JP4941601B2 - Seismic isolation device - Google Patents

Seismic isolation device Download PDF

Info

Publication number
JP4941601B2
JP4941601B2 JP2011034027A JP2011034027A JP4941601B2 JP 4941601 B2 JP4941601 B2 JP 4941601B2 JP 2011034027 A JP2011034027 A JP 2011034027A JP 2011034027 A JP2011034027 A JP 2011034027A JP 4941601 B2 JP4941601 B2 JP 4941601B2
Authority
JP
Japan
Prior art keywords
vibration energy
stacking direction
plastic metal
yield point
seismic isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011034027A
Other languages
Japanese (ja)
Other versions
JP2011133112A (en
Inventor
充 宮崎
幸弘 細野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oiles Corp
Original Assignee
Oiles Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oiles Corp filed Critical Oiles Corp
Priority to JP2011034027A priority Critical patent/JP4941601B2/en
Publication of JP2011133112A publication Critical patent/JP2011133112A/en
Application granted granted Critical
Publication of JP4941601B2 publication Critical patent/JP4941601B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Vibration Dampers (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Springs (AREA)

Description

本発明は、建築構造物並びに土木構造物を地震から保護するため使用される積層体からなる免震装置に関し、小さな地震から大きな地震までの広い範囲の地震に対して効果的な免震効果を得ることができる免震装置に関する。   The present invention relates to a seismic isolation device composed of a laminate used to protect a building structure and a civil engineering structure from an earthquake, and has an effective seismic isolation effect for a wide range of earthquakes from small earthquakes to large earthquakes. It relates to seismic isolation devices that can be obtained.

ゴム等からなる弾性層と鋼板等からなる剛性層とが交互に積層されている積層ゴムと、この積層ゴムの内周面で規定された中空部に配された塑性変形部材である鉛とを具備した鉛入り免震装置は知られている。   A laminated rubber in which an elastic layer made of rubber or the like and a rigid layer made of steel plate or the like are alternately laminated, and lead that is a plastic deformation member disposed in a hollow portion defined by the inner peripheral surface of the laminated rubber The lead-containing seismic isolation device is known.

斯かる免震装置に対しては、従来、人の生命の安全や構造物の崩壊を防止する観点から大規模の地震を想定した免震設計がなされている結果、製造された免震装置は大規模の地震時に効果が生じるようになっている。   For such a seismic isolation device, the seismic isolation device that has been designed to assume a large-scale earthquake from the viewpoint of preventing the safety of human life and the collapse of structures has been made. It is effective for large-scale earthquakes.

したがって、建築構造物又は土木構造物に用いた斯かる免震装置は、大規模の地震では所定の性能を発揮するものの、地震発生頻度の割合高い中小規模の地震では、大規模の地震用に設定された高い値の鉛の降伏点により充分な免震効果を発揮できず、地震振動を充分に低減できないまま建築構造物又は土木構造物に伝達してしまい、建築構造物又は土木構造物を中小規模の地震に対しては免震装置を設置しない状態とあまり差のない状態で支持することになる。これに対して、中小規模の地震を想定して設計された免震装置は、大規模の地震時の安全性に欠ける結果となるため、建築構造物又は土木構造物に用いる免震装置に対しては大規模の地震を想定した免震設計はやむを得ないこととして常識化している。   Therefore, such a seismic isolation device used for a building structure or a civil engineering structure will exhibit a specified performance in a large-scale earthquake, but it is suitable for a large-scale earthquake in a small-scale earthquake with a high percentage of earthquake occurrence. The set high yield point of lead cannot provide sufficient seismic isolation effect, and the seismic vibration cannot be sufficiently reduced and transmitted to the building structure or civil engineering structure. For small and medium-sized earthquakes, it will be supported in a state where there is not much difference from the state where seismic isolation devices are not installed. In contrast, seismic isolation devices designed for medium and small-scale earthquakes are not safe at the time of large-scale earthquakes. In the past, seismic isolation design assuming a large-scale earthquake has become common sense as unavoidable.

特許第2883219号掲載公報Japanese Patent No. 2883219 特開2003−21193号公報JP 2003-21193 A

このような二律背反の問題を解決する手段として、鉛等の塑性変形部材の断面積を変化させる技術が特許文献1及び特許文献2で提案されている。   As means for solving such a trade-off problem, Patent Documents 1 and 2 propose a technique for changing the cross-sectional area of a plastic deformation member such as lead.

特許文献1には、荷重支承部内に配されるエネルギ吸収部である鉛体の径を荷重支承部の高さ方向の中間部と上下端部とで変え、しかも、鉛体の上下端部の外周に粘弾性体を配置して、中小規模の地震から大規模の地震までの広範囲で免震効果を生じさせる免震支持装置が記載されている。   In Patent Document 1, the diameter of the lead body, which is an energy absorbing part arranged in the load support portion, is changed between the middle portion and the upper and lower end portions in the height direction of the load support portion, and the upper and lower end portions of the lead body are changed. A seismic isolation support device is described in which a viscoelastic body is arranged on the outer periphery to generate a seismic isolation effect in a wide range from small to large-scale earthquakes.

しかし、特許文献1に記載の免震支持装置は、鉛体の上下端部の外周に粘弾性体を配するための組立てや、段差付の鉛体の製造などの生産面において手間がかかるという問題がある。   However, the seismic isolation support device described in Patent Document 1 is time-consuming in terms of production such as assembly for arranging viscoelastic bodies on the outer periphery of the upper and lower ends of the lead body and manufacturing of the lead body with a step. There's a problem.

特許文献2には、積層ゴムに内蔵される鉛コアにおいて、高さ方向の中央位置を最小面積に、上下両端部を最大面積とし、その中間を連続的に変化させて中小規模の地震から大規模の地震までの広範囲で免震効果を生じさせる免震装置が記載されている。   Patent Document 2 discloses that a lead core built in a laminated rubber has a central position in the height direction as a minimum area, both upper and lower ends are set as a maximum area, and a middle portion is continuously changed from a small to large-scale earthquake. A seismic isolation device is described that produces seismic isolation effects in a wide range up to a large-scale earthquake.

しかし、特許文献2に記載の免震装置においても、鉛コア内蔵用孔径を高さ方向で連続的に変化させた積層ゴムを成型することや、連続的に直径が変化した鉛体を製造すること等の生産面において手間がかかりコストを押し上げる要因となるという問題点をもっている。   However, even in the seismic isolation device described in Patent Document 2, a laminated rubber in which the lead core built-in hole diameter is continuously changed in the height direction is molded, or a lead body whose diameter is continuously changed is manufactured. However, it has a problem that it takes time and effort to increase the cost.

本発明は、前記諸点に鑑みてなされたものであって、その目的とするところは、大規模の地震に対しては勿論のこと、中小規模の地震に対しも建築構造物又は土木構造物を効果的に免震支持できる上に、容易、安価に製造できる免震装置を提供するところにある。   The present invention has been made in view of the above-mentioned points, and the object of the present invention is not only for large-scale earthquakes, but also for small and medium-scale earthquakes. In addition to providing effective seismic isolation support, the present invention is to provide a seismic isolation device that can be manufactured easily and inexpensively.

本発明の免震装置は、弾性材料層及び剛性材料層が交互に積層されていると共に積層方向と直交する剪断方向において弾性的に剪断変形自在な積層体と、この積層体の内周面で規定された柱状の中空部に配されていると共に剪断方向に変形自在であって加わる剪断方向の振動エネルギを当該剪断方向の変形により吸収する柱状の振動エネルギ吸収体とを具備しており、前記積層方向の荷重を支持するようにしたものであって、ここで、振動エネルギ吸収体は、積層方向において同一の剪断方向の断面形状をもって積層方向に伸びていると共に積層方向において降伏点が異なるように、積層方向において異なる塑性金属材料をもって形成されている。   The seismic isolation device of the present invention includes a laminate in which elastic material layers and rigid material layers are alternately laminated and elastically shearable in a shear direction perpendicular to the laminate direction, and an inner peripheral surface of the laminate. A columnar vibration energy absorber disposed in the prescribed columnar hollow portion and deformable in the shearing direction and absorbing vibration energy in the shearing direction applied by the deformation in the shearing direction, and The vibration energy absorber extends in the stacking direction with the same cross-sectional shape in the stacking direction and has a different yield point in the stacking direction. Further, they are formed with different plastic metal materials in the stacking direction.

斯かる本発明の免震装置によれば、振動エネルギ吸収体は、積層方向において降伏点が異なるように、積層方向において異なる塑性金属材料から形成されているために、中小規模の地震では降伏点の低い部位での振動エネルギ吸収体の剪断変形でもって振動エネルギを吸収させることができる一方、大規模の地震では降伏点の低い部位に加えて降伏点の高い部位での振動エネルギ吸収体の剪断変形でもって振動エネルギを吸収させることができる結果、大規模の地震に対しては勿論のこと、中小規模の地震に対しても建築構造物又は土木構造物を効果的に免震支持でき、その上、振動エネルギ吸収体が積層方向において同一の剪断方向の断面形状をもって積層方向に伸びていると共に積層体の内周面で規定された柱状の中空部に配されているために、積層体は勿論のこと振動エネルギ吸収体を容易に製造できると共に積層体の中空部への振動エネルギ吸収体の装着を簡単に行うことができる結果、容易、安価に製造できる。   According to such a seismic isolation device of the present invention, the vibration energy absorber is formed of different plastic metal materials in the stacking direction so that the yield point is different in the stacking direction. Vibration energy can be absorbed by shear deformation of the vibration energy absorber at a low part of the vibration, while in a large-scale earthquake, the shear of the vibration energy absorber at a part with a high yield point in addition to a part with a low yield point As a result of being able to absorb vibration energy by deformation, it is possible to effectively support a building structure or civil engineering structure not only for large-scale earthquakes but also for small and medium-sized earthquakes. In addition, the vibration energy absorber extends in the laminating direction with the same cross-sectional shape in the laminating direction in the laminating direction, and is disposed in a columnar hollow defined by the inner peripheral surface of the laminated body. Because the laminate is of course the vibrational energy absorbing body can be easily performed that the mounting of the vibration energy absorbing material into the hollow portion of the laminate together can be easily manufactured result, easy, inexpensive to manufacture.

本発明の振動エネルギ吸収体は、積層方向において降伏点が連続的又は不連続的に変化するように、積層方向において異なる塑性金属材料をもって形成されていてもよく、更には、積層方向において降伏点が積層方向の中央、即ち積層体の1/2の高さの部位に関して対称となるように、積層方向において異なる塑性金属材料をもって形成されていてもよい。   The vibration energy absorber of the present invention may be formed with a different plastic metal material in the stacking direction so that the yield point changes continuously or discontinuously in the stacking direction, and further, the yield point in the stacking direction. May be formed with different plastic metal materials in the stacking direction so as to be symmetric with respect to the center in the stacking direction, i.e., about a half height of the stack.

振動エネルギ吸収体は、好ましくは、鉛、錫若しくはそれらの合金を含む塑性金属材料からなっているが、その他の塑性金属材料からなっていてもよい。塑性金属材料である鉛は、通常、同じく塑性金属材料である錫よりも低い降伏点を有しており、また塑性金属材料である鉛及び錫の合金は、その成分比に対応した降伏点を有しており、斯かる塑性金属材料を主に降伏点に関しての異なる塑性金属材料として振動エネルギ吸収体に用いるとよい。   The vibration energy absorber is preferably made of a plastic metal material containing lead, tin, or an alloy thereof, but may be made of other plastic metal materials. Lead, which is a plastic metal material, usually has a lower yield point than tin, which is also a plastic metal material, and an alloy of lead and tin, which is a plastic metal material, has a yield point corresponding to its component ratio. It is preferable to use such a plastic metal material for a vibration energy absorber as a different plastic metal material mainly with respect to the yield point.

積層方向において降伏点を不連続的に変化させるように、積層方向において異なる塑性金属材料をもって振動エネルギ吸収体を形成する場合、異なる塑性金属材料の接合面を圧着、圧接又は接着させてもよく、またこれらに代えて又はこれらと共に、凹凸嵌め合わせでもよく、更には、接合面を合金化してもよい。   When forming a vibration energy absorber with different plastic metal materials in the stacking direction so as to discontinuously change the yield point in the stacking direction, the joint surfaces of different plastic metal materials may be pressure-bonded, pressure-bonded or bonded, Moreover, it may replace with these or with these, and uneven | corrugated fitting may be sufficient, and also a joining surface may be alloyed.

本発明においては、降伏点が高い塑性金属材料を積層方向において中央部に、降伏点が低い塑性金属材料を積層方向において中央部を挟んで当該中央部の積層方向の両端部に夫々配して形成された振動エネルギ吸収体であっても、またその逆に配して形成された振動エネルギ吸収体であってもよく、更には、積層方向の中央から積層方向の一端までを降伏点が高い又は低い塑性金属材料を、積層方向の中央から積層方向の他端までを降伏点が低い又は高い塑性金属材料を夫々配して形成された振動エネルギ吸収体であってもよく、また、積層方向の一端からその他端まで降伏点が連続的であって単調に変化するように又は積層方向の一端からその中央部までは降伏点が連続的であって単調に高く又は低くなり、次に、積層方向の中央部から他端までは降伏点が連続的であって単調に低く又は高くなるように、夫々成分比がそれに対応して変化した合金からなる塑性金属材料で形成された振動エネルギ吸収体であってもよい。   In the present invention, a plastic metal material having a high yield point is disposed at the center in the stacking direction, and a plastic metal material having a low yield point is disposed at both ends of the center in the stacking direction across the center in the stacking direction. It may be a vibration energy absorber formed or vice versa, and may have a high yield point from the center in the stacking direction to one end in the stacking direction. Alternatively, it may be a vibration energy absorber formed by disposing a low plastic metal material with a low or high yield point from the center in the stacking direction to the other end in the stacking direction. The yield point is continuous and monotonically changing from one end of the stack to the other end, or the yield point is continuous and monotonically increasing or decreasing from one end to the center in the stacking direction. Other from the center of direction Until such yield point is monotonously lower or higher be continuous may be a vibration energy absorber each component ratio is formed by plastic metal material made of an alloy that has changed correspondingly.

本発明は、中小規模の地震では、降伏点の高い塑性金属材料をもって形成された部位を除いて、降伏点の低い塑性金属材料をもって形成された部位での振動エネルギ吸収体の塑性変形でもって建築構造物又は土木構造物への中小規模の地震の伝達を阻止すると共に中小規模の地震の振動エネルギを吸収して中小規模の地震に応じた免震効果を得るようにし、大規模の地震では、降伏点の低い塑性金属材料をもって形成された部位での塑性変形に加えて、降伏点の高い塑性金属材料をもって形成された部位での振動エネルギ吸収体の塑性変形でもって建築構造物又は土木構造物への大規模の地震の伝達を阻止すると共に大規模の地震の振動エネルギを吸収して大規模の地震に応じた免震効果を得るようにしたものである。   In the case of a small-scale earthquake, the present invention is constructed by plastic deformation of a vibration energy absorber in a portion formed with a plastic metal material having a low yield point except for a portion formed with a plastic metal material having a high yield point. Prevents transmission of medium- and small-scale earthquakes to structures or civil engineering structures and absorbs vibration energy of small and medium-scale earthquakes to obtain seismic isolation effects according to small and medium-scale earthquakes. In addition to plastic deformation at a site formed with a plastic metal material with a low yield point, a building structure or civil engineering structure with plastic deformation of a vibration energy absorber at a site formed with a plastic metal material with a high yield point The transmission of large-scale earthquakes is prevented, and the vibration energy of large-scale earthquakes is absorbed to obtain a seismic isolation effect corresponding to large-scale earthquakes.

本発明によれば、大規模の地震に対しては勿論のこと、中小規模の地震に対しても建築構造物又は土木構造物を効果的に免震支持できる上に、容易、安価に製造できる免震装置を提供することができる。   According to the present invention, a building structure or a civil engineering structure can be effectively isolated and supported not only for a large-scale earthquake but also for a small-scale earthquake, and can be manufactured easily and inexpensively. Seismic isolation devices can be provided.

図1は、本発明の好ましい一実施例の断面説明図である。FIG. 1 is a cross-sectional explanatory view of a preferred embodiment of the present invention. 図2は、図1に示す例の動作説明図である。FIG. 2 is an operation explanatory diagram of the example shown in FIG. 図3は、図1に示す例の動作説明図である。FIG. 3 is an operation explanatory diagram of the example shown in FIG. 図4は、図1に示す例の接合面の他の例の説明図である。FIG. 4 is an explanatory diagram of another example of the joining surface of the example shown in FIG.

次に本発明の好ましい実施例を図面を参照して説明する。なお、本発明はこれら実施例に限定されないのである。   Next, preferred embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to these Examples.

図1において、鉛直方向である積層方向Aの荷重Bを支持するようにした免震装置1は、天然ゴム又は減衰特性を有する高減衰ゴム等からなる弾性材料層2及び鋼板等からなる剛性材料層3が交互に積層されていると共に積層方向Aと直交する水平方向である剪断方向Cにおいて弾性的に剪断変形自在な円柱状又は四角柱状の積層体4と、積層体4の内周面5で規定された円柱状の中空部6に配されていると共に剪断方向Cに変形自在であって加わる剪断方向Cの振動エネルギを当該剪断方向Cの変形により吸収する円柱状の振動エネルギ吸収体7と、積層体4の積層方向Aの一端面及び他端面である上面8及び下面9にボルト等により固着された上取付板10及び下取付板11と、剛性材料層3のうちの最上部の厚肉鋼鈑12の円形状の凹所13及び上取付板10の円形状の凹所14に嵌着された円盤状の剪断キー15と、剛性材料層3のうちの最下部の厚肉鋼鈑16の円形状の凹所17及び下取付板11の円形状の凹所18に嵌着された円盤状の剪断キー19とを具備している。   In FIG. 1, a seismic isolation device 1 configured to support a load B in the stacking direction A, which is the vertical direction, is a rigid material made of an elastic material layer 2 made of natural rubber or a highly damped rubber having damping characteristics, and a steel plate. Cylindrical or quadrangular columnar laminates 4 in which the layers 3 are alternately laminated and elastically shearable in a shearing direction C that is a horizontal direction orthogonal to the lamination direction A, and an inner peripheral surface 5 of the laminate 4 A cylindrical vibration energy absorber 7 that is arranged in the cylindrical hollow portion 6 defined in the above and is deformable in the shear direction C and absorbs vibration energy in the shear direction C applied by deformation in the shear direction C. The upper mounting plate 10 and the lower mounting plate 11 fixed to the upper surface 8 and the lower surface 9 which are one end surface and the other end surface of the stacked body 4 with a bolt or the like, and the uppermost portion of the rigid material layer 3. Circular concave of thick steel plate 12 13 and the disc-shaped shear key 15 fitted in the circular recess 14 of the upper mounting plate 10, and the circular recess 17 and lower of the bottom thick steel plate 16 of the rigid material layer 3. And a disk-shaped shear key 19 fitted in a circular recess 18 of the mounting plate 11.

剛性材料層3は、厚肉鋼鈑12及び16に加えて、当該厚肉鋼鈑12及び16の間に配されていると共に厚肉鋼鈑12及び16よりも薄肉の複数枚の薄肉鋼鈑31を有しており、弾性材料層2は、厚肉鋼鈑12及び16の間に配されていると共に剛性材料層3の厚肉鋼鈑12及び16並びに薄肉鋼鈑31の夫々に加硫接着された複数枚のゴム板32を有している。   In addition to the thick steel plates 12 and 16, the rigid material layer 3 is arranged between the thick steel plates 12 and 16 and has a plurality of thin steel plates that are thinner than the thick steel plates 12 and 16. 31, and the elastic material layer 2 is disposed between the thick steel plates 12 and 16 and is vulcanized to each of the thick steel plates 12 and 16 and the thin steel plate 31 of the rigid material layer 3. A plurality of bonded rubber plates 32 are provided.

積層体4は、弾性材料層2及び剛性材料層3に加えて、剛性材料層3の外周面に加硫接着されていると共に弾性材料層2と一体となった円筒状又は四角筒状の被覆層35を更に有している。   In addition to the elastic material layer 2 and the rigid material layer 3, the laminate 4 is vulcanized and bonded to the outer peripheral surface of the rigid material layer 3 and has a cylindrical or square cylindrical covering integrated with the elastic material layer 2. A layer 35 is further included.

振動エネルギ吸収体7は、錫からなる円柱状の中央部41と、中央部41を積層方向Aにおいて挟んで配されていると共に鉛からなる円柱状の上部42及び下部43とを具備して、積層方向Aにおいて同一の剪断方向Cの断面形状、本例では積層方向Aにおいて同一の径rの断面円形状をもって積層方向Aにまっすぐに伸びている。錫からなる円柱状の中央部41では、その剪断方向Cにおける降伏点が鉛からなる円柱状の上部42及び下部43よりも大きく、逆にいうと、鉛からなる円柱状の上部42及び下部43の夫々では、その剪断方向Cにおける降伏点が錫からなる円柱状の中央部41よりも小さく、こうして、振動エネルギ吸収体7は、その剪断方向Cにおける降伏点が積層方向Aの部位である中央部41並びに上部42及び下部43において不連続的に変化して異なるように、降伏点に関して異なる塑性金属材料、即ち、錫及び鉛から形成されており、しかも、積層方向においてその剪断方向Cにおける降伏点が積層方向Aの中央に対して対称となるように降伏点に関して異なる塑性金属材料である錫及び鉛から形成されている。   The vibration energy absorber 7 includes a cylindrical central portion 41 made of tin, a cylindrical upper portion 42 and a lower portion 43 made of lead, with the central portion 41 sandwiched in the stacking direction A. In the stacking direction A, the cross-sectional shape is the same in the shear direction C, and in this example, the cross-sectional circle shape has the same diameter r in the stacking direction A and extends straight in the stacking direction A. In the cylindrical central portion 41 made of tin, the yield point in the shearing direction C is larger than the cylindrical upper portion 42 and lower portion 43 made of lead, and conversely, the cylindrical upper portion 42 and lower portion 43 made of lead. In each of the above, the yield point in the shear direction C is smaller than the cylindrical central portion 41 made of tin, and thus the vibration energy absorber 7 has a center in which the yield point in the shear direction C is a part in the stacking direction A. It is made of different plastic metal materials with respect to the yield point, i.e. tin and lead, so as to vary discontinuously in the part 41 and in the upper part 42 and the lower part 43, and in the laminating direction, it yields in its shear direction C It is made of tin and lead which are different plastic metal materials with respect to the yield point so that the point is symmetric with respect to the center in the stacking direction A.

以上の免震装置1は、構造物51からの積層方向Aの荷重Bを支持するように、上取付板10において建築構造物又は土木構造物等の構造物51に固着される一方、下取付板11において基礎52に固着されて、構造物51と基礎52との間に設置される。   The seismic isolation device 1 is fixed to a structure 51 such as a building structure or a civil engineering structure on the upper mounting plate 10 so as to support the load B in the stacking direction A from the structure 51, while being mounted on the lower side. The plate 11 is fixed to the foundation 52 and installed between the structure 51 and the foundation 52.

斯かる免震装置1に中小規模の地震により水平方向である剪断方向Cの比較的小さな振動が加わると、鉛からなる上部42及び下部43の剪断方向Cの降伏点が錫からなる中央部41の剪断方向Cの降伏点よりも低いために、剪断方向Cにおける積層体4の弾性的な剪断変形に加えて、当該積層体4の弾性的な剪断変形により、図2に示すように、鉛からなる上部42及び下部43が剪断方向Cに剪断変形されて、上部42及び下部43の鉛によるエネルギ吸収が行われ、而して、免震装置1は、中小規模の地震においてもその振動の構造物51への伝達を阻止すると共に構造物51の剪断方向Cの振動を効果的に減衰させて免震効果を奏する。   When a relatively small vibration in the shearing direction C, which is the horizontal direction, is applied to such a seismic isolation device 1 by a small-scale earthquake, the upper portion 42 made of lead and the yielding point in the shearing direction C of the lower portion 43 are the central portion 41 made of tin. 2 is lower than the yield point in the shear direction C of the laminate 4, in addition to the elastic shear deformation of the laminate 4 in the shear direction C, lead due to the elastic shear deformation of the laminate 4 as shown in FIG. The upper part 42 and the lower part 43 are shear-deformed in the shearing direction C, and energy is absorbed by the lead in the upper part 42 and the lower part 43. The transmission to the structure 51 is blocked, and the vibration in the shear direction C of the structure 51 is effectively damped to provide a seismic isolation effect.

免震装置1に大規模の地震により更に大きな水平方向の振動が加わると、剪断方向Cにおける積層体4の弾性的な剪断変形に加えて、当該積層体4の弾性的な剪断変形により、図3に示すように、鉛からなる上部42及び下部43の剪断方向Cへの剪断変形に加えて、錫からなる中央部41が剪断方向Cに剪断変形されて、上部42及び下部43の鉛によるエネルギ吸収と中央部41の錫によるエネルギ吸収とが行われ、而して、免震装置1は、大規模の地震においてもその振動の構造物51への伝達を阻止すると共に構造物51の剪断方向Cの振動を効果的に減衰させて免震効果を奏する。   When a larger horizontal vibration is applied to the seismic isolation device 1 due to a large-scale earthquake, in addition to the elastic shear deformation of the laminate 4 in the shear direction C, the elastic shear deformation of the laminate 4 3, in addition to the shear deformation in the shearing direction C of the upper part 42 and the lower part 43 made of lead, the central part 41 made of tin is sheared in the shearing direction C, and is caused by the lead in the upper part 42 and the lower part 43. Energy absorption and energy absorption by tin in the central portion 41 are performed. Thus, the seismic isolation device 1 prevents transmission of the vibration to the structure 51 even in a large-scale earthquake and shears the structure 51. The vibration in the direction C is effectively attenuated to provide a seismic isolation effect.

免震装置1によれば、剪断方向Cにおける降伏点が積層方向Aの上部42及び下部43と中央部41との部位において異なるように振動エネルギ吸収体7が積層方向Aの上部42及び下部43と中央部41との部位において降伏点に関して異なる塑性金属材料である鉛及び錫をもって形成されているために、振動エネルギ吸収体7を、中小規模の地震では降伏点の低い上部42及び下部43の部位で剪断変形させることができる一方、大規模の地震では降伏点の低い上部42及び下部43の部位に加えて降伏点の高い中央部41の部位でも剪断変形させることができる結果、大規模の地震に対しては勿論のこと、中小規模の地震に対しても構造物51を効果的に免震支持でき、その上、振動エネルギ吸収体7が積層方向Aにおいて同一の径rの断面円形状をもって積層方向Aにまっすぐに伸びていると共に積層体4の内周面5で規定された円柱状の中空部6に配されているために、積層体4は勿論のこと振動エネルギ吸収体7を容易に製造できると共に積層体4の中空部6への振動エネルギ吸収体7の装着を簡単に行うことができる結果、容易、安価に製造できる。   According to the seismic isolation device 1, the vibration energy absorber 7 has an upper portion 42 and a lower portion 43 in the stacking direction A so that the yield points in the shear direction C are different between the upper portion 42 and the lower portion 43 in the stacking direction A and the central portion 41. And the central portion 41 are formed of lead and tin, which are different plastic metal materials with respect to the yield point, so that the vibration energy absorber 7 can be used for the upper and lower portions 42 and 43 having a lower yield point in a small-scale earthquake. On the other hand, in the case of a large-scale earthquake, in addition to the upper 42 and lower 43 parts having a low yield point, the central part 41 having a high yield point can be sheared and deformed. The structure 51 can be effectively isolated and supported not only for earthquakes but also for small and medium-sized earthquakes. Moreover, the vibration energy absorber 7 has the same diameter r in the stacking direction A. The laminated body 4 naturally absorbs vibration energy because it has a circular cross section and extends straight in the laminating direction A and is disposed in the cylindrical hollow portion 6 defined by the inner peripheral surface 5 of the laminated body 4. The body 7 can be easily manufactured, and the vibration energy absorber 7 can be easily attached to the hollow portion 6 of the laminated body 4. As a result, the body 7 can be manufactured easily and inexpensively.

免震装置1において、上部42及び下部43と中央部41との接合面55は、圧着、圧接又は接着のいずれでもよく、また、図4に示すように、凹部56及び凸部57による凹凸嵌め合わせでもよく、更には、上部42及び下部43と中央部41とが本例のように塑性金属材料からなっている場合は、接合面55を合金化したものであってもよい。   In the seismic isolation device 1, the joining surface 55 between the upper part 42 and the lower part 43 and the central part 41 may be any one of crimping, pressure welding, and adhesion. In addition, as shown in FIG. Further, when the upper part 42, the lower part 43 and the central part 41 are made of a plastic metal material as in this example, the joining surface 55 may be alloyed.

上記では、中央部41を錫からなる塑性金属材料で、上部42及び下部43を鉛からなる塑性金属材料で夫々形成したが、これに代えて、中央部41を鉛からなる塑性金属材料で、上部42及び下部43を錫からなる塑性金属材料で夫々形成してもよく、また振動エネルギ吸収体7を中央部41、上部42及び下部43のように積層方向Aにおいて三分割する代わりに降伏点の相違に関して二分割又は三分割以上にしてもよく、更には、上記のように振動エネルギ吸収体7を剪断方向Cにおける降伏点に関して積層方向Aにおいて不連続的に異なるように形成する代わりに、剪断方向Cにおける降伏点が積層方向Aにおいて連続的に変化するように降伏点に関して異なる塑性金属材料をもって形成してもよい。   In the above, the central portion 41 is made of a plastic metal material made of tin, and the upper portion 42 and the lower portion 43 are made of a plastic metal material made of lead. Instead, the central portion 41 is made of a plastic metal material made of lead, The upper part 42 and the lower part 43 may be formed of a plastic metal material made of tin, respectively, and the yield point of the vibration energy absorber 7 is instead of being divided into three in the stacking direction A like the central part 41, the upper part 42 and the lower part 43. The vibration energy absorber 7 may be formed to be discontinuously different in the stacking direction A with respect to the yield point in the shearing direction C as described above. You may form with a different plastic metal material regarding a yield point so that the yield point in the shear direction C may change continuously in the lamination direction A. FIG.

1 免震装置
2 弾性材料層
3 剛性材料層
4 積層体
5 内周面
6 中空部
7 振動エネルギ吸収体
DESCRIPTION OF SYMBOLS 1 Seismic isolation device 2 Elastic material layer 3 Rigid material layer 4 Laminated body 5 Inner peripheral surface 6 Hollow part 7 Vibration energy absorber

Claims (3)

弾性材料層及び剛性材料層が交互に積層されていると共に積層方向と直交する剪断方向において弾性的に剪断変形自在な積層体と、この積層体の内周面で規定された柱状の中空部に配されていると共に剪断方向に変形自在であって加わる剪断方向の振動エネルギを当該剪断方向の変形により吸収する柱状の振動エネルギ吸収体とを具備しており、この振動エネルギ吸収体は、塑性金属材料からなる円柱状の中央部と、この中央部を積層方向において挟んで配されていると共に中央部の塑性金属材料の降伏点と異なる降伏点を有した塑性金属材料としての鉛からなる円柱状の上部及び下部とを具備しており、積層方向において同一の剪断方向の断面形状をもって積層方向に伸びており、中央部と上部及び下部との夫々は、凹凸嵌め合わせ又は合金化されて接合されている、前記積層方向の荷重を支持するようにした免震装置。 An elastic material layer and a rigid material layer are alternately laminated and elastically shear-deformable in a shearing direction orthogonal to the laminating direction, and a columnar hollow portion defined by the inner peripheral surface of the laminated body the vibration energy of the shear direction applied to a deformable shear direction together are arranged and provided with a columnar vibration energy absorbing body that absorbs the deformation of the shear direction, the vibration energy absorbing material is plastic metal A cylindrical central portion made of material, and a cylindrical shape made of lead as a plastic metal material that has a yield point different from the yield point of the plastic metal material in the central portion, with the central portion sandwiched in the stacking direction of which the upper and comprising a lower, extend in the laminating direction with the same shear direction cross section in the stacking direction, s respectively between the central portion and the upper and lower, unevenness mating or coupling Reduction has been being bonded, vibration isolating apparatus which is adapted to support the load of the stacking direction. 振動エネルギ吸収体は、積層方向において降伏点が積層方向の中央に関して対称となるように、積層方向において異なる塑性金属材料をもって形成されている請求項1に記載の免震装置。2. The seismic isolation device according to claim 1, wherein the vibration energy absorber is formed of different plastic metal materials in the stacking direction so that the yield point is symmetrical with respect to the center of the stacking direction in the stacking direction. 振動エネルギ吸収体の円柱状の中央部は、錫又はその合金を含む塑性金属材料からなっている請求項1又は2に記載の免震装置。3. The seismic isolation device according to claim 1, wherein a cylindrical central portion of the vibration energy absorber is made of a plastic metal material containing tin or an alloy thereof.
JP2011034027A 2011-02-18 2011-02-18 Seismic isolation device Active JP4941601B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011034027A JP4941601B2 (en) 2011-02-18 2011-02-18 Seismic isolation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011034027A JP4941601B2 (en) 2011-02-18 2011-02-18 Seismic isolation device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005312715A Division JP4736715B2 (en) 2005-10-27 2005-10-27 Seismic isolation device

Publications (2)

Publication Number Publication Date
JP2011133112A JP2011133112A (en) 2011-07-07
JP4941601B2 true JP4941601B2 (en) 2012-05-30

Family

ID=44346051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011034027A Active JP4941601B2 (en) 2011-02-18 2011-02-18 Seismic isolation device

Country Status (1)

Country Link
JP (1) JP4941601B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103276829B (en) * 2013-05-23 2015-05-20 中南大学 Shock-insulation supporting base composed of steel board rubber, mild steel and lead and capable of achieving three-stage energy consumption
CN103967158B (en) * 2014-04-16 2016-01-13 江苏科技大学 A kind of dissipative cell and prestressing force exempt from energy consuming supporting member
IT201800004948A1 (en) * 2018-04-27 2019-10-27 INSULATION EQUIPMENT FOR SEISMIC PROTECTION AT THE BASE OF A STRUCTURE
CN108708759B (en) * 2018-05-18 2020-10-30 辽宁大学 Reusable energy-absorbing roadway anti-impact hydraulic support and anti-impact method thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62228729A (en) * 1986-03-28 1987-10-07 Toshiba Corp Vibration energy absorbing device
JP2883219B2 (en) * 1990-10-17 1999-04-19 オイレス工業株式会社 Seismic isolation support device
JP2647609B2 (en) * 1993-03-24 1997-08-27 鹿島建設株式会社 Elasto-plastic damper
JPH0797827A (en) * 1993-09-29 1995-04-11 Oiles Ind Co Ltd Lead-sealed laminated rubber support
JP3568586B2 (en) * 1994-07-08 2004-09-22 オイレス工業株式会社 Lead encapsulated laminated rubber bearing
JP2000291730A (en) * 1999-04-07 2000-10-20 Sumitomo Constr Co Ltd Quake damping device and quake damping structure
JP3741424B2 (en) * 2001-07-06 2006-02-01 株式会社ダイナミックデザイン Seismic isolation device
JP2006242239A (en) * 2005-03-02 2006-09-14 Sumitomo Metal Mining Co Ltd Energy absorbing device
JP2006275212A (en) * 2005-03-30 2006-10-12 Sumitomo Metal Mining Co Ltd Energy absorbing device
JP4594183B2 (en) * 2005-07-21 2010-12-08 株式会社ブリヂストン Laminated support

Also Published As

Publication number Publication date
JP2011133112A (en) 2011-07-07

Similar Documents

Publication Publication Date Title
EP2894365B1 (en) Seismic base isolation device
JP5172672B2 (en) Seismic isolation device
JP4941601B2 (en) Seismic isolation device
JP2017137901A (en) Seismic isolator
JP6432271B2 (en) Seismic isolation support device
JP5692335B2 (en) Seismic isolation device
JP3205393U (en) Seismic isolation device
WO2017183542A1 (en) Seismic isolator apparatus
JP4736715B2 (en) Seismic isolation device
TWI714756B (en) Seismic isolation bearing for bridge and bridge using the same
WO2019114748A1 (en) Device mounting structure, composite seismic isolation bearing, and stiffness adjustment method therefor
JP2011099544A (en) Base isolation device
JP5009431B1 (en) Construction method of horizontal restoring spring device for seismic isolation structure
JP2012127465A (en) High bearing support device for structure
JP4971510B2 (en) Seismic isolation device
JP5703035B2 (en) Seismic isolation device
JP6013766B2 (en) Vibration isolator
JP2014111969A (en) Laminated rubber bearing
JP6354303B2 (en) Laminated rubber bearing device
JP4707117B2 (en) Seismic isolation device
JP3931745B2 (en) Seismic isolation device
TW201805508A (en) Base isolation supporting device
JP5053554B2 (en) Vibration control device
JP5524683B2 (en) Rubber bearing
JP6570121B2 (en) LAMINATED RUBBER BODY JOINTING MEMBER AND STRUCTURE

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4941601

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250