JP2006242239A - Energy absorbing device - Google Patents

Energy absorbing device Download PDF

Info

Publication number
JP2006242239A
JP2006242239A JP2005056945A JP2005056945A JP2006242239A JP 2006242239 A JP2006242239 A JP 2006242239A JP 2005056945 A JP2005056945 A JP 2005056945A JP 2005056945 A JP2005056945 A JP 2005056945A JP 2006242239 A JP2006242239 A JP 2006242239A
Authority
JP
Japan
Prior art keywords
energy
vertical direction
absorber
energy absorber
absorbing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005056945A
Other languages
Japanese (ja)
Inventor
Eisuke Kashiwagi
栄介 柏木
Naoyuki Yamaguchi
直之 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2005056945A priority Critical patent/JP2006242239A/en
Publication of JP2006242239A publication Critical patent/JP2006242239A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an energy absorbing device for reducing vibration energy transmitted to a building or a civil structure in earthquake, having stable energy absorbing performance and high repeating durability and being easy and inexpensive to manufacture. <P>SOLUTION: The energy absorbing device comprises a hollow portion h provided vertically passing through a laminate 3 which consists of a plurality of hard plates 1 such as steel plates and a plurality of elastic bodies 2 such as rubbers alternately laminated in the vertical direction, and an energy absorber 4 stored in the hollow portion h for absorbing vibration energy of earthquake or the like. The energy absorber is formed of a material having a lower yielding point at each vertical end than at the center. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば地震発生時に建築物や土木構造物もしくは精密機器等に伝達される振動エネルギーを減少させるためのエネルギー吸収装置に関する。更に詳しくは、鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体中に、地震等の振動エネルギーを吸収するエネルギー吸収体を設けたエネルギー吸収装置に関するものである。   The present invention relates to an energy absorbing device for reducing vibration energy transmitted to a building, a civil engineering structure, a precision instrument, or the like when an earthquake occurs. More specifically, the present invention relates to an energy absorbing device in which an energy absorber that absorbs vibration energy such as earthquake is provided in a laminate in which a plurality of hard plates such as steel plates and elastic bodies such as rubber are alternately laminated in the vertical direction. Is.

従来たとえば地震発生時に建築物や土木構造物等に伝達される振動エネルギーを減少させるエネルギー吸収装置として下記特許文献1,2が提案されている。図10はその一例を示すもので、本例のエネルギー吸収装置Aは、鋼板等の硬質板1とゴム等の弾性体2とを上下方向に交互に複数積層してなる積層体3を上下一対の基板5・5間に配置し、その両基板5・5および積層体3の中心部に形成した上下方向に貫通する中空部(貫通穴)h内に地震等の振動エネルギーを吸収する鉛等の弾塑性体よりなるエネルギー吸収体4を収容配置した構成である。   Conventionally, for example, the following Patent Documents 1 and 2 have been proposed as energy absorbers that reduce vibration energy transmitted to buildings, civil engineering structures, and the like when an earthquake occurs. FIG. 10 shows an example, and an energy absorbing device A of the present example includes a pair of upper and lower laminates 3 in which a plurality of hard plates 1 such as steel plates and elastic bodies 2 such as rubber are alternately laminated in the vertical direction. Lead that absorbs vibration energy such as earthquakes in a hollow portion (through hole) h that is arranged between the substrates 5 and 5 and is formed in the center portion of both the substrates 5 and 5 and the laminated body 3 in the vertical direction. It is the structure which accommodated and arrange | positioned the energy absorber 4 which consists of these elastic-plastic bodies.

上記積層体3およびエネルギー吸収体4の上下両端部には、図10に示すようにそれぞれ基板5を介して取付板6が一体的に取付けられ、その取付板6を不図示のボルト等で建築物や土木構造物等に取付ける構成である。具体的には、例えば図11に示すようなビル等の建築物にあっては、その建築物等の上部構造体Bと、その土台等の下部構造体Cとの間に、また図12に示すような橋梁等の土木構造物にあっては、橋桁等の上部構造体Bと橋脚等の下部構造体Cとの間に、それぞれ上記のエネルギー吸収装置Aを1つ若しくは複数個配置し、その各エネルギー吸収装置Aの上下の取付板6に形成した上記取付孔6aにボルト等を挿通して上記各構造体B、Cに取付けるものである。   As shown in FIG. 10, mounting plates 6 are integrally attached to the upper and lower ends of the laminate 3 and the energy absorber 4 via a substrate 5, respectively, and the mounting plates 6 are constructed with bolts or the like (not shown). It is a structure to be attached to an object or a civil engineering structure. Specifically, for example, in a building such as a building as shown in FIG. 11, between the upper structure B such as the building and the lower structure C such as the base, and in FIG. In a civil structure such as a bridge as shown, one or a plurality of the energy absorbing devices A are arranged between an upper structure B such as a bridge girder and a lower structure C such as a pier, A bolt or the like is inserted into the mounting hole 6a formed in the upper and lower mounting plates 6 of each energy absorbing device A and is mounted on the structures B and C.

上記のようにして上下の構造体B,C間に配置したエネルギー吸収装置Aは、建築物等を安定に支持しながら地震発生時には水平方向に変形して地震エネルギーを減少させるもので、従来のいわゆる免震アイソレータと免震ダンパーとの両方の機能を併せ持った働きをする。その結果、上記アイソレータとダンパーとを各々別々に配置した場合に比べて、設置スペースを削減できると共に、施工性も向上するという利点がある。   The energy absorbing device A arranged between the upper and lower structures B and C as described above is designed to reduce seismic energy by deforming in the horizontal direction when an earthquake occurs while stably supporting a building or the like. It functions as both a seismic isolation isolator and a seismic isolation damper. As a result, the installation space can be reduced and the workability can be improved as compared with the case where the isolator and the damper are separately arranged.

ところで、前記特許文献1においては、前述のようなエネルギー吸収装置を製造する際に、弾塑性体よりなるエネルギー吸収体に、その剪断降伏応力と同等もしくはそれ以上の静水圧を印加するが提案されている。また特許文献2においては前述のようなエネルギー吸収装置を製造する際に、弾塑性体よりなるエネルギー吸収体4の体積に対し、中空部h内の体積を1.0より大きく、1.05より小さくすることで、エネルギー吸収体4と中空部hとの滑りを抑制することが提案されている。   By the way, in the said patent document 1, when manufacturing the above energy absorption apparatuses, applying the hydrostatic pressure equivalent to or more than the shear yield stress to the energy absorber which consists of an elastic-plastic body is proposed. ing. Moreover, in patent document 2, when manufacturing the above energy absorption apparatus, the volume in the hollow part h is larger than 1.0 with respect to the volume of the energy absorber 4 which consists of an elastic-plastic body from 1.05. It has been proposed to reduce slippage between the energy absorber 4 and the hollow portion h by reducing the size.

これらは例えば前記の積層体3に形成した中空部h内にエネルギー吸収体4を収容配置する際に、その中空部hの内面にエネルギー吸収体4を密着させ、それらの間に隙間ができないようにするためであるが、エネルギー吸収体4が理想通りに塑性変形せずにエネルギー吸収能力や繰返し耐久性に悪影響を及ぼすという不具合がある。また弾塑性体の降伏点と同等以上の印加を行うことにより、弾塑性体と積層ゴムとの面圧は高く、双方間の抵抗力が大きくなる。その結果、弾塑性体が抵抗力に負けてしまい、弾塑性体がささくれたり、最悪の場合にはヒビが入って割れてしまったりするおそれがある。   For example, when the energy absorber 4 is accommodated in the hollow portion h formed in the laminate 3, the energy absorber 4 is brought into close contact with the inner surface of the hollow portion h so that there is no gap between them. However, there is a problem that the energy absorber 4 does not plastically deform as ideally and adversely affects the energy absorption capacity and the repeated durability. Moreover, by applying an application equal to or greater than the yield point of the elastoplastic body, the surface pressure between the elastoplastic body and the laminated rubber is high, and the resistance force between the two becomes large. As a result, the elastoplastic body loses the resistance force, and the elastoplastic body may roll up or crack in the worst case.

そのメカニズムを図13によって説明すると、上記エネルギー吸収装置は製造時にエネルギー吸収体4に印加した静水圧によって、当初図13(a)のようにエネルギー吸収体4の外周面が、積層体3の中空部hの内面に食い込むようにして密着した状態にある。その状態で、地震等による振動で例えば同図(b)のように上側の基板5が図で右方に相対的にずれるような行き変形が生じると、それに合わせて内部のエネルギー吸収体4も図のように塑性変形する。すると、そのエネルギー吸収体4は全体的に引き伸ばされるように変位して、その径、特に中央部の径は同図(c)のように細るように変形する。   The mechanism will be described with reference to FIG. 13. In the energy absorbing device, the outer peripheral surface of the energy absorbing body 4 is initially hollow in the laminate 3 by hydrostatic pressure applied to the energy absorbing body 4 at the time of manufacture. It is in a state of being in close contact with the inner surface of the portion h. In this state, when the upper substrate 5 is deformed so that the upper substrate 5 is relatively displaced to the right in the figure as a result of vibration due to an earthquake or the like, the internal energy absorber 4 is also moved accordingly. Plastic deformation as shown. Then, the energy absorber 4 is displaced so as to be stretched as a whole, and its diameter, particularly the diameter of the central portion, is deformed so as to be thin as shown in FIG.

次に、上記図13(c)の状態から上側の基板5が図で左方の元の位置に戻る方向に変形(戻り変形)すると、エネルギー吸収体4は、その上下両端部に位置する基板5により圧縮を受けながら、径が膨らむような変形をする。特に、基板5に近いエネルギー吸収体4の両端部ではより多くの圧縮力を受けて、より多く膨張する。一方、エネルギー吸収体4の上下方向中央部付近では基板からの圧縮がさほど伝わらないので径の膨出変化は少ない。   Next, when the upper substrate 5 is deformed (returned deformed) from the state of FIG. 13C in the direction returning to the original position on the left side in the drawing, the energy absorber 4 is positioned at both the upper and lower ends. While undergoing compression by 5, the deformation is performed such that the diameter swells. In particular, both ends of the energy absorber 4 close to the substrate 5 receive more compressive force and expand more. On the other hand, since the compression from the substrate is not transmitted so much in the vicinity of the central portion of the energy absorber 4 in the vertical direction, there is little change in the diameter.

上記のようにしてエネルギー吸収装置が、地震等による振動で水平方向に動く度にエネルギー吸収体4の上下両端部付近と中央部付近とでは異なった変形、流動を起こすことになる。その結果、図13(d)のようにエネルギー吸収体4の中央部付近と両端部付近においてエネルギー吸収体4の結晶質の不規則化、不均質化が起こり、その境目付近での剪断破壊によるささくれやヒビ割れ、中央部と両端部での径変化の違いによるエネルギー吸収体4と中空部の内面からの剥がれ、或いはエネルギー吸収体4の隅部で隙間が発生する。その結果、エネルギー吸収性能が不安定になったり、繰返し耐久性が低下する等の不具合がある。   As described above, whenever the energy absorbing device moves in the horizontal direction due to vibration caused by an earthquake or the like, different deformation and flow occur near the upper and lower ends and near the center of the energy absorber 4. As a result, as shown in FIG. 13 (d), the energy absorber 4 becomes irregular and non-homogeneous in the vicinity of the central portion and both end portions of the energy absorber 4, and shear fracture occurs near the boundary. Peeling or cracking, peeling from the inner surface of the energy absorber 4 and the hollow portion due to a difference in diameter between the center portion and both ends, or a gap is generated at the corner of the energy absorber 4. As a result, there are problems such as unstable energy absorption performance and reduced durability.

特許第3360828号公報Japanese Patent No. 3360828 特開平11−29986号公報JP-A-11-29986

本発明は上記の問題点に鑑みて提案されたもので、エネルギー吸収性能が安定していて繰返し耐久性も高く、しかも容易・安価に製造することのできるエネルギー吸収装置を提供することを目的とする。   The present invention has been proposed in view of the above problems, and an object thereof is to provide an energy absorption device that has stable energy absorption performance, high repetition durability, and that can be easily and inexpensively manufactured. To do.

上記の目的を達成するために本発明によるエネルギー吸収装置は、以下の構成にしたものである。すなわち、 鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、その中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、上記エネルギー吸収体の上下方向両端部を中央部よりも降伏点の低い材料で形成したことを特徴とする。   In order to achieve the above object, an energy absorbing device according to the present invention has the following configuration. In other words, a laminated body made by alternately laminating a hard plate such as a steel plate and an elastic body such as rubber in the vertical direction has a hollow portion penetrating in the vertical direction, and absorbs vibration energy such as earthquakes in the hollow portion. In the energy absorbing device in which the energy absorber to be accommodated is arranged, both end portions in the vertical direction of the energy absorber are formed of a material having a lower yield point than the central portion.

上記のように、エネルギー吸収体の上下方向両端部を中央部よりも降伏点の低い材料で形成したことによって、地震等の振動エネルギーを吸収する際にエネルギー吸収体の変位や変形が阻害されることなく、地震等による振動を良好に吸収することが可能となる。また上記のような極めて簡単な構成により、エネルギー吸収性能およびその安定性ならびに繰返し耐久性も高いエネルギー吸収装置を容易・安価に製造できるものである。   As described above, the upper and lower ends of the energy absorber are made of a material having a yield point lower than that of the center portion, so that the displacement and deformation of the energy absorber are hindered when absorbing vibration energy such as earthquakes. Therefore, it is possible to satisfactorily absorb vibration due to an earthquake or the like. In addition, the energy absorption device having high energy absorption performance, its stability, and high repetition durability can be easily and inexpensively manufactured by the extremely simple configuration as described above.

以下、本発明を図に示す実施形態に基づいて具体的に説明する。図1は本発明によるエネルギー吸収装置の一実施形態を示す斜視図、図2はその縦断面図であり、前記従来例と同様の機能を有する部材には同一の符号を付して説明する。   Hereinafter, the present invention will be specifically described based on embodiments shown in the drawings. FIG. 1 is a perspective view showing an embodiment of an energy absorbing device according to the present invention, and FIG. 2 is a longitudinal sectional view thereof. Members having the same functions as those in the conventional example will be described with the same reference numerals.

本実施形態のエネルギー吸収装置Aは、前記従来例と同様に鋼板等の硬質板1とゴム等の弾性体2とを上下方向に交互に複数積層して接着剤等で一体化してなる積層体3を上下一対の基板5・5間に配置し、その両基板5・5および積層体3の中心部に形成した上下方向に貫通する中空部(貫通穴)h内に地震等の振動エネルギーを吸収する錫等の弾塑性体よりなるエネルギー吸収体4を収容配置した構成である。   The energy absorbing device A of the present embodiment is a laminated body in which a hard plate 1 such as a steel plate and an elastic body 2 such as rubber are alternately laminated in the vertical direction and integrated with an adhesive or the like as in the conventional example. 3 is arranged between a pair of upper and lower substrates 5 and 5, and vibration energy such as an earthquake is placed in a hollow portion (through hole) h penetrating in the vertical direction formed in the central portion of both the substrates 5 and 5 and the laminate 3. It is the structure which accommodated and arrange | positioned the energy absorber 4 which consists of elastic-plastic bodies, such as a tin to absorb.

そして、本発明は上記エネルギー吸収体4の上下方向両端部4bを中央部4aよりも降伏点の低い材料で形成したもので、本実施形態においてはエネルギー吸収体4の中央部4aを錫で形成し、両端部4b,4bを錫よりも降伏点の低い鉛で形成したものであるが、それらの材質は適宜である。なお上記各端部4b,4bの降伏点の低い材料で形成する上下方向長さ(高さ)は、それぞれエネルギー吸収体全体の上下方向長さの20%以下とするのが望ましい。それよりも大きくしても、後述する効果が少ないからである。また前記の錫以外の材質としては例えばビスマス、アルミニウム、銅、アンチモン、鉛、銀、亜鉛、鉄、インジウム等を用いることができる。   In the present invention, both end portions 4b in the vertical direction of the energy absorber 4 are formed of a material having a lower yield point than the central portion 4a. In the present embodiment, the central portion 4a of the energy absorber 4 is formed of tin. Both ends 4b and 4b are made of lead having a yield point lower than that of tin, and their materials are appropriate. The vertical length (height) formed of the material having a low yield point at each of the end portions 4b and 4b is preferably 20% or less of the vertical length of the entire energy absorber. This is because even if it is larger than that, the effects described later are few. Examples of materials other than tin include bismuth, aluminum, copper, antimony, lead, silver, zinc, iron, and indium.

また硬質板1として本実施形態においては炭素鋼板を用いたが、ステンレス鋼板や他の金属板もしくは硬質の合成樹脂板等を用いることもできる。また弾性体2として本実施形態においては天然ゴムを用いたが、合成ゴムや軟質の合成樹脂等でもよい。なお図2の縦断面図において、硬質板1と弾性体2およびエネルギー吸収体4のハッチング(断面を表す斜線)は煩雑を避けるため省略した。後述する他の縦断面図や説明図等についても同様である。   Moreover, although the carbon steel plate was used in this embodiment as the hard plate 1, a stainless steel plate, another metal plate, a hard synthetic resin plate, etc. can also be used. In the present embodiment, natural rubber is used as the elastic body 2, but synthetic rubber, soft synthetic resin, or the like may be used. In the longitudinal sectional view of FIG. 2, the hatching of the hard plate 1, the elastic body 2, and the energy absorbing body 4 (hatched lines indicating the cross section) is omitted to avoid complication. The same applies to other longitudinal sectional views and explanatory views to be described later.

上記のように構成された積層体3およびエネルギー吸収体4の上下両端部には、前記従来例と同様に基板5を介して取付板6がボルト7等で一体的に取付けられ、その取付板6に取付孔6aが形成されている。そして、前記図8および図9の従来例と同様に建築物や構築物等の上部構造体Bと、その土台等の下部構造体Cとの間に、上記のエネルギー吸収装置Aを1つ若しくは複数個配置して、その各エネルギー吸収装置Aに設けた上記取付孔6aにボルト8等を挿通して上記各構造体B、Cに取付けるものである。   A mounting plate 6 is integrally attached to the upper and lower ends of the laminate 3 and the energy absorber 4 configured as described above with bolts 7 or the like via the substrate 5 as in the conventional example. An attachment hole 6 a is formed in 6. As in the conventional example of FIGS. 8 and 9, one or a plurality of the energy absorbing devices A are provided between an upper structure B such as a building or a structure and a lower structure C such as a base. The bolts 8 and the like are inserted into the mounting holes 6a provided in the energy absorbing devices A and attached to the structures B and C.

上記のように構成すると、以下のような作用効果が得られる。すなわち、振動エネルギー吸収時に積層体3が変形する際に、内部のエネルギー吸収体4は前述のように上下方向に引き伸ばされると共に、端部4b付近では回転運動をすることになるが、基板5、5間に挟まれて強制されている端部4bの基板5との境界部には、前記の行き変形と戻り変形により隙間が生じてしまい。その結果、履歴では水平剛性がその分低下してしまうことになる。これに対し、上記のようにエネルギー吸収体4の上下両端部4bを中央部4aよりも降伏点が低い材料で形成すると、上記端部4b付近で生じる回転運動が低減されると共に、多少回転しても基板5との間に隙間を発生するのが可及的に低減される。そのため、水平剛性も保たれて、結果として繰返し振動にも強く、且つ安定したエネルギー吸収能力を継続することができるものである。   When configured as described above, the following effects can be obtained. That is, when the laminate 3 is deformed when absorbing vibration energy, the internal energy absorber 4 is stretched in the vertical direction as described above, and rotates in the vicinity of the end 4b. A gap is generated in the boundary portion between the end portion 4b and the substrate 5 which is forced between the substrate 5 and the substrate 5 due to the forward deformation and the return deformation. As a result, in the history, the horizontal rigidity is reduced accordingly. On the other hand, when the upper and lower end portions 4b of the energy absorber 4 are formed of a material having a lower yield point than the central portion 4a as described above, the rotational motion generated in the vicinity of the end portion 4b is reduced and the energy absorber 4 rotates slightly. However, the generation of a gap with the substrate 5 is reduced as much as possible. Therefore, the horizontal rigidity is also maintained, and as a result, it is resistant to repeated vibrations and can maintain a stable energy absorption capability.

図3は上記実施形態のエネルギー吸収装置を用いて地震等の振動を吸収する際の概略構成を示すもので、当初同図(a)のように積層体3の中空部h内に収容配置したエネルギー吸収体4は、その外周面が上記中空部hの内面にほぼ丁度密着した状態にある。その状態で、地震等による振動で例えば同図(b)のように上側の基板5が図で右方に相対的にずれるような行き変形が生じると、それに合わせて内部のエネルギー吸収体4も図のように塑性変形する。そのとき、エネルギー吸収体4と中空部hの内面との間に生じる面圧力よりもエネルギー吸収体4の降伏力の方が大きいので、上記エネルギー吸収体4は殆ど自由に変形もしくは変位するため前記従来のようにエネルギー吸収体4の上下方向中央部の径が細ることはない。   FIG. 3 shows a schematic configuration when absorbing vibrations such as earthquakes using the energy absorbing device of the above embodiment, and it is initially accommodated in the hollow portion h of the laminate 3 as shown in FIG. The energy absorber 4 is in a state where its outer peripheral surface is almost in close contact with the inner surface of the hollow portion h. In this state, when the upper substrate 5 is deformed so that the upper substrate 5 is relatively displaced to the right in the figure as a result of vibration due to an earthquake or the like, the internal energy absorber 4 is also moved accordingly. Plastic deformation as shown. At this time, since the yield force of the energy absorber 4 is greater than the surface pressure generated between the energy absorber 4 and the inner surface of the hollow portion h, the energy absorber 4 is deformed or displaced almost freely. The diameter of the central portion in the vertical direction of the energy absorber 4 is not reduced as in the prior art.

次に、上記図3(b)の状態から同図(c)のように上側の基板5が図で左方の元の位置に戻る方向に変形(戻り変形)する際に、エネルギー吸収体4に、その上下両端部に位置する基板5からの圧縮力が作用した場合にも中空部hの内面との間に生じる面圧力でエネルギー吸収体4の動きが規制されることなく該エネルギー吸収体4にはその長手方向全長にわたって上記の圧縮力が作用するので前記のように両端部のみの径が膨らむようなことはない。また前記従来のように上記両端部の隅部のエネルギー吸収体4の行き場がなくなったり複雑に回転するような流動をすることもない。   Next, when the upper substrate 5 is deformed from the state of FIG. 3B in the direction of returning to the original position on the left side (return deformation) as shown in FIG. In addition, even when a compressive force is applied from the substrate 5 located at both upper and lower ends, the energy absorber 4 is not restricted by the surface pressure generated between the inner surface of the hollow portion h and the energy absorber 4 is restricted. Since the above-mentioned compressive force acts on the entire length in the longitudinal direction, the diameter of only the both end portions does not swell as described above. Further, unlike the prior art, there is no flow of energy absorbers 4 at the corners of the both end portions, or the flow of rotating in a complicated manner.

従って、本発明による上記実施形態のエネルギー吸収装置は、地震等による振動で水平方向に動く度にエネルギー吸収体4の上下両端部付近と中央部付近とで前記従来のように異なった変形や流動を起こすことなく、エネルギー吸収体4全体が片寄りなく変形し、これを繰り返しても図3(d)のように当初の状態が維持される。従って前記従来のようなエネルギー吸収体4の結晶質の不規則化や不均質化、およびそれによるヒビ割れや剥がれ若しくは隙間の発生等が起こることなく、しかも繰返し振動にも強く、長期間安定に振動吸収性能を維持することができるものである。   Therefore, the energy absorbing device of the above-described embodiment according to the present invention has different deformation and flow in the vicinity of the upper and lower end portions and the central portion of the energy absorber 4 each time it moves in the horizontal direction due to vibration caused by an earthquake or the like. The entire energy absorber 4 is deformed without any deviation, and even if this is repeated, the initial state is maintained as shown in FIG. Therefore, there is no occurrence of irregularity or inhomogeneity of the crystalline structure of the energy absorber 4 as in the prior art, and cracking, peeling, or generation of gaps, and the like. The vibration absorbing performance can be maintained.

なお上記実施形態は、積層体3とその上下の基板5・5の両方を貫通するようにして中空部hを設けたが、図4のように上下の基板5・5には中空部hを設けることなく積層体3にのみ中空部hを設けてもよい。その中空部h内にエネルギー吸収体4を収容配置し、そのエネルギー吸収体4の上下方向両端部4bを中央部4aよりも降伏点の低い材料で形成した場合にも上記と同様の作用効果が得られる。   In the above embodiment, the hollow portion h is provided so as to penetrate both the laminate 3 and the upper and lower substrates 5, 5. However, the upper and lower substrates 5, 5 are provided with the hollow portion h as shown in FIG. You may provide the hollow part h only in the laminated body 3 without providing. Even when the energy absorber 4 is accommodated and disposed in the hollow portion h, and both end portions 4b in the vertical direction of the energy absorber 4 are formed of a material having a yield point lower than that of the central portion 4a, the same effect as described above can be obtained. can get.

また図5のように積層体3にのみ設けた中空部h内に全長が同材質のエネルギー吸収体4を収容配置してもよく、さらに図6のように積層体3とその上下の基板5・5の両方を貫通するようにして設けた中空部h内に全長が同材質のエネルギー吸収体4を収容配置し、そのエネルギー吸収体4と基板5との間に必要に応じて減摩材10を介在させるようにしてもよい。その減摩材10としては、例えばテフロン(登録商標)、モリブデン等の固体又は粉体状の潤滑剤、又はグリース、オイル等の液状潤滑剤、若しくは上記の固体や粉体状の潤滑剤と液状潤滑剤の両方を併用することもできる。   In addition, the energy absorber 4 of the same material may be accommodated in the hollow portion h provided only in the laminate 3 as shown in FIG. 5, and the laminate 3 and the upper and lower substrates 5 as shown in FIG. -An energy absorber 4 of the same material length is accommodated in a hollow portion h provided so as to penetrate both of the five, and an antifriction material is provided between the energy absorber 4 and the substrate 5 as necessary. 10 may be interposed. The antifriction material 10 is, for example, a solid or powdery lubricant such as Teflon (registered trademark) or molybdenum, or a liquid lubricant such as grease or oil, or the above-described solid or powdery lubricant and liquid. Both lubricants can be used in combination.

上記のようにをエネルギー吸収体4と基板5との間に減摩材10を介在させると、振動エネルギー吸収時にエネルギー吸収体4の端部付近での更なる回転を伴う変形による隙間を生じにくくさせて、結果として繰返し振動にも強く且つ、安定したエネルギー吸収能力を継続することができる。   When the antifriction material 10 is interposed between the energy absorber 4 and the substrate 5 as described above, a gap due to deformation accompanying further rotation near the end of the energy absorber 4 is less likely to occur when absorbing vibration energy. As a result, it is possible to continue a stable energy absorption capability that is resistant to repeated vibrations.

次に、本発明の具体的な実施例として前記図5に示すようなエネルギー吸収装置を実際に作製して加振試験を行った。その結果を図7〜図9に示す。なお本実施例で作製したエネルギー吸収装置の各部の寸法および材質は以下の通りである。先ず、図5における積層体3の高さは、上下の基板5を含めて250mm、外径はφ500mmであり、コアとなるエネルギー吸収体4の高さは218mm、外径はφ100mmで、エネルギー吸収体4の材質としては純度99%の錫に0.3%のビスマスを加えた合金で降伏点が20MPaのものを使用した。一方、上記実施例に対する比較例として、エネルギー吸収体4の上下両端部が上下の基板5内まで延びていて高さが250mmとした以外は上記実施例と同様のエネルギー吸収装置を用いた。   Next, as a specific example of the present invention, an energy absorbing device as shown in FIG. 5 was actually fabricated and subjected to a vibration test. The results are shown in FIGS. In addition, the dimension and material of each part of the energy absorber produced in the present Example are as follows. First, the height of the laminated body 3 in FIG. 5 is 250 mm including the upper and lower substrates 5, the outer diameter is φ500 mm, the height of the energy absorber 4 as the core is 218 mm, the outer diameter is φ100 mm, and the energy absorption The material of the body 4 was an alloy obtained by adding 0.3% bismuth to 99% purity tin and having a yield point of 20 MPa. On the other hand, as a comparative example with respect to the above example, an energy absorbing device similar to the above example was used except that the upper and lower end portions of the energy absorber 4 extended into the upper and lower substrates 5 and the height was 250 mm.

上記加振試験は、試験変形速度5mm/s、試験変形量(弾性体2の総厚さ寸法に対する水平方向変位量)は250%変形(水平変位量約310mm)として実施した。図7は上記実施例および比較例における1サイクル目の変位履歴曲線を示すもので、この時点では実施例および比較例ともに履歴ループ形状にはあまり差が無い。しかしながら、同上の加振条件で10サイクル目の履歴を取った図8では比較例の方が履歴ループ内面積であるエネルギー吸収量が実施例に比べて落ちてきていることが分かる。また図9は最初のエネルギー吸収量を1.0として、サイクル毎のエネルギー吸収量の低下率を測定したもので、これによると、実施例は比較例に対して10サイクル目の低下率が0.1程度少なく、繰返しに耐久性に優れることが分かる。   The vibration test was performed with a test deformation speed of 5 mm / s and a test deformation amount (horizontal displacement amount relative to the total thickness of the elastic body 2) of 250% deformation (horizontal displacement amount of about 310 mm). FIG. 7 shows a displacement history curve of the first cycle in the above-described example and comparative example. At this point, there is not much difference in the history loop shape in both the example and the comparative example. However, in FIG. 8 where the history of the 10th cycle is taken under the same excitation condition, it can be seen that the energy absorption amount, which is the area in the history loop, is lower in the comparative example than in the example. Further, FIG. 9 shows the measurement of the rate of decrease of the energy absorption amount for each cycle with the initial energy absorption amount being 1.0. It can be seen that it is excellent in durability repeatedly by about 1 less.

以上のように本発明によるエネルギー吸収装置は、エネルギー吸収体の上下方向両端部を中央部よりも降伏点の低い材料で形成したことにより、地震等による振動を良好に吸収することが可能となるもので、極めて簡単な構成により、エネルギー吸収性能およびその安定性ならびに繰返し耐久性も高いエネルギー吸収装置を容易・安価に製造できる。その結果、上記のようなエネルギー吸収装置の設計および選択の自由度が増し産業上の利用可能性を増大させることができる。   As described above, the energy absorbing device according to the present invention can absorb vibrations due to earthquakes and the like satisfactorily by forming both ends in the vertical direction of the energy absorber with a material having a lower yield point than the central portion. However, with an extremely simple configuration, it is possible to easily and inexpensively manufacture an energy absorbing device having high energy absorption performance and stability, and high durability. As a result, the degree of freedom in designing and selecting the energy absorbing device as described above can be increased, and industrial applicability can be increased.

本発明によるエネルギー吸収装置の一実施形態を示す斜視図。The perspective view which shows one Embodiment of the energy absorption apparatus by this invention. 上記実施形態のエネルギー吸収装置の縦断面図。The longitudinal cross-sectional view of the energy absorber of the said embodiment. 上記エネルギー吸収装置の動作状態を示す概略構成説明図。Schematic structure explanatory drawing which shows the operation state of the said energy absorption apparatus. 本発明によるエネルギー吸収装置の他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the energy absorption apparatus by this invention. 本発明によるエネルギー吸収装置の更に他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the energy absorption apparatus by this invention. 本発明によるエネルギー吸収装置の更に他の実施形態を示す縦断面図。The longitudinal cross-sectional view which shows other embodiment of the energy absorption apparatus by this invention. 本発明に基づく実施例および比較例の変位履歴曲線図。The displacement history curve figure of the Example based on this invention, and a comparative example. 本発明に基づく実施例および比較例の変位履歴曲線図。The displacement history curve figure of the Example based on this invention, and a comparative example. 本発明に基づく実施例および比較例のエネルギー吸収量変化測定図。The energy absorption amount change measurement figure of the Example based on this invention, and a comparative example. 従来のエネルギー吸収装置の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of the conventional energy absorption apparatus. 上記従来のエネルギー吸収装置を建築物に施工した例の説明図。Explanatory drawing of the example which constructed the said conventional energy absorption apparatus in the building. 上記従来のエネルギー吸収装置を土木構築物に施工した例の説明図。Explanatory drawing of the example which constructed the said conventional energy absorption apparatus to the civil engineering structure. 上記従来のエネルギー吸収装置の動作状態を示す概略構成説明図。Schematic structure explanatory drawing which shows the operation state of the said conventional energy absorption apparatus.

符号の説明Explanation of symbols

1 硬質板
2 弾性体
3 積層体
4 エネルギー吸収体
5 基板
6 取付板
7、8 ボルト
A エネルギー吸収装置
B 上部構造体
C 下部構造体
h 中空部
DESCRIPTION OF SYMBOLS 1 Hard board 2 Elastic body 3 Laminated body 4 Energy absorber 5 Board | substrate 6 Mounting plate 7, 8 Bolt A Energy absorber B Upper structure C Lower structure h Hollow part

Claims (5)

鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、その中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、
上記エネルギー吸収体の上下方向両端部を中央部よりも降伏点の低い材料で形成したことを特徴とするエネルギー吸収装置。
Energy that absorbs vibration energy such as earthquakes in a hollow part that penetrates in the vertical direction in a laminated body in which multiple hard plates such as steel plates and elastic bodies such as rubber are alternately laminated in the vertical direction In the energy absorption device that houses and arranges the absorber,
An energy absorbing device, wherein both ends of the energy absorber in the vertical direction are made of a material having a lower yield point than the central portion.
上記の降伏点の低い材料で形成した上下方向両端部の長さは、それぞれエネルギー吸収体全体の上下方向長さの20%以下とした請求項1に記載のエネルギー吸収装置。   The energy absorbing device according to claim 1, wherein the length of both ends in the vertical direction formed of the material having a low yield point is 20% or less of the length in the vertical direction of the entire energy absorber. 鋼板等の硬質板とゴム等の弾性体とを上下方向に交互に複数積層してなる積層体に、上下方向に貫通する中空部を設け、その中空部内に地震等の振動エネルギーを吸収するエネルギー吸収体を収容配置したエネルギー吸収装置において、
上記積層体の積層方向両端部にそれぞれ基板を設け、その各基板内に上記エネルギー吸収体の上下方向両端部を延長して設けないことを特徴とするエネルギー吸収装置。
Energy that absorbs vibration energy such as earthquakes in a hollow part that penetrates in the vertical direction in a laminated body in which multiple hard plates such as steel plates and elastic bodies such as rubber are alternately laminated in the vertical direction In the energy absorption device that houses and arranges the absorber,
A substrate is provided at each of both end portions of the laminate in the stacking direction, and both end portions in the vertical direction of the energy absorber are not extended and provided in each substrate.
上記エネルギー吸収体の両端部と基板との間に減摩材を介在させてなる請求項3に記載のエネルギー吸収装置。   The energy absorbing device according to claim 3, wherein an antifriction material is interposed between both ends of the energy absorber and the substrate. 上記減摩材として、テフロン、モリブデン等の固体又は粉体状の潤滑剤、又はグリース、オイル等の液状潤滑剤、若しくは上記の固体や粉体状の潤滑剤と液状潤滑剤の両方を併用することを特徴とする請求項4に記載のエネルギー吸収装置。
As the antifriction material, a solid or powdery lubricant such as Teflon or molybdenum, or a liquid lubricant such as grease or oil, or both of the above solid or powdery lubricant and liquid lubricant are used in combination. The energy absorbing device according to claim 4.
JP2005056945A 2005-03-02 2005-03-02 Energy absorbing device Pending JP2006242239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056945A JP2006242239A (en) 2005-03-02 2005-03-02 Energy absorbing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056945A JP2006242239A (en) 2005-03-02 2005-03-02 Energy absorbing device

Publications (1)

Publication Number Publication Date
JP2006242239A true JP2006242239A (en) 2006-09-14

Family

ID=37048865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056945A Pending JP2006242239A (en) 2005-03-02 2005-03-02 Energy absorbing device

Country Status (1)

Country Link
JP (1) JP2006242239A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120596A (en) * 2005-10-27 2007-05-17 Oiles Ind Co Ltd Base isolation device
JP2010101384A (en) * 2008-10-22 2010-05-06 Bridgestone Corp Base isolation structure
JP2011133112A (en) * 2011-02-18 2011-07-07 Oiles Corp Seismic isolation unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007120596A (en) * 2005-10-27 2007-05-17 Oiles Ind Co Ltd Base isolation device
JP4736715B2 (en) * 2005-10-27 2011-07-27 オイレス工業株式会社 Seismic isolation device
JP2010101384A (en) * 2008-10-22 2010-05-06 Bridgestone Corp Base isolation structure
JP2011133112A (en) * 2011-02-18 2011-07-07 Oiles Corp Seismic isolation unit

Similar Documents

Publication Publication Date Title
TWI403651B (en) Seismic isolation device
WO2016038834A1 (en) Inter-member connecting structure
TWI471490B (en) Damper equipment
US6223483B1 (en) Vibration damping mechanism and anti-earthquake wall material
JP2006242240A (en) Energy absorbing device
EP3196500A1 (en) Vibration damping device for structure
US10527124B2 (en) Non-limit multi-function viscoelastic support structure group
JP2019035493A (en) Slide bearing device
JP2006275212A (en) Energy absorbing device
JP2006242239A (en) Energy absorbing device
JP6432271B2 (en) Seismic isolation support device
Peng et al. Shaking table test of seismic isolated structures with sliding hydromagnetic bearings
CN108798168B (en) Metal-viscous-viscoelastic composite damper and damping wall
JP2006275215A (en) Vibrational energy absorbing device and its manufacturing method
JP2010190409A (en) Seismic isolation device and building
JP2009280963A (en) Vibration control frame using composite damper
JP5845130B2 (en) Laminated rubber bearing
JP6780632B2 (en) Composite damper
JP2019052454A (en) Aseismic isolation structure
JP2018091035A (en) Attachment structure of building oil damper
JP2009002359A (en) Energy absorbing device
JP2007120596A (en) Base isolation device
JPS62220734A (en) Vibrational energy absorbing device
JP2008038950A (en) Energy absorbing device
JP4695650B2 (en) Seismic isolation and control equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070404