JP4843882B2 - Vibration control device using inertia force installed between building layers - Google Patents

Vibration control device using inertia force installed between building layers Download PDF

Info

Publication number
JP4843882B2
JP4843882B2 JP2001245375A JP2001245375A JP4843882B2 JP 4843882 B2 JP4843882 B2 JP 4843882B2 JP 2001245375 A JP2001245375 A JP 2001245375A JP 2001245375 A JP2001245375 A JP 2001245375A JP 4843882 B2 JP4843882 B2 JP 4843882B2
Authority
JP
Japan
Prior art keywords
building
mounting member
inertial force
layers
output end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001245375A
Other languages
Japanese (ja)
Other versions
JP2003056199A (en
Inventor
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001245375A priority Critical patent/JP4843882B2/en
Publication of JP2003056199A publication Critical patent/JP2003056199A/en
Application granted granted Critical
Publication of JP4843882B2 publication Critical patent/JP4843882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建物の上下階間に生じる層間変位を質量体の回転または揺動等の運動に変換して、その慣性力によって建物を制振するようにした、建物層間に設置する慣性力を利用した制振装置に関する。
【0002】
【従来の技術】
図5に示すように、建物2の制振装置4として、層間の柱6と梁8とに囲まれた架構の内部空間に設置されるブレース10の一端またはその途中に、これを取付部材としてダンパー12を介在させて、振動エネルギーを吸収する方法が広く一般的に採用されている。
このように層間にブレース10などの取付部材を介してダンパー12を設けた場合の制振効果は、建物伝達関数の定点理論からも説明できる。
【0003】
即ち、この定点理論によれば、図6に示すように、ダンパー12の減衰定数をゼロとしたときの建物伝達関数とダンパー12の減衰定数を無限大としたときの建物伝達関数との交点は、ダンパー12の減衰定数をいかなる値に設定した場合にもその建物伝達関数が必ず通過する点となる。そして、この点が建物伝達関数の定点と呼ばれ、この定点をピークとなすような減衰定数を有したダンパー12が最適ダンパーとなる。
【0004】
【発明が解決しようとする課題】
しかしながら、建物の上階層と下階層との層間変位をダンパー12に伝えるべくその高さ方向に延設するダンパー取付部材にはその剛性に限界があり、ブレース10をダンパー取付部材とした場合でも、一般的には建物自体の層剛性の1割から2割程度の剛性にしかならない場合が多い。このような場合にあっては、ダンパー12には十分な振動エネルギーが伝わらず、結果として建物2の減衰定数を数%上昇させる程度の制振効果に止まっていた。
【0005】
つまり、十分な制振効果を得るためには、ダンパー12の取付部材の剛性を上げることが必要となり、そのためには大きな部材を用いるか、あるいはダンパー12の設置箇所を増やさねばならず、そうすると居住スペースを減らす結果となってしまい、建物平面利用計画上の制約から限界に突き当たっていた。
【0006】
また、定点理論からみても、ダンパーの減衰定数を0とした場合の固有振動数とその減衰定数を無限大にした場合の固有振動数とが接近していると、その定点は伝達率の高い位置に存在することになり、この状態では例え最適ダンパーを用いても、定点自体が高い位置にあるために大きな制振効果は期待することができない。
【0007】
本発明はかかる従来の課題に鑑みて成されたものであり、その目的は、居住スペースを減じることなく設置できて、しかも十分に大きな制振力が得られる制振装置を提供することにある。
【0008】
【課題を解決するための手段】
前記目的を達成するために、本発明に係る建物層間に設置する慣性力を利用した制振装置にあっては、建物上下階の層間に設けられて、該層間の動きを増幅して出力端に出力する増幅機構と、該増幅機構の出力端に取り付けられた付加質量体とを備え、該出力端の慣性力で建物を制振する、建物層間に設置する慣性力を利用した制振装置であって、前記増幅機構がラック・ピニオン機構でなり、該ピニオンに付加質量体が取り付けられていることを特徴とする。
【0010】
また、建物の柱と梁とに囲まれた架構内に、上階側から延びて設置された第1取付部材と下階側から延びて該第1取付部材に沿って平行に設置された第2取付部材とを設け、該第1取付部材と第2取付部材との双方に前記ラックを、相対向させて一対で設け、前記ピニオンを該一対のラック間にこれらに噛合させて挟持させる構成ともなし得る。
【0011】
あるいは、建物上下階の層間に設けられて、該層間の動きを増幅して出力端に出力する増幅機構と、該増幅機構の出力端に取り付けられた付加質量体とを備え、該出力端の慣性力で建物を制振する、建物層間に設置する慣性力を利用した制振装置であって、前記増幅機構がレバー機構でなり、該レバー機構の揺動端に付加質量体が取り付けられており、建物の柱と梁とに囲まれた架構内に、上階側から延びて設置された第1取付部材と下階側から延びて該第1取付部材に沿って平行に設置された第2取付部材とが設けられ、該第1取付部材と第2取付部材とのいずれか一方に支点部が回動自在に軸支され、他方に力点部が係合されて前記レバー機構が設けられていることを特徴とする。
【0013】
さらに、前記取付部材は、その一端にダンパーを有したブレースとするのが望ましい。
【0014】
【発明の実施の形態】
以下、本発明の建物層間に設置する慣性力を利用した制振装置の実施形態について添付図面を参照して詳細に説明する。図1は本発明に係る制振装置の概略構成図である。本発明の制振装置は、基本的には、建物2の上下階の層間に設けられて、層間の動きを増幅して出力端に出力する増幅機構20と、この増幅機構20の出力端に取り付けられた錘32などの付加質量体とを備え、当該付加質量体
を含む出力端の慣性力で建物2を制振するものである。
【0015】
本実施形態にあっては、上記増幅機構20には、図示するように、上下階の層間変位による水平方向の相対変位量を出力側部材の回転量として取り出すラック・ピニオン機構22が採用されている。このラック・ピニオン機構22は、建物2の柱6と梁8とに囲まれた架構内に設けられている。この架構内には、一方の柱6の上階側部分に一端が固定されて当該架構の対角線に沿って延びる第1取付部材24と、他方の柱6の下階側部分に一端が固定されて該第1取付部材24に沿って平行に延びる第2取付部材26とが設けられ、これら第1取付部材24と第2取付部材26との双方にラック・ピニオン機構22のラック部材28a,28bが相対向されて一対で設けられ、当該一対のラック28a,28b間にこれらに噛合してピニオン30が挟持されている。
【0016】
上記第2取付部材26の延出側の他端には、これと上階側の梁8とを連結してダンパー12が設けられていて、当該第2取付部材26はダンパー12を備えたブレース10として機能するように構成されている。ここで、ダンパー12には油圧式、摩擦式などのものが採用し得る。また、第1取付部材24と第2取付部材26とには、これらを相互に繋いでその平行度を保つための連結部材34a,34bが一対で設けられている。これらの連結部材34a,34bは、各取付部材24,26に対してその一方に固定され、他方に摺動自在に係合されて設けられる。ここでは、各取付部材24,26の延出端側が固定部となっており、連結部材34aは第1取付部材24の延出端近傍に固定されて、第2取付部材26に摺動自在に係合し、連結部材34bは第2取付部材26の延出端近傍に固定されて、第1取付部材24に摺動自在に係合していて、両取付部材24,26の軸方向への相対移動を許容している。
【0017】
ピニオン30にはその端面に付加質量体として円盤状のフライホイール36が一体に取り付けられ、且つこのフライホイール36の外周面には更に付加質量体として複数の錘38が等間隔に放射状に配置されて一体的に設けられている。なお、付加質量体のフライホイール36はピニオンの軸方向両端面に一対で取り付けて、フライホイール36で取付部材24と26との両側を挟むようにして、ラック28a,28bからのピニオン30の脱落を防止するようにしても良い。
【0018】
以上の構成により本実施形態の制振装置にあっては、地震や風により建物2に振動が発生し、上・下階に層間変位が発生すると、第1,第2取付部材24,26が連結部材34a,34bにより平行を保たれつつ、それぞれ軸方向に沿って逆方向に相対移動し、これに伴い第1,第2取付部材24,26のラック28a,28bに噛合したピニオン30が付加質量のフライホイール36と錘32と共に一体に回転する。
【0019】
従って、上記ピニオン30とフライホイール28と錘32とからなる回転質量体は回転慣性機構を構成し、建物2の層間変位に伴って回転慣性力を発生する。そして、この回転慣性力を反力となして建物2を制振することができる。この際、層間変位荷重に対しては、主に第2取付部材26がブレース10として機能してその強度の大きな軸方向の圧縮力としてこれを受けるため、大きな層間変位量にも十分に対応することができ、大地震等により過大な層間変位が建物2の上下階間に発生した場合にも、十分に制振機能を確保することができる。
【0020】
また、公知のように上記回転慣性力は、ピニオン30と付加質量体のフライホイール36との総質量は一定であっても、その回転速度や錘32の質量及びその回転半径によって異なったものとなり、その回転慣性力の大きさは回転半径の2乗に比例し、回転速度に比例したものとなるが、建物2の層間変位に伴うラック28a,28bの往復直進運動をピニオン30の往復揺動回転運動に変換するラック・ピニオン機構のギヤ比(増幅率)、並びに付加質量体である錘32の回転半径及び質量をそれぞれ適宜に設定することで、所望の回転慣性力(即ち減衰力)を容易に得ることができる。
【0021】
つまり、ダンパー12の減衰定数を無限大とした場合の固有振動数は取付部材24,26の剛性で決まるが、当該剛性を変更できないならば、ダンパー12の減衰定数をゼロとしたときの固有振動数を下げる工夫をすれば良い。そして、この固有振動数を下げるためには振動方程式おける慣性項を大きくすれば良く、その方法として、上記の様な上下階の水平方向の相対変位量を出力側部材の回転量として取り出すラック・ピニオン機構22を利用して、層間変位を質量体の回転慣性力に変換する回転慣性機構を組み付けることが有用となる。
【0022】
上記の様に、回転慣性機構は回転軸から付加質量の錘の設置位置までの半径を大きくすることによって、回転質量体の総質量は同一に維持したままでも、その半径の2乗に比例した回転慣性力を得ることができ、よって小さい負荷質量で大きな慣性力が得られるから、小型軽量に構成しつつ容易に固有振動数を下げることが可能となる。但し、このようなラック・ピニオン機構22等の慣性機構を用いた場合、慣性機構と取付部材24,26とで新たな共振点が形成されることになり、この共振点はダンパー12を無限大としたときの固有振動数より高い振動数になって現れる。そして、この振動数がダンパー12を無限大にした場合の固有振動数に近づくと、新たに高い伝達率の定点が構成されるため、この慣性機構の大きさやダンパー12の減衰定数に最適値が存在することになる。従って、これらを調整することによって慣性機構を用いない場合よりも定点での伝達率を大幅に下げることが可能になり、よって大きな制振効果(減衰を上げること)が実現できる。
【0023】
図2は、図1の実施形態において、ダンパー取付部材24,26の剛性は建物2の剛性の1割となした条件下で、最下層の制振装置の回転慣性機構の質量を1次振動数に対して調整し、中間層の回転慣性機構の質量は3次振動数に対して調整し、最上層の回転慣性機構の質量は2次振動数に対して調整し、且つ各層の制振装置のダンパーには、それぞれに定点理論の最適ダンパーを配した結果の伝達関数を表したものである。このように、全層を特定の次数に調整してより大きな制振効果を実現することも可能である。
【0024】
一方、図6は、図5の従来の制振装置において、同様にダンパー取付部材(ブレース10)の剛性を建物自体の層剛性の1割とした条件下で定点理論による最適なダンパー12を配し、伝達関数のピークを低くした場合の伝達関数の結果を示すものである。また、図3と図7は、ダンパー12を有したブレース10に加えて、更にラックピニオン機構22による回転慣性機構を併用することによって制振効果を改善しているという同じ現象を、応答に対する制御力(ブレースに掛かる力)の位相遅れという物理的な側面から説明するものであり、これらに図示するように、図3の本実施形態にあっては慣性機構を設置することで、層間の変形速度に対する応答(制御力)は位相が180度進ので、図7の従来例のような位相遅れは生じない。さらに、下表は本実施形態と従来例との両者の減衰定数の比較を示す。同表からも回転慣性機構を用いることによって、減衰定数が3倍以上に向上することが分かる。
【0025】
【表1】

Figure 0004843882
【0026】
また、ラック・ピニオン機構22で構成される回転慣性機構は、小型軽量に構成し得ることから、建物平面利用計画上の制約を受けずに柱・梁架構内の空間に収納して設置可能であり、これ故、特に設置スペースを広く確保する必要が無く、居住スペースを減じることがない。
【0027】
図4は本発明の他の実施形態を示す側面図である。この実施形態では制振装置における層間の動きを増幅して出力端に出力する増幅機構及び慣性機構として、揺動端に付加質量としての錘32を取り付けたレバー機構138を採用した場合を例示している。即ち、第1取付部材24と第2取付部材26とには、これらに直角に交差するようにしてレバー38a.38bを一対で取り付けている。一方の第1レバー38aはその一端に長手方向に沿って力点部40として形成された長穴42が第2取付部材26に立設された係合ピン44に係合されるとともに、中央部が支点部46として第1取付部材24に立設された回動軸48に軸支され、他端の揺動端に錘32が付加質量として取り付けられている。他方の第2レバー38bは、第1レバー38aとは逆に、中央部の支点部46が第2取付部材26の回動軸48に軸支され、一端に力点部40として形成された長穴42が第1取付部材24の係合ピン44に係合されている。
【0028】
そして、当該構成によれば、建物2の上下階間に生じた層間変位が、第1,第2取付部材24,26にそれぞれ軸方向に沿った逆方向の相対移動として伝わると、第1レバー38aと第2レバー38bとが各々の支点部46を中心にして揺動回転され、揺動端の錘32が往復揺動回転して慣性力が発生し、当該慣性力が反力となって制振効果が発揮される。この場合にあっても、慣性力は錘32の質量やその回転半径、増幅機構としてのレバー比を適宜に設定することで、慣性機構を用いていない従来の場合よりも定点での伝達率を容易に大幅に下げることが可能になり、よって大きな制振効果(減衰を上げること)が実現できる。また、このレバー機構138による慣性機構は、前述の実施形態と同様に、柱6と梁8とで囲まれた架構内の空間に収納して設置可能なため、特に設置スペースを広く確保する必要が無く、居住スペースを減じることがない。
【0029】
なお、以上の各実施形態の説明にあっては、層間の動きを増幅して出力端に出力する増幅機構及び慣性機構として、ラック・ピニオン機構22やレバー機構138を例示しているが、本発明はこれらに限らず、付加質量体としての錘を取り付けたボールナット機構やトグル機構も採用することができる。
【0030】
【発明の効果】
以上、実施形態で説明したように、本発明に係る慣性力を利用した制振装置にあっては、建物上下階の層間に、該層間の動きを増幅して出力端に出力する増幅機構を設けると共に、該増幅機構の出力端に付加質量体を取り付けて慣性機構を構成し、地震や風等によって建物の上下階間に生じる層間変位を、該出力端の質量体の運動に変換して伝えて慣性力を発生させるようにしたので、当該慣性力で建物を制振することができる。また、慣性機構を用いることで、層間の変形速度に対する応答(制御力)に位相遅れが生じるのを防止でき、制振力の大幅な改善が図れる。
【0031】
増幅機構および慣性機構を、ピニオンに付加質量体を取り付けたラック・ピニオン機構または揺動端に付加質量体を取り付けたレバー機構となして、付加質量体を往復揺動回転させて回転慣性力を発生させるようにすると、回転慣性力の大きさは回転半径の2乗に比例し、回転速度に比例したものになるので、建物の層間変位の往復直進運動をラック・ピニオン機構のギヤ比(増幅率)やレバー機構のレバー比、並びに付加質量体の回転半径及び質量をそれぞれ適宜に設定することで、所望の回転慣性力(即ち減衰力)を容易に得ることができ、しかも小さい負荷質量で大きな慣性力が得られるから、小型軽量に構成しつつ容易に固有振動数を下げることが可能となる。
【0032】
また、ラック・ピニオン機構やレバー機構で構成される回転慣性増幅機構は、小型軽量に構成し得ることから、建物平面利用計画上の制約を受けずに柱・梁架構内の空間に収納して設置可能であり、これ故、特に設置スペースを広く確保する必要が無く、居住スペースを減じることがない。
【0033】
更に、取付部材をダンパーを有したブレースとすることで、建物の振動減衰をより促進することができる
慣性機構と取付部材とにより共振点が形成されるが、ダンパーの減衰定数を定点理論の最適値に設定して慣性機構の大きさを調整することによって、慣性機構を用いない場合よりも定点での伝達率を大幅に下げることが可能になり、よって大きな制振効果(減衰を上げること)が実現できる。
【図面の簡単な説明】
【図1】本発明に係る制振装置の一実施形態を示す概略構成図である。
【図2】図1の制振装置を設けた建物の伝達関数を示すグラフである。
【図3】図1の制振装置を設けた建物の応答速度に対する制御力の位相関係を示すグラフである。
【図4】本発明に係る制振装置の他の実施形態を示す概略構成図である。
【図5】ブレースにダンパーを介在させた従来の制振装置の概略構成図である。
【図6】図5の従来の制振装置を設けた建物の伝達関数を示すグラフである。
【図7】図5の従来の制振装置を設けた建物の応答速度に対する制御力の位相関係を示すグラフである。
【符号の説明】
2 建物
6 柱
8 梁
10 ブレース
20 増幅機構
22 ラック・ピニオン機構
24 第1取付部材
26 第2取付部材
28 ラック
30 ピニオン
32 錘(付加質量体)
36 フライホイール(付加質量体)
138 レバー機構
38a,38b レバー
40 力点部
46 支点部[0001]
BACKGROUND OF THE INVENTION
The present invention converts an interlayer displacement generated between upper and lower floors of a building into a motion such as rotation or swinging of a mass body, and controls the building by the inertial force. It relates to the vibration control device used.
[0002]
[Prior art]
As shown in FIG. 5, as a vibration control device 4 for a building 2, one end of a brace 10 installed in an internal space of a frame surrounded by an interlayer column 6 and a beam 8 or an intermediate member thereof is used as a mounting member. A method of absorbing vibration energy through the damper 12 is widely and generally employed.
Thus, the vibration damping effect when the damper 12 is provided between the layers via the attachment members such as the brace 10 can also be explained from the fixed point theory of the building transfer function.
[0003]
That is, according to this fixed point theory, as shown in FIG. 6, the intersection of the building transfer function when the damping constant of the damper 12 is zero and the building transfer function when the damping constant of the damper 12 is infinite is The building transfer function always passes through whatever value the damping constant of the damper 12 is set to. This point is called a fixed point of the building transfer function, and the damper 12 having an attenuation constant that makes this fixed point a peak is the optimum damper.
[0004]
[Problems to be solved by the invention]
However, the damper mounting member extending in the height direction in order to transmit the interlayer displacement between the upper layer and the lower layer of the building to the damper 12 has a limit in rigidity, and even when the brace 10 is used as the damper mounting member, In general, the rigidity of the building itself is often only about 10 to 20% of the layer rigidity. In such a case, sufficient vibration energy is not transmitted to the damper 12, and as a result, the vibration damping effect is limited to an extent that increases the damping constant of the building 2 by several percent.
[0005]
In other words, in order to obtain a sufficient damping effect, it is necessary to increase the rigidity of the mounting member of the damper 12, and for that purpose, a large member must be used or the number of installation locations of the damper 12 must be increased. As a result, the space was reduced, and the limit was imposed on the plan for using the building floor.
[0006]
Also, from the viewpoint of fixed point theory, if the natural frequency when the damping constant of the damper is 0 and the natural frequency when the damping constant is infinite, the fixed point has a high transmissibility. In this state, even if the optimum damper is used, a large damping effect cannot be expected because the fixed point itself is at a high position.
[0007]
The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a vibration damping device that can be installed without reducing a living space and that can obtain a sufficiently large vibration damping force. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the vibration damping device using the inertial force installed between the building layers according to the present invention is provided between the upper and lower floors of the building, and amplifies the movement between the layers to output the output terminal. A damping device using an inertial force installed between building layers , comprising an amplifying mechanism that outputs to the power source and an additional mass attached to the output end of the amplifying mechanism, and damping the building with the inertial force of the output end The amplification mechanism is a rack and pinion mechanism, and an additional mass body is attached to the pinion.
[0010]
In addition, the first mounting member that extends from the upper floor side and the first mounting member that extends from the lower floor side and is installed in parallel along the first mounting member in the frame surrounded by the pillars and beams of the building. 2 mounting members, a pair of the racks are provided on both the first mounting member and the second mounting member so as to face each other, and the pinion is engaged with and sandwiched between the pair of racks. It can also be done.
[0011]
Alternatively, an amplification mechanism that is provided between the upper and lower floors of the building, amplifies the movement between the layers and outputs the amplified output to the output end, and an additional mass attached to the output end of the amplification mechanism, A vibration damping device that uses a inertial force to suppress a building with an inertial force and is installed between building layers, wherein the amplification mechanism is a lever mechanism, and an additional mass body is attached to a swinging end of the lever mechanism. In the frame surrounded by the pillars and beams of the building, the first mounting member extending from the upper floor side and the first mounting member extending from the lower floor side and installed in parallel along the first mounting member 2 is provided, and a fulcrum portion is pivotally supported on one of the first attachment member and the second attachment member, and a force point portion is engaged with the other to provide the lever mechanism. It is characterized by.
[0013]
Furthermore, the mounting member is preferably a brace having a damper at one end thereof.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a vibration damping device using inertial force installed between building layers of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a vibration damping device according to the present invention. The vibration damping device of the present invention is basically provided between the upper and lower floors of the building 2 and amplifies the movement between the layers and outputs it to the output end, and the output end of the amplification mechanism 20 An additional mass body such as a weight 32 attached thereto is provided, and the building 2 is damped by the inertial force of the output end including the additional mass body.
[0015]
In the present embodiment, as shown in the figure, a rack and pinion mechanism 22 that takes out the horizontal relative displacement amount due to the interlayer displacement between the upper and lower floors as the rotation amount of the output side member is adopted as the amplification mechanism 20. Yes. The rack and pinion mechanism 22 is provided in a frame surrounded by the pillar 6 and the beam 8 of the building 2. In this frame, one end is fixed to the upper floor side portion of one pillar 6 and the one end is fixed to the lower floor side portion of the other pillar 6 and the first mounting member 24 extending along the diagonal line of the frame. And a second mounting member 26 extending in parallel along the first mounting member 24, and the rack members 28 a and 28 b of the rack and pinion mechanism 22 are provided on both the first mounting member 24 and the second mounting member 26. Are opposed to each other, and a pair of racks 28a and 28b are engaged with each other to pinch the pinion 30 therebetween.
[0016]
The other end of the second mounting member 26 on the extending side is provided with a damper 12 by connecting the upper mounting side beam 8 to the beam 8 on the upper floor side. The second mounting member 26 is a brace provided with the damper 12. 10 is configured to function. Here, a hydraulic type, a friction type, etc. can be adopted as the damper 12. The first mounting member 24 and the second mounting member 26 are provided with a pair of connecting members 34a and 34b for connecting them to each other and maintaining the parallelism. These connecting members 34a and 34b are fixed to one of the mounting members 24 and 26 and slidably engaged with the other. Here, the extending end side of each mounting member 24, 26 is a fixed portion, and the connecting member 34 a is fixed in the vicinity of the extending end of the first mounting member 24 so as to be slidable on the second mounting member 26. The connecting member 34b is fixed in the vicinity of the extending end of the second mounting member 26, and is slidably engaged with the first mounting member 24, so that both the mounting members 24 and 26 in the axial direction are engaged. Relative movement is allowed.
[0017]
A disk-like flywheel 36 is integrally attached to the end surface of the pinion 30 as an additional mass body, and a plurality of weights 38 as additional mass bodies are radially arranged at equal intervals on the outer peripheral surface of the flywheel 36. Are provided integrally. The additional mass flywheel 36 is attached to both ends of the pinion in the axial direction so that the flywheel 36 sandwiches both sides of the attachment members 24 and 26 to prevent the pinion 30 from falling off the racks 28a and 28b. You may make it do.
[0018]
In the vibration damping device of the present embodiment configured as described above, when the building 2 is vibrated by an earthquake or wind, and the interlayer displacement occurs on the upper and lower floors, the first and second mounting members 24 and 26 are While being kept parallel by the connecting members 34a and 34b, they move relative to each other in the opposite direction along the axial direction, and accordingly, pinions 30 meshed with the racks 28a and 28b of the first and second mounting members 24 and 26 are added. The mass flywheel 36 and the weight 32 rotate together.
[0019]
Therefore, the rotating mass body composed of the pinion 30, the flywheel 28 and the weight 32 constitutes a rotating inertia mechanism, and generates a rotating inertia force in accordance with the interlayer displacement of the building 2. Then, the building 2 can be damped by using this rotational inertia force as a reaction force. At this time, since the second mounting member 26 mainly functions as the brace 10 and receives this as a strong axial compressive force with respect to the interlayer displacement load, it can sufficiently cope with a large amount of interlayer displacement. Even when an excessive interlayer displacement occurs between the upper and lower floors of the building 2 due to a large earthquake or the like, the vibration damping function can be sufficiently secured.
[0020]
As is well known, the rotational inertia force differs depending on the rotational speed, the mass of the weight 32 and the rotational radius even if the total mass of the pinion 30 and the flywheel 36 of the additional mass body is constant. The magnitude of the rotational inertia force is proportional to the square of the radius of rotation and proportional to the rotational speed, but the reciprocal rectilinear motion of the racks 28a and 28b accompanying the interlayer displacement of the building 2 is reciprocally oscillated. By appropriately setting the gear ratio (amplification factor) of the rack and pinion mechanism that converts to rotational motion and the rotational radius and mass of the weight 32 that is an additional mass body, a desired rotational inertia force (ie, damping force) can be obtained. Can be easily obtained.
[0021]
That is, the natural frequency when the damping constant of the damper 12 is infinite is determined by the rigidity of the mounting members 24 and 26. If the rigidity cannot be changed, the natural vibration when the damping constant of the damper 12 is zero. You can devise to reduce the number. In order to reduce the natural frequency, it is sufficient to increase the inertia term in the vibration equation. As a method for this, a rack that takes out the horizontal relative displacement amount of the upper and lower floors as the rotation amount of the output side member as described above. Using the pinion mechanism 22, it is useful to assemble a rotary inertia mechanism that converts the interlayer displacement into the rotary inertia force of the mass body.
[0022]
As described above, the rotary inertia mechanism is proportional to the square of the radius of the rotary mass body by keeping the total mass of the rotary mass body the same by increasing the radius from the rotation axis to the installation position of the additional mass weight. Since a rotational inertia force can be obtained, and thus a large inertia force can be obtained with a small load mass, the natural frequency can be easily lowered while configuring a small and light weight. However, when such an inertia mechanism such as the rack and pinion mechanism 22 is used, a new resonance point is formed by the inertia mechanism and the mounting members 24 and 26, and this resonance point makes the damper 12 infinite. Appears at a frequency higher than the natural frequency. Then, when this frequency approaches the natural frequency when the damper 12 is made infinite, a new fixed point with a high transmission rate is constructed, so that the optimum value for the size of the inertia mechanism and the damping constant of the damper 12 is set. Will exist. Therefore, by adjusting these, it is possible to significantly reduce the transmission rate at a fixed point as compared with the case where the inertia mechanism is not used, and thus it is possible to realize a large damping effect (increase the damping).
[0023]
FIG. 2 shows that in the embodiment of FIG. 1, the mass of the rotary inertia mechanism of the vibration damping device in the lowermost layer is the primary vibration under the condition that the rigidity of the damper mounting members 24 and 26 is 10% of the rigidity of the building 2. The mass of the rotary inertia mechanism of the intermediate layer is adjusted for the third frequency, the mass of the rotary inertia mechanism of the uppermost layer is adjusted for the secondary frequency, and the damping of each layer The dampers of the device represent the transfer function as a result of arranging the optimum dampers of the fixed point theory for each. In this way, it is possible to achieve a greater vibration damping effect by adjusting all layers to a specific order.
[0024]
On the other hand, FIG. 6 shows an arrangement of an optimal damper 12 according to the fixed point theory in the conventional vibration damping device of FIG. 5 under the condition that the rigidity of the damper mounting member (brace 10) is 10% of the layer rigidity of the building itself. The result of the transfer function when the peak of the transfer function is lowered is shown. 3 and 7 show the same phenomenon that the vibration damping effect is improved by using the rotary inertia mechanism by the rack and pinion mechanism 22 in addition to the brace 10 having the damper 12, and the control for the response. This will be described from the physical aspect of the phase delay of the force (force applied to the brace). As shown in these drawings, the present embodiment of FIG. Since the phase of the response (control force) to the speed is 180 degrees, the phase delay as in the conventional example of FIG. 7 does not occur. Further, the table below shows a comparison of the attenuation constants of the present embodiment and the conventional example. It can also be seen from the table that the damping constant is improved by a factor of 3 or more by using the rotary inertia mechanism.
[0025]
[Table 1]
Figure 0004843882
[0026]
In addition, since the rotary inertia mechanism composed of the rack and pinion mechanism 22 can be configured to be small and light, it can be stored and installed in the space in the pillar / beam frame without being restricted by the plan for using the building plane. Therefore, it is not necessary to secure a wide installation space, and the living space is not reduced.
[0027]
FIG. 4 is a side view showing another embodiment of the present invention. In this embodiment, a case where a lever mechanism 138 in which a weight 32 as an additional mass is attached to the swing end is employed as an amplification mechanism and an inertia mechanism that amplifies the movement between layers in the vibration control device and outputs the amplified motion to the output end. ing. That is, the first mounting member 24 and the second mounting member 26 are provided with levers 38a. A pair of 38b are attached. One of the first levers 38a has an elongated hole 42 formed at one end thereof as a force application point 40 along the longitudinal direction and is engaged with an engagement pin 44 erected on the second mounting member 26 , and a central portion thereof. A fulcrum portion 46 is pivotally supported on a rotating shaft 48 erected on the first attachment member 24 , and a weight 32 is attached as an additional mass to the swinging end at the other end. On the other hand, the second lever 38b has an elongated hole formed as a force point portion 40 at one end thereof, with the fulcrum portion 46 at the center portion pivotally supported by the rotation shaft 48 of the second mounting member 26 , contrary to the first lever 38a. 42 is engaged with the engaging pin 44 of the first mounting member 24 .
[0028]
And according to the said structure, if the interlayer displacement which arose between the upper and lower floors of the building 2 is transmitted to the 1st, 2nd attachment members 24 and 26 as a relative movement of the reverse direction along an axial direction, respectively, a 1st lever 38a and the second lever 38b are oscillated and rotated about the respective fulcrum portions 46, the weight 32 at the oscillating end is reciprocally oscillated and rotated to generate an inertial force, and the inertial force becomes a reaction force. Damping effect is demonstrated. Even in this case, the inertia force can be set to a fixed point transmission rate as compared with the conventional case in which the inertia mechanism is not used by appropriately setting the mass of the weight 32, its radius of rotation, and the lever ratio as an amplification mechanism. It can be easily lowered significantly, and thus a large vibration damping effect (raising damping) can be realized. Further, the inertia mechanism by the lever mechanism 138 can be housed and installed in a space surrounded by the pillar 6 and the beam 8 as in the above-described embodiment, so that it is particularly necessary to secure a wide installation space. There is no reduction in living space.
[0029]
In the description of each of the above embodiments, the rack and pinion mechanism 22 and the lever mechanism 138 are exemplified as the amplification mechanism and the inertia mechanism that amplify the motion between the layers and output to the output end. The invention is not limited to these, and a ball nut mechanism or a toggle mechanism to which a weight as an additional mass body is attached can also be employed.
[0030]
【The invention's effect】
As described above, in the vibration damping device using the inertial force according to the present invention, an amplification mechanism that amplifies the movement between the layers and outputs it to the output end is provided between the upper and lower floors of the building. At the same time, an additional mass body is attached to the output end of the amplification mechanism to form an inertia mechanism, and the displacement between the upper and lower floors of the building due to an earthquake or wind is converted into the motion of the mass body at the output end. Since the inertial force is generated through the transmission, the building can be damped by the inertial force. Further, by using the inertia mechanism, it is possible to prevent a phase lag from occurring in the response (control force) to the deformation speed between the layers, and the vibration damping force can be greatly improved.
[0031]
The amplifying mechanism and inertial mechanism are either a rack / pinion mechanism with an additional mass body attached to the pinion or a lever mechanism with an additional mass body attached to the oscillating end. When generated, the magnitude of the rotational inertia force is proportional to the square of the radius of rotation and proportional to the rotational speed. Therefore, the reciprocal rectilinear movement of the interlayer displacement of the building is increased by the gear ratio (amplification of the rack and pinion mechanism) Ratio), the lever ratio of the lever mechanism, and the rotation radius and mass of the additional mass body can be set appropriately, so that a desired rotational inertia force (ie, damping force) can be easily obtained, and with a small load mass. Since a large inertial force can be obtained, it is possible to easily reduce the natural frequency while forming a small and lightweight structure.
[0032]
In addition, since the rotary inertia amplifying mechanism composed of a rack and pinion mechanism and a lever mechanism can be made compact and lightweight, it can be stored in the space inside the column and beam frame without being restricted by the plan for using the building plane. Therefore, it is not necessary to secure a wide installation space, and the living space is not reduced.
[0033]
Furthermore, by using a brace with a damper as the mounting member, a resonance point is formed by the inertia mechanism and the mounting member that can further promote vibration damping of the building. By setting the value to adjust the size of the inertial mechanism, it becomes possible to significantly reduce the transmission rate at a fixed point compared to the case where the inertial mechanism is not used, and thus a large damping effect (raising damping). Can be realized.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a vibration damping device according to the present invention.
2 is a graph showing a transfer function of a building provided with the vibration damping device of FIG. 1;
3 is a graph showing a phase relationship of control force with respect to response speed of a building provided with the vibration damping device of FIG. 1;
FIG. 4 is a schematic configuration diagram showing another embodiment of the vibration damping device according to the present invention.
FIG. 5 is a schematic configuration diagram of a conventional vibration damping device in which a damper is interposed in a brace.
6 is a graph showing a transfer function of a building provided with the conventional vibration damping device of FIG.
7 is a graph showing the phase relationship of the control force with respect to the response speed of the building provided with the conventional vibration damping device of FIG.
[Explanation of symbols]
2 Building 6 Pillar 8 Beam 10 Brace 20 Amplifying mechanism 22 Rack and pinion mechanism 24 First mounting member 26 Second mounting member 28 Rack 30 Pinion 32 Weight (additional mass body)
36 Flywheel (additional mass)
138 Lever mechanism 38a, 38b Lever 40 Force point 46 Support point

Claims (4)

建物上下階の層間に設けられて、該層間の動きを増幅して出力端に出力する増幅機構と、該増幅機構の出力端に取り付けられた付加質量体とを備え、該出力端の慣性力で建物を制振する、建物層間に設置する慣性力を利用した制振装置であって、
前記増幅機構がラック・ピニオン機構でなり、該ピニオンに付加質量体が取り付けられていることを特徴とする、建物層間に設置する慣性力を利用した制振装置。
An amplification mechanism provided between the upper and lower floors of the building, which amplifies the movement between the layers and outputs the amplified movement to the output end; and an additional mass attached to the output end of the amplification mechanism, and the inertial force of the output end A vibration control device that uses the inertial force installed between building layers ,
A vibration damping device using inertial force installed between building layers, wherein the amplification mechanism is a rack and pinion mechanism, and an additional mass is attached to the pinion.
建物の柱と梁とに囲まれた架構内に、上階側から延びて設置された第1取付部材と下階側から延びて該第1取付部材に沿って平行に設置された第2取付部材とが設けられ、該第1取付部材と第2取付部材との双方に前記ラックが、相対向されて一対で設けられ、前記ピニオンが該一対のラック間にこれらに噛合して挟持されていることを特徴とする請求項1記載の建物層間に設置する慣性力を利用した制振装置。A first mounting member that extends from the upper floor side and a second mounting that extends from the lower floor side and is installed in parallel along the first mounting member in a frame surrounded by pillars and beams of the building A pair of racks are provided on both the first mounting member and the second mounting member so as to face each other, and the pinion is engaged between and sandwiched between the pair of racks. The vibration damping device using inertial force installed between building layers according to claim 1 . 建物上下階の層間に設けられて、該層間の動きを増幅して出力端に出力する増幅機構と、該増幅機構の出力端に取り付けられた付加質量体とを備え、該出力端の慣性力で建物を制振する、建物層間に設置する慣性力を利用した制振装置であって、
前記増幅機構がレバー機構でなり、該レバー機構の揺動端に付加質量体が取り付けられており、
建物の柱と梁とに囲まれた架構内に、上階側から延びて設置された第1取付部材と下階側から延びて該第1取付部材に沿って平行に設置された第2取付部材とが設けられ、該第1取付部材と第2取付部材とのいずれか一方に支点部が回動自在に軸支され、他方に力点部が係合されて前記レバー機構が設けられていることを特徴とする、建物層間に設置する慣性力を利用した制振装置。
An amplification mechanism provided between the upper and lower floors of the building, which amplifies the movement between the layers and outputs the amplified movement to the output end; and an additional mass attached to the output end of the amplification mechanism, and the inertial force of the output end A vibration control device that uses the inertial force installed between building layers,
The amplification mechanism is a lever mechanism, and an additional mass body is attached to the swing end of the lever mechanism ,
A first mounting member that extends from the upper floor side and a second mounting that extends from the lower floor side and is installed in parallel along the first mounting member in a frame surrounded by pillars and beams of the building A fulcrum is pivotally supported on one of the first attachment member and the second attachment member, and a force point is engaged on the other to provide the lever mechanism. A vibration damping device using inertia force installed between building layers.
前記第2取付部材が一端にダンパーを有したブレースであることを特徴とする請求項2または3記載の建物層間に設置する慣性力を利用した制振装置。 4. The vibration damping device using inertial force installed between building layers according to claim 2, wherein the second mounting member is a brace having a damper at one end.
JP2001245375A 2001-08-13 2001-08-13 Vibration control device using inertia force installed between building layers Expired - Fee Related JP4843882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001245375A JP4843882B2 (en) 2001-08-13 2001-08-13 Vibration control device using inertia force installed between building layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245375A JP4843882B2 (en) 2001-08-13 2001-08-13 Vibration control device using inertia force installed between building layers

Publications (2)

Publication Number Publication Date
JP2003056199A JP2003056199A (en) 2003-02-26
JP4843882B2 true JP4843882B2 (en) 2011-12-21

Family

ID=19075138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245375A Expired - Fee Related JP4843882B2 (en) 2001-08-13 2001-08-13 Vibration control device using inertia force installed between building layers

Country Status (1)

Country Link
JP (1) JP4843882B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4968682B2 (en) 2006-10-23 2012-07-04 清水建設株式会社 Vibration reduction mechanism and specification method thereof
JP5303874B2 (en) * 2007-06-29 2013-10-02 株式会社大林組 Damping building, damping system, damping method
JP5123623B2 (en) * 2007-09-15 2013-01-23 株式会社Nttファシリティーズ Seismic isolation devices and vibration control devices
JP5123772B2 (en) * 2008-07-18 2013-01-23 三井住友建設株式会社 Seismic isolation devices and vibration control devices
JP5993300B2 (en) * 2012-12-21 2016-09-14 住友ゴム工業株式会社 Building damping device
JP6450516B2 (en) * 2013-11-06 2019-01-09 住友ゴム工業株式会社 Vibration control device
JP6415138B2 (en) * 2014-07-01 2018-10-31 日本タイロッド工業株式会社 Damping device for tension material
CN107700693A (en) * 2017-09-27 2018-02-16 中船第九设计研究院工程有限公司 A kind of damper system with stroke amplification

Also Published As

Publication number Publication date
JP2003056199A (en) 2003-02-26

Similar Documents

Publication Publication Date Title
US5339580A (en) Laminated rubber building support and vibration damping device
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP5218805B2 (en) Vibration reduction mechanism and specification method thereof
JP5763788B2 (en) Displacement amplification type vibration control system and its construction method
JP4843882B2 (en) Vibration control device using inertia force installed between building layers
JP2014524996A (en) Passive damper
JP5861883B2 (en) Rotating inertia mass damper and brace damper and brace frame
JPH10169244A (en) Vibration control device having toggle mechanism
JP2012122228A (en) Vibration control device fitted with inertia mass damper
KR20190089972A (en) Tuned dynamic damper and method for reducing amplitude of vibration
JP3858432B2 (en) Vibration control method for linked structures
JP7170461B2 (en) Vibration control damper and vibration control device
JP4843881B2 (en) Coupling damping device using rotary inertia force
JP4129488B2 (en) Vibration control device
JP3921144B2 (en) Vibration control device
JPH0925740A (en) Vibration control device and vibration control method
CN114150914A (en) Passive negative-stiffness energy dissipation cantilever system for super high-rise building
JP2003021193A (en) Base isolation device
JP2002155640A (en) Seismic-response controlled structure of cable
JP3671317B2 (en) Seismic isolation mechanism
JP3157352U (en) Elliptical leaf spring unit, elliptical multi-stage leaf spring device, vertical vibration damping device, horizontal uniaxial vibration damping device, and upper and lower floor seismic isolation device
JP3260473B2 (en) Mega structure brace frame damping structure incorporating damper unit
JP2001003982A (en) Non-resonant semi-active base isolating structure and base isolating method
JP7463214B2 (en) Bearing and vibration control systems
CN116591333A (en) Rotary amplified particle inertial-volume damper

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees