JP3741424B2 - Seismic isolation device - Google Patents
Seismic isolation device Download PDFInfo
- Publication number
- JP3741424B2 JP3741424B2 JP2001206588A JP2001206588A JP3741424B2 JP 3741424 B2 JP3741424 B2 JP 3741424B2 JP 2001206588 A JP2001206588 A JP 2001206588A JP 2001206588 A JP2001206588 A JP 2001206588A JP 3741424 B2 JP3741424 B2 JP 3741424B2
- Authority
- JP
- Japan
- Prior art keywords
- seismic isolation
- laminated rubber
- core
- isolation device
- lead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Vibration Prevention Devices (AREA)
- Buildings Adapted To Withstand Abnormal External Influences (AREA)
Description
【発明の属する技術分野】
【0001】
大地震時の強い地震動から構造物を保護するために、地盤と構造物の間に、各種の免震装置を配置して地盤の振動が直接伝達されないようにした免震構造物が実用化されている。
本発明は、更に高性能の免震構造物を実現するために、既に実用化されている免震装置の性能を飛躍的に改良・高性能化し、且つ実用性の高い免震装置を提供するものである。
【従来の技術】
【0002】
免震構造物を実現するための免震装置には、構造物の重量を支えながら大きな水平変形ができるアイソレータ機能と、地震による構造物の振動エネルギーを吸収するダンパー機能の両機能を有していることが必要であり、これまでに実用化されている免震システムとしては、▲1▼天然ゴム系積層ゴム+別置きダンパ−、▲2▼高減衰積層ゴム、▲3▼鉛コア入り積層ゴムなどの積層ゴム系免震システムがある。またこの他に近年、PTFE(テフロン)材とステンレス板の組み合わせによる▲4▼すべり支承系の免震装置、ボールベアリング等を利用した▲5▼転がり系支承などの免震装置も実用化されている。
【0003】
これらの免震装置の中で、世界的に高い評価を受け且つ多くの実績を有するものにニュージーランドで発明・開発された「鉛コア入り積層ゴム免震装置」がある。この装置は、アイソレータとしての積層ゴム支承の平面中央部1カ所もしくは平面内複数箇所に、ダンパーとして機能する鉛コアを封入したもので、1装置で免震構造の必要機能を兼備しているアイソレータ・ダンパー一体型免震装置であること、鉛コアと積層ゴムの組み合わせで装置性能=復元力特性をかなり自由に調整できることなどの特長を有しており、日本も海外も含めて評価の高い代表的な免震装置である。
【発明が解決しようとする課題】
【0004】
上記のとおり、鉛コア入り積層ゴム免震装置は多くの長所を有している免震装置ではあるが、より高性能の免震構造物を実現しようとすると、以下のような改良すべき課題を有している。尚、ここで言う、より高性能の免震構造物とは、免震効果(=応答加速度低減効果)が高いこと、および安全性を確保できる地震動の入力強さができるだけ高いこと、即ち効果と安全性能の高い免震構造物という意味である。
【0005】
先ず第一の解決課題は、従来の鉛コア入り積層ゴム免震装置の復元力特性(履歴ループの形状)が、非常に高い除荷剛性を有していることである。免震構造の高性能化に伴い、免震周期を伸ばすためにゴム材料としてはせん断弾性係数Gr を低目に、高い減衰性能を得るために鉛コアの直径は大きくする傾向にある。この組み合わせが強くなるほど、除荷剛性は益々高くなる傾向にあり、昨今の同装置の履歴ループの除荷剛性はグラフ上はほぼ直立(=剛性無限大)している状態にある。
【0006】
地震時の応答振動中に応答変位が逆転する部分=除荷履歴開始点にさしかかると、この履歴ループの除荷剛性が非常に高いために、この状態では免震構造としてのモードが崩れ基礎固定建物のモードに近づく結果、この部分で大きな応答加速度が発生することになる。この除荷剛性の高さのために、せっかくの免震効果が大きく損なわれることは免震構造の高性能化にとって大きな課題である。
【0007】
解決すべき第二の課題は、減衰定数h−応答変位δ関係である。鉛コア入り積層ゴムに限らず、履歴型ダンパー・摩擦ダンパーおよびすべり系支承を用いる場合の共通課題であるが、降伏耐力が一定値のダンパーを採用する限り、減衰定数hは変形の増加に伴い低下する宿命を負っている。
【0008】
これは減衰定数hが履歴ループの有する吸収エネルギーΔw/歪みエネルギーWの関係によるもので、歪みエネルギーWは変形δの2乗に比例して増加するのに対し、吸収エネルギーΔwは降伏耐力一定のためδの1乗に比例するからである。応答性能上は変位の増加に対して、減衰定数hはできるだけ低下しないことが望ましい。理論上これが実現できるのは、応答変位振幅の増加と共にダンパー抵抗力も増大する粘性減衰機構であるが、h−δ関係を一定値に保持できる履歴減衰機構が実現できれば、これまでの常識を覆す画期的なことになる。
【0009】
積層ゴム免震装置において解決できればすばらしい第三の課題として、積層ゴム上下端部における「歪度集中の解除」を挙げることができる。この課題はこれまで誰も解決可能とは考えなかったため、技術課題として認識している者も少ないが、積層ゴムの安全性および信頼性向上には非常に大きな課題である。
【0010】
即ち、積層ゴムが地震時に水平変形を受けた状態で最も過酷な条件に晒されるのは、積層ゴムの上端部および下端部のエッジ部分である。鉛直荷重および水平せん断変形によりこのコーナー部分に最も大きな局部歪みが集中するので、この上下端部の歪度の集中を解除できれば、積層ゴムの耐震安全性能を飛躍的に改善することが可能となる。
【課題を解決するための手段】
【0011】
本発明は、「鉛コア入り積層ゴム」、もしくは鉛と同等の働きをする超塑性金属材料を内部に封入した「超塑性材料コア入り積層ゴム」というアイソレータ・ダンパー一体型の積層ゴム免震装置を採用し、そのコア形状に特殊な工夫を導入することによって上記3課題を同時に解決するものである。その基本メカニズムの説明においては、鉛コアも超塑性金属材料コアも同じ働きであるので、以下の説明は「鉛コア」という表現で統一して行う。
【0012】
これまでの鉛コア入り積層ゴム支承は、積層ゴム剛性の高さ方向分布は常に一定であることを暗黙の前提条件としており、その剛性ができるだけ均一であることをめざしてきた。これは、もし積層ゴムの一部に剛性の低い部分が存在すると、そこに変形が集中し、積層ゴム破損の誘因となり弱点となることが予想されるからである。また、同様に鉛コアの断面形状も一定であることを前提としてきたが、これも鉛コアの一部に変形が集中しないことをめざしたものである。
【0013】
本発明では、これまで高さ方向に一定断面積であった鉛コアを、中央部分の断面積を小さく、上下端部の断面積を大きくし、その間を連続的に変化させることにより、上記3課題を同時に解決する。即ち、免震装置の水平断面に作用する水平力はどの高さ位置でも等しいことを利用し、高さ中央位置の鉛コア断面積を最小として端部に向かって連続的に変化・拡大することにより、先ず最小断面の鉛コア中央部の変形を進行させ、鉛コアの降伏を中央部から徐々に端部へと進行・拡張させていくのである。この結果、この免震装置の復元力特性は、免震装置の変形の増加に伴って、鉛コアの小さな免震装置から徐々に鉛コアの大きな免震装置へと抵抗力・復元力特性が移行・変化していくことになる。また、除荷時においても鉛コア断面積の小さな部分から徐々に変形が解消されていくので、水平荷重の除荷に伴って水平変形が減少することにより除荷剛性が低下し、滑らかな履歴ループが得られることになる。
【0014】
積層ゴム上下端部のせん断変形は中央部の変形よりも遅れ、せん断歪度が小さく抑制されているので、上記第三の課題も満足されることになる。また、変形の進行に伴い鉛コアが大型化していくと同じ効果がるため、変形の増大に伴う減衰定数hの低下が緩やかとなり、第二の課題も解決できる。
以上のとおり、「コア断面積の連続的変化」の導入により、復元力特性履歴ループの除荷剛性は下がり、h−δ関係が改善され、積層ゴム上下端部のせん断歪みの集中が緩和されるという一石3鳥の効果が発生する。
【0015】
また本発明の課題解決の基本的考え方は、以下のように説明することも可能である。従来の全ての積層ゴム系免震装置では、ゴムの高さは常に一定であり、その水平変形時のせん断歪度は装置のどの高さにおいても常に一定であることを暗黙の前提条件、基本的常識としてきた。ところが、最も理想的な免震装置を想定すると、入力地震動があまり強くない段階では、発生する水平変形が小さいので減衰性能を負担する鉛コアやダンパーの抵抗力は低いことが好ましく、また積層ゴム自体も面積が小さく高さも低いもので十分である。入力地震動が強くなるに伴い、発生する水平変形量は大きくなるので、積層ゴムも大きく且つゴム高さも高いことが必要となり、減衰性能・降伏耐力も高いことが必要となってくる。
【0016】
従って、本来はダンパー(=鉛コア)もアイソレータ(=積層ゴム)も、入力地震動の強さに応じてその大きさを取り替えることが理想的であり、本発明は、一つの免震装置でありながら、入力地震動の強さに応じて装置の大きさを次第に大型のものへ取り替えていくことと同じ効果・作用を発揮する免震装置を実現したものである。いわば、一つの免震装置で、地震動入力に応じて適切な大きさの無数の装置性能を発揮させることができるものである。
【発明の実施の形態】
【0017】
以下、本発明を実施例を示す図面に基づいて説明する。
図1(1)は、従来の鉛コア入り積層ゴム免震装置の断面構成図である。薄いゴム層7と鋼板(内部鋼板6)を多数積層して積層ゴム体(免震装置全体3)を形成し、その中央部の孔に(一例として)純度99.9%以上の鉛(鉛コア8)を充填・圧入している。即ち、上記積層ゴム体3の平面中央部に積層ゴム体3を貫通して嵌合される棒状の超塑性金属(ここでは鉛)からなる塑性材料コア(鉛コア8)が構成されている。鉛コア8の形状は、ここでは高さ全体に渡って同一断面積である従来型の場合について表している。通常は円柱状の形状が採用されている。鉛コアはゴムと鋼板内に密封されており、鉛直荷重の作用により、鉛とゴム・鋼板は密着した状態におかれている。
【0018】
地震時に水平力が作用すると図1(2)に示すように、積層ゴム体3は水平方向にせん断変形し、積層ゴム体3のせん断変形により鉛コア8も水平せん断変形を強制される。この時積層ゴム体3の水平方向復元力特性は、図2(1)に示すように、ゴム材質が天然ゴムの場合、せん断歪度γ= 250%まではほぼ線形の弾性剛性を示し、それ以後徐々にハードニング傾向を示し、γ≒ 400%前後で破断に至るのが一般的特性である。
【0019】
一方、積層ゴム体3の水平変形により水平せん断変形を強制される鉛コア8の抵抗力発現=復元力特性は、図2(2)に示すように先ず高い初期剛性を示し、その剛性が次第に低下して、やがて鉛の降伏せん断耐力に達すると塑性流れを起こすようになる。そして鉛の特徴は、その水平加力を中止すると、その位置で変形が停止し、抵抗力が消失することである。即ち、除荷剛性は殆ど垂直(=剛性無限大)となり、その位置での残留変位が残ることになる。
【0020】
鉛コア入り積層ゴムの復元力特性は、図2(1)の積層ゴムのほぼ弾性の復元力特性と図2(2)の鉛の塑性特性が合成されたものであり、図2(3)に示すようなきれいほぼバイリニア型の履歴ループが得られることになる。このとき、従来の鉛コア入り積層ゴムのゴム面積・鉛コア面積はどの高さ位置でも同一であるため、どの水平変形状態においても、装置の全高さに渡って同レベル・均一の水平せん断歪度が発生している。これは従来の積層ゴム免震装置全てが当然の条件としている原則、大前提条件であるが、ここに本発明の重要な着眼点がある。
【0021】
鉛コア入り積層ゴムの最大の長所は、この復元力特性を有る程度調節可能であることである。即ち、図3(1)に示すように、積層ゴム体のゴム材料のせん断弾性係数、ゴム層の直径や層厚さ・層数を調整することにより、積層ゴム体の水平剛性を調節できること。図3(2)に示すように、鉛コアの直径を変化させることにより、鉛コアの抵抗力によって決まる降伏耐力を調節することができる。この2つの組み合わせにより、図3(3)に示すように、免震装置の降伏耐力・水平剛性(第二剛性)をかなり自由に設定することができ、装置の抵抗力レベル、エネルギー吸収性能、変形性能を調節できるのである。
【0022】
但し、いずれの復元力特性においても除荷剛性だけは非常に高く、その調整は不可能であった。近年の鉛コア入り積層ゴムの設計では、免震構造物の高性能化を図るために、積層ゴムのゴム剛性を低下させて長周期化を図り、鉛コアの直径を大きくしてエネルギー吸収性能を高める傾向にある。その結果、鉛コアの抵抗力が大きくなり積層ゴムの復元力が弱くなるために、除荷剛性が益々垂直に近い復元力特性を示すようになり、その結果高次モードが誘発されやすくなって、上部構造物の応答加速度を引き上げてしまうことが発生する。免震構造物の高性能化を目的とした装置設計が、それに逆行する結果を生むことになり、高性能化を阻む限界条件となっている。
【0023】
この高次モードによる加速度励起問題を解決するには、免震装置を緩やかな除荷剛性を有する復元力特性に改善することが必要であるが、履歴型ダンパーやすべり・摩擦型ダンパーでは解決不可能な課題と認識されてきた。この課題を解決するために、本発明は、図4に示すように、鉛コア8の面積(積層ゴム体の平面方向の断面積)を高さ中央部(積層ゴム体3の厚さ方向中央部)で最小に、上下両端部で最大に、その中間を連続的に変化させる。鉛コア8の面積を変化させ、鉛コア8の水平抵抗力を高さ位置(積層ゴム体3の厚さ方向の位置)により変化させることにより、従来は全高さ均一に発生させていた水平せん断歪度の原則を崩したのである。即ち、高さ中央部付近は鉛コア8の面積が最小でその抵抗力が最も低いために水平変形が先行し、変形の進行に伴って上昇していく水平抵抗力の増大により、徐々に鉛コア8の降伏領域を中央部から上下端部へと拡げていくのである。
【0024】
除荷時においても、装置の高さ中央位置は鉛コア面積が最小でゴム面積が最大であるため、ゴムの復元力により鉛のせん断変形が解除されやすく、鉛コア面積の小さな部分から徐々に変形が解消されていくので、水平荷重の除荷に伴って水平変形が減少することになり、その結果、図8の21に例示するような滑らかな除荷剛性を有する紡錘型の履歴ループが得られることになる。
また、積層ゴム上下端部のせん断変形は中央部の変形よりも遅れており、せん断歪度が小さく抑制されているので、従来装置では最も過酷な条件下にあった装置の上下端部の局部歪みの集中という課題も大きく改善されることになる。
【0025】
この効果を具体的・定量的に示すために、(イ)従来型鉛コアを有する積層ゴムと(ロ)本発明の鉛コアを有する積層ゴムの復元力特性を比較する。一例として、図5(イ)(ロ)に示すように、積層ゴム直径を1,000mmφ、ゴム層を8mm×
30層、ゴム層総厚=240mm、ゴム材質はせん断弾性係数Gr=5.5kg/cm2 とする。鉛コア直径は、(イ)従来型=200mmφ一律、本発明型は中央部最小直径=100mmφ、上下端部最大直径=300mmφとする。
【0026】
図6に両者の復元力特性(設計履歴ループ)を示す。実線ループ20が本発明装置のループ、破線ループ10が従来型装置のループである。図6には、従来型装置におけるゴムのせん断歪度γ= 250%、水平変形d=60cmまでの履歴ループを重ね書きしている。
【0027】
両者の相違がより明確にわかるように、せん断歪度γ= 100%、水平変形d=24cmまでの履歴ループを拡大して、比較したものが図7の従来型装置および図8の本発明装置である。
【0028】
両者を比較すると、両装置の相違と本発明装置の特長が明確に理解できる。即ち、従来型装置は、ゴム層の提供する水平剛性が第二剛性となり、これに鉛コアの提供する剛塑性型履歴が複合されたバイリニア型ループで、極めて高い除荷剛性11を有しているのに対して、本発明装置の履歴ループは、一定の第二剛性を有せず、除荷剛性21も緩やかなカーブを描いており、全体として粘弾性型ループのような滑らかな紡錘型履歴ループ形状を示している。
【0029】
この履歴ループ発現のメカニズムは、以下のように説明できる。従来型装置では、ゴムのせん断歪度も鉛コアのせん断歪度も高さ方向にはどの位置でも同じ歪度で一様に進行していく。これに対して、本発明の装置は高さ中央部に近いほど鉛コアの面積が小さく抵抗力が低いために、中央部に近い程ゴムおよび鉛コアのせん断歪度が早く進行する。即ち、先ず水平抵抗力の低い中央部のせん断歪が進行し、せん断歪の進行に伴い鉛の抵抗せん断応力度が上昇するので、徐々にその外側(上下端側)に向かって歪度が拡大していく。その結果、鉛コアが発揮する抵抗力は全体として、小歪み時には中央部コアの低い抵抗力から次第に上下端部の大断面の鉛コアの抵抗力へと上昇していくため、滑らかな上昇曲線を描くことになり、従来型装置のようにすぐに一定値の降伏耐力に収斂しない。これが上昇スケルトンカーブが滑らかなカーブを描く理由である。
【0030】
同様に除荷履歴においても、歪みの解消は、最も歪みが進行しており且つゴム復元力が最大で鉛抵抗力が最小である中央部から徐々に解消されていくから緩やかな除荷カーブを描くことになり、単純な剛塑性型ループにはならない。これが、金属の塑性履歴に基づく履歴ループでありながら粘弾性材料のような紡錘型履歴ループ形状を発現するメカニズムである。
【0031】
図9は、水平変形がゼロから平均せん断歪度γave = 250%(水平変形dをゴム全高さTrで除した平均歪度γave =d/Tr)まで進行する時の免震装置の各部高さ位置の変形状態(水平変形モード)を示している。小変形時には中央部付近の変形の割合が大きく、変形量の増大に伴い徐々に一様な変形形状に進展していくことが示されている。
【0032】
その変形状態における各高さ位置における歪度の進展状態を図10に示している。図中央部のせん断歪度γの値は、上記の平均歪度γave を表している。例えば、全体平均歪度γave = 200%の場合、装置中央部の歪度は約 250%にまで進展しているが、上下両端部の歪度はγ= 130%程度(従来型装置では上下端部の歪度=200%)に留まっていることが判る。図10より明らかなように、通常の積層ゴムでは最も過酷な歪領域となる積層ゴムの上下端部の歪度分布が大幅に緩和されており、積層ゴムの安全性向上、破壊に対する信頼性向上に大きく寄与していることが判る。
【0033】
図11は、図6および図7、図8、に示した従来型と本発明装置の履歴ループの有する減衰定数をせん断歪度γ=50%(水平変形量d=12cm)時の値を基準値=1として、水平変形と減衰定数hの変化率を示したものである。従来型装置では、せん断歪度γ= 250%で約40%にまで低下しているが、本発明装置では約60%に留まっており、水平変形の増加に伴う減衰定数の低下が緩やかであることが示されている。これにより第二の課題も大きく改善されていることが判る。
【0034】
図12は、本発明装置の鉛コアの中央部と端部の直径の組み合わせを変化させた場合について、図11と同じ減衰定数hの変化率を示したものである。
減衰定数hは、鉛コア中央部直径dpc と端部直径dpeの違いが大きい(Cdp=dpc/dpeの値が小さい)ほど、即ち、高さ中央部の直径が小さく絞られているほど、hの変化率が小さくなり、本発明の効果が大きい。図12に示したdpc=200mm、dpe=300mm、即ちCdp=0.67、面積比=0.44 では本発明の効果が十分に認められるが、この直径の違いを小さくすると、徐々に従来型装置との差異がなくなっていく。このことより、本発明の効果が十分に発揮される領域として請求項4に示した「鉛コア中央部の断面積が端部断面積の50%以下」という条件を割り出したものである。
【0035】
以上の説明では、11段落に記したとおり、積層ゴム内部に組み込むダンパー機能として、「鉛コア」という表現を用いてきたが、大きなエネルギー吸収性能と大きな塑性変形能力を有する材料であれば、鉛に限定すべき理由は存在しない。重金属である鉛の公害問題が指摘されている昨今の現状を考慮すれば、むしろ鉛以外の材料を採用すべきである。本発明では、これまでに知られている材料の中で、常温で超塑性材料特性を示す材料を調べ上げた結果、表1に示すものが採用可能であることを突き止めた。表2に示すものも超塑性金属として知られているが、これらはかなり高温でなければ超塑性特性となり得ないため、本発明用材料としては「不可」とする。
以下に、本発明請求項第5で内蔵ダンパー用コア材料として採用する「超塑性材料コア」を表1に、不採用材料を表2に示す。
【表1】
【表2】
【0036】
次に本発明免震装置の具体的な製造方法について説明する。
図4および図5(ロ)に示される本発明装置において、鉛もしくは超塑性材料のコアを確実に充填するためには、特に高さ中央位置におけるコア面積が最小の部分の充填度および積層ゴム体によるコアの保持を確実にするために、中央部に厚い鋼板(補強鋼板)を採用することが考えられる。その断面構成図を図13に示す。即ち、図13では、通常、積層ゴム体の上端と下端の両方から、コアとなる超塑性金属(通常鉛)が2分割して圧入される。その結果中央部にコア材料の断層部=不連続弱点部が発生し易くなるが、上記中央部の厚い鋼板、中央インナーシム61(補強鋼板)は、この断層部弱点を保護する役目を果たすものである。
【0037】
この断面構成を更に容易に実現する方法として、図14に示すように、装置に内蔵される鉛コアもしくは超塑性材料のコア直径が直線的に変化するもの、即ち円錐台形のコア形状を有する鉛もしくは超塑性材料のコアを有する積層ゴム支承を作成する。形状上の対称性は崩れているが、装置性能としては、請求項1〜5の装置と同じ性能を発現させることが可能である。これが請求項6である。
【0038】
請求項7は、請求項6、図14に示す円錐台形のコア形状を有する鉛もしくは超塑性材料のコアを有する積層ゴム支承2体を一組として、直径の小さな方のフランジ側をボルト接合することにより、対称性を有する装置を容易に構成することができる。その要領を図15に示している。
【0039】
図14に示す円錐台形のコア形状を有する鉛もしくは超塑性材料のコアを有する積層ゴム支承2体を一組として、直径の大きな方のフランジ側をボルト接合するもので、コア形状は図15と逆であるが、発現性能、復元力特性は図15の装置と同じである。但し、この装置では、まず装置両端部の変形が先に進行することになる。従って、変形が進行し発熱量の大きいコア部分が2分割されるため、発熱による温度上昇が抑制され、温度上昇による降伏耐力の低下が小さくなるというメリットがある。その形状を図16に示している。
【0040】
図17と図18は、本発明免震装置の効果を確認するために、1例として8階建て免震建物を試設計し、地震応答解析により免震効果を比較したものである。図17は従来型免震装置を採用した免震建物の各階の最大応答加速度を示しており、図18は、本発明の免震装置を採用した免震建物の最大応答加速度を示している。採用した入力地震動は両者とも共通で、最大入力加速度400〜1000ガル(cm/sec2)、最大入力速度100〜165カイン(cm/s)という非常に強い地震動が作用した場合である。横軸が加速度の強さ、縦軸は、Mが地盤面、1は建物の1階の床、2は建物の2階の床というように階数を表している。免震装置は地盤面と1階の床の間に配置されている。図17に示した従来の免震装置では、各階とも大略200ガル程度の加速度が発生し、屋上のR階は300ガル以上の加速度に達している。これに対して、図18に示した本発明の免震装置を採用した建物では、どの地震動入力に対しても応答加速度には殆どバラツキがなく、1階から屋上R階までほぼ100ガル程度の加速度に抑制されており、本発明装置を採用した免震建物は極めて高い免震効果を発揮することが判る。この効果は、図15の構成のものも、図16の構成のものも同様である。
【0041】
鉛のような金属を使用した履歴減衰型の免震装置に比べると、粘性流体を減衰装置に使用した粘性減衰型免震装置は、入力加速度の大小にかかわらず、免震効果が高い(=応答加速度抑制効果が高い)特徴を持つ。中心に太さの一様な鉛コアを埋め込んだ従来型の免震装置では履歴減衰特有のバリニア型履歴ループを示すが、本発明の鉛コアは、平面方向の断面積が積層ゴム体の厚さ方向にみて一様でなく、小さい入力加速度に対しては平面方向の断面積の小さい部分が積層ゴム体の変形を容易にし、強い入力に対しては徐々に断面積の大きい部分が強い抵抗力を発揮するようにして、全体として粘性減衰型の減衰装置と同じパターンの抵抗力を発揮することにより免震効果を高めている。
【0042】
なお、塑性材料コアの前記積層ゴム体の平面方向の断面積は、最小値を示す部分から最大値を示す部分に向かって、連続的に単調増加していることが好ましい。図13〜図16の実施例はいずれもこの条件を満足している。このような構成にすると、積層ゴム体とコアとの間の境界面が滑らかなので、鉛や超塑性材料を圧入する作業が容易になる。また、地震による応力が加わった場合に、積層ゴム体各部の変形量が著しく変化せず、積層ゴム体に無理な力を及ぼさないという効果がある。
【0043】
【発明の効果】
鉛コア入り積層ゴム免震装置は、1970年代後半にニュージーランドで開発されたもので、米国・日本・イタリアなど耐震設計先進国で世界的に高い評価を得ており、現在世界で最も実績の高い免震装置である。本発明はこの優れた免震装置に残された重要な問題点を解決し、これまでに存在しないほぼ完璧な免震装置に生まれ変わらせたものである。本発明の特徴と主要な効果を整理すると、以下のとおりである。
▲1▼従来の鉛コア入り積層ゴムは、バイリニア型の履歴ループを示し、その第二剛性と降伏耐力をかなり自由に調節可能であった。しかし、除荷剛性が極めて高く、その調整は不可能で、その高い除荷剛性のために高次モードの共振現象を励起して高い応答加速度が発生するという欠点があった。
本発明は、その除荷剛性を任意に緩和することを可能としたもので、履歴減衰機構であるにも拘わらず、あたかも粘性材料もしくは粘弾性材料であるかのような滑らかな紡錘型の履歴ループを実現した。粘性や粘弾性材料ではないので、温度依存性や速度依存性という粘性・粘弾性材料故の短所も有しない。粘性・粘弾性型の紡錘型ループを有する履歴減衰機構という、これまでどこにも存在しなかった画期的なものである。
▲2▼緩い除荷剛性、滑らかな紡錘型履歴ループにより、粘性減衰機構を有する理想的免震建物のような良好な応答加速度抑制効果が発揮され、高い免震効果を発揮する。図17と図18の比較から明らかなとおり、本発明装置による免震建物の地震応答加速度は、従来型装置よりも全階に渡って良好に抑制されている。
▲3▼履歴減衰機構であるにも拘わらず、応答変形の増加に伴う減衰定数の低下が小さく、強い地震動入力に対する大きな応答抑制効果、高い減衰性能を期待することができる。
▲4▼粘性材料もしくは粘弾性材料のような紡錘型の履歴ループ形状を示すが、粘性・粘弾性材料ではないので、温度依存性や速度依存性という粘(弾)性材料故の欠点を有していない。
▲5▼積層ゴム免震装置の中で、最も大きな局部歪みの発生するのは上下端部であるが、本発明装置では、その上下端部の地震時せん断歪度が抑制されるので、破壊に対する安全性が高まり、免震装置全体の安全性・信頼性が飛躍的に高まっている。
▲6▼図7と図8の比較から明らかなように、履歴ループ形状が紡錘型ループとなり、履歴ループ上で抵抗力=ゼロとなる位置の変位量が小さくなるので、地震後に残る残留変位量が小さくなる。
以上のとおり、本発明は、これまでに実現されたことのない、ほぼ完璧な理想的免震装置を実現したものである。
【図面の簡単な説明】
【図1】従来の鉛コア入り積層ゴム免震装置
(1)断面構成図(平常時)
(2)地震時変形状態断面図
【図2】従来の鉛コア入り積層ゴムの復元力特性の説明図
(1)天然ゴム系積層ゴム体の水平方向復元力特性
(2)鉛コア入り積層ゴム内の鉛コアによる水平方向復元力特性
(3)鉛コア入り積層ゴムの水平方向復元力特性=(1)+(2)
【図3】従来の鉛コア入り積層ゴムの復元力特性の調整方法説明図
(1)ゴム剛性による復元力特性の調整
(2)鉛コアによる復元力特性(降伏耐力)の調整
(3)鉛コア入り積層ゴムの水平方向復元力特性の変化
【図4】本発明の鉛コア(超塑性材料コア)入り積層ゴム免震装置のコア形状および断面構成説明図
【図5】復元力特性を比較するための鉛コア入り積層ゴムの装置設計例断面図
(イ)従来型鉛コアの免震装置
(ロ)本発明型鉛コアの免震装置
【図6】図5装置の復元力特性の比較(γ≦250%)説明図
【図7】図5(イ)装置の復元力特性の比較(γ≦100%の拡大図)従来型鉛コア免震装置の復元力特性履歴ループ説明図
【図8】図5(ロ)装置の復元力特性の比較(γ≦100%の拡大図)本発明鉛コア型免震装置の復元力特性履歴ループ説明図
【図9】本発明免震装置の高さ方向の水平変形モード形状説明図
【図10】本発明免震装置のゴム層の高さ方向における水平せん断歪度分布説明図
【図11】h−δ曲線における減衰定数hの変化率の比較説明図
【図12】h−δ曲線における減衰定数hの変化率の比較説明図(鉛コア径の変化率を変えた場合)
【図13】コアの充填および中央部でのコア保持を確実にするために中央部の内部鋼板を厚くした本発明の免震装置断面図
【図14】コア形状を一方の直径が大きく、他方が小さい円錐台形状とする免震装置断面図
【図15】円錐台形コアを有する2体の積層ゴム支承をボルト結合して本免震装置を構成する方法の断面図
【図16】同上と同じ方法。但しコア形状を逆転させ、中央部コアを大きく、端部コア径を小さくした場合の断面図
【図17】従来型免震装置を採用した免震建物の免震効果(大地震時最大応答加速度図)
【図18】本発明の免震装置を採用した免震建物の免震効果(大地震時最大応答加速度図)
【符号の説明】
1 上部建物側躯体
2 下側基礎
3 免震装置全体(積層ゴム体)
4 フランジプレート
5 外側鋼板(アウターシム)
6 内部鋼板(インナ−シム)
7 ゴム層
8 鉛コア(塑性材料コア)
10 従来型鉛コア入り積層ゴム(従来型免震装置)の復元力履歴ループ
11 従来型免震装置の除荷剛性カーブ
14 従来型免震装置の減衰定数変化率(γ=50%に対する減衰定数の割合)
20 本発明免震装置の復元力履歴ループ
21 本発明免震装置の除荷剛性カーブ
22 本発明免震装置の地震時変形モード(高さ方向の水平変位分布)
23 本発明免震装置の地震時歪みモード(高さ方向の水平せん断歪度分布)
24 本発明免震装置の減衰定数変化率(γ=50%に対する減衰定数の割合)
41 連結用中央フランジ
61 中央内部鋼板(中央インナーシム)BACKGROUND OF THE INVENTION
[0001]
In order to protect the structure from strong ground motion during a large earthquake, various seismic isolation devices have been put between the ground and the structure so that the vibration of the ground is not directly transmitted. ing.
The present invention provides a highly practical seismic isolation device that dramatically improves and improves the performance of a seismic isolation device that has already been put into practical use in order to realize a higher performance seismic isolation structure. Is.
[Prior art]
[0002]
The seismic isolation device for realizing a seismic isolation structure has both an isolator function capable of large horizontal deformation while supporting the weight of the structure and a damper function that absorbs vibration energy of the structure due to the earthquake. As a seismic isolation system that has been put into practical use, (1) natural rubber laminated rubber + separate damper, (2) high damping laminated rubber, (3) lead core laminated There is a laminated rubber-based seismic isolation system such as rubber. In addition, in recent years, (4) sliding bearing system seismic isolation devices using PTFE (Teflon) materials and stainless steel plates, and (5) rolling system bearings using ball bearings have been put into practical use. Yes.
[0003]
Among these seismic isolation devices, there is a “lead rubber laminated rubber seismic isolation device” invented and developed in New Zealand that has been highly evaluated worldwide and has many achievements. This device is an isolator in which a lead core functioning as a damper is sealed in one central portion of the plane of a laminated rubber bearing as an isolator or a plurality of locations in the plane.・ It is a damper-integrated seismic isolation device, and it has features such as the ability to adjust the device performance = restoring force characteristics with a combination of a lead core and laminated rubber, and it has a high reputation both in Japan and overseas. Is a basic seismic isolation device.
[Problems to be solved by the invention]
[0004]
As mentioned above, laminated rubber seismic isolation devices with lead cores are seismic isolation devices that have many advantages. However, when trying to achieve a higher performance seismic isolation structure, the following issues should be improved: have. In addition, the higher-performance seismic isolation structure mentioned here means that the seismic isolation effect (= response acceleration reduction effect) is high, and that the input intensity of seismic motion that can ensure safety is as high as possible, that is, the effect. It means a seismically isolated structure with high safety performance.
[0005]
First, the first problem to be solved is that the restoring force characteristic (history loop shape) of the conventional laminated rubber seismic isolation device with lead core has a very high unloading rigidity. Along with the improvement in performance of the base isolation structure, the rubber material has a low shear elastic modulus Gr to extend the base isolation cycle, and the lead core diameter tends to increase to obtain high damping performance. As this combination becomes stronger, the unloading rigidity tends to become higher, and the unloading rigidity of the history loop of the same device of the recent device is almost upright (= infinite rigidity) on the graph.
[0006]
The part where response displacement reverses during response vibration during an earthquake = when the unloading history start point is reached, the unloading rigidity of this history loop is very high. In this state, the mode as the seismic isolation structure collapses and the foundation is fixed As a result of approaching the building mode, a large response acceleration occurs in this part. Because of the high unloading rigidity, the significant seismic isolation effect is a major issue for improving the performance of the seismic isolation structure.
[0007]
The second problem to be solved is the damping constant h-response displacement δ relationship. This is a common issue when using hysteretic dampers, friction dampers and sliding bearings, not just laminated rubber with lead cores. However, as long as dampers with a constant yield strength are used, the damping constant h will increase as deformation increases. Have a fate to decline.
[0008]
This is because the damping constant h is due to the relationship of the absorption energy Δw / strain energy W of the hysteresis loop. The strain energy W increases in proportion to the square of the deformation δ, whereas the absorption energy Δw has a constant yield strength. Therefore, it is proportional to the first power of δ. In terms of response performance, it is desirable that the damping constant h should not be reduced as much as the displacement increases. Theoretically, this can be realized with a viscous damping mechanism that increases the resistance of the damper as the response displacement amplitude increases. However, if a hysteresis damping mechanism that can maintain the h-δ relationship at a constant value can be realized, it will overturn common sense. It will be a period.
[0009]
If the problem can be solved in the laminated rubber seismic isolation device, a wonderful third problem can be described as “releasing strain concentration” at the upper and lower ends of the laminated rubber. This problem has not been considered by anyone until now, so few people recognize it as a technical problem, but it is a very big problem for improving the safety and reliability of laminated rubber.
[0010]
That is, it is the edge portions of the upper end portion and the lower end portion of the laminated rubber that are exposed to the most severe conditions when the laminated rubber is subjected to horizontal deformation during an earthquake. Since the largest local strain is concentrated at this corner due to vertical load and horizontal shear deformation, it is possible to dramatically improve the seismic safety performance of laminated rubber if the concentration of strain at the upper and lower ends can be released. .
[Means for Solving the Problems]
[0011]
The present invention is an isolator-damper integrated laminated rubber seismic isolation device called a “laminated rubber with a lead core” or a “superplastic material cored laminated rubber” in which a superplastic metal material having the same function as lead is enclosed. The above three problems are solved at the same time by adopting a special technique for the core shape. In the explanation of the basic mechanism, since the lead core and the superplastic metal material core have the same function, the following explanation is unified by the expression “lead core”.
[0012]
Conventional laminated rubber bearings with a lead core have implicitly assumed that the distribution in the height direction of the laminated rubber stiffness is always constant, and have aimed to make the stiffness as uniform as possible. This is because if a portion having low rigidity exists in a part of the laminated rubber, the deformation concentrates on the part, and it is expected that the laminated rubber will be damaged and become a weak point. Similarly, it has been assumed that the cross-sectional shape of the lead core is constant, but this also aims to prevent deformation from concentrating on a part of the lead core.
[0013]
In the present invention, the lead core, which has had a constant cross-sectional area in the height direction so far, has a small cross-sectional area at the central portion, a large cross-sectional area at the upper and lower end portions, and a continuous change between them. Solve issues at the same time. In other words, using the fact that the horizontal force acting on the horizontal cross section of the seismic isolation device is the same at any height position, continuously changing and expanding toward the end with the lead core cross-sectional area at the center of the height minimized. First, the deformation of the central portion of the lead core with the smallest cross section is advanced, and the yield of the lead core is gradually advanced and expanded from the central portion to the end portion. As a result, the resilience characteristics of this seismic isolation device show that the resistance / restoring force characteristics gradually change from a seismic isolation device with a small lead core to a seismic isolation device with a large lead core as the deformation of the seismic isolation device increases. It will shift and change. In addition, since the deformation gradually disappears from the small area of the lead core cross-sectional area during unloading, the unloading rigidity decreases due to the horizontal deformation decreasing along with the unloading of the horizontal load, resulting in a smooth history. A loop will be obtained.
[0014]
The shear deformation of the upper and lower end portions of the laminated rubber is delayed from the deformation of the central portion, and the shear strain is suppressed to be small, so that the third problem is also satisfied. Further, since the same effect is obtained when the lead core is increased in size as the deformation progresses, the decrease in the damping constant h accompanying the increase in deformation becomes gradual, and the second problem can be solved.
As described above, the introduction of “continuous change in core cross-sectional area” reduces the unloading rigidity of the restoring force characteristic history loop, improves the h-δ relationship, and alleviates the concentration of shear strain at the upper and lower ends of the laminated rubber. The effect of three birds with one stone is generated.
[0015]
The basic concept of solving the problems of the present invention can also be explained as follows. In all conventional laminated rubber-based seismic isolation devices, the basic assumption is that the rubber height is always constant, and the shear strain during horizontal deformation is always constant at any height of the device. Common sense. However, assuming the most ideal seismic isolation device, at the stage where the input seismic motion is not very strong, the horizontal deformation that occurs is small, so it is preferable that the resistance of the lead core or damper that bears the damping performance is low, and the laminated rubber It is sufficient that the area itself is small and the height is low. As the input seismic motion becomes stronger, the amount of horizontal deformation that occurs increases, so the laminated rubber must also be large and the rubber height must be high, and the damping performance and yield strength must be high.
[0016]
Therefore, it is ideal that the size of the damper (= lead core) and isolator (= laminated rubber) should be changed according to the strength of the input seismic motion, and the present invention is one seismic isolation device. However, the seismic isolation device that achieves the same effect and action as gradually changing the size of the device to a larger one according to the strength of the input ground motion is realized. In other words, a single seismic isolation device can exhibit a myriad of device performances of appropriate sizes according to the seismic motion input.
DETAILED DESCRIPTION OF THE INVENTION
[0017]
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments.
FIG. 1A is a cross-sectional configuration diagram of a conventional laminated rubber seismic isolation device with a lead core. A
[0018]
When a horizontal force acts during an earthquake, as shown in FIG. 1 (2), the
[0019]
On the other hand, the resistance expression = restoring force characteristic of the
[0020]
The restoring force characteristic of the laminated rubber with lead core is a combination of the almost elastic restoring force characteristic of the laminated rubber in FIG. 2 (1) and the plastic characteristic of lead in FIG. 2 (2). A substantially bilinear hysteresis loop as shown in FIG. At this time, since the rubber area and lead core area of the conventional laminated rubber with lead core are the same at any height position, the same level and uniform horizontal shear strain over the entire height of the device in any horizontal deformation state The degree has occurred. This is a principle and a major precondition that all conventional laminated rubber seismic isolation devices take as a natural condition, but here is an important point of view of the present invention.
[0021]
The greatest advantage of laminated rubber with a lead core is that it can be adjusted to some extent with this restoring force characteristic. That is, as shown in FIG. 3A, the horizontal rigidity of the laminated rubber body can be adjusted by adjusting the shear elastic modulus of the rubber material of the laminated rubber body, the diameter, the layer thickness, and the number of layers of the rubber layer. As shown in FIG. 3B, the yield strength determined by the resistance force of the lead core can be adjusted by changing the diameter of the lead core. By combining these two, as shown in FIG. 3 (3), the yield strength and horizontal stiffness (second stiffness) of the seismic isolation device can be set quite freely, and the resistance level, energy absorption performance, The deformation performance can be adjusted.
[0022]
However, in any restoring force characteristic, only the unloading rigidity was very high, and its adjustment was impossible. In the recent design of laminated rubber with lead core, in order to improve the performance of the seismic isolation structure, the rubber rigidity of the laminated rubber is lowered to increase the period, and the diameter of the lead core is increased to increase the energy absorption performance. Tend to increase. As a result, the resistance force of the lead core increases and the restoring force of the laminated rubber weakens, so the unloading rigidity becomes more and more perpendicular to the restoring force characteristic, and as a result, higher order modes are more likely to be induced. This raises the response acceleration of the superstructure. The design of equipment for the purpose of improving the performance of seismic isolation structures has the opposite effect, and is a limiting condition that hinders the improvement of performance.
[0023]
In order to solve the acceleration excitation problem due to higher-order modes, it is necessary to improve the seismic isolation device to have a restoring force characteristic with gentle unloading rigidity, but this cannot be solved with hysteretic dampers or slip / friction dampers. It has been recognized as a possible challenge. In order to solve this problem, as shown in FIG. 4, the present invention sets the area of the lead core 8 (cross-sectional area in the planar direction of the laminated rubber body) to the height center (the center in the thickness direction of the laminated rubber body 3). Part), and the middle is continuously changed to the maximum at both the upper and lower ends. By changing the area of the
[0024]
Even when the machine is unloaded, the lead core area is the smallest and the rubber area is the largest at the center position of the device. Since the deformation is eliminated, the horizontal deformation decreases with the unloading of the horizontal load. As a result, a spindle type hysteresis loop having a smooth unloading rigidity as illustrated in 21 of FIG. Will be obtained.
In addition, the shear deformation of the upper and lower ends of the laminated rubber is delayed from the deformation of the central portion, and the shear strain is suppressed to a small level. The problem of distortion concentration will be greatly improved.
[0025]
In order to show this effect concretely and quantitatively, the resilience characteristics of (a) a laminated rubber having a conventional lead core and (b) a laminated rubber having a lead core of the present invention are compared. As an example, as shown in FIGS. 5 (A) and 5 (B), the laminated rubber diameter is 1,000 mmφ, and the rubber layer is 8 mm ×
30 layers, total rubber layer thickness = 240mm, rubber material shall have shear modulus Gr = 5.5kg / cm2. The diameter of the lead core is as follows: (a) Conventional type = 200 mmφ, and the present invention type has a minimum central portion diameter = 100 mmφ and a maximum diameter at the upper and lower ends = 300 mmφ.
[0026]
FIG. 6 shows both restoring force characteristics (design history loop). The
[0027]
In order to clearly see the difference between the two, the hysteresis loop of shear strain γ = 100% and horizontal deformation d = 24 cm is enlarged and compared to compare the conventional device of FIG. 7 and the device of the present invention of FIG. It is.
[0028]
When both are compared, the difference between the two devices and the features of the device of the present invention can be clearly understood. That is, the conventional apparatus is a bilinear loop in which the horizontal rigidity provided by the rubber layer is the second rigidity and the rigid plastic type history provided by the lead core is combined with this, and has an extremely high unloading rigidity 11. On the other hand, the hysteresis loop of the device of the present invention does not have a constant second rigidity, and the unloading
[0029]
The mechanism of this hysteresis loop expression can be explained as follows. In the conventional apparatus, the shear strain of the rubber and the shear strain of the lead core proceed uniformly with the same strain at any position in the height direction. In contrast, in the apparatus of the present invention, the closer to the center of the height, the smaller the area of the lead core and the lower the resistance, so the closer to the center, the faster the shear strain of the rubber and the lead core. That is, first the shear strain at the center with low horizontal resistance progresses, and the resistance shear stress level of lead increases with the progress of the shear strain, so the strain level gradually increases toward the outside (upper and lower ends). I will do it. As a result, the resistance force exerted by the lead core as a whole rises gradually from the low resistance force of the central core to the resistance force of the lead core having a large cross section at the upper and lower ends when the strain is small. And does not immediately converge to a constant yield strength as in conventional devices. This is the reason why the rising skeleton curve draws a smooth curve.
[0030]
Similarly, in the unloading history, the strain is eliminated by gradually unloading from the center where the strain is the most advanced and the rubber restoring force is maximum and the lead resistance is minimum. It will be drawn and will not be a simple rigid-plastic loop. This is a mechanism for expressing a spindle type hysteresis loop shape like a viscoelastic material while being a hysteresis loop based on the plastic history of metal.
[0031]
FIG. 9 shows the height of each part of the seismic isolation device when the horizontal deformation proceeds from zero to the average shear strain γave = 250% (average strain γave = d / Tr obtained by dividing the horizontal deformation d by the total rubber height Tr). The position deformation state (horizontal deformation mode) is shown. It is shown that the proportion of deformation near the center is large at the time of small deformation, and gradually progresses to a uniform deformation shape as the deformation amount increases.
[0032]
FIG. 10 shows the progress of the degree of distortion at each height position in the deformed state. The value of the shear strain γ at the center of the figure represents the average strain γave. For example, when the overall average skewness γave = 200%, the skewness at the center of the device has increased to about 250%, but the skewness at the top and bottom ends is approximately γ = 130% (in the conventional device, the upper and lower ends It can be seen that the degree of distortion remains at 200%). As is clear from FIG. 10, the distribution of strain at the upper and lower ends of the laminated rubber, which is the most severe strain region in ordinary laminated rubber, is greatly relaxed, improving the safety of the laminated rubber and improving the reliability against fracture. It can be seen that it contributes greatly to
[0033]
FIG. 11 is based on the values at the time of shear strain γ = 50% (horizontal deformation d = 12 cm) for the damping constants of the hysteresis loops of the conventional type and the device of the present invention shown in FIGS. 6, 7, and 8. The value = 1 indicates the horizontal deformation and the rate of change of the damping constant h. In the conventional device, the shear strain γ is reduced to about 40% at 250%, but in the device of the present invention, it remains at about 60%, and the decrease in the damping constant accompanying the increase in horizontal deformation is moderate. It has been shown. This shows that the second problem has been greatly improved.
[0034]
FIG. 12 shows the same rate of change of the attenuation constant h as in FIG. 11 when the combination of the diameters of the central portion and the end portion of the lead core of the device of the present invention is changed.
The attenuation constant h increases as the difference between the lead core center diameter dpc and the end diameter dpe increases (the value of Cdp = dpc / dpe decreases), that is, as the diameter of the height center decreases. The rate of change is small, and the effect of the present invention is great. In the case of dpc = 200 mm, dpe = 300 mm shown in FIG. 12, Cdp = 0.67, and area ratio = 0.44, the effect of the present invention is sufficiently recognized. However, when the difference in diameter is reduced, the difference from the conventional apparatus is gradually increased. Will disappear. From this, the condition that “the cross-sectional area of the central portion of the lead core is 50% or less of the cross-sectional area of the end portion” shown in
[0035]
In the above description, as described in the 11th paragraph, the expression “lead core” has been used as a damper function incorporated into the laminated rubber. However, if the material has a large energy absorption performance and a large plastic deformation capacity, There is no reason to limit to. Considering the current situation where pollution problems of lead, a heavy metal, have been pointed out, materials other than lead should be adopted. In the present invention, as a result of investigating materials showing superplastic material characteristics at room temperature among the materials known so far, it has been found that those shown in Table 1 can be adopted. Although those shown in Table 2 are also known as superplastic metals, they cannot be superplastic properties unless they are at a very high temperature.
Table 1 shows the “superplastic material core” employed as the core material for the built-in damper in the fifth aspect of the present invention, and Table 2 shows the non-adopted materials.
[Table 1]
[Table 2]
[0036]
Next, a specific method for manufacturing the seismic isolation device of the present invention will be described.
In the apparatus of the present invention shown in FIGS. 4 and 5 (b), in order to reliably fill the core of lead or superplastic material, the filling degree and the laminated rubber of the portion where the core area is minimum at the central position of the height are particularly preferred. In order to ensure that the core is held by the body, it is conceivable to use a thick steel plate (reinforced steel plate) at the center. FIG. 13 shows a sectional configuration diagram thereof. That is, in FIG. 13, normally, a superplastic metal (usually lead) serving as a core is press-fitted in two from both the upper end and the lower end of the laminated rubber body. As a result, the fault portion of the core material = discontinuous weak point portion is likely to occur in the central portion, but the thick steel plate and the central inner shim 61 (reinforced steel plate) in the central portion serve to protect the weak point of the fault portion. It is.
[0037]
As a method for realizing this cross-sectional configuration more easily, as shown in FIG. 14, a lead core or a superplastic material incorporated in the apparatus has a core diameter that changes linearly, that is, a lead having a frustoconical core shape. Alternatively, a laminated rubber bearing having a core of superplastic material is created. Although the symmetry on the shape is broken, the device performance can be the same as that of the device of
[0038]
[0039]
A pair of laminated rubber bearings having a lead or superplastic material core having a frustoconical core shape shown in FIG. 14 is joined as a set, and the flange side having the larger diameter is bolted. On the contrary, the expression performance and restoring force characteristics are the same as those of the apparatus of FIG. However, in this apparatus, first, deformation of both end portions of the apparatus proceeds first. Accordingly, since the core portion having a large calorific value is divided into two parts due to the progress of the deformation, there is an advantage that the temperature rise due to the heat generation is suppressed and the yield strength decrease due to the temperature rise is reduced. The shape is shown in FIG.
[0040]
FIGS. 17 and 18 show an example of trial design of an eight-story base isolation building as an example and compare the base isolation effect by an earthquake response analysis in order to confirm the effect of the base isolation device of the present invention. FIG. 17 shows the maximum response acceleration of each floor of the base-isolated building employing the conventional seismic isolation device, and FIG. 18 shows the maximum response acceleration of the base-isolated building employing the seismic isolation device of the present invention. The input seismic motion adopted is common to both, and the maximum input acceleration is 400 to 1000 gal (cm / sec). 2 ), When a very strong earthquake motion with a maximum input speed of 100 to 165 kine (cm / s) is applied. The horizontal axis represents the strength of acceleration, and the vertical axis represents the number of floors such that M is the ground surface, 1 is the first floor of the building, and 2 is the second floor of the building. The seismic isolation device is arranged between the ground surface and the first floor. In the conventional seismic isolation device shown in FIG. 17, an acceleration of approximately 200 gal is generated on each floor, and the R floor on the roof reaches an acceleration of 300 gal or more. On the other hand, in the building adopting the seismic isolation device of the present invention shown in FIG. 18, there is almost no variation in the response acceleration for any seismic motion input, and it is about 100 gal from the first floor to the rooftop R floor. It is suppressed by the acceleration, and it can be seen that the base-isolated building adopting the device of the present invention exhibits an extremely high base-isolating effect. This effect is the same for both the configuration of FIG. 15 and the configuration of FIG.
[0041]
Compared to hysteresis damping type seismic isolation devices using metals such as lead, viscous damping type seismic isolation devices using viscous fluid for damping devices have a higher seismic isolation effect regardless of the magnitude of input acceleration (= (High response acceleration suppression effect). The conventional seismic isolation device in which a lead core with a uniform thickness is embedded in the center shows a ballinear type hysteresis loop peculiar to hysteresis damping, but the lead core of the present invention has a planar cross-sectional area that is the thickness of a laminated rubber body. It is not uniform in the vertical direction, and the small cross-sectional area in the plane direction facilitates deformation of the laminated rubber body for small input acceleration, and the gradually large cross-sectional area strongly resists strong input. The seismic isolation effect is enhanced by exerting the same pattern of resistance as the viscous damping type damping device as a whole.
[0042]
In addition, it is preferable that the cross-sectional area in the planar direction of the laminated rubber body of the plastic material core continuously and monotonously increases from the portion showing the minimum value toward the portion showing the maximum value. All of the embodiments of FIGS. 13 to 16 satisfy this condition. With such a configuration, since the boundary surface between the laminated rubber body and the core is smooth, the work of press-fitting lead or superplastic material becomes easy. Further, when stress due to an earthquake is applied, the deformation amount of each part of the laminated rubber body does not change significantly, and there is an effect that an unreasonable force is not exerted on the laminated rubber body.
[0043]
【The invention's effect】
The laminated rubber seismic isolation device with lead core was developed in New Zealand in the late 1970s and has gained a high reputation worldwide in advanced earthquake-resistant design countries such as the United States, Japan and Italy, and has the highest track record in the world. It is a seismic isolation device. The present invention solves an important problem remaining in this excellent seismic isolation device, and has been reborn into a nearly perfect seismic isolation device that has not existed so far. The features and main effects of the present invention are summarized as follows.
{Circle around (1)} Conventional laminated rubber with a lead core showed a bilinear hysteresis loop, and its second rigidity and yield strength could be adjusted fairly freely. However, the unloading rigidity is extremely high and cannot be adjusted. Due to the high unloading rigidity, the resonance phenomenon of the higher mode is excited to generate a high response acceleration.
The present invention makes it possible to arbitrarily relax the unloading rigidity. Even though it is a hysteresis damping mechanism, it is a smooth spindle type hysteresis as if it were a viscous material or a viscoelastic material. Realized the loop. Since it is not a viscous or viscoelastic material, it does not have the disadvantages of temperature and speed dependence due to the viscosity and viscoelastic material. This is a revolutionary damping mechanism that has a viscous / viscoelastic spindle type loop, which has never existed before.
(2) Loose unloading rigidity and a smooth spindle-type hysteresis loop exhibit a good response acceleration suppression effect like an ideal seismic isolated building having a viscous damping mechanism, and exhibit a high seismic isolation effect. As is clear from the comparison between FIG. 17 and FIG. 18, the seismic response acceleration of the base-isolated building by the device of the present invention is better suppressed over the entire floor than the conventional device.
{Circle around (3)} Although the hysteresis damping mechanism is used, it is possible to expect a large effect of suppressing the response to a strong ground motion input and a high damping performance with a small decrease in the damping constant accompanying an increase in response deformation.
(4) Although it shows a spindle-shaped hysteresis loop shape like a viscous material or viscoelastic material, it is not a viscous / viscoelastic material, so it has drawbacks due to temperature-dependent and velocity-dependent viscoelastic materials. Not done.
(5) Among the laminated rubber seismic isolation devices, the largest local strain is generated at the upper and lower ends. However, in the device according to the present invention, the shear strain at the time of the earthquake at the upper and lower ends is suppressed. As a result, the safety and reliability of the seismic isolation device as a whole have increased dramatically.
(6) As is clear from the comparison between FIG. 7 and FIG. 8, the hysteresis loop shape becomes a spindle type loop, and the displacement amount at the position where the resistance force becomes zero on the hysteresis loop becomes small. Becomes smaller.
As described above, the present invention realizes an almost perfect ideal seismic isolation device that has never been realized.
[Brief description of the drawings]
FIG. 1 A conventional laminated rubber isolator with lead core
(1) Cross-sectional configuration diagram (normal)
(2) Cross section of deformation state during earthquake
FIG. 2 is an explanatory diagram of restoring force characteristics of a conventional laminated rubber with a lead core.
(1) Horizontal restoring force characteristics of natural rubber-based laminated rubber bodies
(2) Characteristics of horizontal restoring force by lead core in laminated rubber with lead core
(3) Horizontal restoring force characteristics of laminated rubber with lead core = (1) + (2)
FIG. 3 is an explanatory diagram of a method for adjusting a restoring force characteristic of a conventional laminated rubber with a lead core.
(1) Adjustment of restoring force characteristics by rubber rigidity
(2) Adjustment of restoring force characteristics (yield strength) with lead core
(3) Change in horizontal restoring force characteristics of laminated rubber with lead core
FIG. 4 is an explanatory diagram of the core shape and cross-sectional configuration of a laminated rubber seismic isolation device with a lead core (superplastic material core) according to the present invention.
FIG. 5 is a cross-sectional view of a device design example of a laminated rubber with a lead core for comparing restoring force characteristics.
(A) Conventional lead-core seismic isolation device
(B) Seismic isolation device for lead core of the present invention
6 is a diagram for explaining a comparison of restoring force characteristics of the apparatus shown in FIG. 5 (γ ≦ 250%).
7 (a) Comparison of restoring force characteristics of the device (enlarged view of γ ≦ 100%) Restoring force characteristic history loop explanatory diagram of a conventional lead core seismic isolation device
8 (b) Comparison of restoring force characteristics of the device (enlarged view of γ ≦ 100%) Restoring force characteristic history loop explanatory diagram of the lead core type seismic isolation device of the present invention
FIG. 9 is an explanatory diagram of the horizontal deformation mode shape in the height direction of the seismic isolation device of the present invention.
FIG. 10 is an explanatory diagram of horizontal shear strain distribution in the height direction of the rubber layer of the seismic isolation device of the present invention.
FIG. 11 is a comparative explanatory diagram of the rate of change of the damping constant h in the h-δ curve.
FIG. 12 is a comparative explanatory view of the rate of change of the damping constant h in the h-δ curve (when the rate of change of the lead core diameter is changed).
FIG. 13 is a cross-sectional view of the seismic isolation device of the present invention in which the central inner steel plate is thickened to ensure core filling and core retention at the central portion.
FIG. 14 is a cross-sectional view of a seismic isolation device having a core shape with a truncated cone shape with one large diameter and the other small.
FIG. 15 is a cross-sectional view of a method for constructing the seismic isolation device by bolting two laminated rubber bearings having a truncated cone core;
FIG. 16 is the same method as above. However, the cross-sectional view when the core shape is reversed, the center core is enlarged, and the end core diameter is reduced
[Fig.17] Seismic isolation effect of a base-isolated building using a conventional seismic isolation device
[Fig. 18] Seismic isolation effect of a seismic isolation building employing the seismic isolation device of the present invention (maximum response acceleration diagram during a large earthquake)
[Explanation of symbols]
1 Upper building side frame
2 Lower foundation
3 Overall seismic isolation device (laminated rubber body)
4 Flange plate
5 Outer steel plate (outer shim)
6 Internal steel plate (inner shim)
7 Rubber layer
8 Lead core (plastic material core)
10 Restoring force history loop of conventional laminated rubber with lead core (conventional seismic isolation device)
11 Unloading rigidity curve of conventional seismic isolation device
14 Rate of damping constant change of conventional seismic isolation device (ratio of damping constant to γ = 50%)
20 Restoring force history loop of the seismic isolation device of the present invention
21 Unloading rigidity curve of seismic isolation device of the present invention
22 Deformation mode during earthquake of the seismic isolation device of the present invention (horizontal displacement distribution in the height direction)
23 Seismic strain mode of the seismic isolation device of the present invention (horizontal shear strain distribution in the height direction)
24 Rate of change of damping constant of the seismic isolation device of the present invention (ratio of damping constant to γ = 50%)
41 Central flange for connection
61 Central internal steel plate (Central inner shim)
Claims (1)
前記積層ゴム体の平面中央部に該積層ゴム体を貫通して嵌合される棒状の超塑性金属からなる塑性材料コアとを備え、
前記塑性材料コアの前記積層ゴム体の平面方向の断面積は、前記積層ゴム体の厚さ方向中央部で最も小さく、前記厚さ方向の両端部に近づくにつれて連続的に大きく形成されている免震装置であって、
前記厚さ方向中央部に前記鋼板より厚い板厚の補強鋼板を備えることを特徴とする免震装置。A laminated rubber body formed by alternately laminating and fixing rubber layers and steel plates;
A plastic material core made of a rod-like superplastic metal that is fitted through the laminated rubber body at the center of the plane of the laminated rubber body,
The cross-sectional area of the laminated rubber body in the planar direction of the plastic material core is the smallest at the central portion in the thickness direction of the laminated rubber body, and is continuously formed larger as it approaches both ends in the thickness direction. A seismic device,
A seismic isolation device comprising a reinforcing steel plate having a thicker thickness than the steel plate at a central portion in the thickness direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001206588A JP3741424B2 (en) | 2001-07-06 | 2001-07-06 | Seismic isolation device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001206588A JP3741424B2 (en) | 2001-07-06 | 2001-07-06 | Seismic isolation device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003021193A JP2003021193A (en) | 2003-01-24 |
JP3741424B2 true JP3741424B2 (en) | 2006-02-01 |
Family
ID=19042696
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2001206588A Expired - Lifetime JP3741424B2 (en) | 2001-07-06 | 2001-07-06 | Seismic isolation device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3741424B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160010300A (en) * | 2014-07-18 | 2016-01-27 | 스미토모 고무 고교 가부시키가이샤 | Viscoelastic damper and method of manufacturing the same |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4594183B2 (en) * | 2005-07-21 | 2010-12-08 | 株式会社ブリヂストン | Laminated support |
JP2007139115A (en) * | 2005-11-21 | 2007-06-07 | Kajima Corp | Plug-filled laminated rubber bearing |
JP2008082386A (en) * | 2006-09-26 | 2008-04-10 | Bridgestone Corp | Base isolation device |
JP4941601B2 (en) * | 2011-02-18 | 2012-05-30 | オイレス工業株式会社 | Seismic isolation device |
JP5541329B2 (en) * | 2012-09-03 | 2014-07-09 | オイレス工業株式会社 | Seismic isolation device |
TWI567277B (en) * | 2014-12-16 | 2017-01-21 | Chong-Shien Tsai | Friction damping support pad |
JP6927676B2 (en) * | 2016-07-19 | 2021-09-01 | オイレス工業株式会社 | Laminated rubber bearings |
-
2001
- 2001-07-06 JP JP2001206588A patent/JP3741424B2/en not_active Expired - Lifetime
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160010300A (en) * | 2014-07-18 | 2016-01-27 | 스미토모 고무 고교 가부시키가이샤 | Viscoelastic damper and method of manufacturing the same |
KR102362923B1 (en) * | 2014-07-18 | 2022-02-14 | 스미토모 고무 코교 카부시키카이샤 | Viscoelastic damper and method of manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2003021193A (en) | 2003-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3741424B2 (en) | Seismic isolation device | |
CN106835947B (en) | Multidimensional vibration reduction device is detained containing the suspension bridge center of viscoplasticity dissipative member and metal-rubber | |
US20200011391A1 (en) | Force Limiter and Energy Dissipater | |
JP5638762B2 (en) | Building | |
JP6006194B2 (en) | Damper device for seismic reinforcement of structures | |
JP2016138592A (en) | Seismic isolation structure | |
JP2002338018A (en) | Automatic high-rise warehouse | |
CN218580912U (en) | Shock insulation support | |
JP2007247167A (en) | Base isolation supporting device | |
JP2007039937A (en) | Foundation structure of building | |
JP4120740B2 (en) | Earthquake resistant building | |
JP3803949B2 (en) | Seismic isolation method and seismic isolation structure for buildings with large aspect ratio | |
CN216277183U (en) | Assembly type buckling-restrained supporting member with constraint layer having negative Poisson ratio structure | |
CN215166769U (en) | Building shockproof stable structure | |
JPS62220734A (en) | Vibrational energy absorbing device | |
JP2000160874A (en) | Compound seismic isolation structure | |
JP2001115683A (en) | Base isolation structure | |
JP2001329716A (en) | Method and structure of base isolation of multistory building | |
CN112761270A (en) | Vertical inertial container shock insulation support | |
JP2005249103A (en) | Base isolation device | |
KR20200061761A (en) | Composite damper using 3 dimensional steel stuss | |
JP7502202B2 (en) | Manufacturing method of seismic isolation device | |
JP2801693B2 (en) | Laminated rubber bearing | |
CN217079219U (en) | Soft steel buckling restrained brace | |
JP3028081B2 (en) | Dynamic rigid structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20040610 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20040727 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20040927 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050712 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050909 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051025 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20051107 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 3741424 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20081118 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111118 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111118 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121118 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121118 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131118 Year of fee payment: 8 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |