JP2003056199A - Vibration control device using inertia force, installed between stories of building - Google Patents

Vibration control device using inertia force, installed between stories of building

Info

Publication number
JP2003056199A
JP2003056199A JP2001245375A JP2001245375A JP2003056199A JP 2003056199 A JP2003056199 A JP 2003056199A JP 2001245375 A JP2001245375 A JP 2001245375A JP 2001245375 A JP2001245375 A JP 2001245375A JP 2003056199 A JP2003056199 A JP 2003056199A
Authority
JP
Japan
Prior art keywords
building
mounting member
vibration damping
inertial force
pinion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001245375A
Other languages
Japanese (ja)
Other versions
JP4843882B2 (en
Inventor
Mitsuru Kageyama
満 蔭山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2001245375A priority Critical patent/JP4843882B2/en
Publication of JP2003056199A publication Critical patent/JP2003056199A/en
Application granted granted Critical
Publication of JP4843882B2 publication Critical patent/JP4843882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a vibration control device using inertia force, installed between the stories of a building, capable of acquiring sufficiently large damping without occupying a large installation space. SOLUTION: This vibration control device is provided with an amplifying mechanism 20 provided between the stories of the upper and lower floors of the building 2 and amplifying motion between the stories to output it to an output end, and an added mass body 32 mounted to the output end of the amplifying mechanism, and controls the vibration of the building by the inertia force of the output end. A rack and pinion mechanism 22 can be used as the amplifying mechanism 20. A first mounting member 24 installed extending from the upper floor, and a second mounting member 26 extending from the lower floor and installed parallel along the first mounting member 24, are provided in a frame surrounded by the columns 6 and beams 8 of the building, and both the first mounting member 24 and second mounting member 26 are provided with a pair of racks 28a, 28b to each other. A pinion 30 at the output end is held between a pair of racks 28a, 28b and meshed with them. A weight 32 of the added mass body is mounted to the pinion 30. It is preferable to form the first mounting member 24 as a brace 10 with a damper 12 interposed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、建物の上下階間に
生じる層間変位を質量体の回転または揺動等の運動に変
換して、その慣性力によって建物を制振するようにし
た、建物層間に設置する慣性力を利用した制振装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention converts a displacement between layers between upper and lower floors of a building into a motion such as rotation or swing of a mass body, and damps the building by its inertial force. The present invention relates to a vibration damping device that uses inertial force installed between layers.

【0002】[0002]

【従来の技術】図5に示すように、建物2の制振装置4
として、層間の柱6と梁8とに囲まれた架構の内部空間
に設置されるブレース10の一端またはその途中に、こ
れを取付部材としてダンパー12を介在させて、振動エ
ネルギーを吸収する方法が広く一般的に採用されてい
る。このように層間にブレース10などの取付部材を介
してダンパー12を設けた場合の制振効果は、建物伝達
関数の定点理論からも説明できる。
2. Description of the Related Art As shown in FIG.
As a method of absorbing vibration energy, one end of the brace 10 installed in the inner space of the frame surrounded by the pillars 6 and the beams 8 between the layers or a part thereof is interposed with a damper 12 as a mounting member to absorb the vibration energy. Widely adopted. The damping effect when the damper 12 is provided between the layers via the mounting member such as the brace 10 can be explained from the fixed point theory of the building transfer function.

【0003】即ち、この定点理論によれば、図6に示す
ように、ダンパー12の減衰定数をゼロとしたときの建
物伝達関数とダンパー12の減衰定数を無限大としたと
きの建物伝達関数との交点は、ダンパー12の減衰定数
をいかなる値に設定した場合にもその建物伝達関数が必
ず通過する点となる。そして、この点が建物伝達関数の
定点と呼ばれ、この定点をピークとなすような減衰定数
を有したダンパー12が最適ダンパーとなる。
That is, according to this fixed point theory, as shown in FIG. 6, the building transfer function when the damping constant of the damper 12 is zero and the building transfer function when the damping constant of the damper 12 is infinite. The intersection of is the point where the building transfer function always passes, no matter what value the damping constant of the damper 12 is set to. Then, this point is called a fixed point of the building transfer function, and the damper 12 having a damping constant having a peak at this fixed point is the optimum damper.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、建物の
上階層と下階層との層間変位をダンパー12に伝えるべ
くその高さ方向に延設するダンパー取付部材にはその剛
性に限界があり、ブレース10をダンパー取付部材とし
た場合でも、一般的には建物自体の層剛性の1割から2
割程度の剛性にしかならない場合が多い。このような場
合にあっては、ダンパー12には十分な振動エネルギー
が伝わらず、結果として建物2の減衰定数を数%上昇さ
せる程度の制振効果に止まっていた。
However, there is a limit to the rigidity of the damper mounting member extending in the height direction in order to transmit the displacement between the upper and lower floors of the building to the damper 12, and the brace 10 has a limit. Even when using as a damper mounting member, generally 10% to 2% of the layer rigidity of the building itself
In many cases, the rigidity is relatively low. In such a case, sufficient vibration energy is not transmitted to the damper 12, and as a result, the damping effect is limited to the extent that the damping constant of the building 2 is increased by several percent.

【0005】つまり、十分な制振効果を得るためには、
ダンパー12の取付部材の剛性を上げることが必要とな
り、そのためには大きな部材を用いるか、あるいはダン
パー12の設置箇所を増やさねばならず、そうすると居
住スペースを減らす結果となってしまい、建物平面利用
計画上の制約から限界に突き当たっていた。
In other words, in order to obtain a sufficient damping effect,
It is necessary to increase the rigidity of the mounting member of the damper 12, and for that purpose, a large member must be used or the number of installation locations of the damper 12 must be increased, which will result in a reduction in living space and a plan for using the building floor. I was hitting the limit because of the above restrictions.

【0006】また、定点理論からみても、ダンパーの減
衰定数を0とした場合の固有振動数とその減衰定数を無
限大にした場合の固有振動数とが接近していると、その
定点は伝達率の高い位置に存在することになり、この状
態では例え最適ダンパーを用いても、定点自体が高い位
置にあるために大きな制振効果は期待することができな
い。
Also from the viewpoint of the fixed point theory, if the natural frequency when the damping constant of the damper is 0 and the natural frequency when the damping constant is infinite are close to each other, the fixed point is transmitted. Therefore, even if an optimum damper is used in this state, a large damping effect cannot be expected because the fixed point itself is in a high position.

【0007】本発明はかかる従来の課題に鑑みて成され
たものであり、その目的は、居住スペースを減じること
なく設置できて、しかも十分に大きな制振力が得られる
制振装置を提供することにある。
The present invention has been made in view of such conventional problems, and an object thereof is to provide a vibration damping device which can be installed without reducing a living space and which can obtain a sufficiently large vibration damping force. Especially.

【0008】[0008]

【課題を解決するための手段】前記目的を達成するため
に、本発明に係る建物層間に設置する慣性力を利用した
制振装置にあっては、建物上下階の層間に設けられて、
該層間の動きを増幅して出力端に出力する増幅機構と、
該増幅機構の出力端に取り付けられた付加質量体とを備
え、該出力端の慣性力で建物を制振することを特徴とす
る。
In order to achieve the above object, in a vibration damping device utilizing inertial force installed between building floors according to the present invention, it is provided between the upper and lower floors of the building,
An amplification mechanism for amplifying the movement between the layers and outputting the amplified movement to the output end;
An additional mass body attached to the output end of the amplification mechanism is provided, and the building is damped by the inertial force of the output end.

【0009】ここで、前記増幅機構はラック・ピニオン
機構となし、該ピニオンに付加質量体を取り付けた構成
となし得る。
Here, the amplifying mechanism may be a rack and pinion mechanism, and an additional mass body may be attached to the pinion.

【0010】また、建物の柱と梁とに囲まれた架構内
に、上階側から延びて設置された第1取付部材と下階側
から延びて該第1取付部材に沿って平行に設置された第
2取付部材とを設け、該第1取付部材と第2取付部材と
の双方に前記ラックを、相対向させて一対で設け、前記
ピニオンを該一対のラック間にこれらに噛合させて挟持
させる構成ともなし得る。
Further, in a frame surrounded by columns and beams of the building, a first mounting member extending from the upper floor side is installed and a first mounting member extending from the lower floor side is installed in parallel along the first mounting member. And a pair of racks are provided on both the first mounting member and the second mounting member so as to face each other, and the pinion is meshed with the pair of racks. It can also be configured to be sandwiched.

【0011】あるいは、前記増幅機構はレバー機構とな
し、該レバー機構の揺動端に付加質量体を取り付けた構
成ともなし得る。
Alternatively, the amplifying mechanism may be a lever mechanism, and an additional mass body may be attached to a swing end of the lever mechanism.

【0012】また、建物の柱と梁とに囲まれた架構内
に、上階側から延びて設置された第1取付部材と下階側
から延びて該第1取付部材に沿って平行に設置された第
2取付部材とを設け、該第1取付部材と第2取付部材と
のいずれか一方に支点部を回動自在に軸支するととも
に、他方に力点部を係合させて前記レバー機構を設ける
構成ともなし得る。
Further, in a frame surrounded by columns and beams of the building, a first mounting member extending from the upper floor side is installed and a first mounting member extending from the lower floor side is installed in parallel along the first mounting member. The second mounting member is provided, and the fulcrum portion is rotatably and pivotally supported by either one of the first mounting member and the second mounting member, and the force point portion is engaged with the other of the first mounting member and the lever mechanism. May be provided.

【0013】さらに、前記取付部材は、その一端にダン
パーを有したブレースとするのが望ましい。
Further, it is desirable that the mounting member is a brace having a damper at one end thereof.

【0014】[0014]

【発明の実施の形態】以下、本発明の建物層間に設置す
る慣性力を利用した制振装置の実施形態について添付図
面を参照して詳細に説明する。図1は本発明に係る制振
装置の概略構成図である。本発明の制振装置は、基本的
には、建物2の上下階の層間に設けられて、層間の動き
を増幅して出力端に出力する増幅機構20と、この増幅
機構20の出力端に取り付けられた錘32などの付加質
量体とを備え、当該付加質量体を含む出力端の慣性力で
建物2を制振するものである。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of a vibration damping device using inertial force installed between building layers of the present invention will be described in detail below with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of a vibration damping device according to the present invention. The vibration damping device of the present invention is basically provided between the upper and lower floors of the building 2, and an amplification mechanism 20 for amplifying the movement between the layers and outputting the amplified movement to the output end, and an output end of the amplification mechanism 20. An additional mass body such as the attached weight 32 is provided, and the building 2 is damped by the inertial force at the output end including the additional mass body.

【0015】本実施形態にあっては、上記増幅機構20
には、図示するように、上下階の層間変位による水平方
向の相対変位量を出力側部材の回転量として取り出すラ
ック・ピニオン機構22が採用されている。このラック
・ピニオン機構22は、建物2の柱6と梁8とに囲まれ
た架構内に設けられている。この架構内には、一方の柱
6の上階側部分に一端が固定されて当該架構の対角線に
沿って延びる第1取付部材24と、他方の柱6の下階側
部分に一端が固定されて該第1取付部材24に沿って平
行に延びる第2取付部材26とが設けられ、これら第1
取付部材24と第2取付部材26との双方にラック・ピ
ニオン機構22のラック部材28a,28bが相対向さ
れて一対で設けられ、当該一対のラック28a,28b
間にこれらに噛合してピニオン30が挟持されている。
In the present embodiment, the amplification mechanism 20 described above is used.
As shown in the figure, a rack and pinion mechanism 22 is employed to take out the relative displacement amount in the horizontal direction due to the interlayer displacement of the upper and lower floors as the rotation amount of the output side member. The rack and pinion mechanism 22 is provided in a frame surrounded by the columns 6 and the beams 8 of the building 2. In this frame, one end is fixed to the upper floor side portion of one pillar 6 and extends along the diagonal line of the frame, and one end is fixed to the lower floor portion of the other pillar 6. And a second mounting member 26 extending in parallel along the first mounting member 24.
Rack members 28a, 28b of the rack and pinion mechanism 22 are provided in a pair so as to face each other on both the mounting member 24 and the second mounting member 26, and the pair of racks 28a, 28b.
The pinion 30 is sandwiched between the pinions 30 by meshing with them.

【0016】上記第2取付部材26の延出側の他端に
は、これと上階側の梁8とを連結してダンパー12が設
けられていて、当該第2取付部材26はダンパー12を
備えたブレース10として機能するように構成されてい
る。ここで、ダンパー12には油圧式、摩擦式などのも
のが採用し得る。また、第1取付部材24と第2取付部
材26とには、これらを相互に繋いでその平行度を保つ
ための連結部材34a,34bが一対で設けられてい
る。これらの連結部材34a,34bは、各取付部材2
4,26に対してその一方に固定され、他方に摺動自在
に係合されて設けられる。ここでは、各取付部材24,
26の延出端側が固定部となっており、連結部材34a
は第1取付部材24の延出端近傍に固定されて、第2取
付部材26に摺動自在に係合し、連結部材34bは第2
取付部材26の延出端近傍に固定されて、第1取付部材
24に摺動自在に係合していて、両取付部材24,26
の軸方向への相対移動を許容している。
At the other end of the second mounting member 26 on the extending side, a damper 12 is provided by connecting this to the upper beam 8 and the second mounting member 26 is provided with the damper 12. It is configured to function as the brace 10 provided. Here, the damper 12 may be a hydraulic type, a friction type, or the like. In addition, the first mounting member 24 and the second mounting member 26 are provided with a pair of connecting members 34a and 34b for connecting them to each other and maintaining their parallelism. These connecting members 34a and 34b are attached to each mounting member 2
4, 26 are fixed to one of them and slidably engaged with the other. Here, each mounting member 24,
The extending end side of 26 is a fixed portion, and the connecting member 34a
Is fixed near the extending end of the first mounting member 24 and slidably engages with the second mounting member 26, and the connecting member 34b is the second member.
It is fixed near the extending end of the mounting member 26 and is slidably engaged with the first mounting member 24.
The relative movement in the axial direction of is allowed.

【0017】ピニオン30にはその端面に付加質量体と
して円盤状のフライホイール36が一体に取り付けら
れ、且つこのフライホイール36の外周面には更に付加
質量体として複数の錘38が等間隔に放射状に配置され
て一体的に設けられている。なお、付加質量体のフライ
ホイール36はピニオンの軸方向両端面に一対で取り付
けて、フライホイール36で取付部材24と26との両
側を挟むようにして、ラック28a,28bからのピニ
オン30の脱落を防止するようにしても良い。
A disk-shaped flywheel 36 as an additional mass body is integrally attached to the end surface of the pinion 30, and a plurality of weights 38 are radially arranged at equal intervals as an additional mass body on the outer peripheral surface of the flywheel 36. And is integrally provided. It should be noted that the flywheels 36 of the additional mass body are attached in pairs on both axial end faces of the pinion so that the flywheel 36 sandwiches both sides of the attachment members 24 and 26 to prevent the pinion 30 from falling off from the racks 28a, 28b. It may be done.

【0018】以上の構成により本実施形態の制振装置に
あっては、地震や風により建物2に振動が発生し、上・
下階に層間変位が発生すると、第1,第2取付部材2
4,26が連結部材34a,34bにより平行を保たれ
つつ、それぞれ軸方向に沿って逆方向に相対移動し、こ
れに伴い第1,第2取付部材24,26のラック28
a,28bに噛合したピニオン30が付加質量のフライ
ホイール36と錘32と共に一体に回転する。
In the vibration damping device of the present embodiment having the above-mentioned structure, the building 2 is vibrated by an earthquake or wind,
When interlayer displacement occurs on the lower floor, the first and second mounting members 2
4, 26 are kept parallel to each other by the connecting members 34a, 34b, and relatively move in opposite directions along the axial direction, respectively, and the racks 28 of the first and second mounting members 24, 26 are accordingly moved.
The pinion 30 meshed with the a and 28b rotates integrally with the flywheel 36 and the weight 32 of the additional mass.

【0019】従って、上記ピニオン30とフライホイー
ル28と錘32とからなる回転質量体は回転慣性機構を
構成し、建物2の層間変位に伴って回転慣性力を発生す
る。そして、この回転慣性力を反力となして建物2を制
振することができる。この際、層間変位荷重に対して
は、主に第2取付部材26がブレース10として機能し
てその強度の大きな軸方向の圧縮力としてこれを受ける
ため、大きな層間変位量にも十分に対応することがで
き、大地震等により過大な層間変位が建物2の上下階間
に発生した場合にも、十分に制振機能を確保することが
できる。
Therefore, the rotary mass body composed of the pinion 30, the flywheel 28 and the weight 32 constitutes a rotary inertia mechanism, and a rotary inertia force is generated in accordance with the interlayer displacement of the building 2. Then, the rotational inertial force can be used as a reaction force to suppress the building 2. At this time, with respect to the interlayer displacement load, the second mounting member 26 mainly functions as the brace 10 and receives it as a compressive force in the axial direction having a large strength, so that a large amount of interlayer displacement is sufficiently accommodated. Therefore, even if an excessive interlayer displacement occurs between the upper and lower floors of the building 2 due to a large earthquake or the like, the vibration damping function can be sufficiently ensured.

【0020】また、公知のように上記回転慣性力は、ピ
ニオン30と付加質量体のフライホイール36との総質
量は一定であっても、その回転速度や錘32の質量及び
その回転半径によって異なったものとなり、その回転慣
性力の大きさは回転半径の2乗に比例し、回転速度に比
例したものとなるが、建物2の層間変位に伴うラック2
8a,28bの往復直進運動をピニオン30の往復揺動
回転運動に変換するラック・ピニオン機構のギヤ比(増
幅率)、並びに付加質量体である錘32の回転半径及び
質量をそれぞれ適宜に設定することで、所望の回転慣性
力(即ち減衰力)を容易に得ることができる。
As is well known, the rotational inertial force varies depending on the rotational speed of the pinion 30 and the flywheel 36 of the additional mass body, the mass of the weight 32 and the radius of rotation thereof, even if the total mass of the flywheel 36 is constant. The magnitude of the rotational inertial force is proportional to the square of the radius of gyration and is proportional to the rotational speed, but the rack 2 due to the interlayer displacement of the building 2
The gear ratio (amplification factor) of the rack and pinion mechanism that converts the reciprocating linear motion of 8a and 28b into the reciprocating oscillating rotary motion of the pinion 30, and the radius of gyration and mass of the weight 32 that is the additional mass body are appropriately set. As a result, a desired rotational inertial force (that is, damping force) can be easily obtained.

【0021】つまり、ダンパー12の減衰定数を無限大
とした場合の固有振動数は取付部材24,26の剛性で
決まるが、当該剛性を変更できないならば、ダンパー1
2の減衰定数をゼロとしたときの固有振動数を下げる工
夫をすれば良い。そして、この固有振動数を下げるため
には振動方程式おける慣性項を大きくすれば良く、その
方法として、上記の様な上下階の水平方向の相対変位量
を出力側部材の回転量として取り出すラック・ピニオン
機構22を利用して、層間変位を質量体の回転慣性力に
変換する回転慣性機構を組み付けることが有用となる。
That is, the natural frequency when the damping constant of the damper 12 is infinite is determined by the rigidity of the mounting members 24 and 26. If the rigidity cannot be changed, the damper 1
It is sufficient to devise to lower the natural frequency when the damping constant of 2 is zero. Then, in order to lower this natural frequency, the inertia term in the vibration equation should be increased.As a method for that, the rack displacement that extracts the relative displacement in the horizontal direction of the upper and lower floors as the rotation amount of the output side member as described above is used. Using the pinion mechanism 22, it becomes useful to assemble a rotary inertia mechanism that converts the interlayer displacement into the rotary inertia force of the mass body.

【0022】上記の様に、回転慣性機構は回転軸から付
加質量の錘の設置位置までの半径を大きくすることによ
って、回転質量体の総質量は同一に維持したままでも、
その半径の2乗に比例した回転慣性力を得ることがで
き、よって小さい負荷質量で大きな慣性力が得られるか
ら、小型軽量に構成しつつ容易に固有振動数を下げるこ
とが可能となる。但し、このようなラック・ピニオン機
構22等の慣性機構を用いた場合、慣性機構と取付部材
24,26とで新たな共振点が形成されることになり、
この共振点はダンパー12を無限大としたときの固有振
動数より高い振動数になって現れる。そして、この振動
数がダンパー12を無限大にした場合の固有振動数に近
づくと、新たに高い伝達率の定点が構成されるため、こ
の慣性機構の大きさやダンパー12の減衰定数に最適値
が存在することになる。従って、これらを調整すること
によって慣性機構を用いない場合よりも定点での伝達率
を大幅に下げることが可能になり、よって大きな制振効
果(減衰を上げること)が実現できる。
As described above, the rotary inertia mechanism increases the radius from the rotary shaft to the installation position of the weight of the additional mass, so that the total mass of the rotary mass body is kept the same,
A rotational inertial force proportional to the square of the radius can be obtained, and thus a large inertial force can be obtained with a small load mass. Therefore, it is possible to easily reduce the natural frequency while making the device compact and lightweight. However, when the inertia mechanism such as the rack and pinion mechanism 22 is used, a new resonance point is formed by the inertia mechanism and the mounting members 24 and 26.
This resonance point appears at a frequency higher than the natural frequency when the damper 12 is infinite. When this frequency approaches the natural frequency when the damper 12 is set to infinity, a fixed point with a high transmissivity is newly formed, so that the optimum value for the size of the inertia mechanism and the damping constant of the damper 12 is set. Will exist. Therefore, by adjusting these, the transmissibility at the fixed point can be significantly reduced as compared with the case where the inertial mechanism is not used, and thus a large damping effect (increase in damping) can be realized.

【0023】図2は、図1の実施形態において、ダンパ
ー取付部材24,26の剛性は建物2の剛性の1割とな
した条件下で、最下層の制振装置の回転慣性機構の質量
を1次振動数に対して調整し、中間層の回転慣性機構の
質量は3次振動数に対して調整し、最上層の回転慣性機
構の質量は2次振動数に対して調整し、且つ各層の制振
装置のダンパーには、それぞれに定点理論の最適ダンパ
ーを配した結果の伝達関数を表したものである。このよ
うに、全層を特定の次数に調整してより大きな制振効果
を実現することも可能である。
FIG. 2 shows the mass of the rotary inertia mechanism of the vibration damping device in the lowermost layer under the condition that the rigidity of the damper mounting members 24 and 26 in the embodiment of FIG. 1 is 10% of the rigidity of the building 2. The mass of the rotary inertia mechanism of the middle layer is adjusted to the third frequency, the mass of the rotary inertia mechanism of the uppermost layer is adjusted to the second frequency, and each layer is adjusted for the primary frequency. The damping function of the damping device of Fig. 2 represents the transfer function of the result obtained by arranging the optimum damper of the fixed point theory. In this way, it is also possible to achieve a greater damping effect by adjusting all layers to a specific order.

【0024】一方、図6は、図5の従来の制振装置にお
いて、同様にダンパー取付部材(ブレース10)の剛性
を建物自体の層剛性の1割とした条件下で定点理論によ
る最適なダンパー12を配し、伝達関数のピークを低く
した場合の伝達関数の結果を示すものである。また、図
3と図7は、ダンパー12を有したブレース10に加え
て、更にラックピニオン機構22による回転慣性機構を
併用することによって制振効果を改善しているという同
じ現象を、応答に対する制御力(ブレースに掛かる力)
の位相遅れという物理的な側面から説明するものであ
り、これらに図示するように、図3の本実施形態にあっ
ては慣性機構を設置することで、層間の変形速度に対す
る応答(制御力)は位相が180度進ので、図7の従来
例のような位相遅れは生じない。さらに、下表は本実施
形態と従来例との両者の減衰定数の比較を示す。同表か
らも回転慣性機構を用いることによって、減衰定数が3
倍以上に向上することが分かる。
On the other hand, FIG. 6 shows an optimum damper according to the fixed point theory under the condition that the rigidity of the damper mounting member (brace 10) is set to 10% of the layer rigidity of the building itself in the conventional vibration damping device of FIG. 12 shows the result of the transfer function when 12 is arranged and the peak of the transfer function is lowered. 3 and FIG. 7, the same phenomenon that the damping effect is improved by additionally using the rotary inertia mechanism by the rack and pinion mechanism 22 in addition to the brace 10 having the damper 12, Force (force applied to the brace)
The physical aspect of the phase delay is that, as shown in these figures, in the present embodiment of FIG. 3, by installing an inertia mechanism, the response (control force) to the deformation speed between layers is controlled. Since the phase is advanced by 180 degrees, there is no phase delay as in the conventional example of FIG. Further, the table below shows a comparison of the damping constants of this embodiment and the conventional example. From the table, the damping constant is 3 by using the rotary inertia mechanism.
It can be seen that it is more than doubled.

【0025】[0025]

【表1】 [Table 1]

【0026】また、ラック・ピニオン機構22で構成さ
れる回転慣性機構は、小型軽量に構成し得ることから、
建物平面利用計画上の制約を受けずに柱・梁架構内の空
間に収納して設置可能であり、これ故、特に設置スペー
スを広く確保する必要が無く、居住スペースを減じるこ
とがない。
Further, since the rotary inertia mechanism composed of the rack and pinion mechanism 22 can be made compact and lightweight,
It can be installed and stored in the space within the pillar / beam frame without being restricted by the plan for using the building plane. Therefore, it is not necessary to secure a large installation space and the living space is not reduced.

【0027】図4は本発明の他の実施形態を示す側面図
である。この実施形態では制振装置における層間の動き
を増幅して出力端に出力する増幅機構20及び慣性機構
として、揺動端に付加質量としての錘32を取り付けた
レバー機構38を採用した場合を例示している。即ち、
第1取付部材24と第2取付部材26とには、これらに
直角に交差するようにしてレバー38a.38bを一対
で取り付けている。一方の第1レバー38aはその一端
に長手方向に沿って力点部40として形成された長穴4
2が第1取付部材24に立設された係合ピン44に係合
されるとともに、中央部が支点部46として第2取付部
材26に立設された回動軸48に軸支され、他端の揺動
端に錘32が付加質量として取り付けられている。他方
の第2レバー38bは、第1レバー38aとは逆に、中
央部の支点部46が第1取付部材24の回動軸48に軸
支され、一端に力点部40として形成された長穴42が
第2取付部材26の係合ピン44に係合されている。
FIG. 4 is a side view showing another embodiment of the present invention. In this embodiment, a case where a lever mechanism 38 in which a weight 32 as an additional mass is attached to the swinging end is adopted as the amplifying mechanism 20 and the inertial mechanism for amplifying the inter-layer movement in the vibration damping device and outputting it to the output end is exemplified. is doing. That is,
The first mounting member 24 and the second mounting member 26 have levers 38a. 38b are attached as a pair. One of the first levers 38a has an elongated hole 4 formed at one end as a force point portion 40 along the longitudinal direction.
2 is engaged with an engagement pin 44 provided upright on the first attachment member 24, and the central portion is pivotally supported as a fulcrum portion 46 by a rotary shaft 48 provided upright on the second attachment member 26. A weight 32 is attached as an additional mass to the swing end of the end. Contrary to the first lever 38a, the other second lever 38b has a central fulcrum portion 46 pivotally supported by the rotary shaft 48 of the first mounting member 24, and an elongated hole formed at one end as a force point portion 40. 42 is engaged with the engagement pin 44 of the second attachment member 26.

【0028】そして、当該構成によれば、建物2の上下
階間に生じた層間変位が、第1,第2取付部材24,2
6にそれぞれ軸方向に沿った逆方向の相対移動として伝
わると、第1レバー38aと第2レバー38bとが各々
の支点部46を中心にして揺動回転され、揺動端の錘3
2が往復揺動回転して慣性力が発生し、当該慣性力が反
力となって制振効果が発揮される。この場合にあって
も、慣性力は錘32の質量やその回転半径、増幅機構と
してのレバー比を適宜に設定することで、慣性機構を用
いていない従来の場合よりも定点での伝達率を容易に大
幅に下げることが可能になり、よって大きな制振効果
(減衰を上げること)が実現できる。また、このレバー
機構36による慣性機構は、前述の実施形態と同様に、
柱6と梁8とで囲まれた架構内の空間に収納して設置可
能なため、特に設置スペースを広く確保する必要が無
く、居住スペースを減じることがない。
Further, according to this structure, the interlayer displacement generated between the upper and lower floors of the building 2 is caused by the first and second mounting members 24, 2
6 is transmitted as a relative movement in the opposite direction along the axial direction, the first lever 38a and the second lever 38b are oscillated about the fulcrums 46, and the weight 3 at the oscillating end is rotated.
2 reciprocally swings and rotates to generate an inertial force, and the inertial force acts as a reaction force to exert a vibration damping effect. Even in this case, by setting the mass of the weight 32, its radius of gyration, and the lever ratio as an amplifying mechanism, the inertial force can be set at a fixed point in comparison with the conventional case in which the inertial mechanism is not used. It is possible to easily and drastically reduce it, and thus a large damping effect (increasing damping) can be realized. Further, the inertia mechanism by the lever mechanism 36 is similar to that of the above-described embodiment.
Since it can be housed and installed in the space inside the frame surrounded by the pillars 6 and the beams 8, there is no need to secure a particularly large installation space and the living space is not reduced.

【0029】なお、以上の各実施形態の説明にあって
は、層間の動きを増幅して出力端に出力する増幅機構2
0及び慣性機構として、ラック・ピニオン機構22やレ
バー機構36を例示しているが、本発明はこれらに限ら
ず、付加質量体としての錘を取り付けたボールナット機
構やトグル機構も採用することができる。
In the above description of each embodiment, the amplification mechanism 2 that amplifies the movement between layers and outputs the amplified movement to the output end.
Although the rack and pinion mechanism 22 and the lever mechanism 36 are illustrated as the zero and the inertia mechanism, the present invention is not limited to these, and a ball nut mechanism or a toggle mechanism having a weight as an additional mass body may be adopted. it can.

【0030】[0030]

【発明の効果】以上、実施形態で説明したように、本発
明に係る慣性力を利用した制振装置にあっては、建物上
下階の層間に、該層間の動きを増幅して出力端に出力す
る増幅機構を設けると共に、該増幅機構の出力端に付加
質量体を取り付けて慣性機構を構成し、地震や風等によ
って建物の上下階間に生じる層間変位を、該出力端の質
量体の運動に変換して伝えて慣性力を発生させるように
したので、当該慣性力で建物を制振することができる。
また、慣性機構を用いることで、層間の変形速度に対す
る応答(制御力)に位相遅れが生じるのを防止でき、制
振力の大幅な改善が図れる。
As described above in the embodiments, in the vibration damping device utilizing the inertial force according to the present invention, the movement between the floors of the upper and lower floors of the building is amplified and output to the output end. In addition to providing an amplifying mechanism for outputting, an additional mass body is attached to the output end of the amplifying mechanism to form an inertia mechanism, and the interlayer displacement generated between the upper and lower floors of the building due to an earthquake, wind, etc. Since the inertial force is generated by converting the motion into motion and transmitting it, the building can be damped by the inertial force.
Further, by using the inertia mechanism, it is possible to prevent a phase delay from occurring in the response (control force) to the deformation speed between layers, and it is possible to significantly improve the vibration damping force.

【0031】増幅機構および慣性機構を、ピニオンに付
加質量体を取り付けたラック・ピニオン機構または揺動
端に付加質量体を取り付けたレバー機構となして、付加
質量体を往復揺動回転させて回転慣性力を発生させるよ
うにすると、回転慣性力の大きさは回転半径の2乗に比
例し、回転速度に比例したものになるので、建物の層間
変位の往復直進運動をラック・ピニオン機構のギヤ比
(増幅率)やレバー機構のレバー比、並びに付加質量体
の回転半径及び質量をそれぞれ適宜に設定することで、
所望の回転慣性力(即ち減衰力)を容易に得ることがで
き、しかも小さい負荷質量で大きな慣性力が得られるか
ら、小型軽量に構成しつつ容易に固有振動数を下げるこ
とが可能となる。
The amplification mechanism and the inertia mechanism are a rack and pinion mechanism in which the additional mass body is attached to the pinion or a lever mechanism in which the additional mass body is attached to the swinging end, and the additional mass body is reciprocally rocked and rotated to rotate. When the inertial force is generated, the magnitude of the rotational inertial force is proportional to the square of the radius of gyration and proportional to the rotational speed. Therefore, the reciprocating rectilinear motion of the interlayer displacement of the building is converted into the gear of the rack and pinion mechanism. By appropriately setting the ratio (amplification factor), the lever ratio of the lever mechanism, and the radius of rotation and the mass of the additional mass body,
A desired rotational inertial force (that is, damping force) can be easily obtained, and a large inertial force can be obtained with a small load mass. Therefore, it is possible to easily reduce the natural frequency while making the structure compact and lightweight.

【0032】また、ラック・ピニオン機構やレバー機構
で構成される回転慣性増幅機構は、小型軽量に構成し得
ることから、建物平面利用計画上の制約を受けずに柱・
梁架構内の空間に収納して設置可能であり、これ故、特
に設置スペースを広く確保する必要が無く、居住スペー
スを減じることがない。
Further, since the rotary inertia amplifying mechanism composed of the rack and pinion mechanism and the lever mechanism can be constructed in a small size and a light weight, it is possible to prevent the pillar / column from being restricted by the plan for using the building plane.
It can be installed and stored in the space inside the beam frame, so there is no need to secure a large installation space, and the living space is not reduced.

【0033】更に、取付部材をダンパーを有したブレー
スとすることで、建物の振動減衰をより促進することが
できる慣性機構と取付部材とにより共振点が形成される
が、ダンパーの減衰定数を定点理論の最適値に設定して
慣性機構の大きさを調整することによって、慣性機構を
用いない場合よりも定点での伝達率を大幅に下げること
が可能になり、よって大きな制振効果(減衰を上げるこ
と)が実現できる。
Further, when the mounting member is a brace having a damper, a resonance point is formed by the inertial mechanism and the mounting member which can further accelerate the vibration damping of the building, but the damping constant of the damper is fixed. By adjusting the size of the inertial mechanism by setting it to the optimum value of theory, it becomes possible to significantly reduce the transmissibility at a fixed point compared to the case where the inertial mechanism is not used. Can be realized).

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る制振装置の一実施形態を示す概略
構成図である。
FIG. 1 is a schematic configuration diagram showing an embodiment of a vibration damping device according to the present invention.

【図2】図1の制振装置を設けた建物の伝達関数を示す
グラフである。
FIG. 2 is a graph showing a transfer function of a building provided with the vibration damping device of FIG.

【図3】図1の制振装置を設けた建物の応答速度に対す
る制御力の位相関係を示すグラフである。
3 is a graph showing a phase relationship of control force with respect to response speed of a building provided with the vibration damping device of FIG.

【図4】本発明に係る制振装置の他の実施形態を示す概
略構成図である。
FIG. 4 is a schematic configuration diagram showing another embodiment of the vibration damping device according to the present invention.

【図5】ブレースにダンパーを介在させた従来の制振装
置の概略構成図である。
FIG. 5 is a schematic configuration diagram of a conventional vibration damping device in which a damper is interposed in a brace.

【図6】図5の従来の制振装置を設けた建物の伝達関数
を示すグラフである。
6 is a graph showing a transfer function of a building provided with the conventional vibration damping device of FIG.

【図7】図5の従来の制振装置を設けた建物の応答速度
に対する制御力の位相関係を示すグラフである。
7 is a graph showing a phase relationship of control force with respect to a response speed of a building provided with the conventional vibration damping device of FIG.

【符号の説明】[Explanation of symbols]

2 建物 6 柱 8 梁 10 ブレース 20 増幅機構 22 ラック・ピニオン機構 24 第1取付部材 26 第2取付部材 28 ラック 30 ピニオン 32 錘(付加質量体) 36 フライホイール(付加質量体) 38 レバー機構 38a,38b レバー 40 力点部 46 支点部 2 buildings 6 pillars 8 beams 10 braces 20 Amplification mechanism 22 Rack and pinion mechanism 24 First mounting member 26 Second mounting member 28 racks 30 pinion 32 weights (additional mass body) 36 Flywheel (additional mass body) 38 Lever mechanism 38a, 38b lever 40 Power point 46 fulcrum

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 建物上下階の層間に設けられて、該層間
の動きを増幅して出力端に出力する増幅機構と、該増幅
機構の出力端に取り付けられた付加質量体とを備え、該
出力端の慣性力で建物を制振することを特徴とする建物
層間に設置する慣性力を利用した制振装置。
1. An amplification mechanism, which is provided between upper and lower floors of a building, amplifies movement between the layers and outputs the amplified movement to an output end, and an additional mass body attached to an output end of the amplification mechanism, A vibration damping device that uses inertial force installed between building layers, characterized by damping the building with inertial force at the output end.
【請求項2】 前記増幅機構がラック・ピニオン機構で
なり、該ピニオンに付加質量体が取り付けられているこ
とを特徴とする請求項1記載の建物層間に設置する慣性
力を利用した制振装置。
2. The vibration damping device utilizing inertial force installed between building buildings according to claim 1, wherein the amplification mechanism is a rack and pinion mechanism, and an additional mass body is attached to the pinion. .
【請求項3】 建物の柱と梁とに囲まれた架構内に、上
階側から延びて設置された第1取付部材と下階側から延
びて該第1取付部材に沿って平行に設置された第2取付
部材とが設けられ、該第1取付部材と第2取付部材との
双方に前記ラックが、相対向されて一対で設けられ、前
記ピニオンが該一対のラック間にこれらに噛合して挟持
されていることを特徴とする請求項2記載の建物層間に
設置する慣性力を利用した制振装置。
3. A first mounting member extending from the upper floor side and installed in a frame surrounded by columns and beams of a building and extending parallel to the first mounting member extending from the lower floor side. A second mounting member is provided, the racks are provided in a pair on both the first mounting member and the second mounting member so as to face each other, and the pinion is meshed with these between the pair of racks. The vibration damping device utilizing inertial force installed between the building layers according to claim 2, wherein the vibration damping device is sandwiched between the building layers.
【請求項4】 前記増幅機構がレバー機構でなり、該レ
バー機構の揺動端に付加質量体が取り付けられているこ
とを特徴とする請求項1記載の建物層間に設置する慣性
力を利用した制振装置。
4. The inertial force installed between the building layers according to claim 1, wherein the amplification mechanism is a lever mechanism, and an additional mass body is attached to a swing end of the lever mechanism. Vibration control device.
【請求項5】 建物の柱と梁とに囲まれた架構内に、上
階側から延びて設置された第1取付部材と下階側から延
びて該第1取付部材に沿って平行に設置された第2取付
部材とが設けられ、該第1取付部材と第2取付部材との
いずれか一方に支点部が回動自在に軸支され、他方に力
点部が係合されて前記レバー機構が設けられていること
を特徴とする請求項4記載の建物層間に設置する慣性力
を利用した制振装置。
5. A first mounting member extending from the upper floor side and installed in a frame surrounded by columns and beams of a building and a first mounting member extending from the lower floor side and installed in parallel along the first mounting member. And a fulcrum portion is rotatably supported by either one of the first attachment member and the second attachment member, and the force point portion is engaged with the other of the lever attachment mechanism. The vibration damping device using the inertial force installed between the building layers according to claim 4, wherein the vibration damping device is provided.
【請求項6】 前記取付部材が一端にダンパーを有した
ブレースであることを特徴とする請求項3または5のい
ずれかに記載の建物層間に設置する慣性力を利用した制
振装置。
6. The vibration damping device using inertial force installed between building layers according to claim 3, wherein the mounting member is a brace having a damper at one end.
JP2001245375A 2001-08-13 2001-08-13 Vibration control device using inertia force installed between building layers Expired - Fee Related JP4843882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001245375A JP4843882B2 (en) 2001-08-13 2001-08-13 Vibration control device using inertia force installed between building layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001245375A JP4843882B2 (en) 2001-08-13 2001-08-13 Vibration control device using inertia force installed between building layers

Publications (2)

Publication Number Publication Date
JP2003056199A true JP2003056199A (en) 2003-02-26
JP4843882B2 JP4843882B2 (en) 2011-12-21

Family

ID=19075138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001245375A Expired - Fee Related JP4843882B2 (en) 2001-08-13 2001-08-13 Vibration control device using inertia force installed between building layers

Country Status (1)

Country Link
JP (1) JP4843882B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133947A (en) 2006-10-23 2008-06-12 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2009007895A (en) * 2007-06-29 2009-01-15 Ohbayashi Corp Vibration control building, vibration control system, and vibration control method
JP2009068659A (en) * 2007-09-15 2009-04-02 Ntt Facilities Inc Base isolation device and damping device
JP2010025241A (en) * 2008-07-18 2010-02-04 Sumitomo Mitsui Construction Co Ltd Base isolation device and vibration damping device
JP2014122509A (en) * 2012-12-21 2014-07-03 Sumitomo Rubber Ind Ltd Vibration control device for building
JP2015090182A (en) * 2013-11-06 2015-05-11 住友ゴム工業株式会社 Vibration control device
JP2016014422A (en) * 2014-07-01 2016-01-28 日本タイロッド工業株式会社 Vibration control device for tensile material
CN107700693A (en) * 2017-09-27 2018-02-16 中船第九设计研究院工程有限公司 A kind of damper system with stroke amplification

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008133947A (en) 2006-10-23 2008-06-12 Shimizu Corp Vibration reducing mechanism and its specification setting method
JP2009007895A (en) * 2007-06-29 2009-01-15 Ohbayashi Corp Vibration control building, vibration control system, and vibration control method
JP2009068659A (en) * 2007-09-15 2009-04-02 Ntt Facilities Inc Base isolation device and damping device
JP2010025241A (en) * 2008-07-18 2010-02-04 Sumitomo Mitsui Construction Co Ltd Base isolation device and vibration damping device
JP2014122509A (en) * 2012-12-21 2014-07-03 Sumitomo Rubber Ind Ltd Vibration control device for building
JP2015090182A (en) * 2013-11-06 2015-05-11 住友ゴム工業株式会社 Vibration control device
JP2016014422A (en) * 2014-07-01 2016-01-28 日本タイロッド工業株式会社 Vibration control device for tensile material
CN107700693A (en) * 2017-09-27 2018-02-16 中船第九设计研究院工程有限公司 A kind of damper system with stroke amplification

Also Published As

Publication number Publication date
JP4843882B2 (en) 2011-12-21

Similar Documents

Publication Publication Date Title
JP5993300B2 (en) Building damping device
JP2011069104A (en) Seismic control device and seismic control structure
JP2003056199A (en) Vibration control device using inertia force, installed between stories of building
JP5079661B2 (en) Damping device and its built-in structure
JPH10169244A (en) Vibration control device having toggle mechanism
JP2014173621A (en) Vibration damper apparatus
JP5238701B2 (en) Damping structure and method for designing damping structure
JP2013152011A (en) Rotating inertia mass damper, brace damper and brace frame
KR20190089972A (en) Tuned dynamic damper and method for reducing amplitude of vibration
JP6694672B2 (en) Vibration control device and building equipped with the same
JP2001349094A (en) Synchronous pendulum type vibration control device
JPH11270175A (en) Vibration damping method of connected structure
JP7170461B2 (en) Vibration control damper and vibration control device
JP2008002165A (en) Toggle type seismic control equipment with rotary inertia mass
JP5550984B2 (en) Space-saving damping damper installed in the beam and frame with the damping damper
JP2011236632A (en) Seismic control structure
JP2001152695A (en) Three-storied house
JP4843881B2 (en) Coupling damping device using rotary inertia force
JP5244715B2 (en) Horizontal axis windmill
JP2006132311A (en) Damping device
CN114150914A (en) Passive negative-stiffness energy dissipation cantilever system for super high-rise building
JPH11223041A (en) Vibration control construction for mid-to-low-rise building or structure
JP2002357014A (en) Vibration control device
JP4208459B2 (en) Damping wall
JP2004060397A (en) Vibration control device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080805

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080805

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees