JP2003021193A - Base isolation device - Google Patents

Base isolation device

Info

Publication number
JP2003021193A
JP2003021193A JP2001206588A JP2001206588A JP2003021193A JP 2003021193 A JP2003021193 A JP 2003021193A JP 2001206588 A JP2001206588 A JP 2001206588A JP 2001206588 A JP2001206588 A JP 2001206588A JP 2003021193 A JP2003021193 A JP 2003021193A
Authority
JP
Japan
Prior art keywords
laminated rubber
rubber body
seismic isolation
isolation device
plastic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001206588A
Other languages
Japanese (ja)
Other versions
JP3741424B2 (en
Inventor
Mitsuo Miyazaki
宮崎光生
Koyo Nishimura
西村幸洋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dynamic Design Inc Japan
Original Assignee
Dynamic Design Inc Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynamic Design Inc Japan filed Critical Dynamic Design Inc Japan
Priority to JP2001206588A priority Critical patent/JP3741424B2/en
Publication of JP2003021193A publication Critical patent/JP2003021193A/en
Application granted granted Critical
Publication of JP3741424B2 publication Critical patent/JP3741424B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To realize a layered rubber group base isolation device having smooth load-resistant rigidity, a spindle-shaped hysteresis loop and ideal performance. SOLUTION: This layered rubber base isolation device provided with a lead core or a super plastic material core is obtained by forming the shape of the lead core built in the current layered rubber with a lead core to have the minimum area at a central part in the height direction and the maximum area in both ends in the vertical direction and to be continuously changed at an intermediate part thereof.

Description

【発明の詳細な説明】Detailed Description of the Invention 【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

【0001】大地震時の強い地震動から構造物を保護す
るために、地盤と構造物の間に、各種の免震装置を配置
して地盤の振動が直接伝達されないようにした免震構造
物が実用化されている。本発明は、更に高性能の免震構
造物を実現するために、既に実用化されている免震装置
の性能を飛躍的に改良・高性能化し、且つ実用性の高い
免震装置を提供するものである。
In order to protect a structure from a strong earthquake motion during a large earthquake, there are seismic isolation structures in which various seismic isolation devices are arranged between the ground and the structure to prevent the vibration of the ground from being directly transmitted. It has been put to practical use. INDUSTRIAL APPLICABILITY The present invention provides a highly practical seismic isolation device that dramatically improves and improves the performance of a seismic isolation device that has already been put into practical use in order to realize a higher-performance seismic isolation structure. It is a thing.

【従来の技術】[Prior art]

【0002】免震構造物を実現するための免震装置に
は、構造物の重量を支えながら大きな水平変形ができる
アイソレータ機能と、地震による構造物の振動エネルギ
ーを吸収するダンパー機能の両機能を有していることが
必要であり、これまでに実用化されている免震システム
としては、天然ゴム系積層ゴム+別置きダンパ−、
高減衰積層ゴム、鉛コア入り積層ゴムなどの積層ゴム
系免震システムがある。またこの他に近年、PTFE
(テフロン(登録商標))材とステンレス板の組み合わ
せによるすべり支承系の免震装置、ボールベアリング
等を利用した転がり系支承などの免震装置も実用化さ
れている。
A seismic isolation device for realizing a seismic isolation structure has both an isolator function capable of performing large horizontal deformation while supporting the weight of the structure and a damper function absorbing the vibration energy of the structure due to an earthquake. It is necessary to have it, and as a seismic isolation system that has been put to practical use so far, natural rubber laminated rubber + separate damper-,
There are laminated rubber-based seismic isolation systems such as laminated rubber with high damping and laminated rubber with lead core. In addition to this, in recent years, PTFE
(Teflon (registered trademark)) material and a stainless steel plate are combined, and a seismic isolation device for sliding bearings, and a seismic isolation device for rolling bearings using ball bearings and the like have been put into practical use.

【0003】これらの免震装置の中で、世界的に高い評
価を受け且つ多くの実績を有するものにニュージーラン
ドで発明・開発された「鉛コア入り積層ゴム免震装置」
がある。この装置は、アイソレータとしての積層ゴム支
承の平面中央部1カ所もしくは平面内複数箇所に、ダン
パーとして機能する鉛コアを封入したもので、1装置で
免震構造の必要機能を兼備しているアイソレータ・ダン
パー一体型免震装置であること、鉛コアと積層ゴムの組
み合わせで装置性能=復元力特性をかなり自由に調整で
きることなどの特長を有しており、日本も海外も含めて
評価の高い代表的な免震装置である。
Among these seismic isolation devices, "Lead core laminated rubber seismic isolation device" was invented and developed in New Zealand to be one that has been highly evaluated worldwide and has a lot of achievements.
There is. This device has lead cores functioning as dampers enclosed in one place in the plane center of the laminated rubber bearing as an isolator or in multiple places in the plane. An isolator that also has the necessary functions of a seismic isolation structure in one device.・ It is a damper-integrated seismic isolation device, and the combination of a lead core and laminated rubber allows the device performance = resilience characteristics to be adjusted quite freely. It has a high reputation both in Japan and overseas. Seismic isolation device.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

【0004】上記のとおり、鉛コア入り積層ゴム免震装
置は多くの長所を有している免震装置ではあるが、より
高性能の免震構造物を実現しようとすると、以下のよう
な改良すべき課題を有している。尚、ここで言う、より
高性能の免震構造物とは、免震効果(=応答加速度低減
効果)が高いこと、および安全性を確保できる地震動の
入力強さができるだけ高いこと、即ち効果と安全性能の
高い免震構造物という意味である。
As described above, the lead rubber laminated rubber seismic isolation device is a seismic isolation device having many advantages. However, in order to realize a higher performance seismic isolation structure, the following improvements are made. Have challenges to do. It should be noted that the higher-performance seismic isolation structure referred to here means that the seismic isolation effect (= response acceleration reduction effect) is high and that the seismic motion input strength that can ensure safety is as high as possible. It means a seismic isolation structure with high safety performance.

【0005】先ず第一の解決課題は、従来の鉛コア入り
積層ゴム免震装置の復元力特性(履歴ループの形状)
が、非常に高い除荷剛性を有していることである。免震
構造の高性能化に伴い、免震周期を伸ばすためにゴム材
料としてはせん断弾性係数Grを低目に、高い減衰性能
を得るために鉛コアの直径は大きくする傾向にある。こ
の組み合わせが強くなるほど、除荷剛性は益々高くなる
傾向にあり、昨今の同装置の履歴ループの除荷剛性はグ
ラフ上はほぼ直立(=剛性無限大)している状態にあ
る。
First, the first problem to be solved is the restoring force characteristic (shape of the history loop) of the conventional laminated rubber seismic isolation device with lead cores.
However, it has a very high unloading rigidity. As the performance of seismic isolation structure is improved, the shear elastic modulus Gr of rubber material is low in order to extend the seismic isolation period, and the diameter of the lead core tends to be large in order to obtain high damping performance. As this combination becomes stronger, the unloading rigidity tends to become higher and higher, and the unloading rigidity of the history loop of the same device is almost upright (= infinite rigidity) on the graph.

【0006】地震時の応答振動中に応答変位が逆転する
部分=除荷履歴開始点にさしかかると、この履歴ループ
の除荷剛性が非常に高いために、この状態では免震構造
としてのモードが崩れ基礎固定建物のモードに近づく結
果、この部分で大きな応答加速度が発生することにな
る。この除荷剛性の高さのために、せっかくの免震効果
が大きく損なわれることは免震構造の高性能化にとって
大きな課題である。
When the portion where the response displacement is reversed during the response vibration at the time of the earthquake = the starting point of the unloading history, the unloading rigidity of this history loop is very high. As a result of approaching the mode of the collapsed foundation fixed building, a large response acceleration is generated in this part. Due to the high rigidity of unloading, it is a great challenge to improve the performance of the seismic isolation structure that the seismic isolation effect is greatly impaired.

【0007】解決すべき第二の課題は、減衰定数h−応
答変位δ関係である。鉛コア入り積層ゴムに限らず、履
歴型ダンパー・摩擦ダンパーおよびすべり系支承を用い
る場合の共通課題であるが、降伏耐力が一定値のダンパ
ーを採用する限り、減衰定数hは変形の増加に伴い低下
する宿命を負っている。
The second problem to be solved is the damping constant h-response displacement δ relationship. This is a common issue when using hysteresis type dampers, friction dampers, and sliding bearings, not limited to lead core laminated rubber, but as long as a damper with a constant yield strength is adopted, the damping constant h will increase as the deformation increases. We have a fate to decline.

【0008】これは減衰定数hが履歴ループの有する吸
収エネルギーΔw/歪みエネルギーWの関係によるもの
で、歪みエネルギーWは変形δの2乗に比例して増加す
るのに対し、吸収エネルギーΔwは降伏耐力一定のため
δの1乗に比例するからである。応答性能上は変位の増
加に対して、減衰定数hはできるだけ低下しないことが
望ましい。理論上これが実現できるのは、応答変位振幅
の増加と共にダンパー抵抗力も増大する粘性減衰機構で
あるが、h−δ関係を一定値に保持できる履歴減衰機構
が実現できれば、これまでの常識を覆す画期的なことに
なる。
This is because the damping constant h depends on the relationship of absorbed energy Δw / strain energy W of the hysteresis loop. The strain energy W increases in proportion to the square of the deformation δ, while the absorbed energy Δw yields. This is because the yield strength is constant and is proportional to the first power of δ. In terms of response performance, it is desirable that the damping constant h does not decrease as much as the displacement increases. Theoretically, this can be achieved by a viscous damping mechanism in which the damper displacement force increases as the response displacement amplitude increases. However, if a hysteresis damping mechanism that can hold the h-δ relationship at a constant value can be realized, it would be an idea that would upset common sense. It will be a term.

【0009】積層ゴム免震装置において解決できればす
ばらしい第三の課題として、積層ゴム上下端部における
「歪度集中の解除」を挙げることができる。この課題は
これまで誰も解決可能とは考えなかったため、技術課題
として認識している者も少ないが、積層ゴムの安全性お
よび信頼性向上には非常に大きな課題である。
[0009] A third problem that can be solved with the laminated rubber seismic isolation device is "release of concentration of skewness" at the upper and lower ends of the laminated rubber. Although no one has recognized this problem as a technical problem because no one has considered it possible until now, it is a very large problem for improving the safety and reliability of laminated rubber.

【0010】即ち、積層ゴムが地震時に水平変形を受け
た状態で最も過酷な条件に晒されるのは、積層ゴムの上
端部および下端部のエッジ部分である。鉛直荷重および
水平せん断変形によりこのコーナー部分に最も大きな局
部歪みが集中するので、この上下端部の歪度の集中を解
除できれば、積層ゴムの耐震安全性能を飛躍的に改善す
ることが可能となる。
That is, it is the edge portions of the upper and lower ends of the laminated rubber that are exposed to the most severe conditions when the laminated rubber is horizontally deformed during an earthquake. Since the largest local strain is concentrated on this corner due to vertical load and horizontal shear deformation, it is possible to dramatically improve the seismic safety performance of the laminated rubber if the strain concentration at the upper and lower ends can be released. .

【課題を解決するための手段】[Means for Solving the Problems]

【0011】本発明は、「鉛コア入り積層ゴム」、もし
くは鉛と同等の働きをする超塑性金属材料を内部に封入
した「超塑性材料コア入り積層ゴム」というアイソレー
タ・ダンパー一体型の積層ゴム免震装置を採用し、その
コア形状に特殊な工夫を導入することによって上記3課
題を同時に解決するものである。その基本メカニズムの
説明においては、鉛コアも超塑性金属材料コアも同じ働
きであるので、以下の説明は「鉛コア」という表現で統
一して行う。
The present invention is a laminated rubber integrated with an isolator / damper called "laminated rubber containing lead core" or "laminated rubber containing superplastic material core" in which a superplastic metal material having the same function as lead is enclosed. By adopting a seismic isolation device and introducing a special device to the core shape, the above three problems can be solved at the same time. In the explanation of the basic mechanism, the lead core and the superplastic metal material core have the same function, and therefore the following explanation will be unified by the expression "lead core".

【0012】これまでの鉛コア入り積層ゴム支承は、積
層ゴム剛性の高さ方向分布は常に一定であることを暗黙
の前提条件としており、その剛性ができるだけ均一であ
ることをめざしてきた。これは、もし積層ゴムの一部に
剛性の低い部分が存在すると、そこに変形が集中し、積
層ゴム破損の誘因となり弱点となることが予想されるか
らである。また、同様に鉛コアの断面形状も一定である
ことを前提としてきたが、これも鉛コアの一部に変形が
集中しないことをめざしたものである。
In the conventional laminated rubber bearings containing lead cores, it is an implicit precondition that the distribution of the laminated rubber rigidity in the height direction is always constant, and the rigidity has been aimed to be as uniform as possible. This is because if a portion of the laminated rubber having a low rigidity is present, the deformation is concentrated in that portion, which is expected to cause damage to the laminated rubber and become a weak point. Similarly, it has been assumed that the lead core has a constant cross-sectional shape, but this is also intended to prevent deformation from being concentrated on a part of the lead core.

【0013】本発明では、これまで高さ方向に一定断面
積であった鉛コアを、中央部分の断面積を小さく、上下
端部の断面積を大きくし、その間を連続的に変化させる
ことにより、上記3課題を同時に解決する。即ち、免震
装置の水平断面に作用する水平力はどの高さ位置でも等
しいことを利用し、高さ中央位置の鉛コア断面積を最小
として端部に向かって連続的に変化・拡大することによ
り、先ず最小断面の鉛コア中央部の変形を進行させ、鉛
コアの降伏を中央部から徐々に端部へと進行・拡張させ
ていくのである。この結果、この免震装置の復元力特性
は、免震装置の変形の増加に伴って、鉛コアの小さな免
震装置から徐々に鉛コアの大きな免震装置へと抵抗力・
復元力特性が移行・変化していくことになる。また、除
荷時においても鉛コア断面積の小さな部分から徐々に変
形が解消されていくので、水平荷重の除荷に伴って水平
変形が減少することにより除荷剛性が低下し、滑らかな
履歴ループが得られることになる。
In the present invention, the lead core, which has a constant cross-sectional area in the height direction up to now, has a small cross-sectional area at the central portion and a large cross-sectional area at the upper and lower end portions, and is continuously changed between them. , Solve the above three problems at the same time. That is, by utilizing the fact that the horizontal force acting on the horizontal section of the seismic isolation device is the same at any height position, the lead core cross-sectional area at the height center position is minimized and continuously changed and expanded toward the end. Thus, first, the deformation of the central portion of the lead core having the smallest cross section is advanced, and the yield of the lead core is gradually advanced and expanded from the central portion to the end portion. As a result, the resilience characteristics of this seismic isolation device increased gradually as the deformation of the seismic isolation device increased, from the seismic isolation device with a small lead core to the seismic isolation device with a large lead core.
The resilience characteristics will shift and change. In addition, even when unloading, the deformation gradually disappears from the part with a small lead core cross-sectional area.Therefore, the horizontal deformation decreases with the unloading of the horizontal load, and the unloading rigidity decreases, resulting in a smooth history. You will get a loop.

【0014】積層ゴム上下端部のせん断変形は中央部の
変形よりも遅れ、せん断歪度が小さく抑制されているの
で、上記第三の課題も満足されることになる。また、変
形の進行に伴い鉛コアが大型化していくと同じ効果がる
ため、変形の増大に伴う減衰定数hの低下が緩やかとな
り、第二の課題も解決できる。以上のとおり、「コア断
面積の連続的変化」の導入により、復元力特性履歴ルー
プの除荷剛性は下がり、h−δ関係が改善され、積層ゴ
ム上下端部のせん断歪みの集中が緩和されるという一石
3鳥の効果が発生する。
The shear deformation of the upper and lower end portions of the laminated rubber is delayed as compared with the deformation of the central portion, and the shear strain is suppressed to be small, so that the third problem described above is also satisfied. Further, as the lead core becomes larger in size as the deformation progresses, the same effect is obtained, so that the decrease in the damping constant h with the increase in the deformation becomes gradual, and the second problem can also be solved. As described above, the introduction of the “continuous change in core cross-sectional area” reduces the unloading rigidity of the restoring force characteristic history loop, improves the h-δ relationship, and relaxes the concentration of shear strain in the upper and lower ends of the laminated rubber. The effect of three birds with one stone occurs.

【0015】また本発明の課題解決の基本的考え方は、
以下のように説明することも可能である。従来の全ての
積層ゴム系免震装置では、ゴムの高さは常に一定であ
り、その水平変形時のせん断歪度は装置のどの高さにお
いても常に一定であることを暗黙の前提条件、基本的常
識としてきた。ところが、最も理想的な免震装置を想定
すると、入力地震動があまり強くない段階では、発生す
る水平変形が小さいので減衰性能を負担する鉛コアやダ
ンパーの抵抗力は低いことが好ましく、また積層ゴム自
体も面積が小さく高さも低いもので十分である。入力地
震動が強くなるに伴い、発生する水平変形量は大きくな
るので、積層ゴムも大きく且つゴム高さも高いことが必
要となり、減衰性能・降伏耐力も高いことが必要となっ
てくる。
The basic idea of the solution of the present invention is as follows.
It can also be explained as follows. In all conventional laminated rubber seismic isolation devices, the height of the rubber is always constant, and the shear strain during horizontal deformation is always the same at any height of the device. It has been common sense. However, assuming the most ideal seismic isolation device, when the input seismic motion is not so strong, the horizontal deformation that occurs is small, so it is preferable that the resistance of the lead core and damper that bear the damping performance is low. It is sufficient for itself to have a small area and a low height. As the input seismic motion becomes stronger, the amount of horizontal deformation that occurs becomes larger. Therefore, it is necessary that the laminated rubber be large and the rubber height be high, and that the damping performance and the yield strength be high.

【0016】従って、本来はダンパー(=鉛コア)もア
イソレータ(=積層ゴム)も、入力地震動の強さに応じ
てその大きさを取り替えることが理想的であり、本発明
は、一つの免震装置でありながら、入力地震動の強さに
応じて装置の大きさを次第に大型のものへ取り替えてい
くことと同じ効果・作用を発揮する免震装置を実現した
ものである。いわば、一つの免震装置で、地震動入力に
応じて適切な大きさの無数の装置性能を発揮させること
ができるものである。
Therefore, originally, it is ideal that the size of both the damper (= lead core) and the isolator (= laminated rubber) is changed according to the strength of the input seismic motion. This is a seismic isolation device that exhibits the same effects and actions as a device, even though it is a device, and the size of the device is gradually replaced with a larger one according to the strength of the input seismic motion. In other words, a single seismic isolation device can exhibit innumerable device performance of an appropriate size according to the earthquake motion input.

【発明の実施の形態】DETAILED DESCRIPTION OF THE INVENTION

【0017】以下、本発明を実施例を示す図面に基づい
て説明する。図1(1)は、従来の鉛コア入り積層ゴム
免震装置の断面構成図である。薄いゴム層7と鋼板(内
部鋼板6)を多数積層して積層ゴム体(免震装置全体3)
を形成し、その中央部の孔に(一例として)純度99.9%以
上の鉛(鉛コア8)を充填・圧入している。即ち、上記積
層ゴム体3の平面中央部に積層ゴム体3を貫通して嵌合
される棒状の超塑性金属(ここでは鉛)からなる塑性材料
コア(鉛コア8)が構成されている。鉛コア8の形状は、
ここでは高さ全体に渡って同一断面積である従来型の場
合について表している。通常は円柱状の形状が採用され
ている。鉛コアはゴムと鋼板内に密封されており、鉛直
荷重の作用により、鉛とゴム・鋼板は密着した状態にお
かれている。
The present invention will be described below with reference to the drawings showing an embodiment. FIG. 1 (1) is a cross-sectional configuration diagram of a conventional lead-core-containing laminated rubber seismic isolation device. Laminated rubber body by laminating a large number of thin rubber layers 7 and steel plates (inner steel plate 6) (the whole seismic isolation device 3)
Are formed, and lead (lead core 8) having a purity of 99.9% or more is filled and press-fitted into the hole at the center thereof (as an example). That is, a plastic material core (lead core 8) made of a rod-shaped superplastic metal (here, lead) that is fitted through the laminated rubber body 3 is formed in the central portion of the laminated rubber body 3 in the plane. The shape of the lead core 8 is
Here, a conventional type having the same cross-sectional area over the entire height is shown. Usually, a cylindrical shape is adopted. The lead core is sealed in the rubber and the steel plate, and the action of the vertical load keeps the lead and the rubber / steel plate in close contact with each other.

【0018】地震時に水平力が作用すると図1(2)に
示すように、積層ゴム体3は水平方向にせん断変形し、
積層ゴム体3のせん断変形により鉛コア8も水平せん断
変形を強制される。この時積層ゴム体3の水平方向復元
力特性は、図2(1)に示すように、ゴム材質が天然ゴ
ムの場合、せん断歪度γ= 250%まではほぼ線形の弾性
剛性を示し、それ以後徐々にハードニング傾向を示し、
γ≒ 400%前後で破断に至るのが一般的特性である。
When a horizontal force is applied during an earthquake, the laminated rubber body 3 is sheared and deformed in the horizontal direction, as shown in FIG. 1 (2).
Due to the shear deformation of the laminated rubber body 3, the lead core 8 is also forced to undergo horizontal shear deformation. At this time, the horizontal restoring force characteristic of the laminated rubber body 3 shows a substantially linear elastic rigidity up to a shear strain γ = 250% when the rubber material is natural rubber, as shown in FIG. After that, gradually showed a tendency to harden,
It is a general property that rupture occurs around γ ≈ 400%.

【0019】一方、積層ゴム体3の水平変形により水平
せん断変形を強制される鉛コア8の抵抗力発現=復元力
特性は、図2(2)に示すように先ず高い初期剛性を示
し、その剛性が次第に低下して、やがて鉛の降伏せん断
耐力に達すると塑性流れを起こすようになる。そして鉛
の特徴は、その水平加力を中止すると、その位置で変形
が停止し、抵抗力が消失することである。即ち、除荷剛
性は殆ど垂直(=剛性無限大)となり、その位置での残
留変位が残ることになる。
On the other hand, the resistance development = restoring force characteristic of the lead core 8 forced to undergo horizontal shear deformation due to horizontal deformation of the laminated rubber body 3 first shows a high initial rigidity as shown in FIG. The rigidity gradually decreases, and when the yield shear strength of lead is reached, a plastic flow occurs. The characteristic of lead is that when the horizontal force is stopped, the deformation stops at that position and the resistance force disappears. That is, the unloading rigidity is almost vertical (= infinite rigidity), and residual displacement remains at that position.

【0020】鉛コア入り積層ゴムの復元力特性は、図2
(1)の積層ゴムのほぼ弾性の復元力特性と図2(2)
の鉛の塑性特性が合成されたものであり、図2(3)に
示すようなきれいほぼバイリニア型の履歴ループが得ら
れることになる。このとき、従来の鉛コア入り積層ゴム
のゴム面積・鉛コア面積はどの高さ位置でも同一である
ため、どの水平変形状態においても、装置の全高さに渡
って同レベル・均一の水平せん断歪度が発生している。
これは従来の積層ゴム免震装置全てが当然の条件として
いる原則、大前提条件であるが、ここに本発明の重要な
着眼点がある。
The restoring force characteristics of the laminated rubber containing lead core are shown in FIG.
The almost elastic restoring force characteristics of the laminated rubber of (1) and FIG. 2 (2)
This is a combination of the plastic properties of lead, and a clean, almost bilinear type hysteresis loop as shown in FIG. 2C is obtained. At this time, since the rubber area and lead core area of the conventional lead core-containing laminated rubber are the same at any height position, horizontal shear strain of the same level and uniform over the entire height of the device is obtained in any horizontal deformation state. Degree has occurred.
This is a principle and a major precondition that all conventional laminated rubber seismic isolation devices take as a natural condition, but here is an important point of the present invention.

【0021】鉛コア入り積層ゴムの最大の長所は、この
復元力特性を有る程度調節可能であることである。即
ち、図3(1)に示すように、積層ゴム体のゴム材料の
せん断弾性係数、ゴム層の直径や層厚さ・層数を調整す
ることにより、積層ゴム体の水平剛性を調節できるこ
と。図3(2)に示すように、鉛コアの直径を変化させ
ることにより、鉛コアの抵抗力によって決まる降伏耐力
を調節することができる。この2つの組み合わせによ
り、図3(3)に示すように、免震装置の降伏耐力・水
平剛性(第二剛性)をかなり自由に設定することがで
き、装置の抵抗力レベル、エネルギー吸収性能、変形性
能を調節できるのである。
The greatest advantage of the laminated rubber containing the lead core is that the restoring force characteristic can be adjusted to some extent. That is, as shown in FIG. 3A, the horizontal rigidity of the laminated rubber body can be adjusted by adjusting the shear elastic modulus of the rubber material of the laminated rubber body, the diameter of the rubber layer, the layer thickness, and the number of layers. As shown in FIG. 3 (2), the yield strength determined by the resistance of the lead core can be adjusted by changing the diameter of the lead core. By combining these two, as shown in Fig. 3 (3), the yield strength and horizontal rigidity (second rigidity) of the seismic isolation device can be set quite freely, and the resistance level of the device, energy absorption performance, The deformation performance can be adjusted.

【0022】但し、いずれの復元力特性においても除荷
剛性だけは非常に高く、その調整は不可能であった。近
年の鉛コア入り積層ゴムの設計では、免震構造物の高性
能化を図るために、積層ゴムのゴム剛性を低下させて長
周期化を図り、鉛コアの直径を大きくしてエネルギー吸
収性能を高める傾向にある。その結果、鉛コアの抵抗力
が大きくなり積層ゴムの復元力が弱くなるために、除荷
剛性が益々垂直に近い復元力特性を示すようになり、そ
の結果高次モードが誘発されやすくなって、上部構造物
の応答加速度を引き上げてしまうことが発生する。免震
構造物の高性能化を目的とした装置設計が、それに逆行
する結果を生むことになり、高性能化を阻む限界条件と
なっている。
However, in any of the restoring force characteristics, only the unloading rigidity was very high, and its adjustment was impossible. In the design of laminated rubber with a lead core in recent years, in order to improve the performance of seismic isolation structures, the rubber rigidity of the laminated rubber is reduced to achieve a longer period, and the diameter of the lead core is increased to increase the energy absorption performance. Tends to increase. As a result, the resistance of the lead core becomes large and the restoring force of the laminated rubber becomes weak, so that the unloading rigidity shows a restoring force characteristic that is closer to vertical, and as a result, higher modes are easily induced. However, the response acceleration of the upper structure may be increased. Equipment design aimed at improving the performance of seismic isolation structures has the opposite effect, and is a limiting condition that prevents performance enhancement.

【0023】この高次モードによる加速度励起問題を解
決するには、免震装置を緩やかな除荷剛性を有する復元
力特性に改善することが必要であるが、履歴型ダンパー
やすべり・摩擦型ダンパーでは解決不可能な課題と認識
されてきた。この課題を解決するために、本発明は、図
4に示すように、鉛コア8の面積(積層ゴム体の平面方
向の断面積)を高さ中央部(積層ゴム体3の厚さ方向中央
部)で最小に、上下両端部で最大に、その中間を連続的
に変化させる。鉛コア8の面積を変化させ、鉛コア8の
水平抵抗力を高さ位置(積層ゴム体3の厚さ方向の位置)
により変化させることにより、従来は全高さ均一に発生
させていた水平せん断歪度の原則を崩したのである。即
ち、高さ中央部付近は鉛コア8の面積が最小でその抵抗
力が最も低いために水平変形が先行し、変形の進行に伴
って上昇していく水平抵抗力の増大により、徐々に鉛コ
ア8の降伏領域を中央部から上下端部へと拡げていくの
である。
In order to solve the acceleration excitation problem due to the higher-order mode, it is necessary to improve the seismic isolation device to have a restoring force characteristic having a gradual unloading rigidity. However, a hysteresis type damper and a slip / friction type damper are required. Has been recognized as an unsolvable issue. In order to solve this problem, according to the present invention, as shown in FIG. 4, the area of the lead core 8 (the cross-sectional area in the plane direction of the laminated rubber body) is set at the height center portion (the thickness direction center of the laminated rubber body 3). Part), the maximum at both upper and lower ends, and the middle thereof are continuously changed. The area of the lead core 8 is changed so that the horizontal resistance of the lead core 8 is at the height position (position in the thickness direction of the laminated rubber body 3).
By virtue of this, the principle of horizontal shear strain, which was conventionally generated uniformly over the entire height, was broken. That is, since the area of the lead core 8 is the smallest and the resistance is the lowest in the vicinity of the central portion of the height, horizontal deformation precedes and the horizontal resistance gradually increases as the deformation progresses. The yield region of the core 8 is expanded from the center to the upper and lower ends.

【0024】除荷時においても、装置の高さ中央位置は
鉛コア面積が最小でゴム面積が最大であるため、ゴムの
復元力により鉛のせん断変形が解除されやすく、鉛コア
面積の小さな部分から徐々に変形が解消されていくの
で、水平荷重の除荷に伴って水平変形が減少することに
なり、その結果、図8の21に例示するような滑らかな
除荷剛性を有する紡錘型の履歴ループが得られることに
なる。また、積層ゴム上下端部のせん断変形は中央部の
変形よりも遅れており、せん断歪度が小さく抑制されて
いるので、従来装置では最も過酷な条件下にあった装置
の上下端部の局部歪みの集中という課題も大きく改善さ
れることになる。
Even at the time of unloading, since the lead core area is the smallest and the rubber area is the largest at the center position of the height of the device, the shearing deformation of lead is easily released by the restoring force of the rubber, and the lead core area is small Since the deformation gradually disappears, the horizontal deformation decreases with the unloading of the horizontal load, and as a result, the spindle-type spindle having smooth unloading rigidity as illustrated in 21 of FIG. A history loop will be obtained. In addition, the shear deformation of the laminated rubber upper and lower ends lags behind the deformation of the central part, and the shear strain is suppressed to a small level. The problem of strain concentration will be greatly improved.

【0025】この効果を具体的・定量的に示すために、
(イ)従来型鉛コアを有する積層ゴムと(ロ)本発明の
鉛コアを有する積層ゴムの復元力特性を比較する。一例
として、図5(イ)(ロ)に示すように、積層ゴム直径
を1,000mmφ、ゴム層を8mm×30層、ゴム層総厚=2
40mm、ゴム材質はせん断弾性係数Gr=5.5kg/cm2 とす
る。鉛コア直径は、(イ)従来型=200mmφ一律、本発
明型は中央部最小直径=100mmφ、上下端部最大直径=3
00mmφとする。
In order to show this effect concretely and quantitatively,
The resilience characteristics of (a) a laminated rubber having a conventional lead core and (b) a laminated rubber having a lead core of the present invention are compared. As an example, as shown in FIGS. 5A and 5B, the laminated rubber diameter is 1,000 mmφ, the rubber layer is 8 mm × 30 layers, and the total rubber layer thickness = 2.
40 mm, the rubber material has a shear elastic modulus Gr = 5.5 kg / cm2. The lead core diameter is (a) conventional type = 200 mmφ uniform, the present invention type has a central minimum diameter = 100 mmφ, upper and lower end maximum diameter = 3
00mmφ.

【0026】図6に両者の復元力特性(設計履歴ルー
プ)を示す。実線ループ20が本発明装置のループ、破
線ループ10が従来型装置のループである。図6には、
従来型装置におけるゴムのせん断歪度γ= 250%、水平
変形d=60cmまでの履歴ループを重ね書きしている。
FIG. 6 shows the restoring force characteristics (design history loop) of both. The solid line loop 20 is the loop of the device of the present invention, and the broken line loop 10 is the loop of the conventional device. In Figure 6,
A history loop up to shear strain γ = 250% and horizontal deformation d = 60 cm of the conventional device is overwritten.

【0027】両者の相違がより明確にわかるように、せ
ん断歪度γ= 100%、水平変形d=24cmまでの履歴ルー
プを拡大して、比較したものが図7の従来型装置および
図8の本発明装置である。
In order to more clearly understand the difference between the two, the hysteresis loop up to shear strain γ = 100% and horizontal deformation d = 24 cm was enlarged and compared to compare the conventional device of FIG. 7 and FIG. The device of the present invention.

【0028】両者を比較すると、両装置の相違と本発明
装置の特長が明確に理解できる。即ち、従来型装置は、
ゴム層の提供する水平剛性が第二剛性となり、これに鉛
コアの提供する剛塑性型履歴が複合されたバイリニア型
ループで、極めて高い除荷剛性11を有しているのに対
して、本発明装置の履歴ループは、一定の第二剛性を有
せず、除荷剛性21も緩やかなカーブを描いており、全
体として粘弾性型ループのような滑らかな紡錘型履歴ル
ープ形状を示している。
By comparing the two, the difference between the two devices and the features of the device of the present invention can be clearly understood. That is, the conventional device
The horizontal rigidity provided by the rubber layer is the second rigidity, and the bilinear loop that combines the rigid-plastic history provided by the lead core has a very high unloading rigidity 11. The history loop of the invented device does not have a constant second rigidity, and the unloading rigidity 21 also draws a gentle curve, and shows a smooth spindle-shaped history loop shape like a viscoelastic loop as a whole. .

【0029】この履歴ループ発現のメカニズムは、以下
のように説明できる。従来型装置では、ゴムのせん断歪
度も鉛コアのせん断歪度も高さ方向にはどの位置でも同
じ歪度で一様に進行していく。これに対して、本発明の
装置は高さ中央部に近いほど鉛コアの面積が小さく抵抗
力が低いために、中央部に近い程ゴムおよび鉛コアのせ
ん断歪度が早く進行する。即ち、先ず水平抵抗力の低い
中央部のせん断歪が進行し、せん断歪の進行に伴い鉛の
抵抗せん断応力度が上昇するので、徐々にその外側(上
下端側)に向かって歪度が拡大していく。その結果、鉛
コアが発揮する抵抗力は全体として、小歪み時には中央
部コアの低い抵抗力から次第に上下端部の大断面の鉛コ
アの抵抗力へと上昇していくため、滑らかな上昇曲線を
描くことになり、従来型装置のようにすぐに一定値の降
伏耐力に収斂しない。これが上昇スケルトンカーブが滑
らかなカーブを描く理由である。
The mechanism of this history loop expression can be explained as follows. In the conventional device, the shear strain of the rubber and the shear strain of the lead core proceed uniformly with the same strain at any position in the height direction. On the other hand, in the device of the present invention, the closer the height is to the central part, the smaller the area of the lead core is and the lower the resistance force is. That is, first, the shear strain of the central part with low horizontal resistance progresses, and the resistance shear stress of lead increases as the shear strain progresses, so the strain gradually increases toward the outside (upper and lower ends). I will do it. As a result, the resistance force exerted by the lead core as a whole gradually increases from the low resistance force of the central core to the resistance force of the large cross-section lead cores at the upper and lower ends at a small strain, resulting in a smooth rising curve. Therefore, it does not immediately converge to a constant yield strength unlike conventional devices. This is the reason why the rising skeleton curve draws a smooth curve.

【0030】同様に除荷履歴においても、歪みの解消
は、最も歪みが進行しており且つゴム復元力が最大で鉛
抵抗力が最小である中央部から徐々に解消されていくか
ら緩やかな除荷カーブを描くことになり、単純な剛塑性
型ループにはならない。これが、金属の塑性履歴に基づ
く履歴ループでありながら粘弾性材料のような紡錘型履
歴ループ形状を発現するメカニズムである。
Similarly, in the unloading history as well, the strain is gradually removed from the central portion where the strain is most advanced, the rubber restoring force is the maximum and the lead resistance is the minimum, so that the strain is gradually removed. A load curve will be drawn, and it will not become a simple rigid-plastic type loop. This is a mechanism that develops a spindle-shaped hysteresis loop shape like a viscoelastic material while it is a hysteresis loop based on the plastic history of metal.

【0031】図9は、水平変形がゼロから平均せん断歪
度γave = 250%(水平変形dをゴム全高さTrで除し
た平均歪度γave =d/Tr)まで進行する時の免震装
置の各部高さ位置の変形状態(水平変形モード)を示し
ている。小変形時には中央部付近の変形の割合が大き
く、変形量の増大に伴い徐々に一様な変形形状に進展し
ていくことが示されている。
FIG. 9 shows the seismic isolation device when the horizontal deformation progresses from zero to the average shear strain γ ave = 250% (the horizontal strain d divided by the total rubber height Tr, the average strain γ ave = d / Tr). The deformation | transformation state (horizontal deformation mode) of each part height position is shown. It has been shown that the rate of deformation near the central portion is large during small deformation, and gradually progresses to a uniform deformed shape as the amount of deformation increases.

【0032】その変形状態における各高さ位置における
歪度の進展状態を図10に示している。図中央部のせん
断歪度γの値は、上記の平均歪度γave を表している。
例えば、全体平均歪度γave = 200%の場合、装置中央
部の歪度は約 250%にまで進展しているが、上下両端部
の歪度はγ= 130%程度(従来型装置では上下端部の歪
度=200%)に留まっていることが判る。図10より明
らかなように、通常の積層ゴムでは最も過酷な歪領域と
なる積層ゴムの上下端部の歪度分布が大幅に緩和されて
おり、積層ゴムの安全性向上、破壊に対する信頼性向上
に大きく寄与していることが判る。
FIG. 10 shows the state of evolution of the skewness at each height position in the deformed state. The value of the shear strain γ at the center of the figure represents the above-mentioned average strain γ ave.
For example, when the overall average skewness γave = 200%, the skewness at the center of the device has advanced to about 250%, but the skewness at the upper and lower ends is about γ = 130% (upper and lower ends in conventional equipment). It can be seen that the distortion of the part remains 200%). As is apparent from FIG. 10, the skewness distribution of the upper and lower end portions of the laminated rubber, which is the most severe strain area in the ordinary laminated rubber, is greatly relaxed, and the safety of the laminated rubber is improved and the reliability against damage is improved. It can be seen that it has contributed significantly to

【0033】図11は、図6および図7、図8、に示し
た従来型と本発明装置の履歴ループの有する減衰定数を
せん断歪度γ=50%(水平変形量d=12cm)時の値を基
準値=1として、水平変形と減衰定数hの変化率を示し
たものである。従来型装置では、せん断歪度γ= 250%
で約40%にまで低下しているが、本発明装置では約60%
に留まっており、水平変形の増加に伴う減衰定数の低下
が緩やかであることが示されている。これにより第二の
課題も大きく改善されていることが判る。
FIG. 11 shows the damping constants of the hysteresis loops of the conventional type and the device of the present invention shown in FIGS. 6 and 7 and 8 when the shear strain γ = 50% (horizontal deformation amount d = 12 cm). The horizontal deformation and the rate of change of the damping constant h are shown with the value as a reference value = 1. With conventional equipment, shear strain γ = 250%
However, with the device of the present invention, it is about 60%.
It is shown that the decrease of the damping constant with the increase of horizontal deformation is moderate. This shows that the second problem is also greatly improved.

【0034】図12は、本発明装置の鉛コアの中央部と
端部の直径の組み合わせを変化させた場合について、図
11と同じ減衰定数hの変化率を示したものである。減
衰定数hは、鉛コア中央部直径dpc と端部直径dpeの
違いが大きい(Cdp=dpc/dpeの値が小さい)ほど、
即ち、高さ中央部の直径が小さく絞られているほど、h
の変化率が小さくなり、本発明の効果が大きい。図12
に示したdpc=200mm、dpe=300mm、即ちCdp=0.67、
面積比=0.44 では本発明の効果が十分に認められる
が、この直径の違いを小さくすると、徐々に従来型装置
との差異がなくなっていく。このことより、本発明の効
果が十分に発揮される領域として請求項4に示した「鉛
コア中央部の断面積が端部断面積の50%以下」という
条件を割り出したものである。
FIG. 12 shows the same rate of change of the damping constant h as in FIG. 11 when the combination of the diameters of the central part and the end part of the lead core of the device of the present invention is changed. The larger the difference between the lead core central diameter dpc and the end diameter dpe (the smaller the value of Cdp = dpc / dpe) is, the smaller the damping constant h becomes.
That is, the smaller the diameter at the center of height is, the more h
, The effect of the present invention is great. 12
Dpc = 200 mm, dpe = 300 mm, that is, Cdp = 0.67,
When the area ratio = 0.44, the effect of the present invention is sufficiently recognized, but when the difference in diameter is reduced, the difference from the conventional device gradually disappears. From this, the condition that "the cross-sectional area of the central portion of the lead core is 50% or less of the end cross-sectional area" described in claim 4 is determined as a region where the effect of the present invention is sufficiently exhibited.

【0035】以上の説明では、11段落に記したとお
り、積層ゴム内部に組み込むダンパー機能として、「鉛
コア」という表現を用いてきたが、大きなエネルギー吸
収性能と大きな塑性変形能力を有する材料であれば、鉛
に限定すべき理由は存在しない。重金属である鉛の公害
問題が指摘されている昨今の現状を考慮すれば、むしろ
鉛以外の材料を採用すべきである。本発明では、これま
でに知られている材料の中で、常温で超塑性材料特性を
示す材料を調べ上げた結果、表1に示すものが採用可能
であることを突き止めた。表2に示すものも超塑性金属
として知られているが、これらはかなり高温でなければ
超塑性特性となり得ないため、本発明用材料としては
「不可」とする。以下に、本発明請求項第5で内蔵ダン
パー用コア材料として採用する「超塑性材料コア」を表
1に、不採用材料を表2に示す。
In the above description, as described in the eleventh paragraph, the expression "lead core" has been used as the damper function incorporated in the laminated rubber, but any material having a large energy absorption performance and a large plastic deformation capacity can be used. So there is no reason to limit it to lead. Considering the recent situation in which the pollution problem of lead, which is a heavy metal, has been pointed out, materials other than lead should be adopted rather. In the present invention, among the materials known so far, as a result of examining materials having superplastic material characteristics at room temperature, it was found that the materials shown in Table 1 can be adopted. The materials shown in Table 2 are also known as superplastic metals, but since they cannot have superplastic properties unless they are at a considerably high temperature, they are regarded as "impossible" as a material for the present invention. The "superplastic material core" used as the core material for the built-in damper in claim 5 of the present invention is shown in Table 1, and the non-adopted materials are shown in Table 2.

【表1】 [Table 1]

【表2】 [Table 2]

【0036】次に本発明免震装置の具体的な製造方法に
ついて説明する。図4および図5(ロ)に示される本発
明装置において、鉛もしくは超塑性材料のコアを確実に
充填するためには、特に高さ中央位置におけるコア面積
が最小の部分の充填度および積層ゴム体によるコアの保
持を確実にするために、中央部に厚い鋼板(補強鋼板)を
採用することが考えられる。その断面構成図を図13に
示す。即ち、図13では、通常、積層ゴム体の上端と下
端の両方から、コアとなる超塑性金属(通常鉛)が2分割
して圧入される。その結果中央部にコア材料の断層部=
不連続弱点部が発生し易くなるが、上記中央部の厚い鋼
板、中央インナーシム61(補強鋼板)は、この断層部弱
点を保護する役目を果たすものである。
Next, a specific method of manufacturing the seismic isolation device of the present invention will be described. In the device of the present invention shown in FIG. 4 and FIG. 5 (b), in order to reliably fill the core of lead or superplastic material, the filling degree and the laminated rubber of the portion where the core area is the minimum at the height center position are ensured. In order to ensure that the body holds the core, it is conceivable to use a thick steel plate (reinforcing steel plate) in the central portion. The cross-sectional configuration diagram is shown in FIG. That is, in FIG. 13, the superplastic metal (usually lead) that serves as the core is normally press-fitted in two parts from both the upper end and the lower end of the laminated rubber body. As a result, the core material has a fault in the center =
Although the discontinuous weak points are likely to occur, the thick steel plate at the center and the central inner shim 61 (reinforcing steel plate) serve to protect the weak points at the fault.

【0037】この断面構成を更に容易に実現する方法と
して、図14に示すように、装置に内蔵される鉛コアも
しくは超塑性材料のコア直径が直線的に変化するもの、
即ち円錐台形のコア形状を有する鉛もしくは超塑性材料
のコアを有する積層ゴム支承を作成する。形状上の対称
性は崩れているが、装置性能としては、請求項1〜5の
装置と同じ性能を発現させることが可能である。これが
請求項6である。
As a method of realizing this cross-sectional structure more easily, as shown in FIG. 14, the core diameter of the lead core or superplastic material incorporated in the apparatus is linearly changed,
That is, a laminated rubber bearing having a core of lead or superplastic material having a truncated cone shape is prepared. Although the symmetry in shape is broken, the device performance can be the same as that of the device according to claims 1 to 5. This is claim 6.

【0038】請求項7は、請求項6、図14に示す円錐
台形のコア形状を有する鉛もしくは超塑性材料のコアを
有する積層ゴム支承2体を一組として、直径の小さな方
のフランジ側をボルト接合することにより、対称性を有
する装置を容易に構成することができる。その要領を図
15に示している。
A seventh aspect of the present invention is to set two laminated rubber bearings each having a core of lead or superplastic material having a truncated cone-shaped core shape shown in the sixth and FIG. By bolting, a device having symmetry can be easily constructed. The procedure is shown in FIG.

【0039】 図14に示す円錐台形のコア形状を有す
る鉛もしくは超塑性材料のコアを有する積層ゴム支承2
体を一組として、直径の大きな方のフランジ側をボルト
接合するもので、コア形状は図15と逆であるが、発現
性能、復元力特性は図15の装置と同じである。但し、
この装置では、まず装置両端部の変形が先に進行するこ
とになる。従って、変形が進行し発熱量の大きいコア部
分が2分割されるため、発熱による温度上昇が抑制さ
れ、温度上昇による降伏耐力の低下が小さくなるという
メリットがある。その形状を図16に示している。
A laminated rubber bearing 2 having a core of lead or superplastic material having a truncated cone shape shown in FIG.
The body is set as a set and the flange side having the larger diameter is bolted. The core shape is opposite to that of FIG. 15, but the expression performance and the restoring force characteristic are the same as those of the apparatus of FIG. However,
In this device, the deformation of both ends of the device first proceeds. Therefore, since the core portion having a large amount of heat generation due to the progress of deformation is divided into two, there is an advantage that a temperature rise due to heat generation is suppressed and a decrease in yield strength due to a temperature rise becomes small. The shape is shown in FIG.

【0040】図17と図18は、本発明免震装置の効果
を確認するために、1例として8階建て免震建物を試設
計し、地震応答解析により免震効果を比較したものであ
る。図17は従来型免震装置を採用した免震建物の各階
の最大応答加速度を示しており、図18は、本発明の免
震装置を採用した免震建物の最大応答加速度を示してい
る。採用した入力地震動は両者とも共通で、最大入力加
速度400〜1000ガル(cm/sec2)、最大入力速
度100〜165カイン(cm/s)という非常に強い
地震動が作用した場合である。横軸が加速度の強さ、縦
軸は、Mが地盤面、1は建物の1階の床、2は建物の2
階の床というように階数を表している。免震装置は地盤
面と1階の床の間に配置されている。図17に示した従
来の免震装置では、各階とも大略200ガル程度の加速
度が発生し、屋上のR階は300ガル以上の加速度に達
している。これに対して、図18に示した本発明の免震
装置を採用した建物では、どの地震動入力に対しても応
答加速度には殆どバラツキがなく、1階から屋上R階ま
でほぼ100ガル程度の加速度に抑制されており、本発
明装置を採用した免震建物は極めて高い免震効果を発揮
することが判る。この効果は、図15の構成のものも、
図16の構成のものも同様である。
In order to confirm the effect of the seismic isolation device of the present invention, FIGS. 17 and 18 show an example of a trial design of an 8-story seismic isolated building, and a comparison of seismic isolation effects by seismic response analysis. . FIG. 17 shows the maximum response acceleration of each floor of a seismic isolated building employing the conventional seismic isolation device, and FIG. 18 shows the maximum response acceleration of a seismic isolated building employing the seismic isolation device of the present invention. The adopted input seismic motion is common to both, and is a case where a very strong seismic motion with a maximum input acceleration of 400 to 1000 gal (cm / sec 2 ) and a maximum input speed of 100 to 165 kine (cm / s) is applied. The horizontal axis is the strength of acceleration, and the vertical axis is M for the ground surface, 1 for the first floor of the building, 2 for the building
The number of floors is expressed as the floor of the floor. The seismic isolation device is located between the ground surface and the floor on the first floor. In the conventional seismic isolation system shown in FIG. 17, an acceleration of about 200 gal is generated on each floor, and the R floor on the rooftop reaches an acceleration of 300 gal or more. On the other hand, in the building employing the seismic isolation device of the present invention shown in FIG. 18, the response acceleration has almost no variation with respect to any seismic motion input, and the response acceleration is about 100 gal from the first floor to the roof R floor. It can be seen that the base-isolated building, which is controlled by the acceleration and which employs the device of the present invention, exhibits an extremely high seismic isolation effect. This effect is also obtained in the configuration of FIG.
The same applies to the configuration shown in FIG.

【0041】鉛のような金属を使用した履歴減衰型の免
震装置に比べると、粘性流体を減衰装置に使用した粘性
減衰型免震装置は、入力加速度の大小にかかわらず、免
震効果が高い(=応答加速度抑制効果が高い)特徴を持
つ。中心に太さの一様な鉛コアを埋め込んだ従来型の免
震装置では履歴減衰特有のバリニア型履歴ループを示す
が、本発明の鉛コアは、平面方向の断面積が積層ゴム体
の厚さ方向にみて一様でなく、小さい入力加速度に対し
ては平面方向の断面積の小さい部分が積層ゴム体の変形
を容易にし、強い入力に対しては徐々に断面積の大きい
部分が強い抵抗力を発揮するようにして、全体として粘
性減衰型の減衰装置と同じパターンの抵抗力を発揮する
ことにより免震効果を高めている。
Compared with a hysteresis damping type seismic isolation device using a metal such as lead, a viscous damping type seismic isolation device using a viscous fluid as a damping device has a seismic isolation effect regardless of the magnitude of input acceleration. It has a high feature (= high response acceleration suppression effect). A conventional seismic isolation device having a lead core with a uniform thickness embedded in the center shows a ballinian hysteresis loop peculiar to hysteresis damping, but the lead core of the present invention has a cross-sectional area in the plane direction of the laminated rubber body. It is not uniform in the vertical direction, and the portion with a small cross-sectional area in the plane direction facilitates deformation of the laminated rubber body for small input acceleration, and the portion with a gradually larger cross-sectional area has stronger resistance to strong input. The seismic isolation effect is enhanced by exerting the force and by exerting the resistance force of the same pattern as that of the viscous damping type damping device as a whole.

【0042】なお、塑性材料コアの前記積層ゴム体の平
面方向の断面積は、最小値を示す部分から最大値を示す
部分に向かって、連続的に単調増加していることが好ま
しい。図13〜図16の実施例はいずれもこの条件を満
足している。このような構成にすると、積層ゴム体とコ
アとの間の境界面が滑らかなので、鉛や超塑性材料を圧
入する作業が容易になる。また、地震による応力が加わ
った場合に、積層ゴム体各部の変形量が著しく変化せ
ず、積層ゴム体に無理な力を及ぼさないという効果があ
る。
It is preferable that the sectional area of the plastic material core in the plane direction of the laminated rubber body continuously and monotonically increases from the portion showing the minimum value to the portion showing the maximum value. The examples of FIGS. 13 to 16 all satisfy this condition. With such a configuration, the boundary surface between the laminated rubber body and the core is smooth, so that the work of press-fitting lead or a superplastic material becomes easy. Further, when stress due to an earthquake is applied, the amount of deformation of each part of the laminated rubber body does not change significantly, and there is an effect that an unreasonable force is not applied to the laminated rubber body.

【0043】[0043]

【発明の効果】鉛コア入り積層ゴム免震装置は、1970年
代後半にニュージーランドで開発されたもので、米国・
日本・イタリアなど耐震設計先進国で世界的に高い評価
を得ており、現在世界で最も実績の高い免震装置であ
る。本発明はこの優れた免震装置に残された重要な問題
点を解決し、これまでに存在しないほぼ完璧な免震装置
に生まれ変わらせたものである。本発明の特徴と主要な
効果を整理すると、以下のとおりである。 従来の鉛コア入り積層ゴムは、バイリニア型の履歴ル
ープを示し、その第二剛性と降伏耐力をかなり自由に調
節可能であった。しかし、除荷剛性が極めて高く、その
調整は不可能で、その高い除荷剛性のために高次モード
の共振現象を励起して高い応答加速度が発生するという
欠点があった。本発明は、その除荷剛性を任意に緩和す
ることを可能としたもので、履歴減衰機構であるにも拘
わらず、あたかも粘性材料もしくは粘弾性材料であるか
のような滑らかな紡錘型の履歴ループを実現した。粘性
や粘弾性材料ではないので、温度依存性や速度依存性と
いう粘性・粘弾性材料故の短所も有しない。粘性・粘弾
性型の紡錘型ループを有する履歴減衰機構という、これ
までどこにも存在しなかった画期的なものである。 緩い除荷剛性、滑らかな紡錘型履歴ループにより、粘
性減衰機構を有する理想的免震建物のような良好な応答
加速度抑制効果が発揮され、高い免震効果を発揮する。
図17と図18の比較から明らかなとおり、本発明装置
による免震建物の地震応答加速度は、従来型装置よりも
全階に渡って良好に抑制されている。 履歴減衰機構であるにも拘わらず、応答変形の増加に
伴う減衰定数の低下が小さく、強い地震動入力に対する
大きな応答抑制効果、高い減衰性能を期待することがで
きる。 粘性材料もしくは粘弾性材料のような紡錘型の履歴ル
ープ形状を示すが、粘性・粘弾性材料ではないので、温
度依存性や速度依存性という粘(弾)性材料故の欠点を
有していない。 積層ゴム免震装置の中で、最も大きな局部歪みの発生
するのは上下端部であるが、本発明装置では、その上下
端部の地震時せん断歪度が抑制されるので、破壊に対す
る安全性が高まり、免震装置全体の安全性・信頼性が飛
躍的に高まっている。 図7と図8の比較から明らかなように、履歴ループ形
状が紡錘型ループとなり、履歴ループ上で抵抗力=ゼロ
となる位置の変位量が小さくなるので、地震後に残る残
留変位量が小さくなる。 以上のとおり、本発明は、これまでに実現されたことの
ない、ほぼ完璧な理想的免震装置を実現したものであ
る。
[Effect of the Invention] The laminated rubber seismic isolation device with lead core was developed in New Zealand in the late 1970s.
It has been highly acclaimed worldwide in advanced countries with seismic design such as Japan and Italy, and is currently the world's most proven seismic isolation device. The present invention solves the important problems remaining in this excellent seismic isolation device and transforms it into a nearly perfect seismic isolation device that has never existed before. The features and main effects of the present invention are summarized as follows. The conventional laminated rubber with lead core has a bilinear hysteresis loop, and its second rigidity and yield strength can be adjusted quite freely. However, there is a drawback that the unloading rigidity is extremely high and cannot be adjusted, and the high unloading rigidity excites a resonance phenomenon of a higher mode to generate a high response acceleration. INDUSTRIAL APPLICABILITY The present invention enables the unloading rigidity to be arbitrarily relaxed, and has a smooth spindle-shaped hysteresis as if it is a viscous material or a viscoelastic material despite the hysteresis damping mechanism. I realized the loop. Since it is not a viscous or viscoelastic material, it does not have the disadvantages of viscous or viscoelastic materials such as temperature dependence and speed dependence. A hysteresis damping mechanism with viscous / viscoelastic spindle-shaped loops is an epoch-making one that has never existed before. The loose unloading rigidity and the smooth spindle-type hysteresis loop provide the excellent response acceleration suppression effect of an ideal seismic isolation building with a viscous damping mechanism, and a high seismic isolation effect.
As is clear from the comparison between FIG. 17 and FIG. 18, the seismic response acceleration of the base-isolated building by the device of the present invention is better suppressed over all floors than the conventional device. Despite the hysteretic damping mechanism, the decrease in damping constant with increasing response deformation is small, and a large response suppression effect against strong seismic input and high damping performance can be expected. It has a spindle-shaped hysteresis loop shape like a viscous or viscoelastic material, but since it is not a viscous / viscoelastic material, it does not have the disadvantages of viscous (elastic) materials such as temperature dependence and speed dependence. . In the laminated rubber seismic isolation device, the largest local strain occurs at the upper and lower ends, but in the device of the present invention, the shear strain during earthquakes at the upper and lower ends thereof is suppressed, and therefore safety against fracture is high. As a result, the safety and reliability of the seismic isolation device as a whole has dramatically increased. As is clear from the comparison between FIG. 7 and FIG. 8, the hysteresis loop shape becomes a spindle loop, and the displacement amount at the position where the resistance force is zero on the hysteresis loop becomes small, so the residual displacement amount remaining after the earthquake becomes small. . As described above, the present invention realizes an almost perfect ideal seismic isolation device that has never been realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の鉛コア入り積層ゴム免震装置 (1)断面構成図(平常時) (2)地震時変形状態断面図[Fig. 1] Conventional laminated core seismic isolation device with lead core (1) Cross-section diagram (normal) (2) Deformation cross section during earthquake

【図2】従来の鉛コア入り積層ゴムの復元力特性の説明
図 (1)天然ゴム系積層ゴム体の水平方向復元力特性 (2)鉛コア入り積層ゴム内の鉛コアによる水平方向復
元力特性 (3)鉛コア入り積層ゴムの水平方向復元力特性=
(1)+(2)
FIG. 2 is an explanatory view of restoring force characteristics of a conventional lead core-containing laminated rubber (1) Horizontal restoring force characteristics of natural rubber-based laminated rubber body (2) Horizontal restoring force of lead core in lead core-containing laminated rubber Characteristics (3) Horizontal restoring force characteristics of laminated rubber with lead core =
(1) + (2)

【図3】従来の鉛コア入り積層ゴムの復元力特性の調整
方法説明図 (1)ゴム剛性による復元力特性の調整 (2)鉛コアによる復元力特性(降伏耐力)の調整 (3)鉛コア入り積層ゴムの水平方向復元力特性の変化
FIG. 3 is an explanatory diagram of a method for adjusting the restoring force characteristic of a conventional laminated rubber containing a lead core (1) Adjustment of restoring force characteristic by rubber rigidity (2) Adjustment of restoring force characteristic (yield proof strength) by lead core (3) Lead Changes in horizontal restoring force characteristics of laminated rubber with core

【図4】本発明の鉛コア(超塑性材料コア)入り積層ゴ
ム免震装置のコア形状および断面構成説明図
FIG. 4 is an explanatory view of a core shape and a sectional configuration of a laminated rubber seismic isolation device containing a lead core (superplastic material core) of the present invention.

【図5】復元力特性を比較するための鉛コア入り積層ゴ
ムの装置設計例断面図 (イ)従来型鉛コアの免震装置 (ロ)本発明型鉛コアの免震装置
FIG. 5: Device design example of laminated rubber containing lead core for comparing restoring force characteristics (a) Conventional lead core seismic isolation device (b) Present invention type lead core seismic isolation device

【図6】図5装置の復元力特性の比較(γ≦250%)
説明図
FIG. 6 is a comparison of restoring force characteristics of the apparatus of FIG. 5 (γ ≦ 250%).
Illustration

【図7】図5(イ)装置の復元力特性の比較(γ≦10
0%の拡大図)従来型鉛コア免震装置の復元力特性履歴
ループ説明図
FIG. 7 (a) Comparison of restoring force characteristics of the device (γ ≦ 10
0% enlargement) Restoring force characteristic history loop explanation diagram of conventional lead core seismic isolation device

【図8】図5(ロ)装置の復元力特性の比較(γ≦10
0%の拡大図)本発明鉛コア型免震装置の復元力特性履
歴ループ説明図
FIG. 8 (b) Comparison of restoring force characteristics of the device (γ ≦ 10
0% enlarged view) Explanatory diagram of restoring force characteristic history loop of the present invention lead core type seismic isolation device

【図9】本発明免震装置の高さ方向の水平変形モード形
状説明図
FIG. 9 is an explanatory view of the horizontal deformation mode shape in the height direction of the seismic isolation device of the present invention.

【図10】本発明免震装置のゴム層の高さ方向における
水平せん断歪度分布説明図
FIG. 10 is an explanatory view of horizontal shear strain distribution in the height direction of the rubber layer of the seismic isolation device of the present invention.

【図11】h−δ曲線における減衰定数hの変化率の比
較説明図
FIG. 11 is an explanatory diagram for comparing the rate of change of the damping constant h on the h-δ curve.

【図12】h−δ曲線における減衰定数hの変化率の比
較説明図(鉛コア径の変化率を変えた場合)
FIG. 12 is an explanatory diagram for comparing the rate of change of the damping constant h on the h-δ curve (when the rate of change of the lead core diameter is changed).

【図13】コアの充填および中央部でのコア保持を確実
にするために中央部の内部鋼板を厚くした本発明の免震
装置断面図
FIG. 13 is a sectional view of the seismic isolation device of the present invention in which the inner steel plate in the central portion is thickened to ensure filling of the core and holding of the core in the central portion.

【図14】コア形状を一方の直径が大きく、他方が小さ
い円錐台形状とする免震装置断面図
FIG. 14 is a sectional view of a seismic isolation device in which the core shape is a truncated cone shape in which one has a large diameter and the other has a small diameter.

【図15】円錐台形コアを有する2体の積層ゴム支承を
ボルト結合して本免震装置を構成する方法の断面図
FIG. 15 is a cross-sectional view of a method for constructing this seismic isolation device by bolting two laminated rubber bearings having a truncated cone core.

【図16】同上と同じ方法。但しコア形状を逆転させ、
中央部コアを大きく、端部コア径を小さくした場合の断
面図
FIG. 16: Same method as above. However, by reversing the core shape,
Sectional view when the central core is large and the end core diameter is small

【図17】従来型免震装置を採用した免震建物の免震効
果(大地震時最大応答加速度図)
[Fig. 17] Seismic isolation effect of a seismic isolated building that employs conventional seismic isolation devices (maximum response acceleration during a large earthquake)

【図18】本発明の免震装置を採用した免震建物の免震
効果(大地震時最大応答加速度図)
FIG. 18: Seismic isolation effect of a seismic isolated building that employs the seismic isolation device of the present invention (maximum response acceleration diagram during a large earthquake)

【符号の説明】[Explanation of symbols]

1 上部建物側躯体 2 下側基礎 3 免震装置全体(積層ゴム体) 4 フランジプレート 5 外側鋼板(アウターシム) 6 内部鋼板(インナ−シム) 7 ゴム層 8 鉛コア(塑性材料コア) 10 従来型鉛コア入り積層ゴム(従来型免震装置)の
復元力履歴ループ 11 従来型免震装置の除荷剛性カーブ 14 従来型免震装置の減衰定数変化率(γ=50%に対
する減衰定数の割合) 20 本発明免震装置の復元力履歴ループ 21 本発明免震装置の除荷剛性カーブ 22 本発明免震装置の地震時変形モード(高さ方向の
水平変位分布) 23 本発明免震装置の地震時歪みモード(高さ方向の
水平せん断歪度分布) 24 本発明免震装置の減衰定数変化率(γ=50%に対
する減衰定数の割合) 41 連結用中央フランジ 61 中央内部鋼板(中央インナーシム)
1 Upper building side body 2 Lower foundation 3 Whole seismic isolation device (laminated rubber body) 4 Flange plate 5 Outer steel plate (outer shim) 6 Inner steel plate (inner shim) 7 Rubber layer 8 Lead core (plastic material core) 10 Conventional Type hysteresis loop of laminated rubber with lead core (conventional seismic isolation device) 11 Unloaded stiffness curve of conventional seismic isolation device 14 Damping constant change rate of conventional seismic isolation device (ratio of damping constant to γ = 50% ) 20 Restoring force history loop of the seismic isolation device of the present invention 21 Unloading rigidity curve of the seismic isolation device of the present invention 22 Deformation mode during earthquake of the seismic isolation device of the present invention (horizontal displacement distribution) 23 Seismic strain mode (horizontal shear strain distribution in the height direction) 24 Damping coefficient change rate of the seismic isolation apparatus of the present invention (ratio of damping coefficient to γ = 50%) 41 Central flange 61 for connection Central inner steel plate (center inner shim) )

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村幸洋 埼玉県狭山市上奥富38−1−515 Fターム(参考) 3J048 AA02 AC06 AD05 BA08 BD08 DA01 EA38    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yukihiro Nishimura             38-1-515 Kamiofutomi, Sayama City, Saitama Prefecture F term (reference) 3J048 AA02 AC06 AD05 BA08 BD08                       DA01 EA38

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 ゴム層と鋼板を交互に積層固着してなる
積層ゴム体と、 前記積層ゴム体の平面中央部に該積層ゴム体を貫通して
嵌合される棒状の超塑性金属からなる塑性材料コアとを
備え、 前記塑性材料コアの前記積層ゴム体の平面方向の断面積
は、前記積層ゴム体の厚さ方向中央部で最も小さく、前
記厚さ方向の両端部に近づくにつれて連続的に大きく形
成されていることを特徴とする免震装置。
1. A laminated rubber body formed by alternately laminating and fixing a rubber layer and a steel plate, and a rod-shaped superplastic metal fitted through the laminated rubber body at the center of the plane of the laminated rubber body. And a plastic material core, the cross-sectional area in the plane direction of the laminated rubber body of the plastic material core is the smallest in the thickness direction central portion of the laminated rubber body, continuous as it approaches both ends in the thickness direction. A seismic isolation device characterized in that it is formed to be large.
【請求項2】 請求項1に記載の免震装置において、 前記塑性材料コアの前記積層ゴム体の平面方向の断面形
状が円形であることを特徴とする免震装置。
2. The seismic isolation device according to claim 1, wherein the laminated rubber body of the plastic material core has a circular cross-sectional shape in a plane direction.
【請求項3】 請求項1に記載の免震装置において、 前記塑性材料コアの前記積層ゴム体の平面方向の断面形
状が矩形であることを特徴とする免震装置。
3. The seismic isolation device according to claim 1, wherein the cross-sectional shape of the laminated rubber body of the plastic material core in the plane direction is rectangular.
【請求項4】 請求項1に記載の免震装置において、 前記塑性材料コアの前記積層ゴム体の平面方向の断面積
の最小値が、前記断面積の最大値の1/2以下であるこ
とを特徴とする免震装置。
4. The seismic isolation device according to claim 1, wherein the minimum value of the cross-sectional area of the plastic material core in the plane direction of the laminated rubber body is 1/2 or less of the maximum value of the cross-sectional area. Seismic isolation device.
【請求項5】 請求項1に記載の免震装置において、 前記塑性材料コアは、 Bi−In合金、Bi−Sn合金、Cd−Zn合金、P
b−Sn合金、Sn−Bi合金、Sn−Pb合金、Zn
−Al合金のいずれか一種の超塑性金属材料からなるこ
とを特徴とする免震装置。
5. The seismic isolation device according to claim 1, wherein the plastic material core includes a Bi—In alloy, a Bi—Sn alloy, a Cd—Zn alloy, and P.
b-Sn alloy, Sn-Bi alloy, Sn-Pb alloy, Zn
-A seismic isolation device, which is made of any one kind of superplastic metal material of Al alloy.
【請求項6】 ゴム層と鋼板を交互に積層固着してなる
積層ゴム体と、 前記積層ゴム体の平面中央部に該積層ゴム体を貫通して
嵌合される棒状の超塑性金属からなる塑性材料コアとを
備え、 前記塑性材料コアの積層ゴム体の平面方向の断面積は、
厚さ方向の一方の端部が最も大きく、他方の端部に近づ
くにつれて連続的に小さく形成されていることを特徴と
する免震装置。
6. A laminated rubber body, in which rubber layers and steel plates are alternately laminated and fixed, and a rod-shaped superplastic metal fitted through the laminated rubber body at the center of the plane of the laminated rubber body. And a plastic material core, the cross-sectional area in the plane direction of the laminated rubber body of the plastic material core,
The seismic isolation device is characterized in that one end portion in the thickness direction is the largest and is formed continuously smaller toward the other end portion.
【請求項7】 ゴム層と鋼板を交互に積層固着してなる
積層ゴム体と、 前記積層ゴム体の平面中央部に該積層ゴム体を貫通して
嵌合される棒状の超塑性金属からなる塑性材料コアとを
備え、 前記塑性材料コアの積層ゴム体の平面方向の断面積は、
厚さ方向の一方の端部が最も大きく、他方の端部に近づ
くにつれて連続的に小さく形成されている免震装置であ
って、 該免震装置2個を前記塑性材料コアの太さが細い端部同
士を対向させて一体化させたことを特徴とする免震装
置。
7. A laminated rubber body formed by alternately laminating and fixing a rubber layer and a steel plate, and a rod-shaped superplastic metal fitted through the laminated rubber body at the center of the plane of the laminated rubber body. And a plastic material core, the cross-sectional area in the plane direction of the laminated rubber body of the plastic material core,
A seismic isolation device in which one end in the thickness direction is the largest, and the seismic isolation device is formed continuously smaller toward the other end. A seismic isolation device characterized in that its ends are opposed to each other and integrated.
【請求項8】 ゴム層と鋼板を交互に積層固着してなる
積層ゴム体と、 前記積層ゴム体の平面中央部に該積層ゴム体を貫通して
嵌合される棒状の超塑性金属からなる塑性材料コアとを
備え、 前記塑性材料コアの前記積層ゴム体の平面方向の断面積
は、前記積層ゴム体の厚さ方向中央部で最も小さく、前
記厚さ方向の両端部に近づくにつれて連続的に大きく形
成されている免震装置であって、 前記厚さ方向中央部に前記鋼板より厚い板厚の補強鋼板
を備えることを特徴とする免震装置。
8. A laminated rubber body formed by alternately laminating and fixing a rubber layer and a steel plate, and a rod-shaped superplastic metal fitted through the laminated rubber body at the center of the plane of the laminated rubber body. And a plastic material core, the cross-sectional area in the plane direction of the laminated rubber body of the plastic material core is the smallest in the thickness direction central portion of the laminated rubber body, continuous as it approaches both ends in the thickness direction. A seismic isolation device which is formed to be large in size, and which is provided with a reinforcing steel plate having a plate thickness thicker than the steel plate in the central portion in the thickness direction.
【請求項9】 ゴム層と鋼板を交互に積層固着してなる
積層ゴム体と、 前記積層ゴム体の平面中央部に該積層ゴム体を貫通して
嵌合される棒状の超塑性金属からなる塑性材料コアとを
備え、 前記塑性材料コアの前記積層ゴム体の平面方向の断面積
は、前記積層ゴム体の厚さ方向にみて、一様でないこと
を特徴とする免震装置。
9. A laminated rubber body, in which rubber layers and steel plates are alternately laminated and fixed, and a rod-shaped superplastic metal fitted through the laminated rubber body at the center of the plane of the laminated rubber body. A seismic isolation device, comprising: a plastic material core, wherein a cross-sectional area of the plastic material core in a plane direction of the laminated rubber body is not uniform when viewed in a thickness direction of the laminated rubber body.
【請求項10】 ゴム層と鋼板を交互に積層固着してな
る積層ゴム体と、 前記積層ゴム体の平面中央部に該積層ゴム体を貫通して
嵌合される棒状の超塑性金属からなる塑性材料コアとを
備え、 前記塑性材料コアの前記積層ゴム体の平面方向の断面積
は、前記積層ゴム体の厚さ方向にみて一様でなく、前記
積層ゴム体の平面方向の断面積は、最小値を示す部分か
ら最大値を示す部分に向かって、単調減少するかもしく
は単調増加していることを特徴とする免震装置。
10. A laminated rubber body, in which rubber layers and steel plates are alternately laminated and fixed, and a rod-shaped superplastic metal fitted through the laminated rubber body at a plane central portion of the laminated rubber body. And a plastic material core, the cross-sectional area in the plane direction of the laminated rubber body of the plastic material core is not uniform when viewed in the thickness direction of the laminated rubber body, the cross-sectional area in the plane direction of the laminated rubber body is , A seismic isolation device characterized by monotonically decreasing or monotonically increasing from the portion showing the minimum value to the portion showing the maximum value.
JP2001206588A 2001-07-06 2001-07-06 Seismic isolation device Expired - Lifetime JP3741424B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001206588A JP3741424B2 (en) 2001-07-06 2001-07-06 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001206588A JP3741424B2 (en) 2001-07-06 2001-07-06 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2003021193A true JP2003021193A (en) 2003-01-24
JP3741424B2 JP3741424B2 (en) 2006-02-01

Family

ID=19042696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001206588A Expired - Lifetime JP3741424B2 (en) 2001-07-06 2001-07-06 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP3741424B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024287A (en) * 2005-07-21 2007-02-01 Bridgestone Corp Laminated support body
JP2007139115A (en) * 2005-11-21 2007-06-07 Kajima Corp Plug-filled laminated rubber bearing
JP2008082386A (en) * 2006-09-26 2008-04-10 Bridgestone Corp Base isolation device
JP2011133112A (en) * 2011-02-18 2011-07-07 Oiles Corp Seismic isolation unit
JP2014047885A (en) * 2012-09-03 2014-03-17 Oiles Ind Co Ltd Seismic isolator
JP2016114242A (en) * 2014-12-16 2016-06-23 崇興 蔡 Friction attenuation energy absorption device
WO2018016425A1 (en) * 2016-07-19 2018-01-25 オイレス工業株式会社 Layered rubber support

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327749B2 (en) * 2014-07-18 2018-05-23 住友ゴム工業株式会社 Viscoelastic damper and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007024287A (en) * 2005-07-21 2007-02-01 Bridgestone Corp Laminated support body
JP4594183B2 (en) * 2005-07-21 2010-12-08 株式会社ブリヂストン Laminated support
JP2007139115A (en) * 2005-11-21 2007-06-07 Kajima Corp Plug-filled laminated rubber bearing
JP2008082386A (en) * 2006-09-26 2008-04-10 Bridgestone Corp Base isolation device
JP2011133112A (en) * 2011-02-18 2011-07-07 Oiles Corp Seismic isolation unit
JP2014047885A (en) * 2012-09-03 2014-03-17 Oiles Ind Co Ltd Seismic isolator
JP2016114242A (en) * 2014-12-16 2016-06-23 崇興 蔡 Friction attenuation energy absorption device
WO2018016425A1 (en) * 2016-07-19 2018-01-25 オイレス工業株式会社 Layered rubber support
JP2018013235A (en) * 2016-07-19 2018-01-25 オイレス工業株式会社 Laminated rubber bearing
TWI750200B (en) * 2016-07-19 2021-12-21 日商翁令司工業股份有限公司 Laminated rubber support

Also Published As

Publication number Publication date
JP3741424B2 (en) 2006-02-01

Similar Documents

Publication Publication Date Title
Aiken et al. Comparative study of four passive energy dissipation systems
EP1948878B1 (en) Structure with increased damping by means of fork configuration dampers
JP2003021193A (en) Base isolation device
CN106835947B (en) Multidimensional vibration reduction device is detained containing the suspension bridge center of viscoplasticity dissipative member and metal-rubber
Aiken Passive energy dissipation hardware and applications
JP2000213200A (en) Damping construction
JP2016216906A (en) Base isolation structure
JP5638762B2 (en) Building
US10450748B2 (en) Structural braces and related methods
JP2003307045A (en) Base isolation structure system
CN113293878A (en) Double-yield-point steel bar buckling restrained brace with limiting function
JPH11270621A (en) Laminate rubber support
CN109629896B (en) Combined type double-yield buckling restrained energy-dissipation brace
JP6835492B2 (en) Seismic isolation structure
JP2006207680A (en) Laminated rubber supporter
CN110820977A (en) Viscoelastic coupling beam damper with unidirectional shearing deformation
JP4087026B2 (en) Superplastic metal damper
JP4843882B2 (en) Vibration control device using inertia force installed between building layers
JPS62220734A (en) Vibrational energy absorbing device
CN113374108A (en) Metal composite energy dissipater with double-order yield point for seismic isolation layer
JP2010275800A (en) Pin member, connecting structure, and structure having the connecting structure
JP2730475B2 (en) High bending rigid laminated rubber bearing
JP2008127859A (en) Vibration control structure and vibration control panel
JPH02154825A (en) Vibration suppressor for structure
KR20200061761A (en) Composite damper using 3 dimensional steel stuss

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Ref document number: 3741424

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081118

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111118

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121118

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131118

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term