JP4432208B2 - Damper and building using it - Google Patents

Damper and building using it Download PDF

Info

Publication number
JP4432208B2
JP4432208B2 JP2000155391A JP2000155391A JP4432208B2 JP 4432208 B2 JP4432208 B2 JP 4432208B2 JP 2000155391 A JP2000155391 A JP 2000155391A JP 2000155391 A JP2000155391 A JP 2000155391A JP 4432208 B2 JP4432208 B2 JP 4432208B2
Authority
JP
Japan
Prior art keywords
building
piston rod
diameter piston
cylinder body
damper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000155391A
Other languages
Japanese (ja)
Other versions
JP2001336572A (en
Inventor
郁夫 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2000155391A priority Critical patent/JP4432208B2/en
Publication of JP2001336572A publication Critical patent/JP2001336572A/en
Application granted granted Critical
Publication of JP4432208B2 publication Critical patent/JP4432208B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Building Environments (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Fluid-Damping Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ダンパ、特に、二つの構造物の間に介在されて一方の構造物に対する他の構造物の振動を減衰させるために用いて好適なダンパ及びこれを用いた建築物に関する。
【0002】
【発明が解決しようとする課題】
例えば耐震性のために柔構造とされた事業用ビル、事務所ビル、集合住宅、橋梁等の建築物は、風圧又は弱い地震動等により容易に撓み、その床側の下部構造物に対して天井側の上部構造物が水平方向に振動(揺動)し、しかも、それが長く続く場合がある。風圧又は弱い地震では斯かる振動が生じないようにし、また強い地震に起因するものをも含めてその振動を早期に減衰させるために例えば制振壁が用いられるが、このような制振壁としては、粘性体を収容すると共に、床等に固定された容器と、この容器内の粘性体に大部分が浸漬されると共に、上部が天井等に固定された抵抗板とからなるダンパを壁内に配置して、風又は地震による水平方向の床側に対する天井側の移動に基づく容器に対する抵抗板の移動で粘性体を剪断させ、この剪断における粘性剪断抵抗により振動を生じさせないように又は低減して、しかも、振動が生じた場合にはその振動エネルギを吸収して早期にそれを減衰させるようにしたものが知られている。
【0003】
斯かるダンパを用いた制振壁では、その振動の阻止又は低減と減衰とが粘性体の粘度に依存するために、粘度が低い場合には、所望の振動の低減と減衰とを得られ難いのであるが、粘度を高くすると、容器への粘性体の充填が困難となり、充填時間を多く必要とする。
【0004】
また上記のダンパでは、容器内の粘性体に抵抗板の大部分を単に浸漬させたものであるために、床側の下部構造物と天井側の上部構造物とを元の位置に復帰させる原点復帰機能をそれ自体が有していないために、粘性体の粘度が極めて高いと、振動が収まった後に、床側の下部構造物と天井側の上部構造物との位置がずれてしまう虞がある。
【0005】
なお、上記のような問題は、二つの構造物の間に介在されて一方の構造物に対する他の構造物の振動を減衰させるために用いるダンパにおいても同様に生じるのである。
【0006】
本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、振動の弱い場合には剛体のように作用して一方の構造物に対して他方の構造物を振動させないようにでき、一定以上の振動では伸縮変形して振動エネルギを吸収すると共に振動エネルギの吸収後に他方の構造物を一方の構造物に対して元の位置に戻すように動作するダンパ、特に、二つの構造物間に介在されて一方の構造物から他方の構造物に伝達される振動を低減すると共に、早期にそれを減衰させるために用いて好適なダンパを提供することにある。
【0007】
本発明の他の目的とするところは、風圧又は弱い地震動等では剛体のように作用して建築物の下部に対してその上部を振動させないようにでき、一定以上の地震動等では伸縮変形して振動エネルギを吸収すると共に振動エネルギの吸収後に上部を元の位置に戻すように動作するダンパ、特に、建築物の上部と下部との間に介在されて下部に対する上部の相対的な振動を低減すると共に、早期にそれを減衰させるために用いて好適なダンパ及びこのダンパを用いた建築物を提供することにある。
【0008】
【課題を解決するための手段】
本発明のダンパは、シリンダ本体と、このシリンダ本体を二室に画成するように、シリンダ本体内に配されていると共に、当該二室を連通するオリフィスを有したピストンと、一端部がピストンに連結されて、シリンダ本体の一端部を貫通してシリンダ本体外に突出された大径のピストンロッドと、一端部がピストンに連結されて、シリンダ本体の他端部を貫通してシリンダ本体外に突出された小径のピストンロッドと、シリンダ本体の二室に充填された圧縮性の加圧流体とを具備している。
【0009】
斯かるダンパによれば、大径のピストンロッドと小径のピストンロッドとを具備し、ピストンにより画成されるシリンダ本体の二室に加圧流体が充填されているために、大径のピストンロッドと小径のピストンロッドとの面積差と加圧流体の圧力とに基づく力以上の伸長力が外部から付加されない限り、剛体のように振る舞い、したがって構造物をしっかり保持でき、それ以上の伸長力が外部から付加されると、オリフィスを介する加圧流体により外部からの運動エネルギを可及的速やかに吸収して構造物の運動を減衰させることができる。
【0010】
加えて、本発明のダンパによれば、大径のピストンロッドと小径のピストンロッドとの面積差と加圧流体の圧力とに基づく力、すなわち自身の引っ張り力が構造物に印加されるために、運動後の構造物を元の位置に戻すいわゆる原点復帰機能を得ることができる。
【0011】
ダンパは、好ましい例では、建築物用であって、建築物の上部とこの上部に対して相対的に水平方向に移動可能な建築物の下部との間に介在されるように構成されており、この場合、小径のピストンロッドの他端部及びシリンダ本体のうちの一方は斜材を介して建築物の上部に、小径のピストンロッドの他端部及びシリンダ本体のうちの他方は建築物の下部に夫々連結されるように構成されていても、小径のピストンロッドの他端部及びシリンダ本体のうちの一方は建築物の上部に、小径のピストンロッドの他端部及びシリンダ本体のうちの他方は斜材を介して建築物の下部に夫々連結されるように構成されていてもよい。
【0012】
ダンパが建築物用であれば、斯かるダンパが用いられた建築物の上部は、風圧により横揺れしなく、したがって、風による不快な横揺れを居住者に与えなくなる上に、下部に対して上部を水平振動させてこれによりダンパを伸縮させるような地震においては、オリフィスを介する加圧流体により斯かる振動を可及的速やかに減衰させることができ、しかも、振動後において上部を下部に対する元の位置に戻すことができる。
【0013】
建築物用のダンパにおいては、上部が柱の上部又は天井側の横部材で、下部が床の横部材であってもよく、また、上部が天井側の横部材で、下部が柱の下部又は床の横部材であってもよい。
【0014】
ダンパは、好ましくは、建築物の制振壁用のものであるが、これに限定されず、建築物のその他の部位用のものであってもよく、更には、工作機械、その他の振動が生じる機械用のものであってよい。
【0015】
圧縮性の加圧流体は、好ましくは、シリコン系の液体からなるが、これに限定されず、その他の流体であってもよい。
【0016】
本発明の建築物は、上部と、この上部に対して相対的に水平方向に移動可能な下部と、上部及び下部間に介在された上記のダンパとを具備している。
【0017】
斯かる本発明の建築物によれば、風圧又は弱い地震動等では下部に対して上部が相対的に水平方向に振動しなく、一定以上の地震動等では下部に対する上部の相対的な水平方向の振動が低減されると共に、早期にそれが減衰され、しかも、振動後、上部が下部に対しての元の位置に戻されるようになる。
【0018】
【発明の実施の形態】
次に本発明及びその実施の形態を、図を参照して更に詳細に説明する。なお、本発明はこれら実施の形態に何等限定されないのである。
【0019】
図1において、本例のダンパ5は、シリンダ本体31と、シリンダ本体31を二室32及び33に画成するように、シリンダ本体31内に配されていると共に、二室32及び33を連通する少なくとも一個のオリフィス34を有したピストン35と、一端部36がピストン35に連結されて、シリンダ本体31の一端部37を貫通してシリンダ本体31外に突出された大径のピストンロッド38と、一端部39がピストン35に連結されて、シリンダ本体31の他端部40を貫通してシリンダ本体31外に突出されており、ピストンロッド38の径よりも小径のピストンロッド41と、シリンダ本体31の二室32及び33に充填された例えばシリコンオイル等の圧縮性を有した加圧流体42と、ピストンロッド41の他端部51に固着された連結部材52と、シリンダ本体31に固着された連結部材53とを具備して、ピストンロッド38及び41の伸びる方向であるZ方向に伸縮変形自在である。
【0020】
以上のダンパ5は、連結部材52又は53にZ方向の引っ張り外力が加わらない場合には、換言すれば、連結部材52と連結部材53とをZ方向に関して互いに引き離そうとする外力が加わらない場合には、二室32及び33における受圧面積の相違によるピストン35に加わる一端部37に向かう自身の力、すなわちZ方向に関する自身の引っ張り力により、Z方向に関して可能な最小に縮められた状態になる。そして、連結部材52と連結部材53とをZ方向に関して互いに引き離そうとする外力が、二室32及び33における受圧面積の相違によるピストン35に加わる一端部37に向かう自身の力よりも大きくなると、連結部材52と連結部材53とは、Z方向に関して互いに引き離されるようになり、ダンパ5は、Z方向に関して伸張されることになる一方、伸張後に連結部材52と連結部材53とをZ方向に関して互いに引き離そうとする外力が自身の引っ張り力よりも小さくなると、ダンパ5は、Z方向に関して縮むことになる。この伸縮において、ダンパ5は、オリフィス34を介する加圧流体42の室32と室33との間の移動により可及的速やかにダンパ5に加わる運動エネルギを減衰させることになる。
【0021】
ダンパ5では、大径のピストンロッド38と小径のピストンロッド41との面積差と加圧流体42の圧力とに基づく力以上の伸長力が外部から付加されない限り、剛体のように振る舞い、したがって例えば連結部材52に取り付けられた構造体をしっかり保持でき、それ以上の伸長力が外部から付加されると、オリフィス34を介する加圧流体42により斯かる構造体の運動エネルギを可及的速やかに吸収して構造体の運動を減衰させることができる。加えて、ダンパ5によれば、大径のピストンロッド38と小径のピストンロッド41との面積差と加圧流体42の圧力とに基づく力、すなわち自身の引っ張り力が構造体に印加されるために、移動後の構造体を元の位置に戻すことができる。
【0022】
以上のダンパ5の複数個を図2に示す建築物1の壁に設置して制振壁2を構成した例を説明する。本例の建築物1は、多層階からなり、下階3の制振壁2と上階4の制振壁2とは同様に構成されているので、以下、下階3について説明する。
【0023】
下階3の一つの制振壁2においてダンパ5が二個使用されており、一方のダンパ5は、小径のピストンロッド41の他端部51が連結部材52及び斜材6を介して建築物1の上部としての柱7の上部に、シリンダ本体31が連結部材53を介して建築物1の下部としての床の横部材8に夫々回動自在に連結されており、他方のダンパ5は、小径のピストンロッド41の他端部51が連結部材52及び斜材9を介して建築物1の上部としての、柱7に隣接する柱10の上部に、シリンダ本体31が連結部材53を介して横部材8に夫々回動自在に連結されている。
【0024】
鋼材からなる斜材6は、その一端部で軸11を介して柱7の上部に、その他端部で軸12を介して一方のダンパ5の連結部材52に夫々壁面内で回動自在に連結されており、鋼材からなる斜材9は、その一端部で軸13を介して柱10の上部に、その他端部で軸14を介して他方のダンパ5の連結部材52に夫々壁面内で回動自在に連結されており、各ダンパ5の連結部材53は、軸15を介して横部材8に夫々壁面内で回動自在に連結されている。
【0025】
以上の建築物1では、常時においては、二室32及び33における受圧面積の相違による各ダンパ5のZ方向の縮小力により斜材6及び9は引っ張られている。そして、風等により多少の水平力が建築物1に付加されても又は小さな地震等により多少の水平力が建築物1に付加されても、二室32及び33における受圧面積の相違による両ダンパ5の釣り合った引っ張り力により、横部材8に対して天井側の横部材16が水平方向Hに相対的に振動することがないようになっている。
【0026】
建築物1において、地震動等により大きな水平力が横部材8に対して横部材16に相対的に付加されて、横部材8に対して横部材16が相対的に水平方向Hに振動すると、各ダンパ5は交互にZ方向に関して伸縮変形されて、斯かるダンパ5の伸縮変形において、オリフィス34を介する加圧流体42の室32と室33との間の移動により横部材8に対する横部材16の水平方向Hの振動を可及的速やかに減衰させることになる。横部材16に地震に基づく水平方向Hの力が加わらなくなると、両ダンパ5の釣り合った引っ張り力により横部材16は、横部材8に対して元の位置に復帰される。
【0027】
なお、図2において、斜材6及び9の夫々の一端部を軸11及び13を介して横部材16に連結してもよく、また、両ダンパ5の連結部材53を軸15を介して横部材16に連結する一方、斜材6及び9の夫々の一端部を柱7及び10の下部又は横部材8に連結してもよく、更には、各ダンパ5の連結部材53を軸12及び14を介して斜材6及び9の他端部に、各ダンパ5の連結部材52を軸12及び14を介して横部材8若しくは16又は柱7及び10の上部若しくは下部に連結してもよく、加えて、軸11〜15を球面継手に代えて、図2の紙面に直交する方向の振動においても作動し得るようにしてもよい。
【0028】
【発明の効果】
本発明によれば、風圧又は地震動等で加わる力が弱い場合には剛体のように作用して建築物の上部のような一方の構造物に対して建築物の下部のような他方の構造物を振動させないようにでき、一定以上の振動では伸縮変形して振動エネルギを吸収すると共に振動エネルギの吸収後に他方の構造物を一方の構造物に対して元の位置に戻すように動作するダンパ、特に、二つの構造物間に介在されて一方の構造物から他方の構造物に伝達される振動を低減すると共に、早期にそれを減衰させるために用いて好適なダンパ及びこのダンパを用いた建築物を提供することができる。
【図面の簡単な説明】
【図1】本発明の一実施態様の好ましい例の断面図である。
【図2】図1に示す例を建築物に適用した例の断面図である。
【符号の説明】
5 ダンパ
31 シリンダ本体
32、33 室
34 オリフィス
35 ピストン
38 大径のピストンロッド
41 小径のピストンロッド
42 加圧流体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a damper, and more particularly, to a damper that is interposed between two structures and is suitable for damping vibrations of another structure with respect to one structure and a building using the same.
[0002]
[Problems to be solved by the invention]
For example, buildings such as commercial buildings, office buildings, apartment buildings, and bridges that are flexible for earthquake resistance are easily deflected by wind pressure or weak earthquake motion, and the ceiling is lower than the lower structures on the floor side. The upper structure on the side may vibrate (oscillate) in the horizontal direction, and this may continue for a long time. In order to prevent such vibrations from occurring in wind pressure or weak earthquakes, and to dampen the vibrations early, including those caused by strong earthquakes, for example, damping walls are used. Is a container in which a viscous material is contained and a damper comprising a container fixed to the floor and the like, and a resistance plate whose most part is immersed in the viscous material in the container and whose upper part is fixed to the ceiling or the like is installed in the wall. The viscous body is sheared by the movement of the resistance plate with respect to the container based on the movement of the ceiling side with respect to the horizontal floor side due to wind or earthquake, and vibration is not generated or reduced by the viscous shear resistance in this shearing. Moreover, it is known that when vibration occurs, the vibration energy is absorbed and attenuated at an early stage.
[0003]
In the damping wall using such a damper, since the prevention or reduction and damping of the vibration depend on the viscosity of the viscous body, it is difficult to obtain the desired reduction and damping of the vibration when the viscosity is low. However, when the viscosity is increased, it becomes difficult to fill the container with the viscous material, and a long filling time is required.
[0004]
In the above damper, since most of the resistance plate is simply immersed in the viscous body in the container, the origin for returning the floor-side lower structure and the ceiling-side upper structure to their original positions. If the viscosity of the viscous material is extremely high, the position of the lower structure on the floor side and the upper structure on the ceiling side may deviate after the vibration is settled. is there.
[0005]
The problem as described above also occurs in a damper that is interposed between two structures and is used to damp vibrations of the other structure with respect to one structure.
[0006]
The present invention has been made in view of the above-described points, and the object of the present invention is to act like a rigid body when vibration is weak and to prevent the other structure from vibrating with respect to one structure. A damper that operates to move back and forth with respect to one structure after absorbing the vibrational energy and absorbs the vibrational energy when the vibration exceeds a certain level. An object of the present invention is to provide a suitable damper that is used to reduce vibration transmitted between one structure and the other structure interposed between two structures, and to dampen it at an early stage.
[0007]
Another object of the present invention is that it can act like a rigid body in wind pressure or weak seismic motion, etc., so that the upper part does not vibrate with respect to the lower part of the building, and it expands and contracts in seismic motion over a certain level. A damper that absorbs vibration energy and operates to return the upper part to its original position after absorbing the vibration energy, in particular, interposed between the upper and lower parts of the building to reduce the relative vibration of the upper part with respect to the lower part Another object of the present invention is to provide a damper and a building using the damper that are suitable for early damping.
[0008]
[Means for Solving the Problems]
The damper according to the present invention includes a cylinder body, a piston disposed in the cylinder body so as to define the cylinder body in two chambers, and an orifice communicating with the two chambers, and one end portion of which is a piston. A large-diameter piston rod that protrudes out of the cylinder body through one end of the cylinder body and one end is connected to the piston and penetrates the other end of the cylinder body to the outside of the cylinder body A small-diameter piston rod projecting into the cylinder, and a compressible pressurized fluid filled in two chambers of the cylinder body.
[0009]
According to such a damper, the large-diameter piston rod is provided with the large-diameter piston rod and the small-diameter piston rod, and the pressurized fluid is filled in the two chambers of the cylinder body defined by the piston. As long as an extension force greater than the force based on the area difference between the piston rod and the small-diameter piston rod and the pressure of the pressurized fluid is not applied from the outside, it behaves like a rigid body and can thus hold the structure firmly, and the extension force beyond that When added from the outside, the kinetic energy from the outside can be absorbed as quickly as possible by the pressurized fluid through the orifice, and the motion of the structure can be damped.
[0010]
In addition, according to the damper of the present invention, the force based on the area difference between the large-diameter piston rod and the small-diameter piston rod and the pressure of the pressurized fluid, that is, its own pulling force is applied to the structure. Thus, a so-called origin return function for returning the structure after movement to the original position can be obtained.
[0011]
In a preferred example, the damper is for a building and is configured to be interposed between an upper portion of the building and a lower portion of the building that is movable in a horizontal direction relative to the upper portion. In this case, the other end of the small-diameter piston rod and one of the cylinder main bodies are placed on the upper part of the building via the diagonal member, and the other end of the small-diameter piston rod and the cylinder main body is the other of the building. The other end of the small-diameter piston rod and one of the cylinder bodies are connected to the upper part of the building, and the other end of the small-diameter piston rod and the cylinder main body The other may be configured to be respectively connected to the lower part of the building via diagonal materials.
[0012]
If the damper is used for a building, the upper part of the building in which such a damper is used does not roll due to wind pressure, and therefore does not give the residents unpleasant rolling due to the wind, and against the lower part. In earthquakes where the upper part is oscillated horizontally and the damper is expanded or contracted, the vibration can be damped as quickly as possible by the pressurized fluid through the orifice. It can be returned to the position.
[0013]
In a damper for a building, the upper part may be an upper part of a pillar or a horizontal member on the ceiling side, the lower part may be a horizontal member on the floor, the upper part may be a horizontal member on the ceiling side, and the lower part may be a lower part of the pillar or It may be a floor transverse member.
[0014]
The damper is preferably used for a damping wall of a building, but is not limited thereto, and may be used for other parts of the building. Further, the damper may be a machine tool or other vibration. It may be for the resulting machine.
[0015]
The compressive pressurized fluid is preferably made of a silicon-based liquid, but is not limited thereto, and may be other fluids.
[0016]
The building of the present invention includes an upper part, a lower part movable in a horizontal direction relative to the upper part, and the damper interposed between the upper part and the lower part.
[0017]
According to such a building of the present invention, the upper part does not vibrate relatively horizontally with respect to the lower part due to wind pressure or weak ground motion, etc., and the relative horizontal vibration of the upper part with respect to the lower part due to seismic motions exceeding a certain level. Is reduced early, and after vibration, the upper part is returned to its original position relative to the lower part.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention and its embodiments will be described in more detail with reference to the drawings. The present invention is not limited to these embodiments.
[0019]
In FIG. 1, the damper 5 of this example is arranged in the cylinder body 31 so as to define the cylinder body 31 and the cylinder body 31 in the two chambers 32 and 33, and communicates the two chambers 32 and 33. A piston 35 having at least one orifice 34, one end 36 connected to the piston 35, a large-diameter piston rod 38 penetrating the one end 37 of the cylinder body 31 and projecting outside the cylinder body 31; The one end 39 is connected to the piston 35, passes through the other end 40 of the cylinder body 31, protrudes outside the cylinder body 31, and has a piston rod 41 smaller in diameter than the piston rod 38, and the cylinder body. Compressed fluid 42 having compressibility such as silicon oil filled in the two chambers 32 and 33 of 31 and the other end 51 of the piston rod 41 are fixed. Connecting a member 52, comprises a connecting member 53 secured to the cylinder body 31, a Z direction telescopically deformed is the extending direction of the piston rod 38 and 41.
[0020]
In the damper 5 described above, when a tensile external force in the Z direction is not applied to the connecting member 52 or 53, in other words, when an external force that pulls the connecting member 52 and the connecting member 53 apart from each other in the Z direction is not applied. Is reduced to the minimum possible in the Z direction by its own force toward the one end 37 applied to the piston 35 due to the difference in pressure receiving area in the two chambers 32 and 33, that is, its own pulling force in the Z direction. When the external force that tries to separate the connecting member 52 and the connecting member 53 from each other with respect to the Z direction is greater than its own force toward the one end 37 applied to the piston 35 due to the difference in the pressure receiving area in the two chambers 32 and 33, The member 52 and the connecting member 53 are separated from each other with respect to the Z direction, and the damper 5 is extended with respect to the Z direction. On the other hand, after extension, the connecting member 52 and the connecting member 53 are separated from each other with respect to the Z direction. When the external force to be reduced becomes smaller than its own pulling force, the damper 5 contracts in the Z direction. In this expansion and contraction, the damper 5 attenuates the kinetic energy applied to the damper 5 as quickly as possible by the movement of the pressurized fluid 42 between the chamber 32 and the chamber 33 via the orifice 34.
[0021]
The damper 5 behaves like a rigid body unless an extension force greater than the force based on the area difference between the large-diameter piston rod 38 and the small-diameter piston rod 41 and the pressure of the pressurized fluid 42 is applied from the outside. When the structure attached to the connecting member 52 can be firmly held and a further extension force is applied from the outside, the kinetic energy of the structure is absorbed as quickly as possible by the pressurized fluid 42 through the orifice 34. Thus, the motion of the structure can be attenuated. In addition, according to the damper 5, a force based on the area difference between the large-diameter piston rod 38 and the small-diameter piston rod 41 and the pressure of the pressurized fluid 42, that is, its own pulling force is applied to the structure. In addition, the moved structure can be returned to the original position.
[0022]
An example in which the damping wall 2 is configured by installing a plurality of the dampers 5 on the wall of the building 1 shown in FIG. 2 will be described. Since the building 1 of this example consists of a multi-story floor, the damping wall 2 of the lower floor 3 and the damping wall 2 of the upper floor 4 are comprised similarly, Therefore Hereinafter, the lower floor 3 is demonstrated.
[0023]
Two dampers 5 are used in one damping wall 2 of the lower floor 3, and one damper 5 is a building in which the other end portion 51 of the small-diameter piston rod 41 is connected via the connecting member 52 and the diagonal member 6. A cylinder main body 31 is rotatably connected to a horizontal member 8 of a floor as a lower part of the building 1 via a connecting member 53 on an upper part of a pillar 7 as an upper part of 1. The other end portion 51 of the small-diameter piston rod 41 is connected to the upper portion of the column 10 adjacent to the column 7 as the upper portion of the building 1 via the connecting member 52 and the diagonal member 9. Each of the lateral members 8 is rotatably connected.
[0024]
The diagonal member 6 made of steel is connected to the upper part of the column 7 via the shaft 11 at one end and to the connecting member 52 of one damper 5 via the shaft 12 at the other end so as to be rotatable within the wall surface. The diagonal member 9 made of steel is rotated within the wall surface at one end portion thereof on the upper portion of the column 10 via the shaft 13 and at the other end portion thereof on the connecting member 52 of the other damper 5 via the shaft 14. The connecting members 53 of the dampers 5 are connected to the transverse members 8 via the shafts 15 so as to be rotatable within the wall surfaces.
[0025]
In the building 1 described above, the diagonal members 6 and 9 are normally pulled by the reducing force in the Z direction of each damper 5 due to the difference in pressure receiving areas in the two chambers 32 and 33. Even if some horizontal force is applied to the building 1 due to wind or the like, or both horizontal force is applied to the building 1 due to a small earthquake or the like, both dampers due to the difference in pressure receiving area in the two chambers 32 and 33 The transverse member 16 on the ceiling side does not vibrate relatively in the horizontal direction H with respect to the transverse member 8 by the balanced tensile force of 5.
[0026]
In the building 1, when a large horizontal force is applied to the transverse member 16 relative to the transverse member 8 due to seismic motion or the like, and the transverse member 16 vibrates in the horizontal direction H relative to the transverse member 8, The dampers 5 are alternately expanded and contracted in the Z direction, and in the expansion and contraction of the dampers 5, the movement of the pressurized fluid 42 between the chambers 32 and 33 through the orifice 34 causes the lateral member 16 to move relative to the lateral member 8. The vibration in the horizontal direction H is attenuated as quickly as possible. When the horizontal member 16 is no longer applied with the horizontal force H due to the earthquake, the horizontal member 16 is returned to the original position with respect to the horizontal member 8 by the balanced tensile force of the two dampers 5.
[0027]
In FIG. 2, one end of each of the diagonal members 6 and 9 may be connected to the horizontal member 16 via the shafts 11 and 13, and the connecting member 53 of both dampers 5 may be connected to the horizontal member 16 via the shaft 15. While connecting to the member 16, one end of each of the diagonal members 6 and 9 may be connected to the lower part of the columns 7 and 10 or the lateral member 8. Further, the connecting member 53 of each damper 5 is connected to the shafts 12 and 14. The connecting members 52 of the dampers 5 may be connected to the other ends of the diagonal members 6 and 9 via the shafts 12 and 14 to the horizontal members 8 or 16 or the upper or lower portions of the pillars 7 and 10 via the shafts 12 and 14, In addition, the shafts 11 to 15 may be replaced with spherical joints so that the shafts 11 to 15 can operate even in vibrations in a direction perpendicular to the paper surface of FIG.
[0028]
【The invention's effect】
According to the present invention, when the force applied by wind pressure or earthquake motion is weak, the other structure such as the lower part of the building acts on one structure such as the upper part of the building by acting like a rigid body. A damper that operates to return the other structure to its original position with respect to one structure after absorbing the vibration energy while absorbing and absorbing vibration energy when the vibration exceeds a certain level, Particularly, a damper that is interposed between two structures to reduce vibrations transmitted from one structure to the other structure and to attenuate it at an early stage, and a construction using this damper Things can be provided.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a preferred example of one embodiment of the present invention.
FIG. 2 is a cross-sectional view of an example in which the example shown in FIG. 1 is applied to a building.
[Explanation of symbols]
5 Damper 31 Cylinder body 32, 33 Chamber 34 Orifice 35 Piston 38 Large diameter piston rod 41 Small diameter piston rod 42 Pressurized fluid

Claims (7)

シリンダ本体と、このシリンダ本体を二室に画成するように、シリンダ本体内に配されていると共に、当該二室を連通するオリフィスを有したピストンと、一端部がピストンに連結されて、シリンダ本体の一端部を貫通してシリンダ本体外に突出された大径のピストンロッドと、一端部がピストンに連結されて、シリンダ本体の他端部を貫通してシリンダ本体外に突出されている共に大径のピストンロッドよりも小径のピストンロッドと、シリンダ本体の二室に充填されたシリコン系の液体からなる圧縮性の加圧流体とを具備している建築物等の構造物用のダンパであって、小径のピストンロッドの他端部及びシリンダ本体のうちの一方が建築物の上部等の一方の構造物に、小径のピストンロッドの他端部及びシリンダ本体のうちの他方が建築物の下部等の他方の構造物に夫々連結されて建築物の上部等の一方の構造物と当該建築物の下部等の他方の構造物との間に介在されており、一方の構造物に対する他方の構造物の振動が弱く、大径のピストンロッドと小径のピストンロッドとの面積差と加圧流体の圧力とに基づく力以上の伸長力を小径のピストンロッドの他端部及びシリンダ本体のうちの一方と小径のピストンロッドの他端部及びシリンダ本体のうちの他方との間で受容しない場合には、剛体のように作用して一方の構造物に対しての他方の構造物の振動を阻止する一方、一方の構造物に対する他方の構造物の一定以上の振動で大径のピストンロッドと小径のピストンロッドとの面積差と加圧流体の圧力とに基づく力以上の伸長力を小径のピストンロッドの他端部及びシリンダ本体のうちの一方と小径のピストンロッドの他端部及びシリンダ本体のうちの他方との間で受容する場合には、伸縮変形してオリフィスを介する加圧流体の流動により他方の構造物の振動エネルギを吸収すると共に当該振動エネルギの吸収後に他方の構造物を一方の構造物に対して元の位置に戻すようになっているダンパ。  A cylinder body, a piston having an orifice communicating with the two chambers, and one end connected to the piston so as to define the cylinder body in two chambers. A large-diameter piston rod that protrudes outside the cylinder body through one end of the main body, and one end that is connected to the piston and protrudes outside the cylinder main body through the other end of the cylinder body A damper for a structure such as a building having a piston rod having a smaller diameter than a large-diameter piston rod and a compressible pressurized fluid made of a silicon-based liquid filled in the two chambers of the cylinder body. The other end of the small-diameter piston rod and one of the cylinder bodies are on one structure such as the upper part of the building, and the other end of the small-diameter piston rod and the other cylinder body are on the other side. It is connected to the other structure such as the lower part of the building and is interposed between one structure such as the upper part of the building and the other structure such as the lower part of the building. The vibration of the other structure is weak, and an extension force greater than the force based on the area difference between the large diameter piston rod and the small diameter piston rod and the pressure of the pressurized fluid is applied to the other end of the small diameter piston rod and the cylinder body. If it is not received between one of the other ends of the small-diameter piston rod and the other cylinder body, it acts like a rigid body and vibrates the other structure relative to one structure. On the other hand, when the vibration of one structure with respect to one structure exceeds a certain level, the extension force exceeding the force based on the area difference between the large diameter piston rod and the small diameter piston rod and the pressure of the pressurized fluid is reduced. The other end of the piston rod and When it is received between one of the cylinder bodies and the other end of the small-diameter piston rod and the other of the cylinder bodies, the structure of the other structure is deformed by expansion and contraction and the flow of pressurized fluid through the orifice. A damper configured to absorb vibration energy and return the other structure to the original position with respect to one structure after the vibration energy is absorbed. 建築物用であって、一方の構造物である建築物の上部とこの上部に対して相対的に水平方向に移動可能な他方の構造物である建築物の下部との間に介在されるように構成されている請求項1に記載のダンパ。  It is for a building and is interposed between the upper part of the building which is one structure and the lower part of the building which is the other structure movable in a horizontal direction relative to the upper part. The damper of Claim 1 comprised by these. 小径のピストンロッドの他端部及びシリンダ本体のうちの一方は斜材を介して建築物の上部に、小径のピストンロッドの他端部及びシリンダ本体のうちの他方は建築物の下部に夫々連結されるように構成されている請求項2に記載のダンパ。  One of the other end of the small-diameter piston rod and the cylinder body is connected to the upper part of the building via an oblique member, and the other end of the small-diameter piston rod and the cylinder body is connected to the lower part of the building. The damper of Claim 2 comprised so that it may be carried out. 小径のピストンロッドの他端部及びシリンダ本体のうちの一方は、建築物の上部に、小径のピストンロッドの他端部及びシリンダ本体のうちの他方は、斜材を介して建築物の下部に夫々連結されるように構成されている請求項2に記載のダンパ。  One of the other end of the small-diameter piston rod and the cylinder body is at the top of the building, and the other end of the small-diameter piston rod and the other of the cylinder body is at the bottom of the building through the diagonal. The damper according to claim 2, wherein the damper is configured to be coupled to each other. 建築物の上部は、柱の上部又は天井側の横部材であり、建築物の下部は、柱の下部又は床の横部材である請求項2から4のいずれか一項に記載のダンパ。  The damper according to any one of claims 2 to 4, wherein the upper part of the building is an upper part of the pillar or a horizontal member on the ceiling side, and the lower part of the building is a lower part of the pillar or a horizontal member on the floor. 建築物の制振壁用である請求項1から5のいずれか一項に記載のダンパ。  The damper according to any one of claims 1 to 5, which is used for a damping wall of a building. 請求項1から6のいずれか一項に記載のダンパを具備した建築物。  A building comprising the damper according to any one of claims 1 to 6.
JP2000155391A 2000-05-25 2000-05-25 Damper and building using it Expired - Fee Related JP4432208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000155391A JP4432208B2 (en) 2000-05-25 2000-05-25 Damper and building using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000155391A JP4432208B2 (en) 2000-05-25 2000-05-25 Damper and building using it

Publications (2)

Publication Number Publication Date
JP2001336572A JP2001336572A (en) 2001-12-07
JP4432208B2 true JP4432208B2 (en) 2010-03-17

Family

ID=18660341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000155391A Expired - Fee Related JP4432208B2 (en) 2000-05-25 2000-05-25 Damper and building using it

Country Status (1)

Country Link
JP (1) JP4432208B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888903A (en) * 2012-10-22 2013-01-23 株洲时代新材料科技股份有限公司 Sleeved viscous damper capable of damping variable parameters and design method thereof
CN110219925A (en) * 2019-07-02 2019-09-10 河海大学常州校区 A kind of high-speed rail contact line damper
CN110332273A (en) * 2019-07-02 2019-10-15 河海大学常州校区 A kind of high-speed rail contact line damper

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101806104B (en) * 2010-03-31 2011-08-31 东南大学 Suspended frequency modulation mass damper
JP5874336B2 (en) * 2011-11-15 2016-03-02 オイレス工業株式会社 Vibration control device
CN102912879B (en) * 2012-11-06 2014-10-15 沈阳建筑大学 Sealing plate and sealing hole viscous damper
JP5661093B2 (en) * 2012-12-27 2015-01-28 ヤマハモーターハイドロリックシステム株式会社 Shock absorber, front fork and saddle riding type vehicle
US9844454B2 (en) 2013-10-31 2017-12-19 Spring Loaded Technology Incorporated Brace and tension springs for a brace
US9416838B2 (en) * 2014-06-27 2016-08-16 Spring Loaded Technology Incorporated Hydraulic tension spring
JP7197977B2 (en) 2017-12-28 2022-12-28 旭化成ホームズ株式会社 Frame structure
CN110219924A (en) * 2019-07-02 2019-09-10 河海大学常州校区 A kind of high-speed rail contact line damper

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888903A (en) * 2012-10-22 2013-01-23 株洲时代新材料科技股份有限公司 Sleeved viscous damper capable of damping variable parameters and design method thereof
CN102888903B (en) * 2012-10-22 2014-07-09 株洲时代新材料科技股份有限公司 Sleeved viscous damper capable of damping variable parameters and design method thereof
CN110219925A (en) * 2019-07-02 2019-09-10 河海大学常州校区 A kind of high-speed rail contact line damper
CN110332273A (en) * 2019-07-02 2019-10-15 河海大学常州校区 A kind of high-speed rail contact line damper

Also Published As

Publication number Publication date
JP2001336572A (en) 2001-12-07

Similar Documents

Publication Publication Date Title
US6397528B1 (en) Coupled truss systems with damping for seismic protection of buildings
JP4432208B2 (en) Damper and building using it
JP2004068289A (en) Earthquake proof frame
JPH1136657A (en) Base isolation device
JP4212610B2 (en) Seismic isolation structure
JP3843174B2 (en) Seismic isolation structure
JP3677712B2 (en) Seismic isolation and control building
JPH0438936B2 (en)
JPH11200660A (en) Vibration control structure for construction
JPH0477112B2 (en)
Aydın et al. Experiments of tuned liquid damper (TLD) on the reduced shear frame model under harmonic loads
JP2001295499A (en) Base isolation mechanism for structure
JP2008144362A (en) Vibration control structure and vibration control method for building
JP2009121523A (en) Base isolation device
JP2003148545A (en) Hydraulic damping device
JP2001073469A (en) Column structure and earthquake resistant building
JP5183879B2 (en) Vibration control structure
JP2573525B2 (en) Partition wall damping structure
JP7488747B2 (en) Vibration control device
JP3463110B2 (en) Three-dimensional seismic isolation device for seismic isolation floor
JP7370199B2 (en) Vibration damping reinforcement system
JPH10280726A (en) Vibration control mechanism
JP2001207676A (en) Damping structure for building
JP2002098188A (en) Vibration isolation structure with damping function
JP2011099538A (en) Vertical base isolation system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091214

R150 Certificate of patent or registration of utility model

Ref document number: 4432208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130108

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140108

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees