JP2007247167A - Base isolation supporting device - Google Patents

Base isolation supporting device Download PDF

Info

Publication number
JP2007247167A
JP2007247167A JP2006068693A JP2006068693A JP2007247167A JP 2007247167 A JP2007247167 A JP 2007247167A JP 2006068693 A JP2006068693 A JP 2006068693A JP 2006068693 A JP2006068693 A JP 2006068693A JP 2007247167 A JP2007247167 A JP 2007247167A
Authority
JP
Japan
Prior art keywords
seismic isolation
isolation bearing
bearing
mounting table
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006068693A
Other languages
Japanese (ja)
Inventor
Sakae Ueda
栄 上田
Hiroki Kawai
廣樹 川合
Yutaka Fukuda
豊 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2006068693A priority Critical patent/JP2007247167A/en
Publication of JP2007247167A publication Critical patent/JP2007247167A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Foundations (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a base isolation supporting device capable of providing excellent base isolation performance by absorbing not only rolling but also deformation in the tilting direction (rotating direction). <P>SOLUTION: In this base isolation device A for supporting an article 1 to be placed on a loading base 2 for base isolation, a first base isolation support part (a) capable of absorbing the relative displacement of the article 1 to the loading base 2 in the lateral direction and a second base isolation support part (b) capable of absorbing the relative inclination of the article 1 to the loading base 2 are connected in series to each other. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、構造物や建物等の置物を支持杭やコンクリート基礎等の載置台に免震支承させるための免震支承装置に関するものである。   The present invention relates to a seismic isolation bearing device for allowing a structure, a building or the like to be seismically isolated on a mounting table such as a support pile or a concrete foundation.

この種の免震支承装置としては、特許文献1において開示されたもののように、基礎杭の上端部(杭頭)と構造物の基礎(フーチング等)との間に介装された積層ゴムが知られている。即ち、図6,7に示すように、積層ゴムBは、複数の弾性板33と硬質板34とが上下に交互に積層されて成る積層体35と、これの上下両端部に固着されるフーチング32側及び基礎杭31側の一対のフランジ板36,37とを有して構成されている。   As this type of seismic isolation bearing device, as disclosed in Patent Document 1, a laminated rubber interposed between the upper end portion (pile head) of a foundation pile and a foundation of a structure (such as a footing) is used. Are known. That is, as shown in FIGS. 6 and 7, the laminated rubber B is composed of a laminated body 35 in which a plurality of elastic plates 33 and hard plates 34 are alternately laminated up and down, and a footing fixed to both upper and lower end portions thereof. It has a pair of flange plates 36 and 37 on the 32 side and foundation pile 31 side.

積層ゴムBは上下の荷重に耐えながら横方向の変位や振動を吸収するに適した免震支承装置(図6参照)であり、横方向に揺れる地震等には有効な免震作用が発揮される。しかしながら、図7に示すように、地震等が生じた際に、横揺れだけでなく傾き方向(捻り成分)の変位、即ち回動横向き軸心回りの矢印イ方向の回動力が作用するような場合には、積層ゴムBには横への変形だけでなく回動変形も加わることがある。   Laminated rubber B is a seismic isolation device (see Fig. 6) that is suitable for absorbing lateral displacement and vibration while withstanding vertical loads, and is effective in seismic motions that sway laterally. The However, as shown in FIG. 7, when an earthquake or the like occurs, not only the roll but also the displacement in the tilt direction (twist component), that is, the rotational force in the direction of the arrow a around the rotational lateral axis acts. In some cases, the laminated rubber B may be subjected to not only lateral deformation but also rotational deformation.

つまり、図7に示すように、積層体35の一方の側縁が圧縮縁に、かつ、他方の側縁が引張縁になる状態に傾き力(曲げモーメント)が作用する。積層ゴムBは、元々横揺れ用として設計されているので、傾き力が同時に作用する場合には適正な変形ができず、その結果、所定の免震性能が発揮できない問題があった。
特開2003−138782号公報
That is, as shown in FIG. 7, a tilting force (bending moment) acts in a state where one side edge of the laminate 35 becomes a compression edge and the other side edge becomes a tension edge. Since the laminated rubber B is originally designed for rolling, there is a problem that proper deformation cannot be performed when the tilt force is applied simultaneously, and as a result, the predetermined seismic isolation performance cannot be exhibited.
JP 2003-138882 A

本発明の目的は、横揺れだけでなく、上述した傾き方向(回動方向)の変形も吸収できるようにして、より免震性能に優れる免震支承装置を提供する点にある。   An object of the present invention is to provide a seismic isolation bearing device that is superior in seismic isolation performance by absorbing not only the roll but also the deformation in the tilt direction (rotation direction) described above.

請求項1に係る発明は、被載置物1を載置台2に免震支承させるための免震支承装置において、
前記被載置物1と前記載置台2との相対的な横方向への変位を吸収可能な第1免震支承部aと、前記被載置物1と前記載置台2との相対的な傾きを吸収可能な第2免震支承部bとが直列に接続されて免震支承装置Aが構成されていることを特徴とするものである。
The invention according to claim 1 is a seismic isolation support device for causing the mounting base 2 to perform a base isolation support on the mounting table 2.
The first seismic isolation bearing part a capable of absorbing the relative lateral displacement between the mounted object 1 and the mounting table 2, and the relative inclination between the mounted object 1 and the mounting table 2. The seismic isolation bearing device A is configured by connecting an absorbable second seismic isolation bearing part b in series.

請求項2に係る発明は、請求項1に記載の免震支承装置において、前記第1免震支承部aは、複数の弾性板3と硬質板4とが交互に積層されて成る積層体5と、これの積層方向の両端部に固着される被載置物側及び載置台側の各フランジ板6,7とを有して構成されていることを特徴とするものである。   The invention according to claim 2 is the seismic isolation bearing device according to claim 1, wherein the first seismic isolation bearing part a is a laminate 5 in which a plurality of elastic plates 3 and hard plates 4 are alternately laminated. And the flange plates 6 and 7 on the mounting object side and the mounting table side which are fixed to both ends in the stacking direction.

請求項3に係る発明は、請求項1又は2に記載の免震支承装置において、前記第2免震支承部bは、上方に開口する円筒状のシリンダ部11を有する下支承部材9と、この下支承部材9に対して傾き移動が可能な状態で前記シリンダ部11に内嵌されるピストン部12を有する上支承部材10と、前記ピストン部12を支える状態で前記シリンダ部11に封入装備される弾性部材13とを有して構成されていることを特徴とするものである。   The invention according to claim 3 is the seismic isolation bearing device according to claim 1 or 2, wherein the second seismic isolation support part b includes a lower support member 9 having a cylindrical cylinder part 11 opened upward; An upper support member 10 having a piston portion 12 fitted in the cylinder portion 11 in a state in which the lower support member 9 can be moved in an inclined manner, and an enclosure equipment in the cylinder portion 11 in a state of supporting the piston portion 12 It is characterized by having an elastic member 13 to be formed.

請求項4に係る発明は、請求項1〜3の何れか一項に記載の免震支承装置において、前記第1免震支承部aが前記第2免震支承部bの上に配置されていることを特徴とするものである。   The invention according to claim 4 is the seismic isolation bearing device according to any one of claims 1 to 3, wherein the first seismic isolation bearing part a is disposed on the second seismic isolation bearing part b. It is characterized by being.

請求項1の発明によれば、第1免震支承部と第2免震支承部とで成る免震支承装置によって被載置物と載置台とを免震支承してあるので、例えば、地盤から入力された地震力の影響を受けて載置台に傾き変位(回動変位)が生じることがあっても、相対的な傾きを吸収可能な第2免震支承部によってその傾き変位が吸収されるようになる。また、載置台に横ずれ変位が生じることがあっても、相対的な横方向への変位を吸収可能な第1免震支承部によってその横ずれ変位が吸収されるようになる。従って、第1免震支承部は、横方向(せん断方向)への変位を吸収する本来の機能が如何なく発揮できる状態になり、所定の免震性能が発揮可能となる。その結果、横揺れだけでなく、傾き方向(回動方向)の変形も吸収できるようになり、より免震性能に優れる免震支承装置を提供することができる。   According to the first aspect of the present invention, since the object to be placed and the mounting base are isolated from each other by the seismic isolation device composed of the first and second seismic isolation parts, for example, from the ground Even if tilt displacement (rotation displacement) occurs in the mounting table under the influence of the input seismic force, the tilt displacement is absorbed by the second seismic isolation bearing that can absorb the relative tilt. It becomes like this. Further, even if a lateral displacement occurs in the mounting table, the lateral displacement is absorbed by the first seismic isolation bearing that can absorb the relative lateral displacement. Therefore, the first seismic isolation bearing is in a state where the original function of absorbing the displacement in the lateral direction (shear direction) can be exhibited, and the predetermined seismic isolation performance can be exhibited. As a result, it is possible to absorb not only the roll but also the deformation in the tilt direction (rotation direction), and it is possible to provide a seismic isolation bearing device with more excellent seismic isolation performance.

請求項2の発明によれば、第1免震支承部が積層ゴム構造のものに構成されているので、上下方向には変位少なく荷重を支えながらも、横方向には大きな揺れでも吸収できる、という優れた免震支承性能を発揮することが可能になり、請求項1の発明による前記作用効果を強化することができる。   According to the invention of claim 2, since the first seismic isolation bearing portion is constructed of a laminated rubber structure, while supporting a load with little displacement in the vertical direction, it can absorb even large shaking in the lateral direction. It is possible to exhibit the excellent seismic isolation bearing performance, and the effect of the invention of claim 1 can be enhanced.

請求項3の発明によれば、上下の支承部材間に挟持される弾性部材の厚さ変化(弾性変形)を用いて被載置物と載置台との傾き変位を吸収させる手段であるから、地震等の外力が作用した際には、下支承部材と上支承部材との相対傾き(相対回動)によって応力を開放してこれら両者に曲げモーメントが作用することが防止されるようになる。従って、地震等によって過大な外力が作用した場合でも、被載置物や載置台の損傷、破損が防止されるに十分な優れた耐震性能、免震性能が発揮される免震支承装置が実現される。   According to the invention of claim 3, since it is a means for absorbing the tilt displacement between the mounted object and the mounting table by using the thickness change (elastic deformation) of the elastic member held between the upper and lower support members, When an external force such as the above acts, the stress is released by the relative inclination (relative rotation) between the lower support member and the upper support member, and the bending moment is prevented from acting on both of them. Therefore, even when an excessive external force is applied due to an earthquake or the like, a seismic isolation bearing device is realized that exhibits excellent seismic performance and seismic isolation performance sufficient to prevent damage or breakage of the mounted object or mounting table. The

請求項4の発明によれば、免震性能を主に受け持つ第1免震支承部が被載置物側に配置されることになるから、この逆の配置構造を採る場合に比べて、被載置物の横揺れ吸収作用の反応がより機敏なものとなる。従って、第1免震支承部と第2免震支承部との配置順序の設定によっても免震性能の向上が可能となる好ましい免震支承装置を提供することができる。   According to invention of Claim 4, since the 1st seismic isolation support part mainly responsible for seismic isolation performance will be arrange | positioned at the to-be-mounted object side, compared with the case where this reverse arrangement structure is taken, it is mounted. The response of the figurine's roll absorption action is more agile. Therefore, it is possible to provide a preferred seismic isolation bearing device that can improve the seismic isolation performance by setting the arrangement order of the first seismic isolation bearing and the second seismic isolation bearing.

以下に、本発明による免震支承装置の実施の形態を、図面を参照しながら説明する。図1は免震支承装置の断面図、図2は免震支承装置の使用例1を示す概略図、図3は地震時の免震支承装置の変形具合を示す作用図、図4は第1免震支承部の最小投影面積を示す概念図、図5は免震支承装置の使用例2を示す概略図である。   Embodiments of the seismic isolation bearing device according to the present invention will be described below with reference to the drawings. 1 is a cross-sectional view of the seismic isolation bearing device, FIG. 2 is a schematic diagram showing a first example of use of the seismic isolation bearing device, FIG. 3 is an operation diagram showing how the seismic isolation bearing device is deformed during an earthquake, and FIG. FIG. 5 is a schematic view showing a usage example 2 of the seismic isolation bearing device.

〔実施例1〕
実施例1による免震支承装置Aは、図1に示す構造物1の支持部に適用されている。まず、構造物の支持構造について説明すると、地盤20に掘られた凹入部21には、コンクリートによる擁壁22aと底壁22bとから成る覆い壁22が形成されており、底壁22b及び地盤20を貫いて地盤の深い位置にある硬い支持層(地層)23に達するように埋め込まれる長さを有する複数の支持杭2が植設されている。そして、構造物1は、各支持杭2の上端部に免震支承装置Aを介して載せ付けられている。つまり、構造物1は地盤20に対して免震支承されている。
[Example 1]
The seismic isolation bearing device A according to the first embodiment is applied to the support portion of the structure 1 shown in FIG. First, the structure support structure will be described. A concave wall 21 dug in the ground 20 is formed with a cover wall 22 composed of a retaining wall 22a and a bottom wall 22b made of concrete, and the bottom wall 22b and the ground 20 are formed. A plurality of support piles 2 having a length embedded so as to reach a hard support layer (stratum) 23 located deep in the ground through the ground. And the structure 1 is mounted in the upper end part of each support pile 2 via the seismic isolation bearing apparatus A. As shown in FIG. That is, the structure 1 is seismically isolated from the ground 20.

免震支承装置Aは、図1及び図2に示すように、構造物(被載置物の一例)1と地中に埋設支持される支持杭(載置台の一例)2との相対的な横方向への変位を吸収可能な第1免震支承部aと、構造物1と支持杭2との相対的な傾きを吸収可能な第2免震支承部bとを、上下に直列接続状態で一体化することで構成されている。   As shown in FIGS. 1 and 2, the seismic isolation bearing device A has a relative lateral relationship between a structure (an example of a mounted object) 1 and a support pile (an example of a mounting table) 2 that is embedded and supported in the ground. A first seismic isolation bearing part a capable of absorbing displacement in the direction and a second seismic isolation bearing part b capable of absorbing the relative inclination of the structure 1 and the support pile 2 in a vertically connected state. It is configured by integrating.

第1免震支承部aは、複数のゴム板部(弾性板の一例)3と円形等の金属板(硬質板の一例)4とが交互に積層されて成る積層体5と、これの上下方向(積層方向の一例)の両端部に固着される構造物側(被載置物側の一例)及び支持杭側(載置台側の一例)の各フランジ板6,7とを有して構成されている。複数の金属板4は、ゴム板部3と同一のゴム材料でその外周部が露出しないように覆われており、その結果、各ゴム板部3は外径側端部で繋がった状態となっている一般的な構造のものである。   The first seismic isolation bearing portion a includes a laminated body 5 in which a plurality of rubber plate portions (an example of an elastic plate) 3 and circular metal plates (an example of a hard plate) 4 are alternately laminated, and upper and lower portions thereof. Each of the flange plates 6 and 7 on the structure side (an example of the mounted object side) and the support pile side (an example of the mounting table side) fixed to both ends in the direction (an example of the stacking direction). ing. The plurality of metal plates 4 are covered with the same rubber material as that of the rubber plate portion 3 so that the outer peripheral portion thereof is not exposed. As a result, each rubber plate portion 3 is connected at the outer diameter side end portion. It is of general structure.

上フランジ板6は、構造物1の下方に出っ張っている取付部1Aに定着材8を介して固定されている。即ち、定着材8は、取付部1Aの底面1aに下方から当て付けられるベースプレート8Aと、このベースプレート8Aから立ち上げられて構造物1中に埋設される状態の複数の鉄筋8Bとから構成されており、ベースプレート8Aに上フランジ板6がボルト止めされている。   The upper flange plate 6 is fixed to a mounting portion 1A protruding below the structure 1 via a fixing material 8. That is, the fixing material 8 includes a base plate 8A that is applied to the bottom surface 1a of the mounting portion 1A from below, and a plurality of reinforcing bars 8B that are raised from the base plate 8A and embedded in the structure 1. The upper flange plate 6 is bolted to the base plate 8A.

第2免震支承部bは、上方に開口する円筒状のシリンダ部11を有する下支承部材9と、この下支承部材9に対して傾き(横軸心回りの回動)移動が可能な状態でシリンダ部11に内嵌されるピストン部12を有する上支承部材10と、ピストン部12を支える状態でシリンダ部11に封入装備される弾性部材13とを有して構成されている。弾性部材13は、やや厚肉のエラストマー(ゴム板)で形成されており、シリンダ部11に密封状態で収容されている。つまり、第2免震支承部bは、エラストマー13の厚さ変化(弾性変形)によって下支承部材9と上支承部材10とが傾き変位(回動変位)自在なピン支持構造が採られている。   The second seismic isolation bearing portion b has a lower bearing member 9 having a cylindrical cylinder portion 11 that opens upward, and a state in which tilting (rotation about the horizontal axis) is possible with respect to the lower bearing member 9. The upper bearing member 10 having the piston portion 12 fitted in the cylinder portion 11 and the elastic member 13 enclosed and installed in the cylinder portion 11 while supporting the piston portion 12 are configured. The elastic member 13 is formed of a slightly thick elastomer (rubber plate) and is housed in the cylinder portion 11 in a sealed state. In other words, the second seismic isolation bearing part b has a pin support structure in which the lower bearing member 9 and the upper bearing member 10 can be freely tilted (rotated) by the thickness change (elastic deformation) of the elastomer 13. .

下支承部材9は、シリンダ部11が一体化されているベース板14と、これから下方に垂下される複数の鉄筋15とから構成されている。ベース板14は、土中に埋設される鋼管杭16製の支持杭2の上面に載置支持されるセルフレベラー17に載せ付けられるとともに、鉄筋15は、鋼管杭16内を埋めるコンクリート部16aに埋設されている。   The lower support member 9 includes a base plate 14 with which the cylinder portion 11 is integrated, and a plurality of reinforcing bars 15 depending downward from the base plate 14. The base plate 14 is mounted on a self-leveler 17 that is placed and supported on the upper surface of the support pile 2 made of a steel pipe pile 16 that is buried in the soil, and the rebar 15 is attached to a concrete portion 16 a that fills the steel pipe pile 16. Buried.

上支承部材10は、第1免震支承部aの下フランジ板7にボルト止めされる取付フランジ18と、これの下方側に一体化されるピストン部12とから構成されている。ピストン部12は、シリンダ部11に相対回動移動可能に内嵌合される密閉円板部12aと、シリンダ部11の内径よりやや小さい外径を有するピストン本体部12bとから成り、密閉円板部12aの下端部外周には、シリンダ部11とを密着させて弾性部材13の食み出し防止を図るためのOリング19が装備されている。ピストン部12をシリンダ部11に相対回動可能に内嵌させる手段としては、ピストン部12の円筒状の外周面の径を、シリンダ部11の内径よりも若干小さくして極僅かな間隙を形成しておく手段や、ピストン部12の外周面を球面の一部に形成しておく手段等がある。   The upper bearing member 10 includes a mounting flange 18 that is bolted to the lower flange plate 7 of the first seismic isolation bearing portion a, and a piston portion 12 that is integrated on the lower side thereof. The piston portion 12 includes a sealed disc portion 12a that is fitted inside the cylinder portion 11 so as to be capable of relative rotational movement, and a piston main body portion 12b that has an outer diameter slightly smaller than the inner diameter of the cylinder portion 11, and is a sealed disc. On the outer periphery of the lower end portion of the portion 12a, an O-ring 19 is provided for closely contacting the cylinder portion 11 and preventing the elastic member 13 from sticking out. As a means for fitting the piston portion 12 into the cylinder portion 11 so as to be relatively rotatable, the diameter of the cylindrical outer peripheral surface of the piston portion 12 is slightly smaller than the inner diameter of the cylinder portion 11 to form a very small gap. And means for forming the outer peripheral surface of the piston portion 12 as a part of a spherical surface.

以上のような構造の免震支承装置Aを用いて構造物1を免震支承する構成においては、地震発生時には、図3に示すように、横揺れに関しては第1免震支承部aが矢印ロのように横ずれ変位して吸収し、傾き変位に関しては第2免震支承部bが矢印ハのように揺動変位(回動変位)して吸収するようになる。従って、積層ゴム構造の第1免震支承部aには傾き方向に力が作用しないようになり、所定の免震性能を如何なく発揮することができるとともに、第2免震支承部bには、これに適した傾き方向の力が作用するようになり、やはり所定の免震性能を発揮することができる。その結果、横揺れだけでなく傾き方向の変形も無理なく吸収できるようになり、より免震性能に優れる免震支承装置Aを実現することができている。   In the structure in which the structure 1 is seismically isolated using the seismic isolation device A having the above-described structure, when the earthquake occurs, as shown in FIG. The lateral displacement is absorbed as shown in (b), and the second seismic isolation part (b) is absorbed by being swung (rotated) as indicated by an arrow c. Accordingly, no force acts on the first seismic isolation bearing part a having the laminated rubber structure in the tilt direction, and the predetermined seismic isolation performance can be exhibited at all times, and the second seismic isolation bearing part b has A force in a tilt direction suitable for this is applied, and a predetermined seismic isolation performance can be exhibited. As a result, not only the roll but also the deformation in the tilt direction can be absorbed without difficulty, and the seismic isolation bearing device A having better seismic isolation performance can be realized.

また、図4に示すように、第1免震支承部aの最大許容横ずれ変位時における積層体5の上下方向の投影面積をVminとし、弾性部材13の面積をSとすると、S≧Vminという関係が成り立つように設定されている。この関係により、免震支承装置Aとしての耐荷重条件が地震等による揺れの大小に拘らずに所定の良好な範囲に維持されるようになっている。   Further, as shown in FIG. 4, when the vertical projected area of the laminate 5 at the time of the maximum allowable lateral displacement of the first seismic isolation bearing portion a is Vmin and the area of the elastic member 13 is S, S ≧ Vmin. The relationship is set to hold. Due to this relationship, the load-bearing condition as the seismic isolation bearing device A is maintained within a predetermined good range regardless of the magnitude of shaking due to an earthquake or the like.

免震支承装置Aは、図5に示すような使い方も可能である。即ち、支持杭2に搭載される状態で地盤20に支持される下部構造物30を構築し、この下部構造物30から立設される円柱、多角形状等の柱31の上に、免震支承装置Aを介して上部構造物32(構造物1の一例)を載せ付ける構造である。この場合でも、上部構造物32は下部構造物30に対して横揺れ及び傾き変位の吸収が可能な状態に免震支承されている。   The seismic isolation bearing device A can be used as shown in FIG. That is, a lower structure 30 supported by the ground 20 in a state of being mounted on the support pile 2 is constructed, and a seismic isolation bearing is mounted on a column 31 such as a column or a polygon that is erected from the lower structure 30. In this structure, the upper structure 32 (an example of the structure 1) is mounted via the device A. Even in this case, the upper structure 32 is seismically isolated so as to be capable of absorbing roll and tilt displacement with respect to the lower structure 30.

〔別実施例〕
第1免震支承部aの上に第2免震支承部bが位置する構造の免震支承装置でも良い。弾性部材13は、合成ゴム、天然ゴム等でも良い。
[Another Example]
A seismic isolation bearing device having a structure in which the second seismic isolation bearing b is positioned on the first seismic isolation bearing a may be used. The elastic member 13 may be synthetic rubber, natural rubber, or the like.

実施例1による免震支承装置の構造を示し、(a)は断面図、(b)はその主要部の径寸法を示す部分平面図The structure of the seismic isolation bearing apparatus by Example 1 is shown, (a) is sectional drawing, (b) is a partial top view which shows the radial dimension of the principal part. 図1の免震支承装置の使用例1を示す概念図Conceptual diagram showing a first example of use of the seismic isolation device of FIG. 地震時における変形具合を示す免震支承装置の側面図Side view of seismic isolation bearing device showing deformation during an earthquake 第1免震支承部が最も横ずれ変位したときの投影面積を示す概念図Conceptual diagram showing the projected area when the first seismic isolation bearing is displaced most laterally 図1の免震支承装置の使用例2を示す概念図Conceptual diagram showing a second example of use of the seismic isolation bearing device of FIG. 積層ゴムの構造及び横変形状態を示す側面図Side view showing laminated rubber structure and lateral deformation 従来の積層ゴムに横揺れ及び傾き変位が生じた際の変形具合を示す作用図Action diagram showing deformation when roll and tilt displacement occur in conventional laminated rubber

符号の説明Explanation of symbols

1 被載置物
2 載置台
3 弾性板
4 硬質板
5 積層体
6,7 フランジ板
9 下支承部材
10 上支承部材
11 シリンダ部
12 ピストン部
13 弾性部材
a 第1免震支承部
b 第2免震支承部
A 免震支承装置
DESCRIPTION OF SYMBOLS 1 Mounted object 2 Mounting base 3 Elastic board 4 Hard board 5 Laminated body 6,7 Flange board 9 Lower support member 10 Upper support member 11 Cylinder part 12 Piston part 13 Elastic member a 1st seismic isolation part b 2nd seismic isolation Bearing part A Seismic isolation device

Claims (4)

被載置物を載置台に免震支承させるための免震支承装置であって、
前記被載置物と前記載置台との相対的な横方向への変位を吸収可能な第1免震支承部と、前記被載置物と前記載置台との相対的な傾きを吸収可能な第2免震支承部とが直列に接続されて成る免震支承装置。
A seismic isolation device for causing the mounting object to base isolation on the mounting table,
A first seismic isolation bearing capable of absorbing relative lateral displacement between the mounted object and the mounting table; and a second capable of absorbing a relative inclination between the mounted object and the mounting table. A seismic isolation device that is connected to a seismic isolation bearing in series.
前記第1免震支承部は、複数の弾性板と硬質板とが交互に積層されて成る積層体と、これの積層方向の両端部に固着される被載置物側及び載置台側の各フランジ板とを有して構成されている請求項1に記載の免震支承装置。   The first seismic isolation bearing portion includes a laminated body in which a plurality of elastic plates and hard plates are alternately laminated, and each flange on the mounting object side and the mounting table side fixed to both ends in the stacking direction thereof. The seismic isolation bearing device according to claim 1, comprising a plate. 前記第2免震支承部は、上方に開口する円筒状のシリンダ部を有する下支承部材と、この下支承部材に対して傾き移動が可能な状態で前記シリンダ部に内嵌されるピストン部を有する上支承部材と、前記ピストン部を支える状態で前記シリンダ部に封入装備される弾性部材とを有して構成されている請求項1又は2に記載の免震支承装置。   The second seismic isolation bearing portion includes a lower bearing member having a cylindrical cylinder portion that opens upward, and a piston portion that is fitted into the cylinder portion in a state in which the second bearing member can be inclined and moved relative to the lower bearing member. 3. The seismic isolation bearing device according to claim 1, further comprising: an upper support member having an elastic member that is sealed in the cylinder portion so as to support the piston portion. 4. 前記第1免震支承部が前記第2免震支承部の上に配置されている請求項1〜3の何れか一項に記載の免震支承装置。
The seismic isolation bearing device according to any one of claims 1 to 3, wherein the first seismic isolation bearing is disposed on the second seismic isolation bearing.
JP2006068693A 2006-03-14 2006-03-14 Base isolation supporting device Pending JP2007247167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006068693A JP2007247167A (en) 2006-03-14 2006-03-14 Base isolation supporting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068693A JP2007247167A (en) 2006-03-14 2006-03-14 Base isolation supporting device

Publications (1)

Publication Number Publication Date
JP2007247167A true JP2007247167A (en) 2007-09-27

Family

ID=38591758

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068693A Pending JP2007247167A (en) 2006-03-14 2006-03-14 Base isolation supporting device

Country Status (1)

Country Link
JP (1) JP2007247167A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4672805B1 (en) * 2010-06-08 2011-04-20 有限会社I・R・T Pillar base isolation structure
JP2011226066A (en) * 2010-04-15 2011-11-10 Kurosawa Construction Co Ltd Method of installing base isolation device and installation structure
GB2490388A (en) * 2011-04-27 2012-10-31 Tekmar Energy Ltd A bearing assembly for use in supports for offshore wind turbines
GB2497593A (en) * 2011-12-16 2013-06-19 Mmc Group Ltd A bearing apparatus
CN107700515A (en) * 2017-09-15 2018-02-16 赵云年 Building pile foundation

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226066A (en) * 2010-04-15 2011-11-10 Kurosawa Construction Co Ltd Method of installing base isolation device and installation structure
JP4672805B1 (en) * 2010-06-08 2011-04-20 有限会社I・R・T Pillar base isolation structure
JP2011256568A (en) * 2010-06-08 2011-12-22 Irt Corp Base isolation structure on column head
GB2490388A (en) * 2011-04-27 2012-10-31 Tekmar Energy Ltd A bearing assembly for use in supports for offshore wind turbines
GB2497593A (en) * 2011-12-16 2013-06-19 Mmc Group Ltd A bearing apparatus
GB2497593B (en) * 2011-12-16 2014-02-26 Mmc Group Ltd A bearing apparatus
CN107700515A (en) * 2017-09-15 2018-02-16 赵云年 Building pile foundation
CN107700515B (en) * 2017-09-15 2019-08-06 杭州绿城都会建筑设计有限公司 Building pile foundation

Similar Documents

Publication Publication Date Title
JP2010007859A (en) Isolation platform
JP2008101451A (en) Aseismic structure and method for building
JP2007247167A (en) Base isolation supporting device
JP2006328655A (en) Base isolation device
JP5621101B1 (en) Seismic foundation for buildings
JP2001180797A (en) Support structure for storage tank
JPH10280730A (en) Insulation bearing device and construction of vibration isolation using it
JP2004069067A (en) Base-isolating device
JP3134768U (en) Weak seismic structure for wooden structures
JP2013142440A (en) Base isolation structure
JP3803949B2 (en) Seismic isolation method and seismic isolation structure for buildings with large aspect ratio
JP5348945B2 (en) Seismic isolation structure of building
JP2000120079A (en) Base isolation structure of pile
JPH0932345A (en) Vibration isolation device for small-sized building
JP2011141010A (en) Base isolation construction and structure
JP3749818B2 (en) Seismic isolation devices, buildings with seismic isolation devices
JP2003097086A (en) Base isolation building and construction method therefor
JP3102548B2 (en) Seismic isolation structure of pile
JP2000297558A (en) Base isolation device
JP2000104420A (en) Base isolation structure
JP3636925B2 (en) Foundation structure
JP4316404B2 (en) Seismic isolation device
JP2004278002A (en) Unit building with base-isolating device
JP3064887B2 (en) Seismic isolation structure of pile
JP4073407B2 (en) Seismic isolation devices for building structures

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Effective date: 20080708

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080903

A131 Notification of reasons for refusal

Effective date: 20090331

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090804

Free format text: JAPANESE INTERMEDIATE CODE: A02