形態に係る制振装置の概念図である。It is a conceptual diagram of the vibration damping device which concerns on 7th embodiment of this invention. 本発明の第八の実施形態に係る制振装置の概念図である。It is a conceptual diagram of the vibration damping device which concerns on 8th embodiment of this invention. 本発明の第九の実施形態に係る制振装置の概念図である。It is a conceptual diagram of the vibration damping device which concerns on 9th embodiment of this invention. 本発明の第十の実施形態に係る制振装置の概念図である。It is a conceptual diagram of the vibration damping device concerning a 10th embodiment of the present invention. 本発明の実施形態に係る粘性マスダンパーの断面図である。It is sectional drawing of the viscous mass damper which concerns on embodiment of this invention. 本発明の実施形態に係るバネ要素の概念図である。It is a conceptual diagram of the spring element which concerns on embodiment of this invention. 本発明の対象構造物の概念図である。It is a conceptual diagram of the target structure of this invention. 本発明の実施形態に係る振動数比−変位応答倍率のグラフ1である。It is graph 1 of the frequency ratio-displacement response magnification which concerns on embodiment of this invention. 本発明の実施形態に係る振動数比−変位応答倍率のグラフ2である。It is a graph 2 of the frequency ratio-displacement response magnification which concerns on embodiment of this invention. 本発明の実施形態に係る振動数比・減衰定数−質量比のグラフ3である。It is a graph 3 of the frequency ratio / damping constant-mass ratio according to the embodiment of the present invention. 本発明の実施形態に係る振動数比・減衰定数−質量比のグラフ4である。5 is a graph 4 of a frequency ratio / damping constant-mass ratio according to the embodiment of the present invention. 本発明の実施例1の数値解析結果を示すグラフである。It is a graph which shows the numerical analysis result of Example 1 of this invention. 本発明の実施例2の模型試験装置の外観図である。It is an external view of the model test apparatus of Example 2 of this invention. 本発明の実施例2の模型試験の結果表である。It is a result table | surface of the model test of Example 2 of this invention.

符号の説明Explanation of symbols

5 支持体
6 付加系
10 対象構造物
11 取付部
12 取付部
13 取付部
20 主架構
30 慣性接続要素
40 バネ要素
50 ダンパー要素
100 粘性マスダンパー
110 リニアガイド
120 直動軸
130 回転体
131 ねじナット
132 回転円筒
140 フレーム
141 ねじナットフレーム
142 回転円筒フレーム
143 軸受
150 粘性流体
200 バネ要素
210 弾性体
220 第一部材
221 フランジ
222 弾性体支持部材
230 第二部材
231 フランジ
232 弾性体支持部材
300 クレビス
400 バネ要素
410 板材
411 一端
412 他端
420 取り付けフランジ
DESCRIPTION OF SYMBOLS 5 Support body 6 Additional system 10 Target structure 11 Attachment part 12 Attachment part 13 Attachment part 20 Main frame 30 Inertial connection element 40 Spring element 50 Damper element 100 Viscous mass damper 110 Linear guide 120 Direct acting shaft 130 Rotating body 131 Screw nut 132 Rotating cylinder 140 Frame 141 Screw nut frame 142 Rotating cylindrical frame 143 Bearing 150 Viscous fluid 200 Spring element 210 Elastic body 220 First member 221 Flange 222 Elastic body support member 230 Second member 231 Flange 232 Elastic body support member 300 Clevis 400 Spring element 410 Plate material 411 One end 412 The other end 420 Mounting flange

Claims (2)

支持体を基礎として主架構に支持される対象構造物の特定方向の変位を免震する免震装置であって、
特定方向の相対変位を回転体の回転量に変換する慣性接続要素と、
特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と、
特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素と、
を備え、
免震装置と主架構と対象構造物とで構成される構造を質点モデルとして表したときに前記慣性接続要素と前記ダンパー要素とを並列接続した系と前記バネ要素とを直列接続した系であるバネ付き粘性マスダンパーが支持体と対象構造物との間に連結され、
前記慣性接続要素が雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームとを有し、
前記ダンパー要素が前記フレームの内面と該回転体との隙間に封入された粘性流体を有し、
前記バネ要素が弾性体と該弾性体を間に挟んだ第一部材と第二部材とを有し、
前記弾性体は剪断力を受けて弾性変形する柔軟材料製の板状の部材であり、
前記第一部材は第一フランジと該第一フランジに固定された第一弾性体支持部材とを持ち、
前記第二部材は第二フランジと該第二フランジに固定された第二弾性体支持部材とを持ち、
前記第一弾性支持部材と第二弾性支持部材とが前記弾性体を挟み、
前記第一部材と前記第二部材とが互いに離間する方向に移動すると前記弾性体に剪断力が発生し、離間する方向が特定方向に一致し、
前記直動軸の直動方向と特定方向とが略一致し、
前記フレームまたは直動軸の一方を支持体又は対象構造物の一方に連結し、
前記フレームまたは直動軸の他方を前記バネ要素の第一部材に連結し、
前記バネ要素の第二部材を支持体又は対象構造物の他方に連結する、
ことを特徴とする免震装置。
A seismic isolation device for isolating displacement in a specific direction of a target structure supported by a main frame on the basis of a support,
An inertia connecting element that converts the relative displacement in a specific direction into the amount of rotation of the rotating body;
A spring element that generates an elastic reaction force acting along a specific direction corresponding to a relative displacement in a specific direction;
A damper element that generates a damping resistance force acting along a specific direction corresponding to a relative speed in a specific direction;
With
A system in which the inertia connecting element and the damper element are connected in parallel and the spring element are connected in series when the structure composed of the seismic isolation device, the main frame, and the target structure is expressed as a mass point model. A springy viscous mass damper is connected between the support and the target structure,
The inertia connecting element includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, and a frame that rotatably supports the rotating body;
The damper element has a viscous fluid sealed in a gap between the inner surface of the frame and the rotating body;
The spring element has an elastic body and a first member and a second member sandwiching the elastic body,
The elastic body is a plate-like member made of a flexible material that is elastically deformed by receiving a shearing force,
The first member has a first flange and a first elastic body support member fixed to the first flange,
The second member has a second flange and a second elastic body support member fixed to the second flange,
The first elastic support member and the second elastic support member sandwich the elastic body,
When the first member and the second member move in a direction away from each other, a shearing force is generated in the elastic body, and the direction in which the first member and the second member are separated from each other coincides with a specific direction.
The linear motion direction of the linear motion shaft substantially coincides with the specific direction,
One of the frame or the linear motion shaft is connected to one of the support or the target structure,
Connecting the other of the frame or the linear motion shaft to the first member of the spring element;
Connecting the second member of the spring element to the other of the support or the target structure;
A seismic isolation device characterized by that.
対象構造物の特定方向の相対変形を伴う振動を制振する制振装置であって、
特定方向の相対変位を回転体の回転量に変換する慣性接続要素と、
特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と、
特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素と、
を備え、
制振装置の構造を質点モデルとして表したときに前記慣性接続要素と前記ダンパー要素とを並列接続した系と前記バネ要素とを直列接続した系であるバネ付き粘性マスダンパーが対象構造物の特定方向に離間する一対の箇所の間に連結され、
前記慣性接続要素が雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームとを有し、
前記ダンパー要素が該フレームの内面と該回転体との隙間に封入された粘性流体を有し、
前記バネ要素が弾性体と該弾性体を間に挟んだ第一部材と第二部材とを有し、
前記弾性体は剪断力を受けて弾性変形する柔軟材料製の板状の部材であり、
前記第一部材は第一フランジと該第一フランジに固定された第一弾性体支持部材とを持ち、
前記第二部材は第二フランジと該第二フランジに固定された第二弾性体支持部材とを持ち、
前記第一弾性支持部材と第二弾性支持部材とが前記弾性体を挟み、
前記第一部材と前記第二部材とが互いに離間する方向に移動すると前記弾性体に剪断力が発生し、離間する方向が特定方向に一致し、
対象構造物が特定方向に離間した一対の取付部を有し、
前記直動軸の直動方向と特定方向とが略一致し、
前記フレームまたは直動軸の一方を一対の前記取付部の一方に連結し、
前記フレームまたは直動軸の他方を前記バネ要素の前記第一部材に連結し、
前記バネ要素の前記第二部材を一対の前記取付部の他方に連結する、
ことを特徴とする制振装置。
A vibration damping device for damping vibration accompanied by relative deformation in a specific direction of a target structure,
An inertia connecting element that converts the relative displacement in a specific direction into the amount of rotation of the rotating body;
A spring element that generates an elastic reaction force acting along a specific direction corresponding to a relative displacement in a specific direction;
A damper element that generates a damping resistance force acting along a specific direction corresponding to a relative speed in a specific direction;
With
When the structure of the vibration control device is expressed as a mass model, a viscous mass damper with a spring, which is a system in which the inertia connecting element and the damper element are connected in parallel and the spring element in series, specifies the target structure. Connected between a pair of locations separated in the direction,
The inertia connecting element includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, and a frame that rotatably supports the rotating body;
The damper element has a viscous fluid sealed in a gap between the inner surface of the frame and the rotating body;
The spring element has an elastic body and a first member and a second member sandwiching the elastic body,
The elastic body is a plate-like member made of a flexible material that is elastically deformed by receiving a shearing force,
The first member has a first flange and a first elastic body support member fixed to the first flange,
The second member has a second flange and a second elastic body support member fixed to the second flange,
The first elastic support member and the second elastic support member sandwich the elastic body,
When the first member and the second member move in a direction away from each other, a shearing force is generated in the elastic body, and the direction in which the first member and the second member are separated from each other coincides with a specific direction.
The target structure has a pair of attachment parts spaced apart in a specific direction,
The linear motion direction of the linear motion shaft substantially coincides with the specific direction,
One of the frame or the linear motion shaft is connected to one of the pair of attachment parts,
Connecting the other of the frame or the linear motion shaft to the first member of the spring element;
Connecting the second member of the spring element to the other of the pair of attachment parts;
A vibration damping device characterized by that.
JP2007240283A 2007-09-15 2007-09-15 Seismic isolation devices and vibration control devices Expired - Fee Related JP5123623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007240283A JP5123623B2 (en) 2007-09-15 2007-09-15 Seismic isolation devices and vibration control devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007240283A JP5123623B2 (en) 2007-09-15 2007-09-15 Seismic isolation devices and vibration control devices

Publications (2)

Publication Number Publication Date
JP2009068659A JP2009068659A (en) 2009-04-02
JP5123623B2 true JP5123623B2 (en) 2013-01-23

Family

ID=40605132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007240283A Expired - Fee Related JP5123623B2 (en) 2007-09-15 2007-09-15 Seismic isolation devices and vibration control devices

Country Status (1)

Country Link
JP (1) JP5123623B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142929B2 (en) * 2008-10-04 2013-02-13 三井住友建設株式会社 Viscous mass damper with spring and viscous mass damper
JP5516934B2 (en) * 2009-06-05 2014-06-11 清水建設株式会社 Vibration control mechanism
JP5023129B2 (en) * 2009-10-07 2012-09-12 株式会社免制震ディバイス Mass damper and damping device using mass damper
JP5574330B2 (en) * 2010-05-10 2014-08-20 清水建設株式会社 Seismic isolation structure
CN102606674B (en) * 2012-03-12 2013-08-21 三一重型装备有限公司 Damping device and engineering mechanical equipment
JP5945218B2 (en) * 2012-11-30 2016-07-05 公益財団法人鉄道総合技術研究所 Vibration control device and railway vehicle
JP6093188B2 (en) * 2013-01-17 2017-03-08 株式会社免制震ディバイス Seismic isolation device
JP7312343B2 (en) * 2019-05-10 2023-07-21 学校法人日本大学 How to set the specifications of the damping device
JP7408471B2 (en) * 2020-04-15 2024-01-05 東海旅客鉄道株式会社 Vibration damping device for structures
CN111501789B (en) * 2020-04-21 2021-11-02 中铁西北科学研究院有限公司 Multi-directional composite lining anti-seismic structure for landslide and fault zone and construction method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3718683B2 (en) * 1995-12-27 2005-11-24 学校法人早稲田大学 Vibration isolation connection device and structure vibration isolation connection mechanism
JP4843882B2 (en) * 2001-08-13 2011-12-21 株式会社大林組 Vibration control device using inertia force installed between building layers
JP2005180492A (en) * 2003-12-16 2005-07-07 Ntt Power & Building Facilities Inc Design method, design support system, design support program and design method of damping system
JP4255124B2 (en) * 2004-04-05 2009-04-15 一登 背戸 Dynamic vibration absorber
JP2007002455A (en) * 2005-06-22 2007-01-11 Fujita Corp Vibration control device
JP5062561B2 (en) * 2006-09-21 2012-10-31 清水建設株式会社 Vibration reduction mechanism and specification method thereof
JP5190652B2 (en) * 2006-12-04 2013-04-24 清水建設株式会社 Vibration reduction mechanism and specification method thereof

Also Published As

Publication number Publication date
JP2009068659A (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5123623B2 (en) Seismic isolation devices and vibration control devices
US20090078519A1 (en) Vibration damping device
JPH10504088A (en) Tuning mass damper
JP5179314B2 (en) Natural frequency identification method, structure isolation method and structural system vibration method
JP4971065B2 (en) Damping device for building structure
JPH01131763A (en) Vibration damper for structure
Vafaei et al. An innovative tuned liquid damper for vibration mitigation of structures
JP2012246998A (en) Vibration damping device
JP4868357B2 (en) Multilayer structure
JP2018091437A (en) Multilayer rubber base isolation device or viscous mass damper with spring
Faravelli et al. Experimental study on hybrid control of multimodal cable vibrations
JP6010361B2 (en) Resonant shaking table
Mohamed et al. Adaptive electromagnetic vibration absorber for a multimode structure
WO2005111345A1 (en) Base isolation structure
JP6010362B2 (en) Resonant shaking table
Ziaran et al. Analysis of the impact of different types of vibration isolation on the dynamic loading of machines and the surrounding environment
Naicker et al. Experimental investigation on a passive auto-tuning mass damper for vibration control
JP2019157495A (en) Vibration damping structure of towering construction
Aman et al. DESIGN AND EVALUATION OF A TUNED MASS DAMPER FOR VIBRATION CONTROL IN GUIDED COLUMN-SPRING SYSTEMS.
JP3916213B2 (en) Damping method and device using rocking curtain wall
JP7355627B2 (en) Anti-vibration structure
JP2012112237A (en) Vibration control device, vibration control method and construction method for vibration control structure
JP5187127B2 (en) Parameter setting method for torsional vibration suppression of structures
JP2002234480A (en) Vibration absorption type structure, vibration absorber group element for structure, and vibration absorption method for structure
Al-Rumaih et al. A viscoelastic tuned mass damper for vibration treatment of large structures

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121016

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5123623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees