JP4120740B2 - Earthquake resistant building - Google Patents

Earthquake resistant building Download PDF

Info

Publication number
JP4120740B2
JP4120740B2 JP25095399A JP25095399A JP4120740B2 JP 4120740 B2 JP4120740 B2 JP 4120740B2 JP 25095399 A JP25095399 A JP 25095399A JP 25095399 A JP25095399 A JP 25095399A JP 4120740 B2 JP4120740 B2 JP 4120740B2
Authority
JP
Japan
Prior art keywords
building
column
rigidity
frame
earthquake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25095399A
Other languages
Japanese (ja)
Other versions
JP2001073469A (en
Inventor
孝典 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP25095399A priority Critical patent/JP4120740B2/en
Publication of JP2001073469A publication Critical patent/JP2001073469A/en
Application granted granted Critical
Publication of JP4120740B2 publication Critical patent/JP4120740B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、耐震建物に関する。
【0002】
【従来の技術】
近年、図6に示すように多層建物の内部に上下方向に連続する高剛性フレーム1を設ける形態の耐震建物が提案されている。その高剛性フレーム1としては、各層に設けた耐震壁2を上下方向に連続させたいわゆる連層耐震壁や、あるいは耐震壁2に代えて制震装置たとえば鋼板の間に粘弾性体を挟み込んで建物の層間変位により微小変形して大減衰力を発揮する高剛性の粘弾性ダンパー3を設けるものが検討されている。
【0003】
【発明が解決しようとする課題】
ところで、上記のような高剛性フレーム1を内部に設けた建物に地震力が作用した場合、図6に示しているように各柱4には転倒モーメントによる軸力が生じるが、その軸力は外周側の柱4よりも高剛性フレーム1を構成している内周側の柱4において大きくなり、したがってそれらの柱4には過大な圧縮力と引張力が作用し、特に引張力による杭に対する引抜力が問題となり、その対策が必要とされている。
【0006】
【課題を解決するための手段】
請求項1の発明の耐震建物は、多層建物の内部に上下方向に連続する高剛性フレームを設け、該高剛性フレームを構成している柱の柱脚部を軸方向ダンパーを介して離間可能に支持し、前記高剛性フレームを各層に設けた一連の制震装置により構成するとともに、該制震装置として、鋼板の間に粘弾性体を挟み込んだ構成とされて建物の層間変位により微小変形して大減衰力を発揮する高剛性の粘弾性ダンパーを採用し、建物の主架構を、柱の曲げ剛性が梁の曲げ剛性よりも小さい架構としたものである。
【0009】
請求項2の発明は、請求項1の発明の耐震建物において、建物全体の主架構を構成している柱を鋼管内にコンクリートを充填してなる充填鋼管コンクリート柱としたものである。
【0010】
【発明の実施の形態】
図1は本発明の一実施形態である耐震建物における柱の構造を示す図である。本実施形態は図6に示したような高剛性フレーム1を有する多層の耐震建物に本発明を適用したものであって、高剛性フレーム1を構成している柱4の柱脚部を図1に示す構造としたものである。
【0011】
本実施形態の柱4は鋼管5内にコンクリート6を充填した充填鋼管コンクリート造とされ、その柱脚部は分断線7の位置で柱下部4aと柱上部4bとに分断されていて、通常時は(a)に示すように柱下部4aと柱上部4bとが突き合わされて長期圧縮軸力(通常、降伏圧縮荷重N0の0.3〜0.4倍程度である)を支持しているが、長期圧縮軸力を越える引張力が作用した際には(b)に示すように柱上部4bが柱下部4aに対して上方へ離間つまり浮き上がることが可能とされており、かつその分断部には柱上部4bが浮き上がった際に作動する軸方向ダンパー8が設けられている。
【0012】
軸方向ダンパー8は、この柱4よりもやや大径の鋼管9を分断線7の周囲に同軸的に装着してその下端部を柱下部4aに対して溶接等により固定し、その鋼管9の内面と柱4外周面との間の環状の空隙に粘弾性材10を充填し、その粘弾性材10によって鋼管9内面と柱4外面とを接着した構成とされている。この軸方向ダンパー8は、(b)に示すように柱上部4bが浮き上がる際には粘弾性材10が剪断変形を受け、その粘性抵抗力により浮き上がりを制動するとともにエネルギーを有効に吸収し得るものである。
【0013】
図2は上記構造による柱4の軸荷重−歪線図である。これから明らかなように、長期圧縮荷重を越える引張荷重が柱4に作用した際には柱上部4bが浮き上がって上方へ変位するから、このような構造の柱4では図2に破線で示す通常の柱のように引張荷重を受けることがなく、そのため杭に対する引抜力も問題とならない。なお、柱4の浮き上がり変位量はレベル2クラスの地震時においても些少である。図2に例示しているように、長期圧縮荷重が0.3N0、転倒軸力が±0.4N0、したがって最大引抜荷重が−0.1N0、固有周期が2秒、最大入力エネルギー速度が120cm/secの場合における試算によれば、柱4の最大浮き上がり量2δ0は3.67cmに過ぎない。
【0014】
図3は本実施形態の耐震建物における柱の構造の他の例を示すものである。これは軸方向ダンパー8として鋼材の塑性変形を利用する鋼材ダンパーを採用したもので、柱下部4aに固定した鋼管12と柱上部4bとの間に低降伏点鋼からなる曲げ降伏材13を3段にわたって介装し、それを曲げ降伏させることで柱上部4bの浮き上がりを許容せしめ、かつエネルギー吸収を行うものである。
【0015】
図4は本実施形態の耐震建物における柱の構造のさらに他の例を示すものである。これは軸方向ダンパー8として柱下部4aに固定した容器体15内にオリフィス16を設けて高粘性体17を充填したオリフィスダンパーを採用し、高粘性体17の粘性抵抗力により柱上部4bの浮き上がりを許容せしめ、かつその際にエネルギー吸収を行うものである。
【0016】
図5は本発明の実施形態である耐震建物の概要を示す。これは、図6に示した従来の耐震建物と同様に内部に上下方向に連続する一連の高剛性フレーム1を有するものであり、その高剛性フレーム1を構成している柱4の柱脚部に上記のような構造を採用したものである。本実施形態の耐震建物は、高剛性フレーム1の各層に上述したような鋼板の間に粘弾性体を挟み込んだ構成の粘弾性ダンパー3を設け、かつそれら粘弾性ダンパー3の性能を最大限に発揮するべく、この建物全体の主架構を柱4の曲げ剛性が梁20の曲げ剛性よりも小さい架構としたものである。
【0017】
すなわち、上記の粘弾性ダンパー3は高剛性で微小変形により大減衰力を発揮するものであるが、このような粘弾性ダンパー3の性能を十分に発揮させるためには、理論上、建物全体が減衰しやすいものとなるように主架構の剛性を小さくすることが好ましい。そこで、本実施形態の耐震建物では、梁20の曲げ剛性よりも柱4の曲げ剛性を相対的に小さくし(そのために主架構を柱先行降伏型の架構としても良い)、それにより層剛性を小さくして建物全体を減衰しやすいものとし、それによって粘弾性ダンパー3の減衰力を最大限に発揮せしめて優れた減衰性能を得られるものである。
【0018】
そして、本実施形態の耐震建物では、柱4の曲げ剛性を小さくするために、柱4としては長期圧縮軸力に対する耐力を確保できる程度の小断面の細柱を採用し、かつその細柱として上記各実施形態の構造において採用していた充填鋼管コンクリート造を採用し、これにより柱4を十分に小径で高軸耐力を有し、かつその曲げ剛性を梁の曲げ剛性よりも1/2〜1/10程度にまで小さくすることが可能である。しかも、柱4を充填鋼管コンクリート造の細柱とすることで弾性変形性能が向上するとともに、その柱4の採用により建物全体が長周期化するという利点も生じ、さらにはこのような柱4の採用により主架構の所要鋼材量が削減されてコストダウンを図ることもできる。
【0019】
このように、本実施形態の耐震建物は、高剛性フレーム1を構成している柱4の柱脚部を軸方向ダンパー8を介して浮き上がり可能に支持し、かつ主架構の柱4を充填鋼管コンクリート造の細柱としてその曲げ剛性を梁20の曲げ剛性よりも小さくしたことにより、減衰性能、変形性能、地震応答を十分に改善でき、大地震時においても建物の応答を微小に抑制して無損傷とできるという究極の制震構造ともいえるものである。
【0020】
なお、本発明の耐震建物においては、高剛性フレーム1を構成している柱4の構造としてたとえば図1、図3、図4に示したような軸方向ダンパー8を介して柱脚部を離接可能な構造を採用し、そのうえで、各層に設けた一連の制震装置としての粘弾性ダンパー3により高剛性フレーム1を構成すれば良い。
また、粘弾性ダンパーの性能を最大限に発揮させるためには、上記実施形態のように主架構における柱4の曲げ剛性を梁20の曲げ剛性よりも小さくする必要があり、そのためには主架構を柱先行降伏型とすることが好ましいがそれに限るものではなく、柱4の構造も充填鋼管コンクリート造に限るものではない。
【0023】
【発明の効果】
請求項1の発明の耐震建物は、多層建物の内部に上下方向に連続する高剛性フレームを設け、該高剛性フレームを構成している柱の柱脚部を軸方向ダンパーを介して離間可能に支持したので、杭に過大な引抜力が作用することを防止することができ、かつ軸方向ダンパーにより地震エネルギーを有効に吸収することができ、建物全体の引張荷重が杭に伝達されることを確実に防止できて合理的である。
また、前記高剛性フレームを各層に設けた一連の制震装置により構成するとともに、該制震装置として、鋼板の間に粘弾性体を挟み込んだ構成とされて建物の層間変位により微小変形して大減衰力を発揮する高剛性の粘弾性ダンパーを採用し、建物の主架構を、柱の曲げ剛性が梁の曲げ剛性よりも小さい架構としたので、高剛性フレームにより周辺フレームの損傷を回避することができ、かつ高剛性フレームに過大な引抜力が作用することを防止することができる。
【0024】
特に、微小変形で大減衰力を得ることができる一連の粘弾性ダンパーにより高剛性フレームを構成したことにより、それら粘弾性ダンパーにより優れた制震効果を得ることができる。
【0025】
さらに、建物の主架構を柱の曲げ剛性が梁の曲げ剛性よりも小さい架構としたことにより、建物の層剛性を十分に小さくし得て減衰性能を高めることができ、したがって粘弾性ダンパーの性能を最大限に発揮させて優れた制震構造の耐震建物を実現することができる。
【0026】
請求項2の発明は、請求項1の発明において、柱を充填鋼管コンクリート柱としたので、小断面で高軸剛性かつ低曲げ剛性しかも弾性変形性能に優れた柱とすることができ、柱先行降伏型の架構を容易に実現することができる。
【図面の簡単な説明】
【図1】 本発明の実施形態である耐震建物における柱の構造の一例を示す概略構成図である。
【図2】 同、軸荷重−歪線図である。
【図3】 同、柱の構造の他の例を示す概略構成図である。
【図4】 同、柱の構造のさらに他の例を示す概略構成図である。
【図5】 本発明の耐震建物の実施形態を示す概要図である。
【図6】 内部に高剛性フレームを設けた耐震建物の概要図である。
【符号の説明】
1 高剛性フレーム
2 耐震壁
3 粘弾性ダンパー
4 柱
5 鋼管
6 コンクリート
8 軸方向ダンパー
9 鋼管
10 粘弾性材
12 鋼管
13 曲げ降伏材
15 容器体
16 オリフィス
17 高粘性体
20 梁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an earthquake resistant building .
[0002]
[Prior art]
In recent years, as shown in FIG. 6, an earthquake-resistant building having a form in which a high-rigidity frame 1 continuous in the vertical direction is provided inside a multilayer building has been proposed. As the high-rigidity frame 1, a so-called multi-story earthquake-resistant wall in which the earthquake-resistant walls 2 provided in the respective layers are continuously arranged in the vertical direction, or a viscoelastic body is sandwiched between seismic control devices such as steel plates instead of the earthquake-resistant wall 2. There has been studied a structure in which a highly rigid viscoelastic damper 3 that exhibits a large damping force by being deformed minutely due to an interlayer displacement of a building is provided.
[0003]
[Problems to be solved by the invention]
By the way, when a seismic force is applied to a building in which the high-rigidity frame 1 as described above is provided, an axial force due to a tipping moment is generated in each column 4 as shown in FIG. It becomes larger in the columns 4 on the inner circumferential side constituting the high-rigidity frame 1 than the columns 4 on the outer circumferential side. Therefore, excessive compressive force and tensile force act on these columns 4, especially against piles due to tensile force. The pulling force is a problem and countermeasures are required.
[0006]
[Means for Solving the Problems]
The earthquake-resistant building of the invention of claim 1 is provided with a high-rigidity frame continuous in the vertical direction inside the multi-layer building, and the column base portions of the columns constituting the high-rigidity frame can be separated via an axial damper. The high rigidity frame is supported by a series of vibration control devices provided on each layer, and the vibration control device has a structure in which a viscoelastic body is sandwiched between steel plates and is slightly deformed by interlayer displacement of the building. The main frame of the building is a frame in which the bending stiffness of the column is smaller than the bending stiffness of the beam .
[0009]
According to a second aspect of the present invention, in the earthquake-resistant building of the first aspect of the invention, the pillars constituting the main frame of the whole building are filled steel pipe concrete pillars formed by filling steel pipes with concrete.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a diagram showing a column structure in an earthquake-resistant building according to an embodiment of the present invention. In the present embodiment, the present invention is applied to a multi-layer earthquake-resistant building having a high-rigidity frame 1 as shown in FIG. 6, and the column bases of the columns 4 constituting the high-rigidity frame 1 are shown in FIG. The structure shown in FIG.
[0011]
The pillar 4 of this embodiment is made of a filled steel pipe concrete structure in which a steel pipe 5 is filled with concrete 6, and its column leg part is divided into a column lower part 4a and a column upper part 4b at the position of the dividing line 7, and in a normal state. As shown in (a), the column lower portion 4a and the column upper portion 4b are abutted to support a long-term compressive axial force (usually about 0.3 to 0.4 times the yield compression load N 0 ). However, when a tensile force exceeding the long-term compression axial force is applied, the column upper portion 4b can be separated upward from the column lower portion 4a as shown in FIG. Is provided with an axial damper 8 which operates when the column upper portion 4b is lifted.
[0012]
The axial damper 8 has a steel pipe 9 having a diameter slightly larger than that of the column 4 mounted coaxially around the dividing line 7 and fixed at its lower end to the column lower portion 4a by welding or the like. An annular space between the inner surface and the outer peripheral surface of the column 4 is filled with a viscoelastic material 10, and the inner surface of the steel pipe 9 and the outer surface of the column 4 are bonded by the viscoelastic material 10. As shown in FIG. 5B, the axial damper 8 is one that can absorb the energy effectively while braking the lifting due to the shear resistance of the viscoelastic material 10 when the column upper portion 4b is lifted, and the viscous resistance force. It is.
[0013]
FIG. 2 is an axial load-strain diagram of the column 4 having the above structure. As is clear from this, when a tensile load exceeding a long-term compressive load is applied to the column 4, the column upper portion 4b is lifted and displaced upward. Therefore, in the column 4 having such a structure, a normal line indicated by a broken line in FIG. The column does not receive a tensile load, so the pulling force on the pile does not matter. It should be noted that the amount of displacement of the column 4 rising is insignificant even during a level 2 class earthquake. As illustrated in FIG. 2, the long-term compressive load is 0.3N 0 , the overturning axial force is ± 0.4N 0 , so the maximum pull-out load is −0.1N 0 , the natural period is 2 seconds, and the maximum input energy speed According to a trial calculation in the case of 120 cm / sec, the maximum lifting amount 2δ 0 of the column 4 is only 3.67 cm.
[0014]
FIG. 3 shows another example of the column structure in the earthquake-resistant building of this embodiment . This employs a steel damper that utilizes plastic deformation of the steel material as the axial damper 8, and a bending yield material 13 made of low yield point steel is provided between the steel pipe 12 fixed to the column lower portion 4a and the column upper portion 4b. By interposing over the steps and bending and yielding them, the column upper portion 4b is allowed to float and absorbs energy.
[0015]
FIG. 4 shows still another example of the column structure in the earthquake-resistant building of this embodiment . This employs an orifice damper in which an orifice 16 is provided in a container body 15 fixed to a column lower part 4 a as an axial damper 8 and filled with a high-viscosity body 17, and the column upper part 4 b is lifted by the viscous resistance force of the high-viscosity body 17. In this case, energy is absorbed.
[0016]
FIG. 5 shows an outline of a seismic building which is an embodiment of the present invention. This has a series of high-rigidity frames 1 that are continuous in the vertical direction in the same manner as the conventional earthquake-resistant building shown in FIG. 6, and the column bases of the columns 4 constituting the high-rigidity frame 1. The above structure is adopted. The seismic building of this embodiment is provided with a viscoelastic damper 3 having a configuration in which a viscoelastic body is sandwiched between steel plates as described above in each layer of the high-rigidity frame 1, and the performance of the viscoelastic damper 3 is maximized. In order to demonstrate, the main frame of the entire building is a frame in which the bending rigidity of the column 4 is smaller than the bending rigidity of the beam 20.
[0017]
That is, the viscoelastic damper 3 described above is highly rigid and exhibits a large damping force due to minute deformation, but in order to fully exhibit the performance of such a viscoelastic damper 3, the entire building is theoretically It is preferable to reduce the rigidity of the main frame so as to be easily damped . Therefore, in the earthquake-resistant building of this embodiment, the bending rigidity of the column 4 is made relatively smaller than the bending rigidity of the beam 20 (for that purpose, the main frame may be a column leading yield type frame) , and thereby the layer rigidity is increased. By reducing the size of the building, the entire building can be easily damped, whereby the damping force of the viscoelastic damper 3 can be maximized to obtain excellent damping performance.
[0018]
And in the earthquake-resistant building of this embodiment, in order to make the bending rigidity of the pillar 4 small, as the pillar 4, the small pillar of the small cross section which can ensure the proof strength with respect to a long-term compression axial force is employ | adopted, and as that fine pillar The filled steel pipe concrete structure employed in the structure of each of the above embodiments is adopted, whereby the column 4 has a sufficiently small diameter and high axial strength, and its bending rigidity is 1/2 to that of the beam. It can be reduced to about 1/10. In addition, the elastic deformation performance is improved by making the column 4 a thin column made of filled steel pipe concrete, and the advantage that the entire building becomes long-period by using the column 4 also arises. Adoption reduces the amount of steel required for the main frame and can also reduce costs.
[0019]
As described above, the earthquake-resistant building according to the present embodiment supports the column base portion of the column 4 constituting the high-rigidity frame 1 so as to be able to float through the axial damper 8, and the column 4 of the main frame is filled with the steel pipe. As a concrete thin column, the bending stiffness is made smaller than that of the beam 20, so that the damping performance, deformation performance, and earthquake response can be improved sufficiently. It can be said that it is the ultimate seismic control structure that can be done without damage.
[0020]
In the seismic building of the present invention, the column base is separated as an example of the structure of the column 4 constituting the high-rigidity frame 1 through an axial damper 8 as shown in FIGS. A high-rigidity frame 1 may be configured with a viscoelastic damper 3 as a series of vibration control devices provided in each layer.
In order to maximize the performance of the viscoelastic damper, it is necessary to make the bending rigidity of the column 4 in the main frame smaller than the bending rigidity of the beam 20 as in the above embodiment. It is preferable to use a column-preceding yield type, but it is not limited thereto, and the structure of the column 4 is not limited to a filled steel pipe concrete structure .
[0023]
【The invention's effect】
The earthquake-resistant building of the invention of claim 1 is provided with a high-rigidity frame continuous in the vertical direction inside the multi-layer building, and the column base portions of the columns constituting the high-rigidity frame can be separated via an axial damper. As it is supported, it is possible to prevent an excessive pulling force from acting on the pile, and it is possible to effectively absorb seismic energy by the axial damper, and to transmit the tensile load of the entire building to the pile. It can be reliably prevented and is reasonable.
In addition, the high-rigidity frame is constituted by a series of vibration control devices provided on each layer, and the vibration control device has a structure in which a viscoelastic body is sandwiched between steel plates and is slightly deformed by interlayer displacement of the building. Adopting a highly rigid viscoelastic damper that exerts a large damping force, and the main frame of the building is a frame in which the bending rigidity of the column is smaller than the bending rigidity of the beam. And it is possible to prevent an excessive pulling force from acting on the high-rigidity frame.
[0024]
In particular, by constructing the high-rigid frame by a series of viscoelastic dampers can obtain a large damping force with small deformation, it is possible to obtain an excellent vibration control effect by their viscoelastic dampers.
[0025]
Furthermore, the main frame of the building is a frame in which the flexural rigidity of the column is smaller than the flexural rigidity of the beam, so that the layer rigidity of the building can be made sufficiently small and the damping performance can be increased, thus the performance of the viscoelastic damper. It is possible to realize an earthquake-resistant building with an excellent seismic control structure.
[0026]
In the invention of claim 2, in the invention of claim 1 , since the column is a filled steel pipe concrete column, it can be a column having a small cross section, high axial rigidity, low bending rigidity and excellent elastic deformation performance. A yield-type frame can be easily realized.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an example of a column structure in an earthquake-resistant building according to an embodiment of the present invention.
FIG. 2 is an axial load-strain diagram.
FIG. 3 is a schematic configuration diagram showing another example of the column structure .
FIG. 4 is a schematic configuration diagram showing still another example of the pillar structure .
FIG. 5 is a schematic view showing an embodiment of the earthquake-resistant building of the present invention.
FIG. 6 is a schematic view of a seismic building having a highly rigid frame inside.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 High-rigidity frame 2 Earthquake resistant wall 3 Viscoelastic damper 4 Column 5 Steel pipe 6 Concrete 8 Axial damper 9 Steel pipe 10 Viscoelastic material 12 Steel pipe 13 Bending yield material 15 Container body 16 Orifice 17 High viscosity body 20 Beam

Claims (2)

多層建物の内部に上下方向に連続する高剛性フレームを設け、該高剛性フレームを構成している柱の柱脚部を軸方向ダンパーを介して離間可能に支持し、
前記高剛性フレームを各層に設けた一連の制震装置により構成するとともに、該制震装置として、鋼板の間に粘弾性体を挟み込んだ構成とされて建物の層間変位により微小変形して大減衰力を発揮する高剛性の粘弾性ダンパーを採用し、
建物の主架構を、柱の曲げ剛性が梁の曲げ剛性よりも小さい架構としたことを特徴とする耐震建物。
A high-rigidity frame continuous in the vertical direction is provided inside the multi-layer building, and the column bases of the columns constituting the high-rigidity frame are supported so as to be separated via an axial damper,
The high-rigidity frame is composed of a series of vibration control devices provided in each layer, and the vibration control device has a structure in which a viscoelastic body is sandwiched between steel plates and is greatly deformed by large deformation due to interlayer displacement of the building. Adopting a highly rigid viscoelastic damper that exerts its power ,
Seismic building, characterized in that the main rack structure of the building, bending rigidity of the pillars was smaller Frames than the bending stiffness of the beam.
建物全体の主架構を構成している柱を鋼管内にコンクリートを充填してなる充填鋼管コンクリート柱としたことを特徴とする請求項1記載の耐震建物。 2. The earthquake-resistant building according to claim 1, wherein the pillar constituting the main frame of the entire building is a filled steel pipe concrete pillar formed by filling a steel pipe with concrete.
JP25095399A 1999-09-03 1999-09-03 Earthquake resistant building Expired - Fee Related JP4120740B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25095399A JP4120740B2 (en) 1999-09-03 1999-09-03 Earthquake resistant building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25095399A JP4120740B2 (en) 1999-09-03 1999-09-03 Earthquake resistant building

Publications (2)

Publication Number Publication Date
JP2001073469A JP2001073469A (en) 2001-03-21
JP4120740B2 true JP4120740B2 (en) 2008-07-16

Family

ID=17215475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25095399A Expired - Fee Related JP4120740B2 (en) 1999-09-03 1999-09-03 Earthquake resistant building

Country Status (1)

Country Link
JP (1) JP4120740B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338018A (en) * 2001-05-11 2002-11-27 Nippon Steel Corp Automatic high-rise warehouse
JP5183879B2 (en) * 2006-03-07 2013-04-17 大和ハウス工業株式会社 Vibration control structure
JP6000688B2 (en) * 2012-06-27 2016-10-05 オリエンタル白石株式会社 Artificial ground levitation structure, artificial ground levitation method
JP6197506B2 (en) * 2013-09-05 2017-09-20 株式会社大林組 Damping structure and structure
JP6636747B2 (en) * 2015-08-20 2020-01-29 株式会社竹中工務店 Building damping structure
JP7364335B2 (en) * 2019-01-07 2023-10-18 株式会社竹中工務店 building
CN116290405B (en) * 2023-05-24 2023-09-19 四川省第一建筑工程有限公司 Assembled building connecting device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0686775B2 (en) * 1988-06-13 1994-11-02 住友建設株式会社 Vertical vibration absorber for structures
JPH09296625A (en) * 1996-04-30 1997-11-18 Shimizu Corp Building structure having earthquake-resistant construction
JP3677706B2 (en) * 1997-10-15 2005-08-03 清水建設株式会社 Seismic isolation and control structure
JP3279237B2 (en) * 1997-11-28 2002-04-30 住友金属工業株式会社 Damping building structure frame

Also Published As

Publication number Publication date
JP2001073469A (en) 2001-03-21

Similar Documents

Publication Publication Date Title
JP4120740B2 (en) Earthquake resistant building
JP2007046410A (en) Vibration proof device
JP2007063941A (en) Aseismic support structure of boiler
JP4432208B2 (en) Damper and building using it
JP3728650B2 (en) Column base support structure and earthquake-resistant building
JPH09235894A (en) Aseismatic reinforcing structure for existing building
JP4019302B2 (en) Damping damper
JP3854606B2 (en) Vibration control mechanism
JP2002130370A (en) Seismic isolator
JPH11223041A (en) Vibration control construction for mid-to-low-rise building or structure
JP3629674B2 (en) Building vibration control structure
JP2003155838A (en) Vibration-isolated structure of building
JP3671317B2 (en) Seismic isolation mechanism
JPH0522029B2 (en)
JP3575733B2 (en) Seismic isolation structure of pile
JP2573525B2 (en) Partition wall damping structure
JP3019779B2 (en) Energy conversion type high-rise structure
JP2000291286A (en) Earthquake resistant building
JPH08277650A (en) Bending deformation control type vibration damping structure
JP6181894B1 (en) Axial force introducing device for seismic retrofitting frame
JP5053554B2 (en) Vibration control device
JPH05148918A (en) Double steel pipe column laying structure for building
JP2000064304A (en) Vibration isolation pile
JPH0728429Y2 (en) Elastic-plastic damper
JP2004278002A (en) Unit building with base-isolating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080325

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080415

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110509

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120509

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees