JP5123772B2 - Seismic isolation devices and vibration control devices - Google Patents

Seismic isolation devices and vibration control devices Download PDF

Info

Publication number
JP5123772B2
JP5123772B2 JP2008187862A JP2008187862A JP5123772B2 JP 5123772 B2 JP5123772 B2 JP 5123772B2 JP 2008187862 A JP2008187862 A JP 2008187862A JP 2008187862 A JP2008187862 A JP 2008187862A JP 5123772 B2 JP5123772 B2 JP 5123772B2
Authority
JP
Japan
Prior art keywords
damper
spring
viscous mass
viscous
target structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008187862A
Other languages
Japanese (ja)
Other versions
JP2010025241A (en
Inventor
滋樹 中南
英範 木田
賢二 斉藤
義文 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Facilities Inc
Sumitomo Mitsui Construction Co Ltd
Original Assignee
NTT Facilities Inc
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Facilities Inc, Sumitomo Mitsui Construction Co Ltd filed Critical NTT Facilities Inc
Priority to JP2008187862A priority Critical patent/JP5123772B2/en
Publication of JP2010025241A publication Critical patent/JP2010025241A/en
Application granted granted Critical
Publication of JP5123772B2 publication Critical patent/JP5123772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、対象構造物の振動を免震する免震装置、または制振する制振装置に係る。特に、地震等によって揺すられた対象構造物の振動エネルギーを免震する免震装置、または制振する制振装置に関する。   The present invention relates to a seismic isolation device that isolates vibrations of a target structure or a damping device that suppresses vibrations. In particular, the present invention relates to a seismic isolation device that isolates vibration energy of a target structure that is shaken by an earthquake or the like, or a vibration suppression device that controls vibration.

地震が発生すると、建物、構造物等の対象構造物が水平、垂直に揺すられる。
地震等による加速度レベルが大きいと、対象構造物が損傷をうけたり、対象構造物の中にあるものが予想を越えて加速度を受けたり、予想を超える変位をうけたりする。
そこで、基礎から対象構造物へ伝達する振動エネルギーを減少させて振動を免震する免震装置、または対象構造物が振動した際に振動エネルギーを吸収し振動レベルを小さくして振動を制振する制振装置として各種の構造の装置が試されている。
構造とその構造を構成する要素の諸元を適正に設定することにより、所望の免震性能や制振性能を発揮できる。
When an earthquake occurs, target structures such as buildings and structures are shaken horizontally and vertically.
If the acceleration level due to an earthquake or the like is large, the target structure may be damaged, or an object in the target structure may receive an acceleration exceeding the expectation, or may be displaced beyond the expectation.
Therefore, the seismic isolation device that reduces the vibration energy transmitted from the foundation to the target structure or isolates the vibration, or absorbs the vibration energy when the target structure vibrates and reduces the vibration level to control the vibration. Devices having various structures have been tried as vibration damping devices.
By appropriately setting the specifications of the structure and the elements constituting the structure, desired seismic isolation performance and damping performance can be exhibited.

特開平10−100945号Japanese Patent Laid-Open No. 10-100955 特開平10−184757号JP-A-10-184757 特開2000−017885号JP 2000-017885 A 特開2003−138784号JP 2003-138784 A 特開2004−239411号JP 2004-239411 A 特開2005−180492号JP 2005-180492 A 特開2005−207547号JP 2005-207547 A 斉藤賢二、外2名、「慣性接続要素を使用した線形粘性ダンパーによる一質点構造の最適応答制御とKelvinモデル手法に関する考察」、「構造工学論文集」、社団法人日本建築学会、平成19年3月20日、VOl.53B、P.53−56Kenji Saito and two others, “Study on optimal response control and Kelvin model method of one-mass structure with linear viscous damper using inertial connection element”, “Structural Engineering Papers”, Architectural Institute of Japan, March 2007 May 20, VOL. 53B, P.I. 53-56 斉藤賢二、外1名、「慣性接続要素を利用した粘性ダンパーをもつ制振構造の最適応答制御に関する一考察 −最適設計システムにおける線形粘性要素の等価非線形粘性要素への置換法−」、日本建築学会技術報告集、第26号、2007.12Kenji Saito, 1 other person, “A Study on Optimal Response Control of Damping Structures with Viscous Dampers Using Inertial Connection Elements -Replacement Method of Linear Viscous Elements with Equivalent Nonlinear Viscous Elements in Optimal Design System-", Nihon Architecture Academic Society Technical Report, No. 26, 2007.12 斉藤賢二、外3名、「慣性接続要素と最適化された柔バネ要素と粘性要素を有する一層応答制御システムの振動実験」、構造工学論文集、Vol.54B、日本建築学会。p.623-634,2008.3Kenji Saito, 3 others, “Vibration experiment of a single layer response control system with inertial connection element, optimized soft spring element and viscous element”, Structural Engineering Papers, Vol.54B, Architectural Institute of Japan. p.623-634, 2008.3 斉藤賢二、外2名、「慣性接続要素を利用した粘性ダンパーによる制振構造の応答制御に関する一考察」、構造工学論文集、Vol.54B、日本建築学会,p.635-648、2008.3Kenji Saito and two others, “A Study on Response Control of Damping Structure with Viscous Damper Using Inertial Connection Elements”, Structural Engineering Papers, Vol.54B, Architectural Institute of Japan, p.635-648, 2008.3 斉藤賢二、外3名、「慣性接続要素を利用した線形粘性ダンパーと支持部材を直列結合した一層最適設計システムの振動実験(その1 実験概要)」、日本建築学会大会学術講演梗概集、B-2,2007.8Kenji Saito and three others, “A vibration experiment of a more optimal design system in which a linear viscous damper and a support member using an inertial connection element are connected in series (Part 1 Outline of the experiment)”, Abstracts of Annual Conference of Architectural Institute of Japan, B- 2,2007.8 中南滋樹、外3名、「慣性接続要素を利用した線形粘性ダンパーと支持部材を直列結合した一層最適設計システムの振動実験(その2 調和加振に対する応答性状」、日本建築学会大会学術講演梗概集、B-2、2007.8Shigeki Nakanami and three others, “A vibration experiment of a more optimal design system in which a linear viscous damper using an inertia connecting element and a support member are connected in series (Part 2 Response characteristics to harmonic excitation”) , B-2, 2007.8 木田英範、外3名、「慣性接続要素を利用した線形粘性ダンパーと支持部材を直列結合した一層最適設計システムの振動実験(その3 ランダム加振に対する応答性状)」、日本建築学会大会学術講演梗概集、B-2、2007.8Hidenori Kida and three others, “A vibration experiment of a more optimal design system in which a linear viscous damper using an inertial connection element and a support member are connected in series (Part 3 Response characteristics to random vibration)”, Abstracts of Annual Conference of Architectural Institute of Japan Shu, B-2, 2007.8 中南滋樹、外1名、「慣性接続要素を利用した線形粘性ダンパーと支持部材を直列結合した一層最適設計システムの振動特性」、三井住友建設技術研究所報告、2007.9Shigeki Nakanami and one other, "Vibration characteristics of a more optimal design system in which linear viscous dampers using inertia connection elements and support members are connected in series", Sumitomo Mitsui Construction Engineering Laboratory report, 2007.9

しかし、所望の免震性能または制振性能を発揮するための構造とその構造を構成する要素の諸元を適正に設定することは容易ではなかった。   However, it is not easy to appropriately set the structure for exhibiting the desired seismic isolation performance or damping performance and the specifications of the elements constituting the structure.

本発明は以上に述べた問題点に鑑み案出されたもので、簡易な構造により所望の免震性能または制振性能を発揮できる装置とその装置を構成する要素の諸元を容易に設定できる免震装置と制振装置とを提供しようとする。   The present invention has been devised in view of the above-described problems, and it is possible to easily set the specifications of a device capable of exhibiting a desired seismic isolation performance or damping performance with a simple structure and the elements constituting the device. Try to provide seismic isolation devices and vibration control devices.

上記目的を達成するため、本発明に係る支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置を、2個以上であるN個のバネ付き粘性マスダンパーを、備え、前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持ち、N個の前記バネ付き粘性マスダンパーが特定方向の相対変位に対応して同位相または半位相のうちの一方で同期して互いに相対変位する様に対象構造体に各々に取り付けられ、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)が互いに異なる、ものとした。   In order to achieve the above-mentioned object, N or more seismic isolation devices for damping the vibration of the target structure supported by the main frame based on the support according to the present invention or two or more damping devices for damping In response to the inertial connection element for converting the relative displacement in the specific direction generated by the vibration to the amount of rotation of the rotating body and the relative displacement in the specific direction. A spring element that generates an elastic reaction force acting along a specific direction and a damper element that generates a damping resistance force acting along a specific direction corresponding to a relative speed in the specific direction; A viscous mass damper, which is a system in which the damper elements are connected in parallel, and a spring element are connected in series, and the elastic mass damper with a spring specifies an elastic coefficient kb of the spring element and a method for specifying the inertia connecting element N springs each having a damper natural frequency ω corresponding to an apparent inertia mass m with respect to the relative acceleration of the vibration and a damping coefficient c corresponding to a value obtained by dividing the damping resistance of the damper element by the relative speed. The attached viscous mass dampers are attached to each of the target structures so as to be synchronously displaced relative to each other in one of the same phase or half phase in response to the relative displacement in a specific direction, and the N viscous masses with springs The dampers have different damper natural frequencies ωj (j = 1 to N).

上記発明の構成により、前記バネ付き粘性マスダンパーが前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系である。慣性接続要素が振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する。バネ要素が特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生する。ダンパー要素が特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生する。ダンパー固有振動数ωが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応する。減衰係数cが前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する。N個の前記バネ付き粘性マスダンパーが対象構造体に各々に取り付けられる。N個の前記バネ付き粘性マスダンパーが特定方向の相対変位に対応して同位相または半位相のうちの一方で同期して互いに相対変位する。N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)が互いに異なる。
その結果、異なるダンパー固有振動数を持つN個の前記バネ付き粘性マスダンパーが対象構造物の振動エネルギーをより広い周波数帯域に分散し応答を低下させる。
According to the configuration of the invention, the viscous mass damper with a spring is a system in which the viscous mass damper, which is a system in which the inertia connecting element and the damper element are connected in parallel, and the spring element are connected in series. A relative displacement in a specific direction generated by vibration of the inertial connection element is converted into a rotation amount of the rotating body. The spring element generates an elastic reaction force acting along a specific direction corresponding to the relative displacement in the specific direction. The damper element generates a damping resistance that acts along a specific direction corresponding to a relative speed in the specific direction. The damper natural frequency ω corresponds to the elastic coefficient kb of the spring element and the apparent inertia mass m with respect to the relative acceleration in a specific direction of the inertia connecting element. A damping coefficient c corresponds to a value obtained by dividing the damping resistance of the damper element by the relative speed. N said viscous mass dampers with springs are each attached to the target structure. The N viscous mass dampers with springs are displaced relative to each other in synchronism with one of the same phase or half phase corresponding to the relative displacement in a specific direction. The damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs are different from each other.
As a result, the N viscous mass dampers with springs having different damper natural frequencies disperse the vibration energy of the target structure in a wider frequency band and reduce the response.

上記目的を達成するため、本発明に係る支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置を、2個以上であるN個のバネ付き粘性マスダンパーを、備え、前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性ダンパーと前記バネ要素とを直列接続された系であり、前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させたさいに前記直動方向に作用する反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する反力を前記相対速度で割った値に対応する減衰係数cとを持ち、N個の前記バネ付き粘性マスダンパーが特定方向の相対変位に対応して同位相または半位相のうちの一方で同期して互いに前記直動方向に相対変位する様に対象構造体に各々に取り付けられ、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)が互いに異なる、ものとした。   In order to achieve the above-mentioned object, N or more seismic isolation devices for damping the vibration of the target structure supported by the main frame based on the support according to the present invention or two or more damping devices for damping A spring-mounted viscous mass damper, wherein the spring-attached viscous mass damper is provided with a linear motion shaft provided with a male screw, a rotary body provided with a female screw fitted to the male screw, and a frame for rotatably supporting the rotary body. A system having a viscous mass damper having a viscous fluid sealed in a gap between the inner surface of the frame and the rotating body and a spring element having an elastic body, wherein the viscous damper and the spring element are connected in series; The elastic coefficient kb, which is a value obtained by dividing the reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion of the viscous mass damper. Linear movement of axis And the viscous mass damper corresponding to the damper natural frequency ω corresponding to the apparent inertia mass m which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration when the linear mass is linearly moved at a predetermined relative acceleration. And a damping coefficient c corresponding to a value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the linear motion shaft is linearly moved at a constant relative speed, and N springs are attached. A viscous mass damper is attached to each of the target structures so as to be displaced relative to each other in the linear motion direction in synchronization with one of the same phase or half phase corresponding to the relative displacement in a specific direction. The damper natural frequencies ωj (j = 1 to N) of the viscous mass damper with a spring are different from each other.

上記発明の構成により、前記バネ付き粘性マスダンパーが前記粘性ダンパーと前記バネ要素とを直列接続された系である。前記粘性マスダンパーが、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ。前記バネ要素が、弾性体を持つ。前記ダンパー固有振動数ωが、前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させたさいに前記直動方向に作用する反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応する。前記減衰係数cが、前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する反力を前記相対速度で割った値に対応する。N個の前記バネ付き粘性マスダンパーが対象構造体に各々に取り付けられる。N個の前記バネ付き粘性マスダンパーが特定方向の相対変位に対応して同位相または半位相のうちの一方で同期して互いに前記直動方向に相対変位する。N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)が互いに異なる。
その結果、異なるダンパー固有振動数を持つN個の前記バネ付き粘性マスダンパーが、対象構造物の振動エネルギーをより広い周波数帯域に分散し応答を低下させる。
According to the configuration of the invention, the viscous mass damper with a spring is a system in which the viscous damper and the spring element are connected in series. The viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame rotatably supporting the rotating body, an inner surface of the frame, and a gap between the rotating body With viscous fluid enclosed in The spring element has an elastic body. The damper natural frequency ω is a value obtained by dividing the reaction force generated when the spring element is displaced by a relative distance in the linear motion direction by the relative distance, and the linear motion of the viscous mass damper. This corresponds to the apparent inertia mass m which is a value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration when the shaft is linearly moved in the linear motion direction at a predetermined relative acceleration. The damping coefficient c corresponds to a value obtained by dividing a reaction force acting in the linear motion direction by the linear velocity when the linear motion shaft of the viscous mass damper is linearly moved at a constant relative velocity. N said viscous mass dampers with springs are each attached to the target structure. The N viscous mass dampers with springs are displaced relative to each other in the linear motion direction in synchronism with one of the same phase or half phase corresponding to the relative displacement in a specific direction. The damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs are different from each other.
As a result, the N viscous mass dampers with springs having different damper natural frequencies disperse the vibration energy of the target structure in a wider frequency band and reduce the response.

以下に、本発明の実施形態に係る免震装置または制振装置を説明する。本発明は、以下に記載した実施形態のいずれか、またはそれらの中の二つ以上が組み合わされた態様を含む。   Below, the seismic isolation apparatus or damping device which concerns on embodiment of this invention is demonstrated. The present invention includes any of the embodiments described below, or a combination of two or more of them.

また、本発明の実施形態に係る免震装置または制振装置は、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致し、ここで、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記バネ付き粘性マスダンパーの持つ各々の減衰係数cの値のいかんにかかわらず一定値となる少なくとも(N+1)個の定点での値が略等しくなり、前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである。
上記発明に係る実施形態の構成により、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に略一致する。加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記バネ付き粘性マスダンパーの持つ各々の減衰係数cの値のいかんにかかわらず一定値となる少なくとも(N+1)個の定点での値が略等しくなる。前記応答倍率は、動的応答倍率、変位応答倍率、または加速度応答倍率のうちのひとつである。動的応答倍率が、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である。変位応答倍率が、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である。加速度応答倍率が、支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である。
その結果、(N+1)個の定点での値が等しくなるので、(N+1)個の定点に対応する周波数の付近での応答倍率を均等にして、応答倍率のピークを下げることができる。
Further, in the seismic isolation device or the vibration damping device according to the embodiment of the present invention, the N damper natural frequencies ωj (j = 1 to N) substantially coincide with the N optimum tuning frequencies, respectively, Thus, when it is assumed that each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs matches the N optimum tuning frequencies, the excitation frequency p When the horizontal axis is the ratio p / ωs of the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure, and the vertical axis is the response magnification of the target structure, On the line indicating the response magnification, the values at at least (N + 1) fixed points that are constant regardless of the values of the respective damping coefficients c of the N viscous mass dampers with springs are substantially equal. The response magnification is the vibration when the target structure is forcibly vibrated. The dynamic response magnification, which is the ratio of the static displacement of the target structure due to vibration and the amplitude of the target structure that vibrates in response This is one of the displacement response magnification, which is the ratio to the displacement of the object, or the acceleration response magnification, which is the ratio of the acceleration of the object that vibrates in response to the acceleration of the support when the support is forcibly vibrated. .
With the configuration of the embodiment according to the present invention, the N damper natural frequencies ωj (j = 1 to N) substantially coincide with the N optimum tuning frequencies, respectively. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is taken as the horizontal axis, and the response magnification of the target structure is taken as the vertical axis. The value at at least (N + 1) fixed points that are constant regardless of the value of the damping coefficient c of each of the N viscous mass dampers with springs on the line indicating the response magnification. Are substantially equal. The response magnification is one of a dynamic response magnification, a displacement response magnification, or an acceleration response magnification. The dynamic response magnification is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly excited and the amplitude of the target structure that vibrates in response. The displacement response magnification is a ratio between the displacement of the support when the support is forcibly excited and the displacement of the target structure that vibrates in response. The acceleration response magnification is a ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.
As a result, since the values at the (N + 1) fixed points are equal, the response magnifications near the frequencies corresponding to the (N + 1) fixed points can be equalized, and the peak response magnification can be lowered.

さらに、本発明の実施形態に係る免震装置または制振装置は、 N個の前記減衰係数cがN個の最適減衰係数に各々に略一致する値である、ここで、N個の前記減衰係数cがN個の前記最適減衰係数に各々に一致すると仮定したとき(N+1)個の前記定点での値が各々に実質的に略極大になる。
上記発明に係る実施形態の構成により、N個の前記減衰係数cj(j=1〜N)がN個の最適減衰係数に各々に略一致する。(N+1)個の前記定点での値が各々に実質的に略極大になる。
その結果、(N+1)個の定点での応答倍率が極大値をもつピークになり、全体の応答倍率をピークでの応答倍率を調整できる。
Furthermore, in the seismic isolation device or the vibration damping device according to the embodiment of the present invention, the N attenuation coefficients c are values that substantially match the N optimal attenuation coefficients, respectively, where the N attenuation coefficients Assuming that the coefficient c matches the N optimum attenuation coefficients, the values at the (N + 1) fixed points are substantially substantially maximal.
With the configuration of the embodiment according to the invention, the N attenuation coefficients cj (j = 1 to N) substantially match the N optimum attenuation coefficients, respectively. The value at the (N + 1) fixed points is substantially substantially maximum for each.
As a result, the response magnification at the (N + 1) fixed points becomes a peak having a maximum value, and the response magnification at the peak can be adjusted to the overall response magnification.

さらに、本発明の実施形態に係る免震装置または制振装置は、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致し、ここで、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で極大値を持つ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まり、前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである。
上記発明に係る実施形態の構成により、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に略一致する。加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で極大値を持つ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まる。
前記応答倍率は、動的応答倍率、変位応答倍率、または加速度応答倍率のうちのひとつである。動的応答倍率が、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である。変位応答倍率が、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である。加速度応答倍率が、支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である。
その結果、極大値をもつ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まり、ピーク点の付近での応答倍率を均一にできる。
Furthermore, in the seismic isolation device or the vibration damping device according to the embodiment of the present invention, the N damper natural frequencies ωj (j = 1 to N) substantially match the N optimum tuning frequencies, respectively, Thus, when it is assumed that each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs matches the N optimum tuning frequencies, the excitation frequency p When the horizontal axis is the ratio p / ωs of the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure, and the vertical axis is the response magnification of the target structure, The variation of each response magnification at the (N + 1) peak points having the maximum value on the line indicating the response magnification falls within a predetermined range, and the response magnification is obtained when the target structure is forcibly excited. The target structure vibrated in response to the static displacement of the target structure due to the excitation force Dynamic response magnification, which is the ratio to the amplitude, displacement response magnification, which is the ratio of the displacement of the support when the support is forced to vibrate and the displacement of the target structure that vibrates in response, or the support is forced This is one of the acceleration response magnifications, which is the ratio between the acceleration of the support when shaken and the acceleration of the object that vibrates in response.
With the configuration of the embodiment according to the present invention, the N damper natural frequencies ωj (j = 1 to N) substantially coincide with the N optimum tuning frequencies, respectively. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is taken as the horizontal axis, and the response magnification of the target structure is taken as the vertical axis. Then, the variation of each response magnification at the (N + 1) peak points having the maximum value on the line indicating the response magnification falls within a predetermined range.
The response magnification is one of a dynamic response magnification, a displacement response magnification, or an acceleration response magnification. The dynamic response magnification is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly excited and the amplitude of the target structure that vibrates in response. The displacement response magnification is a ratio between the displacement of the support when the support is forcibly excited and the displacement of the target structure that vibrates in response. The acceleration response magnification is a ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.
As a result, the variation of the response magnification at the (N + 1) peak points having the maximum value falls within the predetermined range, and the response magnification near the peak point can be made uniform.

さらに、本発明の実施形態に係る免震装置または制振装置は、N個の前記減衰係数cj(j=1〜N)がN個の最適減衰係数に各々に略一致する値であり、ここで、N個の前記バネ付き粘性マスダンパーの持つ各々の前記減衰係数cj(j=1〜N)がN個の前記最適減衰係数に各々に一致すると仮定するときに前記応答倍率を示す線の上で極大値をもつN個のピーク点での各々の応答倍率の平均値が略最小となる。
上記発明に係る実施形態の構成により、N個の前記減衰係数cj(j=1〜N)がN個の前記最適減衰係数に各々に略一致する。前記応答倍率を示す線の上でN個の前記ピーク点での各々の応答倍率の平均値が略最小となる。
その結果、極大値をもつ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まる範囲で、ピークの付近での応答倍率を下げられる。
Furthermore, in the seismic isolation device or the vibration damping device according to the embodiment of the present invention, the N attenuation coefficients cj (j = 1 to N) are values that substantially match the N optimal attenuation coefficients, respectively, Then, it is assumed that each of the damping coefficients cj (j = 1 to N) of the N pieces of the viscous mass dampers with springs corresponds to the N optimum damping coefficients, respectively. The average value of the respective response magnifications at the N peak points having the maximum values above becomes substantially minimum.
With the configuration of the embodiment according to the invention, the N attenuation coefficients cj (j = 1 to N) substantially coincide with the N optimum attenuation coefficients, respectively. On the line indicating the response magnification, the average value of the response magnifications at the N peak points is substantially minimum.
As a result, the response magnification in the vicinity of the peak can be lowered within a range in which the variation of each response magnification at the (N + 1) peak points having the maximum value falls within a predetermined range.

さらに、本発明の実施形態に係る免震装置または制振装置は、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致し、ここで、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で極少値を持つN個のピーク点での各々の応答倍率の平均値が略最小となり、前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである。
上記発明に係る実施形態の構成により、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に前記最適同調振動数の各々に略一致する。加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で極少値を持つN個のピーク点での各々の応答倍率の平均値が略最小となる。前記応答倍率は、動的応答倍率、変位応答倍率、または加速度応答倍率のうちのひとつである。動的応答倍率が、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である。変位応答倍率が、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である。加速度応答倍率が、支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である。
その結果、極少値を持つN個のピーク点での各々の応答倍率の平均値が略最小となり、N個のピーク点の付近の応答倍率を下げられ、全体の応答倍率を下げられる。
Furthermore, in the seismic isolation device or the vibration damping device according to the embodiment of the present invention, the N damper natural frequencies ωj (j = 1 to N) substantially match the N optimum tuning frequencies, respectively, Thus, when it is assumed that each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs matches the N optimum tuning frequencies, the excitation frequency p When the horizontal axis is the ratio p / ωs of the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure, and the vertical axis is the response magnification of the target structure, The average value of the response magnifications at the N peak points having a minimum value on the line indicating the response magnification is substantially minimum, and the response magnification is determined by exciting the target structure. The ratio between the static displacement of the target structure due to force and the amplitude of the target structure oscillated in response. Dynamic response magnification, displacement response magnification, which is the ratio of displacement of the support when the support is forcibly vibrated and displacement of the target structure that vibrates in response, or support when the support is forcibly vibrated This is one of the acceleration response magnifications, which is the ratio between the acceleration of the object and the acceleration of the object that vibrates in response.
With the configuration of the embodiment according to the invention, the N damper natural frequencies ωj (j = 1 to N) substantially match the N optimum tuning frequencies with the optimum tuning frequencies. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is taken as the horizontal axis, and the response magnification of the target structure is taken as the vertical axis. Then, the average value of each response magnification at N peak points having a minimum value on the line indicating the response magnification is substantially the minimum. The response magnification is one of a dynamic response magnification, a displacement response magnification, or an acceleration response magnification. The dynamic response magnification is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly excited and the amplitude of the target structure that vibrates in response. The displacement response magnification is a ratio between the displacement of the support when the support is forcibly excited and the displacement of the target structure that vibrates in response. The acceleration response magnification is a ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.
As a result, the average value of the response magnifications at the N peak points having the minimum value is substantially minimized, the response magnification near the N peak points can be lowered, and the overall response magnification can be lowered.

さらに、本発明の実施形態に係る免震装置または制振装置は、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致し、ここで、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で所定の幅の加振周波数pでの応答倍率の平均が略最小となり、前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである。
上記発明に係る実施形態の構成により、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に略一致する。加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で所定の幅の加振周波数pでの応答倍率の平均が略最小となる。前記応答倍率は、動的応答倍率、変位応答倍率、または加速度応答倍率のうちのひとつである。動的応答倍率が、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である。変位応答倍率が、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である。加速度応答倍率が、支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である。
その結果、所定の幅の加振周波数pでの応答倍率の平均が略最小となり、所定の幅の加振周波数pの付近での応答倍率を下げられる。
Furthermore, in the seismic isolation device or the vibration damping device according to the embodiment of the present invention, the N damper natural frequencies ωj (j = 1 to N) substantially match the N optimum tuning frequencies, respectively, Thus, when it is assumed that each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs matches the N optimum tuning frequencies, the excitation frequency p When the horizontal axis is the ratio p / ωs of the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure, and the vertical axis is the response magnification of the target structure, On the line indicating the response magnification, the average of the response magnification at the excitation frequency p of a predetermined width is substantially minimum, and the response magnification is the target structure by the excitation force when the target structure is forcibly excited. Dynamic response multiplication, which is the ratio between the static displacement of an object and the amplitude of the target structure oscillated in response , Displacement response magnification, which is the ratio of the displacement of the support body when the support body is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration and response of the support body when the support body is forced This is one of the acceleration response magnifications that is a ratio with the acceleration of the object that vibrates.
With the configuration of the embodiment according to the present invention, the N damper natural frequencies ωj (j = 1 to N) substantially coincide with the N optimum tuning frequencies, respectively. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is taken as the horizontal axis, and the response magnification of the target structure is taken as the vertical axis. In this case, the average of the response magnifications at the excitation frequency p having a predetermined width on the line indicating the response magnifications is substantially minimum. The response magnification is one of a dynamic response magnification, a displacement response magnification, or an acceleration response magnification. The dynamic response magnification is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly excited and the amplitude of the target structure that vibrates in response. The displacement response magnification is a ratio between the displacement of the support when the support is forcibly excited and the displacement of the target structure that vibrates in response. The acceleration response magnification is a ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.
As a result, the average response magnification at the excitation frequency p having a predetermined width is substantially minimized, and the response magnification in the vicinity of the excitation frequency p having a predetermined width can be lowered.

さらに、本発明の実施形態に係る免震装置または制振装置は、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち低い方の前記ダンパー固有振動数ωjがN個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち高い方の前記ダンパー固有振動数ωjがN個の最適同調振動数のうちの高い方の最適同調振動数に略一致または僅かにずれ、ここで、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなり、
前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである。
上記発明に係る実施形態の構成により、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち低い方の前記ダンパー固有振動数ωjがN個の前記最適同調振動数のうちの低い方の前記最適同調振動数よりさらに低い値である。N個の前記ダンパー固有振動数ωj(j=1〜N)のうち高い方の前記ダンパー固有振動数ωjがN個の前記最適同調振動数のうちの高い方の前記最適同調振動数に略一致または僅かにずれる。N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなる。前記応答倍率は、動的応答倍率、変位応答倍率、または加速度応答倍率のうちのひとつである。動的応答倍率が、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である。変位応答倍率が、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である。加速度応答倍率が、支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である。
その結果、(N+1)個の定点に対応する周波数に比べより拡がった付近での応答倍率を均等にして、応答倍率を調整できる。
Furthermore, the seismic isolation device or the vibration damping device according to the embodiment of the present invention has an optimal number of N damper natural frequencies ωj, which is the lower of the N damper natural frequencies ωj (j = 1 to N). The value is lower than the lower optimal tuning frequency among the tuning frequencies, and the higher of the N damper natural frequencies ωj (j = 1 to N), the higher damper natural frequency ωj. Approximately equal to or slightly deviates from the higher one of the optimum tuning frequencies, where each of the damper natural frequency ωj (j = 1 to 1) of the N viscous mass dampers with springs is provided. N) is assumed to be equal to each of the N optimally tuned frequencies, and the natural frequency ωs of the vibration mode that is displaced in a specific direction of the system composed of the excitation frequency p, the main frame, and the target structure. Response of the target structure with the ratio p / ωs to the horizontal axis When the rate is the vertical axis, the value of N damping coefficients c, which is a value obtained by dividing the damping resistance force of the N damper elements by the relative speed on the line indicating the response magnification, is considered. The values at (N + 1) fixed points that are constant values are substantially equal,
The response magnification is a dynamic response magnification, which is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly vibrated and the amplitude of the target structure that vibrates in response. Vibration in response to the displacement response magnification, which is the ratio of the displacement of the support when it is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced This is one of the acceleration response magnifications that is a ratio to the acceleration of the target object.
According to the configuration of the embodiment according to the invention, the lower damper natural frequency ωj among the N damper natural frequencies ωj (j = 1 to N) is the lower of the N optimum tuning frequencies. This value is lower than the optimum tuning frequency. Of the N damper natural frequencies ωj (j = 1 to N), the higher damper natural frequency ωj substantially coincides with the higher optimal tuning frequency of the N optimum tuning frequencies. Or it shifts slightly. When it is assumed that each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs matches the N optimum tuning frequencies, the excitation frequency p and the main frame When the ratio p / ωs to the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the target structure is the horizontal axis and the response magnification of the target structure is the vertical axis, the response magnification (N + 1) fixed points that are constant regardless of the value of N damping coefficients c, which is a value obtained by dividing the damping resistance force of the N damper elements by the relative speed. The values at are approximately equal. The response magnification is one of a dynamic response magnification, a displacement response magnification, or an acceleration response magnification. The dynamic response magnification is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly excited and the amplitude of the target structure that vibrates in response. The displacement response magnification is a ratio between the displacement of the support when the support is forcibly excited and the displacement of the target structure that vibrates in response. The acceleration response magnification is a ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.
As a result, it is possible to adjust the response magnification by equalizing the response magnification in the vicinity of the frequency corresponding to the (N + 1) fixed points.

さらに、本発明の実施形態に係る免震装置または制振装置は、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち低い方の前記ダンパー固有振動数ωjがN個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、ここで、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなり、前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである。
上記発明に係る実施形態の構成により、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち低い方の前記ダンパー固有振動数ωjがN個の前記最適同調振動数のうちの低い方の前記最適同調振動数よりさらに低い値である。N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなる。前記応答倍率は、動的応答倍率、変位応答倍率、または加速度応答倍率のうちのひとつである。動的応答倍率が、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である。変位応答倍率が、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である。加速度応答倍率が、支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である。
その結果、(N+1)個の定点に対応する周波数に比べ低い側がより低い側へ拡がった付近での応答倍率を均等にして、応答倍率を調整できる。
Furthermore, the seismic isolation device or the vibration damping device according to the embodiment of the present invention has an optimal number of N damper natural frequencies ωj, which is the lower of the N damper natural frequencies ωj (j = 1 to N). The value is lower than the lower optimal tuning frequency of the tuning frequencies, where each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs is The ratio between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure when it is assumed that each of the N optimally tuned frequencies corresponds. When p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, the damping resistance force of the N damper elements is divided by the relative speed on the line indicating the response magnification. Regardless of the value of a certain N attenuation coefficients c, The values at the (N + 1) fixed points are substantially equal, and the response magnification is the target structure that vibrates in response to the static displacement of the target structure due to the excitation force when the target structure is forcibly excited. Dynamic response magnification, which is the ratio to the amplitude of the object, displacement response magnification, which is the ratio of the displacement of the support when the support is forced to vibrate and the displacement of the target structure that vibrates in response, or the support This is one of the acceleration response magnifications, which is the ratio between the acceleration of the support when forcedly excited and the acceleration of the object that vibrates in response.
According to the configuration of the embodiment according to the invention, the lower damper natural frequency ωj among the N damper natural frequencies ωj (j = 1 to N) is the lower of the N optimum tuning frequencies. This value is lower than the optimum tuning frequency. When it is assumed that each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs matches the N optimum tuning frequencies, the excitation frequency p and the main frame When the ratio p / ωs to the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the target structure is the horizontal axis and the response magnification of the target structure is the vertical axis, the response magnification (N + 1) fixed points that are constant regardless of the value of N damping coefficients c, which is a value obtained by dividing the damping resistance force of the N damper elements by the relative speed. The values at are approximately equal. The response magnification is one of a dynamic response magnification, a displacement response magnification, or an acceleration response magnification. The dynamic response magnification is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly excited and the amplitude of the target structure that vibrates in response. The displacement response magnification is a ratio between the displacement of the support when the support is forcibly excited and the displacement of the target structure that vibrates in response. The acceleration response magnification is a ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.
As a result, the response magnification can be adjusted by equalizing the response magnification in the vicinity where the lower side is expanded to the lower side compared to the frequencies corresponding to (N + 1) fixed points.

さらに、本発明の実施形態に係る免震装置または制振装置は、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち高い方の前記ダンパー固有振動数ωjがN個の前記最適同調振動数のうちの高い方の前記最適同調振動数よりさらに高い値であり、ここで、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなり、前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである。
上記発明に係る実施形態の構成により、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち高い方の前記ダンパー固有振動数ωjがN個の前記最適同調振動数のうちの高い方の前記最適同調振動数よりさらに高い値である。N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなる。前記応答倍率は、動的応答倍率、変位応答倍率、または加速度応答倍率のうちのひとつである。動的応答倍率が、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である。変位応答倍率が、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である。加速度応答倍率が、支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である。
その結果、(N+1)個の定点に対応する周波数に比べ低い側がより高い側へ拡がった付近での応答倍率を均等にして、応答倍率を調整できる。
Further, the seismic isolation device or the vibration damping device according to the embodiment of the present invention includes the N damper natural frequencies ωj (j = 1 to N), the higher of the N damper natural frequencies ωj. It is a value that is higher than the optimum tuning frequency, which is the higher of the optimum tuning frequencies, where each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs. ) And the natural frequency ωs of the vibration mode that is displaced in a specific direction of the system composed of the main frame and the target structure, When the ratio p / ωs of the horizontal axis is the horizontal axis and the response magnification of the target structure is the vertical axis, the damping resistance force of the N damper elements is divided by the relative speed on the line indicating the response magnification. Regardless of the value of the N damping coefficients c The values at (N + 1) fixed points, which are constant values, are substantially equal, and the response magnification vibrates in response to the static displacement of the target structure due to the excitation force when the target structure is forcibly excited. A dynamic response magnification that is a ratio to the amplitude of the target structure, a displacement response magnification that is a ratio of the displacement of the support structure and the displacement of the target structure that has vibrated in response to the forced excitation of the support structure, or This is one of the acceleration response magnifications, which is the ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.
According to the configuration of the embodiment according to the present invention, the higher damper natural frequency ωj of the N damper natural frequencies ωj (j = 1 to N) is the higher of the N optimum tuning frequencies. This value is higher than the optimum tuning frequency. When it is assumed that each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs matches the N optimum tuning frequencies, the excitation frequency p and the main frame When the ratio p / ωs to the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the target structure is the horizontal axis and the response magnification of the target structure is the vertical axis, the response magnification (N + 1) fixed points that are constant regardless of the value of N damping coefficients c, which is a value obtained by dividing the damping resistance force of the N damper elements by the relative speed. The values at are approximately equal. The response magnification is one of a dynamic response magnification, a displacement response magnification, or an acceleration response magnification. The dynamic response magnification is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly excited and the amplitude of the target structure that vibrates in response. The displacement response magnification is a ratio between the displacement of the support when the support is forcibly excited and the displacement of the target structure that vibrates in response. The acceleration response magnification is a ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.
As a result, the response magnification can be adjusted by equalizing the response magnification in the vicinity where the lower side has expanded to the higher side compared to the frequencies corresponding to (N + 1) fixed points.

さらに、本発明の実施形態に係る免震装置または制振装置は、N個の前記減衰係数cがN個の最適減衰係数に略一致し、ここで、N個の前記減衰係数cがN個の前記最適減衰係数に各々に一致すると仮定したとき(N+1)個の前記定点での値が各々に実質的に略極大になる。
上記発明に係る実施形態の構成により、N個の前記減衰係数cがN個の前記最適減衰係数に略一致する。(N+1)個の前記定点での値が各々に実質的に略極大になる。
その結果、(N+1)個の定点の近傍での応答倍率が極大値をもつピーク点になり、全体の応答倍率をピーク点での応答倍率を調整できる。
Furthermore, in the seismic isolation device or the vibration damping device according to the embodiment of the present invention, the N attenuation coefficients c substantially match the N optimum attenuation coefficients, where the N attenuation coefficients c are N. (N + 1) values at the fixed points are substantially substantially maximal for each of the above-mentioned optimum attenuation coefficients.
With the configuration of the embodiment according to the invention, the N attenuation coefficients c substantially match the N optimal attenuation coefficients. The value at the (N + 1) fixed points is substantially substantially maximum for each.
As a result, the response magnification in the vicinity of (N + 1) fixed points becomes a peak point having a maximum value, and the overall response magnification can be adjusted to the response magnification at the peak point.

さらに、本発明の実施形態に係る免震装置または制振装置は、N個の前記ダンパー固有振動数ωj(j=1〜N)の各々の前記ダンパー固有振動数ωjがN個の所定値に略一致し、ここで、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の所定値に各々に一致すると仮定すると、前記固有振動数ωsが最小固有振動数ωminと最大固有振動数ωmaxとの間の値をとったときの前記応答倍率を示す線上での最大値Pmaxが、前記固有振動数ωsが最小固有振動数ωminであるときの最大値Pmaxより低くかつ前記固有振動数ωsが最大固有振動数ωmaxであるときの最大値Pmaxより低くなる。
上記発明に係る実施形態の構成により、N個の前記ダンパー固有振動数ωj(j=1〜N)の各々の前記ダンパー固有振動数ωjがN個の所定値に略一致する。前記応答倍率を示す線上での最大値Pmaxが、前記固有振動数ωsが最小固有振動数ωminと最大固有振動数ωmaxとの間で連続的に変化すると仮定するときに、前記固有振動数ωsが最小固有振動数ωminであるときの最大値Pmaxより低くかつ前記固有振動数ωsが最大固有振動数ωmaxであるときの最大値Pmaxより低く、
その結果、主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsが変化した際に、応答倍率の変化を調整できる。
Furthermore, in the seismic isolation device or the vibration damping device according to the embodiment of the present invention, the damper natural frequency ωj of each of the N damper natural frequencies ωj (j = 1 to N) is set to N predetermined values. Assuming that the N damper natural frequencies ωj (j = 1 to N) correspond to N predetermined values, respectively, the natural frequency ωs is the maximum and minimum natural frequency ωmin. The maximum value Pmax on the line indicating the response magnification when taking a value between the natural frequency ωmax is lower than the maximum value Pmax when the natural frequency ωs is the minimum natural frequency ωmin, and the natural frequency The frequency ωs is lower than the maximum value Pmax when it is the maximum natural frequency ωmax.
With the configuration of the embodiment according to the invention, the damper natural frequency ωj of each of the N damper natural frequencies ωj (j = 1 to N) substantially matches the N predetermined values. When the maximum value Pmax on the line indicating the response magnification assumes that the natural frequency ωs continuously changes between the minimum natural frequency ωmin and the maximum natural frequency ωmax, the natural frequency ωs is Lower than the maximum value Pmax when the minimum natural frequency ωmin, and lower than the maximum value Pmax when the natural frequency ωs is the maximum natural frequency ωmax,
As a result, when the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is changed, the change in the response magnification can be adjusted.

さらに、本発明の実施形態に係る免震装置または制振装置は、 2個以上であるN個の前記バネ付き粘性マスダンパーであるN個の第一バネ付き粘性マスダンパーを有する第一バネ付き粘性マスダンパー組と、2個以上であるN個の前記バネ付き粘性マスダンパーであるN個の第二バネ付き粘性マスダンパーを有する第二バネ付き粘性マスダンパー組と、
を備え、N個の第一バネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が互いに異なり、N個の第二バネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が互いに異なり、N個の第一バネ付き粘性マスダンパーの減衰係数cj(j=1〜N)が互いに異なり、N個の第二バネ付き粘性マスダンパーの減衰係数cj(j=1〜N)が互いに異なり、N個の前記第一バネ付き粘性マスダンパーの各々の前記ダンパー固有振動数ωj(j=1〜N)とN個の前記第二バネ付き粘性マスダンパーの各々の前記ダンパー固有振動数ωj(j=1〜N)とが1対毎に略一致し、N個の前記第一バネ付き粘性マスダンパー(j=1〜N)の各々の前記減衰係数cj(j=1〜N)とN個の前記第二バネ付き粘性マスダンパー(j=1〜N)の各々の減衰係数cj(j=1〜N)とが1対毎に略一致し、N個の第一バネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパーとが対象構造物の剛心を基準に1対毎に各々に点対称になる様に又は対称構造体の剛心を貫く仮想線を基準に1対毎に各々に線対称になる様に、N個の第一バネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパーとが支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる。
上記発明に係る実施形態の構成により、第一バネ付き粘性マスダンパー組が2個以上であるN個の前記バネ付き粘性マスダンパーであるN個の第一バネ付き粘性マスダンパーを有する。第二バネ付き粘性マスダンパー組が、2個以上であるN個の前記バネ付き粘性マスダンパーであるN個の第二バネ付き粘性マスダンパーを有する。N個の第一バネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が互いに異なる。N個の第一バネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が互いに異なる。N個の第二バネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が互いに異なる。N個の第一バネ付き粘性マスダンパーの減衰係数cj(j=1〜N)が互いに異なり、N個の第二バネ付き粘性マスダンパーの減衰係数cj(j=1〜N)が互いに異なり、N個の前記第一バネ付き粘性マスダンパーの各々の前記ダンパー固有振動数ωj(j=1〜N)とN個の前記第二バネ付き粘性マスダンパーの各々の前記ダンパー固有振動数ωj(j=1〜N)とが1対毎に略一致する。N個の前記第一バネ付き粘性マスダンパー(j=1〜N)の各々の前記減衰係数cj(j=1〜N)とN個の前記第二バネ付き粘性マスダンパー(j=1〜N)の各々の減衰係数cj(j=1〜N)とが1対毎に略一致する。N個の第一バネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパーとが対象構造物の剛心を基準に1対毎に各々に点対称になる様に又は対象構造物の剛心を貫く仮想線を基準に1対毎に各々に線対称になる様に、N個の第一バネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパーとが支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる。
その結果、バネ付き粘性マスダンパーの反力により主架構と対象構造物とで構成される系にねじれ動誘導が生じるの抑制し、ねじれ振動を誘発するエネルギーを免震または制振できる。
Furthermore, the seismic isolation device or the vibration damping device according to the embodiment of the present invention is provided with a first spring having N pieces of viscous mass dampers with first springs, which is N pieces of viscous mass dampers with springs. A viscous mass damper set with a second spring, and N viscous mass dampers with N second springs, which are N or more viscous mass dampers with springs;
The damper natural frequencies ωj (j = 1 to N) of the N first spring-equipped viscous mass dampers are different from each other, and the damper natural frequencies ωj (j = 1) of the N second viscous mass dampers with the springs ˜N) are different from each other, the damping coefficients cj (j = 1 to N) of the N first spring-attached viscous mass dampers are different from each other, and the damping coefficients cj (j = 1) of the N second spring-attached viscous mass dampers. N) are different from each other, the damper natural frequency ωj (j = 1 to N) of each of the N first viscous mass dampers with the spring and the each of the N second viscous mass dampers with the second spring. The damper natural frequency ωj (j = 1 to N) substantially matches every pair, and the damping coefficient cj (j = j = N) of each of the N first spring-equipped viscous mass dampers (j = 1 to N). 1 to N) and N pieces of viscous mass dampers with the second spring ( = 1 to N) of the respective damping coefficients cj (j = 1 to N) approximately coincide with each other, and N first viscous mass dampers with a first spring and N second viscous mass dampers with a second spring, N is such that each pair is point-symmetric with respect to the rigid center of the target structure, or so that each pair is line-symmetric with respect to a virtual line that passes through the rigid core of the symmetrical structure. A plurality of viscous mass dampers with first springs and N second viscous mass dampers with springs are respectively attached between the support and the target structure or inside the target structure.
According to the configuration of the embodiment of the present invention, the first spring-equipped viscous mass dampers are N pieces of the first spring-equipped viscous mass dampers. A set of viscous mass dampers with second springs has N number of viscous mass dampers with second springs, which is N or more of the above-mentioned N viscous mass dampers with springs. The damper natural frequency ωj (j = 1 to N) of the N first viscous mass dampers with springs is different from each other. The damper natural frequency ωj (j = 1 to N) of the N first viscous mass dampers with springs is different from each other. The N second viscous mass dampers with springs have different damper natural frequencies ωj (j = 1 to N). The damping coefficients cj (j = 1 to N) of the N first viscous mass dampers with springs are different from each other, and the damping coefficients cj (j = 1 to N) of the N second viscous mass dampers with springs are different from each other, The damper natural frequency ωj (j = 1 to N) of each of the N number of viscous mass dampers with the first spring and the damper natural frequency ωj (j of each of the N number of viscous mass dampers with the second spring) = 1 to N) approximately matches every pair. The damping coefficient cj (j = 1 to N) of each of the N first viscous mass dampers with springs (j = 1 to N) and the N viscous mass dampers with second springs (j = 1 to N) ) Substantially coincides with each other for each pair of attenuation coefficients cj (j = 1 to N). N pieces of viscous mass dampers with first springs and N pieces of viscous mass dampers with second springs are symmetric with respect to each other with respect to the rigid center of the target structure, or the rigidity of the target structure. N pieces of viscous mass dampers with first springs and N pieces of viscous mass dampers with second springs are used as a support and target structure so that each pair is symmetrical with respect to a virtual line passing through the center. Or within each of the target structures.
As a result, torsional motion induction can be suppressed in the system composed of the main frame and the target structure due to the reaction force of the viscous mass damper with spring, and the energy that induces torsional vibration can be isolated or controlled.

さらに、本発明の実施形態に係る免震装置または制振装置は、2個以上のN個の前記バネ付き粘性マスダンパーを各々に有する複数組のバネ付き粘性マスダンパー組を備え、
同じ組のバネ付き粘性マスダンパー組に属するN個の前記バネ付き粘性マスダンパーの前記ダンパー固有振動数ωj(j=1〜N)が各々に異なり、同じ組のバネ付き粘性マスダンパー組に属するN個の前記バネ付き粘性マスダンパーの前記減衰係数cj(j=1〜N)が各々に異なり、複数のバネ付き粘性マスダンパー組に属する各々N個の前記バネ付き粘性マスダンパーの全体から異なる組に属する1個のバネ付き粘性マスダンパーを選択して組み合わせた複数の前記バネ付き粘性マスダンパーの各々の前記ダンパー固有振動数ωj(j=1〜N)が各々に略一致し、複数のバネ付き粘性マスダンパー組に属する各々N個の前記バネ付き粘性マスダンパーの全体から異なる組に属する1個のバネ付き粘性マスダンパーを選択して組み合わせた複数の前記バネ付き粘性マスダンパーの各々の前記減衰係数cj(j=1〜N)が各々に略一致し、異なる組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーの発生する反力により対象構造物の剛心の周りに作用する各々の回転モーメントが一つの組毎に各々に相殺する様に複数組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーが支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる。
上記発明に係る実施形態の構成により、複数組のバネ付き粘性マスダンパー組が、2個以上のN個の前記バネ付き粘性マスダンパーを各々に有する。同じ組のバネ付き粘性マスダンパー組に属するN個の前記バネ付き粘性マスダンパーの前記ダンパー固有振動数ωj(j=1〜N)が各々に異なる。同じ組のバネ付き粘性マスダンパー組に属するN個の前記バネ付き粘性マスダンパーの前記減衰係数cj(j=1〜N)が各々に異なる。複数のバネ付き粘性マスダンパー組に属する各々N個の前記バネ付き粘性マスダンパーの全体から異なる組に属する1個のバネ付き粘性マスダンパーを選択して組み合わせた複数の前記バネ付き粘性マスダンパーの各々の前記ダンパー固有振動数ωj(j=1〜N)が各々に略一致する。複数のバネ付き粘性マスダンパー組に属する各々N個の前記バネ付き粘性マスダンパーの全体から異なる組に属する1個のバネ付き粘性マスダンパーを選択して組み合わせた複数の前記バネ付き粘性マスダンパーの各々の前記減衰係数cj(j=1〜N)が各々に略一致する。異なる組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーの発生する反力により対象構造物の剛心の周りに作用する各々の回転モーメントが一つの組毎に各々に相殺する様に複数組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーが支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる。
その結果、バネ付き粘性マスダンパーの反力により主架構と対象構造物とで構成される系にねじれ動誘導が生じるの抑制し、ねじれ振動を誘発するエネルギーを免震または制振できる。
Furthermore, the seismic isolation device or the vibration damping device according to the embodiment of the present invention includes a plurality of sets of spring-attached viscous mass damper sets each having two or more N pieces of spring-attached viscous mass dampers,
The damper natural frequency ωj (j = 1 to N) of the N viscous mass dampers with springs belonging to the same set of viscous mass dampers with springs is different, and belongs to the same set of viscous mass dampers with springs. The damping coefficients cj (j = 1 to N) of N pieces of the viscous mass dampers with springs are different from each other, and are different from the whole of the N pieces of viscous mass dampers with springs belonging to a plurality of viscous mass damper sets with springs. The damper natural frequency ωj (j = 1 to N) of each of the plurality of spring-attached viscous mass dampers selected and combined with one spring-attached viscous mass damper belonging to the set substantially coincides with each other, and Select and combine one spring-attached viscous mass damper belonging to a different group from the whole of the N spring-attached viscous mass dampers belonging to the spring-attached viscous mass damper set. The damping coefficients cj (j = 1 to N) of each of the plurality of spring-attached viscous mass dampers substantially match each other, and each of the N spring-attached viscous mass dampers belonging to different sets of spring-attached viscous mass damper sets. With N springs each belonging to a plurality of sets of viscous mass dampers with springs so that each rotational moment acting around the rigid core of the target structure cancels each other by the reaction force generated by Viscous mass dampers are respectively attached between the support and the target structure or inside the target structure.
With the configuration of the embodiment according to the invention, a plurality of sets of viscous mass dampers with springs each include two or more N viscous mass dampers with springs. The damper natural frequency ωj (j = 1 to N) of the N viscous mass dampers with springs belonging to the same set of viscous mass dampers with springs is different. The damping coefficients cj (j = 1 to N) of the N viscous mass dampers with a spring belonging to the same set of viscous mass dampers with a spring are different from each other. A plurality of the above-mentioned spring-attached viscous mass dampers obtained by selecting and combining one spring-attached viscous mass damper belonging to a different group from the whole of the above-mentioned N pieces of spring-attached viscous mass dampers belonging to a plurality of spring-attached viscous mass damper sets. Each of the damper natural frequencies ωj (j = 1 to N) substantially coincides with each other. A plurality of the above-mentioned spring-attached viscous mass dampers obtained by selecting and combining one spring-attached viscous mass damper belonging to a different group from the whole of the above-mentioned N pieces of spring-attached viscous mass dampers belonging to a plurality of spring-attached viscous mass damper sets. Each of the attenuation coefficients cj (j = 1 to N) substantially matches each other. Each rotational moment acting around the rigid core of the target structure is canceled out by each group by the reaction force generated by each of N spring mass viscous dampers belonging to different sets of spring mass viscous dampers. In this way, each of N spring-loaded viscous mass dampers belonging to a plurality of sets of spring-attached viscous mass damper sets is attached between the support and the target structure or inside the target structure.
As a result, torsional motion induction can be suppressed in the system composed of the main frame and the target structure due to the reaction force of the viscous mass damper with spring, and the energy that induces torsional vibration can be isolated or controlled.

以上説明したように、本発明に係る免震装置は、その構成により、以下の効果を有する。
振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系である前記バネ付き粘性マスダンパーを複数用意し、複数の前記バネ付き粘性マスダンパーを対象構造体に各々に取り付け、複数のバネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)が互いに異なる様にしたので、異なるダンパー固有振動数を持つN個の前記バネ付き粘性マスダンパーが対象構造物の振動エネルギーをより広い周波数帯域に分散し応答を低下させる。
直動軸と直動軸にねじ込まれた回転体と回転体とフレームとの隙間に封入された粘性流体とで構成された粘性マスダンパーと前記バネ要素を直列接続した系であるの前記バネ付き粘性マスダンパーを複数用意し、複数の前記バネ付き粘性マスダンパーを対象構造体に各々に取り付け、複数のバネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)が互いに異なる様にしたので、異なるダンパー固有振動数を持つN個の前記バネ付き粘性マスダンパーが対象構造物の振動エネルギーをより広い周波数帯域に分散し応答を低下させる。
As described above, the seismic isolation device according to the present invention has the following effects due to its configuration.
A system in which a viscous mass damper, which is a system in which an inertial connection element that converts relative displacement in a specific direction generated by vibration into a rotation amount of a rotating body and the damper element are connected in parallel, and the spring element are connected in series. A plurality of the viscous mass dampers with springs are prepared, and the plurality of viscous mass dampers with springs are respectively attached to the target structure, and each of the damper natural frequencies ωj (j = 1) of the plurality of viscous mass dampers with springs is provided. Since N) are different from each other, the N viscous mass dampers with springs having different damper natural frequencies disperse the vibration energy of the target structure in a wider frequency band and reduce the response.
With a spring that is a system in which the spring element is connected in series with a viscous mass damper composed of a linear motion shaft, a rotating body screwed into the linear motion shaft, and a viscous fluid sealed in a gap between the rotational body and the frame A plurality of viscous mass dampers are prepared, a plurality of the above-mentioned spring-attached viscous mass dampers are attached to the target structure, and the damper natural frequency ωj (j = 1 to N) of each of the plurality of spring-attached viscous mass dampers is Since they are made different from each other, the N viscous mass dampers with springs having different damper natural frequencies disperse the vibration energy of the target structure in a wider frequency band and reduce the response.

また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で複数の前記バネ付き粘性マスダンパーの持つ各々の減衰係数cの値のいかんにかかわらず一定値となる少なくとも(N+1)個の定点での値が略等しくなる様にN個の前記ダンパー固有振動数ωj(j=1〜N)を設定されているので、(N+1)個の定点での値が等しくなるので、(N+1)個の定点に対応する周波数の付近での応答倍率を均等にして、応答倍率のピークを下げることができる。
また、(N+1)個の前記定点での値が各々に実質的に略極大になる様にN個の前記減衰係数cを設定されているので、(N+1)個の定点での応答倍率が極大値をもつピークになり、全体の応答倍率を調整できる。
Further, when the horizontal axis is p / ωs and the vertical axis is the response magnification of the target structure, the values of the respective damping coefficients c of the plurality of the spring-attached viscous mass dampers on the line indicating the response magnification are shown. The N damper natural frequencies ωj (j = 1 to N) are set so that the values at at least (N + 1) fixed points, which are constant values, are almost equal, so (N + 1) Since the values at the fixed points are equal, it is possible to equalize the response magnifications in the vicinity of the frequencies corresponding to the (N + 1) fixed points, and to reduce the peak response magnification.
In addition, since the N attenuation coefficients c are set so that the values at the (N + 1) fixed points are substantially maximum, the response magnification at the (N + 1) fixed points is the maximum. It becomes a peak with a value, and the overall response magnification can be adjusted.

また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で極大値を持つ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まる様に、N個の前記ダンパー固有振動数ωj(j=1〜N)を設定されているので、極大値をもつ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まり、ピーク点の付近での応答倍率を調整できる。
また、前記応答倍率を示す線の上で極大値をもつN個のピーク点での各々の応答倍率の平均値が略最小となる様にN個の前記減衰係数cj(j=1〜N)を設定されているので、極大値をもつ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まる範囲で、ピークの付近での応答倍率を調整できる。
また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で極少値を持つN個のピーク点での各々の応答倍率の平均値が略最小となる様に、N個の前記ダンパー固有振動数ωj(j=1〜N)を設定されているので、極少値を持つN個のピーク点での各々の応答倍率の平均値が略最小となり、N個のピーク点の付近の応答倍率を下げられ、全体の応答倍率を調整できる。
また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上で所定の幅の加振周波数pでの連続した応答倍率の平均が略最小となる様に、N個の前記ダンパー固有振動数ωj(j=1〜N)を設定されているので、所定の幅の加振周波数pでの連続した応答倍率の平均が略最小となり、所定の幅の加振周波数pの付近での応答倍率を調整できる。
In addition, when p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, each response magnification at each of (N + 1) peak points having a maximum value on the line indicating the response magnification is shown. Since the N damper natural frequencies ωj (j = 1 to N) are set so that the variation falls within a predetermined range, each response magnification at the (N + 1) peak points having the maximum value is set. Variation within the predetermined range, and the response magnification near the peak point can be adjusted.
Further, the N attenuation coefficients cj (j = 1 to N) are set so that the average value of each response magnification at the N peak points having the maximum value on the line indicating the response magnification is substantially minimum. Therefore, the response magnification in the vicinity of the peak can be adjusted in a range in which the variation of each response magnification at the (N + 1) peak points having the maximum value falls within a predetermined range.
Further, when p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, the average value of each response magnification at N peak points having a minimum value on the line indicating the response magnification. N damper natural frequencies ωj (j = 1 to N) are set such that the average value of the response magnifications at the N peak points having a minimum value is set. The response magnification in the vicinity of N peak points can be lowered, and the overall response magnification can be adjusted.
When the horizontal axis is p / ωs and the vertical axis is the response magnification of the target structure, the average of the continuous response magnifications at the excitation frequency p of a predetermined width on the line indicating the response magnification is approximately. Since the N damper natural frequencies ωj (j = 1 to N) are set so as to be minimized, the average of continuous response magnifications at the excitation frequency p of a predetermined width is substantially minimized, The response magnification in the vicinity of the excitation frequency p having a predetermined width can be adjusted.

また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなるN個の最適同調振動数よりも、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち低い方の前記ダンパー固有振動数ωjをさらに低い値に設定し、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち高い方の前記ダンパー固有振動数ωjを略一致する値に設定されているので、(N+1)個の定点に対応する周波数に比べより拡がった付近での応答倍率を均等にして、応答倍率を調整できる。
また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなるN個の最適同調振動数よりも、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち低い方の前記ダンパー固有振動数ωjをさらに低い値に設定され、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち高い方の前記ダンパー固有振動数ωjを略一致する値に設定されているので、(N+1)個の定点に対応する周波数に比べ低い側がより低い側へ拡がった付近での応答倍率を均等にして、応答倍率を調整できる。
また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、前記応答倍率を示す線の上でN個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなるN個の最適同調振動数よりも、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち高い方の前記ダンパー固有振動数ωjをさらに高い値に設定され、N個の前記ダンパー固有振動数ωj(j=1〜N)のうち高い方の前記ダンパー固有振動数ωjを略一致する値に設定されているので、(N+1)個の定点に対応する周波数に比べ低い側がより高い側へ拡がった付近での応答倍率を均等にして、応答倍率を調整できる。
また、(N+1)個の前記定点での値が各々に実質的に略極大になる様にN個の前記減衰係数cを設定されているので、(N+1)個の定点での応答倍率が極大値をもつピークになり、全体の応答倍率をピークでの応答倍率を調整できる。
Further, when the horizontal axis is p / ωs and the vertical axis is the response magnification of the target structure, the damping resistance force of the N damper elements is divided by the relative speed on the line indicating the response magnification. N damper natural vibrations rather than N optimal tuning frequencies where the values at (N + 1) fixed points that are constant values are substantially equal regardless of the value of N damping coefficients c that are values. Of the number ωj (j = 1 to N), the lower damper natural frequency ωj is set to a lower value, and the higher of the N damper natural frequencies ωj (j = 1 to N). Since the damper natural frequency ωj is set to a substantially coincident value, it is possible to adjust the response magnification by equalizing the response magnification in the vicinity of the frequency corresponding to the (N + 1) fixed points.
Further, when the horizontal axis is p / ωs and the vertical axis is the response magnification of the target structure, the damping resistance force of the N damper elements is divided by the relative speed on the line indicating the response magnification. N damper natural vibrations rather than N optimal tuning frequencies where the values at (N + 1) fixed points that are constant values are substantially equal regardless of the value of N damping coefficients c that are values. Of the number ωj (j = 1 to N), the lower damper natural frequency ωj is set to a lower value, and the higher of the N damper natural frequencies ωj (j = 1 to N). Since the damper natural frequency ωj is set to a substantially coincident value, the response magnification in the vicinity where the lower side has spread to the lower side compared to the frequency corresponding to (N + 1) fixed points is made equal, and the response magnification is set. Can be adjusted.
Further, when the horizontal axis is p / ωs and the vertical axis is the response magnification of the target structure, the damping resistance force of the N damper elements is divided by the relative speed on the line indicating the response magnification. N damper natural vibrations rather than N optimal tuning frequencies where the values at (N + 1) fixed points that are constant values are substantially equal regardless of the value of N damping coefficients c that are values. Of the number ωj (j = 1 to N), the higher damper natural frequency ωj is set to a higher value, and the higher of the N damper natural frequencies ωj (j = 1 to N). Since the damper natural frequency ωj is set to a substantially coincident value, the response magnification in the vicinity where the lower side spreads higher than the frequency corresponding to the (N + 1) fixed points is made equal, and the response magnification is set. Can be adjusted.
In addition, since the N attenuation coefficients c are set so that the values at the (N + 1) fixed points are substantially maximum, the response magnification at the (N + 1) fixed points is the maximum. It becomes a peak having a value, and the response magnification at the peak can be adjusted to the overall response magnification.

また、前記固有振動数ωsが最小固有振動数ωminと最大固有振動数ωmaxとの間の値をとったときの前記応答倍率を示す線上での最大値Pmaxが、前記固有振動数ωsが最小固有振動数ωminであるときの最大値Pmaxより低くかつ前記固有振動数ωsが最大固有振動数ωmaxであるときの最大値Pmaxより低くなる様に、N個の前記ダンパー固有振動数ωj(j=1〜N)を設定されているので、主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsが変化した際に、応答倍率の変化を調整できる。   The maximum value Pmax on the line indicating the response magnification when the natural frequency ωs takes a value between the minimum natural frequency ωmin and the maximum natural frequency ωmax is the minimum natural frequency ωs. The N damper natural frequencies ωj (j = 1) so as to be lower than the maximum value Pmax when the frequency is ωmin and lower than the maximum value Pmax when the natural frequency ωs is the maximum natural frequency ωmax. ~ N) is set, it is possible to adjust the change in the response magnification when the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure changes.

また、互いに諸元の一致するバネ付き粘性マスダンパーを持つ第一バネ付き粘性マスダンパー組の各々のバネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパー組のバネ付き粘性マスダンパーとを対称構造体の剛心を中心として1対毎に点対称または剛心を含む仮想線を基準に線対称になるように配したので剛心の周りの各々の回転モーメントとが各々に相殺される。
その結果、バネ付き粘性マスダンパーの反力により主架構と対象構造物とで構成される系にねじれ動誘導が生じるの抑制し、ねじれ振動を誘発するエネルギーを免震または制振できる。
また、互いに諸元の一致するバネ付き粘性マスダンパーの属する複数のバネ付き粘性ダンパー組に各々属するN個のバネ付き粘性マスダンパーの発生する反力により生ずる剛心の周りの回転モーメントとが組毎に各々に相殺する様に、複数のバネ付き粘性マスダンパーを支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる。
その結果、バネ付き粘性マスダンパーの反力により主架構と対象構造物とで構成される系にねじれ動誘導が生じるの抑制し、ねじれ振動を誘発するエネルギーを免震または制振できる。
従って、簡易な構造により所望の免震性能または制振性能を発揮できる装置とその装置を構成する要素の諸元を容易に設定できる免震装置と制振装置とを提供できる。
Further, each of the first spring-attached viscous mass dampers having the spring-like viscous mass dampers having the same specifications, and each of the N second spring-attached viscous mass damper sets are provided. Are arranged symmetrically with respect to the centroid of the symmetrical structure, and the rotational moments around the rigid core are offset each other. The
As a result, torsional motion induction can be suppressed in the system composed of the main frame and the target structure due to the reaction force of the viscous mass damper with spring, and the energy that induces torsional vibration can be isolated or controlled.
In addition, the rotational moment around the rigid core generated by the reaction force generated by the N spring mass viscous dampers belonging to each of the plurality of spring mass viscous dampers to which the spring mass viscous dampers whose specifications match each other belongs. A plurality of spring mass viscous dampers are attached between the support and the target structure or inside the target structure so as to cancel each other.
As a result, torsional motion induction can be suppressed in the system composed of the main frame and the target structure due to the reaction force of the viscous mass damper with spring, and the energy that induces torsional vibration can be isolated or controlled.
Therefore, it is possible to provide a device capable of exhibiting a desired seismic isolation performance or vibration suppression performance with a simple structure, and a seismic isolation device and a vibration suppression device capable of easily setting the specifications of elements constituting the device.

以下、本発明を実施するための最良の形態を、図面を参照して説明する。
説明の便宜のために、地震の加速度が建物を揺する場合を例に、説明する。
The best mode for carrying out the present invention will be described below with reference to the drawings.
For convenience of explanation, the case where the acceleration of the earthquake shakes the building will be described as an example.

最初に、本発明の実施形態に係る免震装置または制振装置を、図を基に、説明する
図1は、本発明の実施形態に係る免震装置・制振装置の概念図である。
First, a seismic isolation device or a vibration damping device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual diagram of the seismic isolation device / damping device according to an embodiment of the present invention.

免震装置は、 支持体を基礎として主架構に支持される対象構造物の振動を免震する装置である。例えば、免震装置は、支持体と対象構造帯とに取り付けられ、支持体の振動を対象構造部に伝達しにくくする。
制振装置は、支持体を基礎として主架構に支持される対象構造物の振動を制振する装置である。例えば、制振装置は、対象構造物に取り付けられ、振動する対象構造体の振動レベルを押さえる。
The seismic isolation device is a device for isolating the vibration of the target structure supported by the main frame on the basis of the support. For example, the seismic isolation device is attached to the support and the target structural band, and makes it difficult to transmit the vibration of the support to the target structure.
The vibration damping device is a device for damping the vibration of the target structure supported by the main frame on the basis of the support. For example, the vibration damping device is attached to the target structure and suppresses the vibration level of the target structure that vibrates.

免震装置または制振装置は、2個以上であるN個のバネ付き粘性マスダンパーを設けられる。
N個のバネ付き粘性マスダンパーが特定方向の相対変位に対応して同位相または半位相のうちの一方で同期して互いに相対変位する様に対象構造体に各々に取り付けられる。
例えば、N個のバネ付き粘性マスダンパーの両端を剛体と見なせる構造体に固定すれば、N個のバネ付き粘性マスダンパーが特定方向の相対変位に対応して同位相または半位相のうちの一方で同期して互いに相対変位する。
バネ付き粘性マスダンパーは、振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して慣性接続要素とダンパー要素とを並列接続した系である粘性マスダンパーとバネ要素とを直列接続された系である。
バネ付き粘性マスダンパーは、バネ付き粘性マスダンパーがバネ要素の弾性係数kbと慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωとダンパー要素の減衰抵抗力を相対速度で割った値に対応する減衰係数cとを持つ。
N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)が互いに異なる。
The seismic isolation device or the vibration damping device is provided with N or more spring-loaded viscous mass dampers.
N viscous mass dampers with springs are attached to each of the target structures so as to be displaced relative to each other synchronously in one of the same phase or half phase corresponding to the relative displacement in a specific direction.
For example, if both ends of the N spring mass viscous dampers are fixed to a structure that can be regarded as a rigid body, the N mass viscous spring dampers are either in phase or half phase corresponding to the relative displacement in a specific direction. In sync with each other.
The elastic mass damper with a spring is an inertial connection element that converts the relative displacement in a specific direction caused by vibration into the amount of rotation of the rotating body, and an elastic reaction force that acts along the specific direction in response to the relative displacement in the specific direction. Viscosity is a system in which an inertial connection element and a damper element are connected in parallel with a spring element that generates vibration and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. This is a system in which a mass damper and a spring element are connected in series.
The viscous mass damper with a spring has a damper natural frequency ω corresponding to the elastic coefficient kb of the spring element and the apparent inertia mass m with respect to the relative acceleration in a specific direction of the inertia connecting element and the damping resistance of the damper element. And a damping coefficient c corresponding to a value obtained by dividing force by relative speed.
The damper natural frequency ωj (j = 1 to N) of the N viscous mass dampers with springs is different from each other.

免震装置または制振装置は、2個以上であるN個のバネ付き粘性マスダンパーで構成される。
N個のバネ付き粘性マスダンパーが特定方向の相対変位に対応して同位相または半位相のうちの一方で同期して互いに直動方向に相対変位する様に対象構造体に各々に取り付けられる。
バネ付き粘性マスダンパーは、雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し粘性ダンパーとバネ要素とを直列接続された系である。
バネ付き粘性マスダンパーは、バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を相対距離で割った値である弾性係数kbと粘性マスダンパーの直動軸を直動方向に所定の相対加速度で直動させたさいに直動方向に作用する反力を相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと粘性マスダンパーの直動軸を一定の相対速度で直動させた際に直動方向に作用する反力を相対速度で割った値に対応する減衰係数cとを持つ。
N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)が互いに異なる。
The seismic isolation device or damping device is composed of N or more spring-loaded viscous mass dampers.
N viscous mass dampers with springs are respectively attached to the target structures so as to be displaced relative to each other in the linear motion direction in synchronism with one of the same phase or half phase corresponding to the relative displacement in a specific direction.
A viscous mass damper with a spring comprises a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. The system includes a viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous damper and the spring element are connected in series.
The viscous mass damper with a spring has a modulus of elasticity kb, which is a value obtained by dividing the reaction force generated when the spring element is displaced by a relative distance in the linear motion direction, and the linear motion axis of the viscous mass damper in the linear motion direction. The damper natural frequency ω corresponding to the apparent inertia mass m, which is the value obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration when linearly moving at a predetermined relative acceleration, and the linear motion of the viscous mass damper And a damping coefficient c corresponding to a value obtained by dividing the reaction force acting in the linear motion direction by the relative velocity when the shaft is linearly moved at a constant relative velocity.
The damper natural frequency ωj (j = 1 to N) of the N viscous mass dampers with springs is different from each other.

免震装置または制振装置の特性が、N個のバネ付き粘性マスダンパーの持つ互いに異なる各々のダンパー固有振動数ωj(j=1〜N)の組合せにより決定される。
バネ付き粘性マスダンパーは慣性質量と粘性ダンパーとバネ要素とから構成されるため、固有振動数ωを持つ。
例えば、異なる固有振動数を持つN個のバネ付き粘性マスダンパーで複数のグループを構成する。複数のグループに属するN個のバネ付き粘性マスダンパーを支持体と対象構造物との間、または対象構造物のなかに配置し取り付ける。
N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)が同じであるタイプに比べ、より高い免震性能または制振性能を発揮できる。
以下では、N個のバネ付き粘性マスダンパーの各々のダンパー固有振動数ωj(j=1〜N)、減衰係数、慣性質量が全て同じであるタイプの免震装置または制振装置を「単一型装置」と、本願発明にかかる免震装置または制振装置を「多段調製型装置」と呼称する。
特に断らないかぎり、以下で説明する単一型装置に備えられるN個のバネ付き粘性マスダンパーの慣性質量の総和と多段調整型装置に備えられるN個のバネ付き粘性マスダンパーの慣性質量の総和とは等しい。
The characteristics of the seismic isolation device or the vibration damping device are determined by combinations of different damper natural frequencies ωj (j = 1 to N) of the N spring mass viscous dampers.
Since the viscous mass damper with a spring is composed of an inertial mass, a viscous damper and a spring element, it has a natural frequency ω.
For example, a plurality of groups are constituted by N spring mass viscous dampers having different natural frequencies. N pieces of viscous mass dampers with springs belonging to a plurality of groups are arranged and attached between the support and the target structure or in the target structure.
Higher seismic isolation performance or damping performance can be exhibited as compared with a type in which each of the N damper mass dampers with springs has the same damper natural frequency ωj (j = 1 to N).
In the following, a seismic isolation device or damping device of a type in which each of the N spring mass viscous dampers has the same damper natural frequency ωj (j = 1 to N), damping coefficient, and inertial mass is “single”. The mold device "and the seismic isolation device or damping device according to the present invention are referred to as" multistage preparation type device ".
Unless otherwise specified, the sum of the inertia masses of the N spring mass viscous dampers provided in the single type device described below and the sum of the inertia masses of the N spring mass viscous dampers provided in the multistage adjustment type device Is equal to

図1は、支持体を基礎として主架構に支持される対象構造物にN個のバネ付き粘性マスダンパーを付加された振動系のモデルを示している。
支持体を基礎として主架構に支持される対象構造物のモデルを主系と呼称する。
ここで、
uは、主系の特定方向の相対変位である。
Msは、主系の特定方向の相対変位にかかる慣性質量である。
Ksは、主系の特定方向の相対変位にかかる弾性係数である。
Csは、主系の特定方向の相対変位にかかる減衰係数である。
ωsは、主系の特定方向の相対変位にかかる固有振動数である。
mj(j=1〜N)は、バネ付き粘性マスダンパーのみかけの慣性質量である。
kbj(j=1〜N)は、バネ付き粘性マスダンパーの弾性係数である。
cj(j=1〜N)は、バネ付き粘性マスダンパーの減衰係数である。
ωj(j=1〜N)が、バネ付き粘性マスダンパーの固有振動数である。
バネ付き粘性マスダンパーの固有振動数をダンパー固有振動数と呼称する。
FIG. 1 shows a model of a vibration system in which N spring mass viscous dampers are added to a target structure supported by a main frame on the basis of a support.
A model of the target structure supported by the main frame on the basis of the support is called a main system.
here,
u is a relative displacement in a specific direction of the main system.
Ms is an inertial mass applied to the relative displacement in a specific direction of the main system.
Ks is an elastic coefficient according to relative displacement in a specific direction of the main system.
Cs is an attenuation coefficient applied to the relative displacement in a specific direction of the main system.
ωs is a natural frequency applied to a relative displacement in a specific direction of the main system.
mj (j = 1 to N) is an apparent inertial mass with a viscous mass damper with a spring.
kbj (j = 1 to N) is an elastic coefficient of the viscous mass damper with a spring.
cj (j = 1 to N) is a damping coefficient of the viscous mass damper with a spring.
ωj (j = 1 to N) is the natural frequency of the viscous mass damper with a spring.
The natural frequency of a viscous mass damper with a spring is called a damper natural frequency.

免震装置の免震性能、または制振装置の制振性能を評価するのに応答倍率を用いる。
例えば、振動の程度を評価するための応答倍率は、動的応答倍率、変位応答倍率、または加速度応答倍率である。
動的応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である。
変位応答倍率は、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である。
加速度応答倍率は、支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である。
The response magnification is used to evaluate the seismic isolation performance of the seismic isolation device or the damping performance of the vibration control device.
For example, the response magnification for evaluating the degree of vibration is a dynamic response magnification, a displacement response magnification, or an acceleration response magnification.
The dynamic response magnification is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly excited and the amplitude of the target structure that vibrates in response.
The displacement response magnification is a ratio between the displacement of the support when the support is forcibly excited and the displacement of the target structure that vibrates in response.
The acceleration response magnification is a ratio between the acceleration of the support when the support is forcibly excited and the acceleration of the object that vibrates in response.

バネ付き粘性マスダンパーの一例を、図を基に説明する。
図39は、本発明の実施形態に係る粘性マスダンパーの一例を示す断面図である。
図40は、本発明の実施形態に係るバネ要素の一例を示す断面図である。
粘性マスダンパー100は、直動軸120と回転体130とフレーム140と粘性流体150とで構成される。
An example of a viscous mass damper with a spring will be described with reference to the drawings.
FIG. 39 is a cross-sectional view showing an example of a viscous mass damper according to an embodiment of the present invention.
FIG. 40 is a cross-sectional view showing an example of a spring element according to the embodiment of the present invention.
The viscous mass damper 100 includes a linear motion shaft 120, a rotating body 130, a frame 140, and a viscous fluid 150.

直動軸120は、雄ねじを設けられた軸体である。
直動軸120の両端のうち少なくとも1端は後述するフレーム140の外部へ露出する。
The linear motion shaft 120 is a shaft body provided with a male screw.
At least one end of the linear motion shaft 120 is exposed to the outside of the frame 140 described later.

回転体130は、雄ねじに嵌めあう雌ねじを設けられた部材である。
回転体130は、ねじナット131と回転円筒132とで構成される。
ねじナット131は、後述するフレーム140に回転自在に支持され、雄ねじに嵌め合う雌ねじを設けられる。雄ねじと雌ねじとは、一列に並んだベアリング球を介して嵌め合っていてもよい。
回転円筒132は、後述するフレーム140に回転自在に支持された中空の円筒部材である。
ねじナット131と回転円筒132とは、各々の回転中心を一致させて連結される。
ねじナット131が回転すると、回転円筒132も回転する。
フレーム140は、回転体を回転自在に支持する部材であり、ねじナットフレーム141と回転円筒フレーム142と軸受143とで構成される。
ねじナットフレーム141は軸受143と介してねじナット131を回転自在に支持する。回転円筒フレーム142は、軸受143を介して回転円筒132を回転自在に支持する。
粘性流体150は、フレーム140の内面と該回転体との隙間に封入された液体である。
例えば、粘性流体150は、フレーム140の内面と該回転体の外周との隙間に封入される。
The rotating body 130 is a member provided with a female screw that fits into the male screw.
The rotating body 130 includes a screw nut 131 and a rotating cylinder 132.
The screw nut 131 is rotatably supported by a frame 140, which will be described later, and is provided with a female screw that fits into the male screw. The male screw and the female screw may be fitted together via bearing balls arranged in a row.
The rotating cylinder 132 is a hollow cylindrical member that is rotatably supported by a frame 140 described later.
The screw nut 131 and the rotating cylinder 132 are connected with their respective rotation centers coincident.
When the screw nut 131 rotates, the rotating cylinder 132 also rotates.
The frame 140 is a member that rotatably supports the rotating body, and includes a screw nut frame 141, a rotating cylindrical frame 142, and a bearing 143.
The screw nut frame 141 rotatably supports the screw nut 131 via the bearing 143. The rotating cylindrical frame 142 rotatably supports the rotating cylinder 132 via the bearing 143.
The viscous fluid 150 is a liquid sealed in a gap between the inner surface of the frame 140 and the rotating body.
For example, the viscous fluid 150 is sealed in a gap between the inner surface of the frame 140 and the outer periphery of the rotating body.

粘性マスダンパー100は、「慣性接続要素とダンパー要素とを並列接続した系」に相当する。
フレーム140と直動軸120との軸心の回りの回転を拘束した状態で、直動軸120を直動方向に相対変位させると、回転体130が雄ねじと雌ねじのねじの傾斜角に対応した回転角だけ回転する。
慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mは、直動軸を直動方向に所定の相対加速度で直動させたさいに直動方向に作用する反力を相対加速度で割った値であるみかけの慣性質量mに一致する。
回転体130が回転する際に、回転円筒132と回転円筒フレーム142との隙間に封入された粘性流体150が、回転円筒に132に粘性力を作用させる。
ダンパー要素の特定方向の相対速度に対応して減衰抵抗力は、その粘性力により直動軸120の直動方向に作用する力に一致する。
ダンパー要素の減衰抵抗力を相対速度で割った値である減衰係数cは、粘性マスダンパーの直動軸120を相対速度で直動させた際に直動方向に作用する反力を相対速度で割った値である減衰係数cに一致する。
The viscous mass damper 100 corresponds to “a system in which an inertia connecting element and a damper element are connected in parallel”.
When the linear motion shaft 120 is relatively displaced in the linear motion direction in a state where the rotation of the frame 140 and the linear motion shaft 120 around the axis is constrained, the rotating body 130 corresponds to the inclination angle of the male screw and the female screw. Rotate by the rotation angle.
The apparent inertia mass m with respect to the relative acceleration in a specific direction of the inertia connecting element is obtained by dividing the reaction force acting in the linear motion direction by the relative acceleration when the linear motion shaft is linearly moved in the linear motion direction at a predetermined relative acceleration. The value corresponds to the apparent inertial mass m.
When the rotating body 130 rotates, the viscous fluid 150 enclosed in the gap between the rotating cylinder 132 and the rotating cylinder frame 142 causes a viscous force to act on the rotating cylinder 132.
The damping resistance force corresponding to the relative speed of the damper element in a specific direction matches the force acting in the linear motion direction of the linear motion shaft 120 by the viscous force.
The damping coefficient c, which is a value obtained by dividing the damping resistance force of the damper element by the relative speed, is the reaction force acting in the linear motion direction when the linear motion shaft 120 of the viscous mass damper is linearly moved at the relative speed. It corresponds to the attenuation coefficient c which is a divided value.

バネ要素200は、弾性体210を有する要素である。
例えば、バネ要素200は、弾性体210と弾性体を間に挟んだ第一部材220と第二部材230とを有する要素である。
弾性体210は、弾性変形する要素である。
例えば、弾性体210は、剪断力を受けて弾性変形する柔軟材料性の板形状の部材である。
第一部材220は、フランジ221とフランジに固定された一対の弾性体支持部材222とで構成される。
第二部材230は、フランジ231とフランジに固定された弾性体支持部材232とで構成される。
弾性体支持部材222と弾性体支持部材232とが弾性体210を挟む。
第一部材220と第二部材230とが、互いに離間する方向へ移動すると、弾性体に剪断力が発生する。
バネ要素は、第一部材220と第二部材230とが互いに離間する方向を特定方向に一致させる。
The spring element 200 is an element having an elastic body 210.
For example, the spring element 200 is an element having a first member 220 and a second member 230 sandwiching the elastic body 210 and the elastic body.
The elastic body 210 is an element that is elastically deformed.
For example, the elastic body 210 is a flexible material plate-shaped member that is elastically deformed by receiving a shearing force.
The first member 220 includes a flange 221 and a pair of elastic body support members 222 fixed to the flange.
The second member 230 includes a flange 231 and an elastic body support member 232 fixed to the flange.
The elastic body support member 222 and the elastic body support member 232 sandwich the elastic body 210.
When the first member 220 and the second member 230 move in directions away from each other, a shearing force is generated in the elastic body.
The spring element matches the direction in which the first member 220 and the second member 230 are separated from each other in a specific direction.

バネ要素200は、「バネ要素」に相当する。
バネ要素40の弾性係数kbは、バネ要素200を直動方向に相対距離だけ変位させた際に発生する反力を相対距離で割った値である弾性係数kbに一致する。
The spring element 200 corresponds to a “spring element”.
The elastic coefficient kb of the spring element 40 coincides with the elastic coefficient kb, which is a value obtained by dividing the reaction force generated when the spring element 200 is displaced by the relative distance in the linear motion direction by the relative distance.

クレビス300は、2つの機械要素の間に介在し、2つの要素を繋ぐ向きに直交する軸の回りに回転自在になった機械要素である。
例えば、クレビズ300は、粘性マスダンパー100のフレーム140と支持体5との間に介在する。
例えば、クレビス300は、粘性マスダンパー100の直動軸120とバネ要素200との間に介在する。
The clevis 300 is a machine element that is interposed between two machine elements and is rotatable around an axis orthogonal to the direction connecting the two elements.
For example, the clevis 300 is interposed between the frame 140 of the viscous mass damper 100 and the support 5.
For example, the clevis 300 is interposed between the linear motion shaft 120 of the viscous mass damper 100 and the spring element 200.

図41は、本発明の実施形態に係るバネ付き粘性マスダンパーの取付構造の一例を示す概念図である。
粘性マスダンパーとバネ要素200が直列接続されたバネ付き粘性マスダンパーが支持体と対象構造物との間、または対象構造物の中間部に取り付けられる。
粘性マスダンパーの直動軸の長手方向が対象構造物が振動に伴って発生する特定方向に一致する。
FIG. 41 is a conceptual diagram showing an example of a mounting structure of a viscous mass damper with a spring according to the embodiment of the present invention.
A spring-equipped viscous mass damper in which a viscous mass damper and a spring element 200 are connected in series is attached between the support and the target structure or in the middle of the target structure.
The longitudinal direction of the linear motion axis of the viscous mass damper coincides with a specific direction generated by vibration of the target structure.

以下に、本発明の実施形態に係る免震装置または制振装置を、N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)が互いに異なる様に設定する各種の手法に則して、説明する。
式中に現れると減衰定数hと減衰係数cの関係は以下の通りである。
c=2hωm
最適減衰定数に対応する減衰係数を最適減衰係数と呼称する。
In the following, the seismic isolation device or the vibration damping device according to the embodiment of the present invention is set so that the damper natural frequencies ωj (j = 1 to N) of the N spring mass viscous dampers are different from each other. A description will be given according to various methods.
When it appears in the equation, the relationship between the attenuation constant h and the attenuation coefficient c is as follows.
c = 2hωm
An attenuation coefficient corresponding to the optimal attenuation constant is referred to as an optimal attenuation coefficient.

最初に、本発明の第一の実施形態に係る免震装置または制振装置を説明する。
図2は、本発明の第一の実施形態に係る装置の最適同調振動数比のグラフである。図3は、本発明の第一の実施形態に係る装置の最適減衰定数のグラフである。
本発明の第一の実施形態に係る免震装置または制振装置は、変位応答倍率を評価基準として用いて諸元を決定し設定する。
Initially, the seismic isolation apparatus or damping device which concerns on 1st embodiment of this invention is demonstrated.
FIG. 2 is a graph of the optimum tuning frequency ratio of the device according to the first embodiment of the present invention. FIG. 3 is a graph of the optimum attenuation constant of the device according to the first embodiment of the present invention.
The seismic isolation device or the vibration damping device according to the first embodiment of the present invention determines and sets specifications using the displacement response magnification as an evaluation criterion.

N個のダンパー固有振動数ωj(j=1〜N)はN個の最適同調振動数に各々に略一致する。
ここで、N個の最適同調振動数は、N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上でN個のバネ付き粘性マスダンパーの持つ各々の減衰係数cの値のいかんにかかわらず一定値となる少なくとも(N+1)個の定点での値が略等しくなる様なN個のダンパー固有振動数ωj(j=1〜N)である。
The N damper natural frequencies ωj (j = 1 to N) substantially correspond to the N optimum tuning frequencies, respectively.
Here, the N optimum tuning frequencies are assumed to be that each damper natural frequency ωj (j = 1 to N) of the N spring mass viscous dampers matches the N optimum tuning frequencies. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is set as the horizontal axis, and the response magnification of the target structure Is a vertical axis, and at least (N + 1) fixed points that are constant regardless of the value of the damping coefficient c of each of the N spring mass viscous dampers on the line indicating the response magnification. N damper natural frequencies ωj (j = 1 to N) whose values are substantially equal.

さらに、 N個の減衰係数cがN個の最適減衰係数に各々に略一致する。
ここで、N個の最適減衰係数は、N個の減衰係数cがN個の最適減衰係数に各々に一致すると仮定したとき(N+1)個の定点での値が各々に実質的に略極大になる様なN個の減衰係数cである。
Further, the N attenuation coefficients c substantially match the N optimum attenuation coefficients.
Here, assuming that the N optimum attenuation coefficients are equal to the N optimum attenuation coefficients, the values at the (N + 1) fixed points are substantially substantially maximal. N attenuation coefficients c such that

以下で、2個のバネ付き粘性マスダンパーの諸元を決定する場合を例に説明する。
特に断らないかぎり、2個のバネ付き粘性マスダンパーの各々のみかけの慣性質量mj(j=1、2)は等しいものとする。
諸元は、固有振動数ω、みかけの慣性質量m、減衰係数cである。
Below, the case where the item of the two viscous mass dampers with a spring is determined is demonstrated to an example.
Unless otherwise specified, the apparent inertia mass mj (j = 1, 2) of each of the two spring-loaded viscous mass dampers is assumed to be equal.
The specifications are the natural frequency ω, the apparent inertia mass m, and the damping coefficient c.

p/ωsを横軸とし対象構造物の応答倍率を縦軸としたとき、変位応答倍率を示す線の上で2個のバネ付き粘性マスダンパーの持つ各々の減衰係数c1、c2の値のいかんにかかわらず一定値となる少なくとも3個の定点での値が略等しくなる条件式は以下の通りである。

Figure 0005123772
上記の2つの式を満足する2個のバネ付き粘性マスダンパーの各々のダンパー固有振動数ω1、ω2が最適同調振動数である。 When p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, the values of the respective damping coefficients c1 and c2 of the two spring-loaded viscous mass dampers on the line indicating the displacement response magnification. Regardless of the above, the conditional expression in which the values at at least three fixed points that are constant values are substantially equal is as follows.
Figure 0005123772
The damper natural frequencies ω1 and ω2 of the two spring-loaded viscous mass dampers that satisfy the above two expressions are the optimum tuning frequencies.

変位応答倍率は以下の式により求められる。

Figure 0005123772

上記の式を用いて、3個の定点での値が各々に実質的に略極大になる条件を求める。
例えば、上記の式より極大値を求め、求めた極大値が等しくなるh1、h2の組み合わさせをパラメータスタディにより求める。
例えば、上記の式の微分式から定点が極大となる減衰定数h1、h2を求める。
Figure 0005123772
上記の条件を満足する2個のバネ付き粘性マスダンパーの各々の減衰定数h1、h2が最適減衰定数である。 The displacement response magnification is obtained by the following equation.
Figure 0005123772

Using the above equation, a condition is obtained in which the values at the three fixed points are each substantially substantially maximal.
For example, a maximum value is obtained from the above equation, and a combination of h1 and h2 at which the obtained maximum values are equal is obtained by a parameter study.
For example, the attenuation constants h1 and h2 at which the fixed points are maximized are obtained from the differential expression of the above expression.
Figure 0005123772
The damping constants h1 and h2 of the two spring-loaded viscous mass dampers that satisfy the above conditions are the optimum damping constants.

変位応答倍率を評価基準としたとき、2個のバネ付き粘性マスダンパーの最適同調振動数、最適減衰定数を、図を基に、説明する。
図2は、本発明の第一の実施形態に係る装置の最適同調振動数比のグラフである。図3は、本発明の第一の実施形態に係る装置の最適減衰定数のグラフである。
図2は、質量比を変化させたときの最適同調振動数比を示す。
図3は、質量比を変化させたときの最適減衰定数を示す。
質量比は、N個のバネ付き粘性マスダンパーの各々の慣性質量の総和Σmjと主系の質量Msの比である。
最適同調振動数比は、最適同調振動数ωjと主系の固有振動数ωsとの比である。
Based on the drawings, the optimum tuning frequency and optimum damping constant of the two viscous mass dampers with springs will be described using the displacement response magnification as an evaluation criterion.
FIG. 2 is a graph of the optimum tuning frequency ratio of the device according to the first embodiment of the present invention. FIG. 3 is a graph of the optimum attenuation constant of the device according to the first embodiment of the present invention.
FIG. 2 shows the optimum tuning frequency ratio when the mass ratio is changed.
FIG. 3 shows the optimum attenuation constant when the mass ratio is changed.
The mass ratio is the ratio of the sum Σmj of the inertial mass of each of the N spring mass viscous dampers to the mass Ms of the main system.
The optimum tuning frequency ratio is the ratio between the optimum tuning frequency ωj and the natural frequency ωs of the main system.

図2における2つのカーブは、2個のバネ付き粘性マスダンパーの最適同調振動数を各々に表す。質量比を決定すると、2つの最適同調振動数のどちらかを選択できる。
2つの最適同調振動数のうち、最適同調振動数比が小さい方の最適同調振動数を「柔らかい方」と呼称し、最適同調振動数比が大きい方の最適同調振動数を「硬い方」と呼称する。
図3における2つのカーブは、2個のバネ付き粘性マスダンパーの最適減衰定数を各々に表す。質量比を決定すると、2つの最適減衰定数のどちらかを選択できる。
2つの最適減衰定数のうち、値が小さい方の最適減衰定数を「柔らかい方」と呼称し、値が大きい方の最適減衰定数を「硬い方」と呼称する。
2つのバネ付き粘性マスダンパー共に、「硬い方」の最適同調振動数比と最適減衰定数または「柔らかい方」の最適同調振動数比と最適減衰定数の一方を選ぶことができる。
すなわち、1つのバネ付き粘性マスダンパーが「硬い方」の最適同調振動数比と最適減衰定数を選択し、他方のバネ付き粘性マスダンパーが「柔らかい方」の最適同調振動数比と最適減衰定数を選択すると、条件式を満足できない。
The two curves in FIG. 2 represent the optimum tuning frequencies of the two spring-loaded viscous mass dampers, respectively. Once the mass ratio is determined, one of two optimal tuning frequencies can be selected.
Of the two optimum tuning frequencies, the optimum tuning frequency with the smaller optimum tuning frequency ratio is referred to as “soft”, and the optimum tuning frequency with the larger optimum tuning frequency ratio is referred to as “hard”. Call it.
The two curves in FIG. 3 represent the optimum damping constants of the two spring mass viscous dampers, respectively. Once the mass ratio is determined, one of two optimal damping constants can be selected.
Of the two optimum attenuation constants, the optimum attenuation constant having a smaller value is referred to as “softer”, and the optimum attenuation constant having a larger value is referred to as “harder”.
For both of the two spring-loaded viscous mass dampers, either the “harder” optimum tuning frequency ratio and optimum damping constant or the “softer” optimum tuning frequency ratio and optimum damping constant can be selected.
That is, one spring viscous mass damper selects the “harder” optimal tuning frequency ratio and optimal damping constant, and the other spring-loaded viscous mass damper selects the “softer” optimal tuning frequency ratio and optimal damping constant. If is selected, the conditional expression cannot be satisfied.

理論式から導いた最適同調振動数比νと最適減衰定数hとを得る近似式は、以下の通りである。

Figure 0005123772
条件式を解析的に解くのは容易でないが、上記の近似式を用いることにより、簡便に採点同調振動数と最適減衰定数を選ぶことができる。 An approximate expression for obtaining the optimum tuning frequency ratio ν and the optimum damping constant h derived from the theoretical expression is as follows.
Figure 0005123772
Although it is not easy to solve the conditional expression analytically, by using the above approximate expression, the scoring tuning frequency and the optimum damping constant can be easily selected.

2個のダンパー固有振動数ωj(j=1〜N)を2個の最適同調振動数に各々に略一致する値にした時の、変位応答倍率を、図を基に説明する。
図4は、単一型装置の変位応答倍率のグラフである。図5は、本発明の第一の実施形態に係る装置の変位応答倍率のグラフである。図6は、本発明の第一の実施形態に係る装置の最大変位応答倍率のグラフである。図7は、本発明の第一の実施形態に係る装置の減衰定数−最大変位応答倍率グラフ1である。図8は、本発明の第一の実施形態に係る装置の減衰定数−最大変位応答倍率グラフ2である。
The displacement response magnification when the two damper natural frequencies ωj (j = 1 to N) are set to values substantially corresponding to the two optimum tuning frequencies will be described with reference to the drawings.
FIG. 4 is a graph of the displacement response magnification of a single type device. FIG. 5 is a graph of displacement response magnification of the apparatus according to the first embodiment of the present invention. FIG. 6 is a graph of the maximum displacement response magnification of the apparatus according to the first embodiment of the present invention. FIG. 7 is an attenuation constant-maximum displacement response magnification graph 1 of the device according to the first embodiment of the present invention. FIG. 8 is an attenuation constant-maximum displacement response magnification graph 2 of the device according to the first embodiment of the present invention.

図4は、比較のための単一型装置の変位応答倍率を示す。
単一型装置では、諸元の同一の2個のバネ付き粘性マスダンパーを用い、加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の変位応答倍率を縦軸としたとき、変位応答倍率を示す線の上でバネ付き粘性マスダンパーの持つ減衰係数cの値のいかんにかかわらず一定値となる少なくとも2個の定点での値が略等しくなる様にダンパー固有振動数を選定し、その2個の定点が極大値となる様に減衰係数を選択する。
単一側装置は、多段調整型装置と同様に、「硬い方」と「柔らかい方」とのうちの一方の諸元を選定できる。
図5は、2個のバネ付き粘性マスダンパー各々のダンパー固有振動数ωjを2個の最適同調振動数比に対応する最適同調振動数に各々に略一致させ、2個の減衰係数を2個の最適減衰定数に対応する減衰係数に各々に略一致させたときの系の変位応答倍率を質量比をパラメータとしてグラフ化したものを示す。
図4、図5のなかで、1〜5、または1〜7の符号がふられた上のカーブが「柔らかい方」の最適同調振動数比と最適減衰定数を設定した場合の応答倍率を表し、1〜5、または1〜7の符号がふられた下のカーブが「硬い方」の最適同調振動数比と最適減衰定数を設定した場合の応答倍率を表す。
図5のなかで、薄い線は4段調整型装置の変位応答倍率をしめす。
4段調整型装置は、特定方向の振動を抑制するのに諸元の異なる4個のバネ付き粘性マスダンパーを用いて主系の応答倍率を低下させる免震装置または制振装置である。
FIG. 4 shows the displacement response magnification of a single type device for comparison.
In the single-type device, two natural mass dampers with springs with the same specifications are used, and the natural vibration of the vibration mode that is displaced in a specific direction of the system composed of the excitation frequency p, the main frame, and the target structure When the ratio p / ωs to the number ωs is the horizontal axis and the displacement response magnification of the target structure is the vertical axis, the value of the damping coefficient c of the viscous mass damper with a spring on the line indicating the displacement response magnification is shown. Regardless of the above, the damper natural frequency is selected so that the values at at least two fixed points that are constant values are substantially equal, and the damping coefficient is selected so that the two fixed points have the maximum values.
The single-side device can select one of the “harder” and “softer” specifications, similar to the multistage adjustable device.
FIG. 5 shows that the damper natural frequency ωj of each of the two spring-loaded viscous mass dampers substantially matches the optimum tuning frequency corresponding to the two optimum tuning frequency ratios, and two damping coefficients are set to two. 3 shows a graph of the displacement response magnification of the system with the mass ratio as a parameter when the damping coefficient corresponding to the optimum damping constant is substantially matched to each other.
In FIG. 4 and FIG. 5, the response magnification when the optimum tuning frequency ratio and the optimum damping constant of the “softer” curve set with the symbols 1 to 5 or 1 to 7 is set is shown. , 1-5, or 1-7, the lower curve represents the response magnification when the optimum tuning frequency ratio and the optimum damping constant of “harder” are set.
In FIG. 5, the thin line indicates the displacement response magnification of the four-stage adjustable device.
The four-stage adjustment type device is a seismic isolation device or vibration control device that reduces the response magnification of the main system by using four spring-loaded viscous mass dampers having different specifications in order to suppress vibrations in a specific direction.

図6は、質量比と変位応答倍率の最大値の関係を示している。
以下、変位応答倍率の最大値を最大変位応答倍率と呼称する。
sψsは、「柔らかい方」の諸元を設定した単一型装置の最大変位応答倍率である。
Hψsは、「硬い方」の諸元を設定した単一型装置の最大変位応答倍率である。
sψdは、「柔らかい方」の諸元を設定した多段調整型装置の最大変位応答倍率である。
Hψdは、「硬い方」の諸元を設定した多段調整型装置の最大変位応答倍率である。
図7、図8は、付加系の減衰定数の変動係数と変位応答倍率の最大値の変化の関係を示す。
図7は、柔らかい方の単一型装置と2段調整型装置の応答倍率を示す。
図8は、硬い方の単一型装置と2段調整型装置の応答倍率を示す。
FIG. 6 shows the relationship between the mass ratio and the maximum value of the displacement response magnification.
Hereinafter, the maximum value of the displacement response magnification is referred to as the maximum displacement response magnification.
sψs is the maximum displacement response magnification of a single-type device in which the “softer” specifications are set.
Hψs is the maximum displacement response magnification of a single-type device in which the “harder” specifications are set.
sψd is the maximum displacement response magnification of the multistage adjustment type device in which the “softer” specifications are set.
Hψd is the maximum displacement response magnification of the multistage adjustment type apparatus in which the “harder” specifications are set.
7 and 8 show the relationship between the variation coefficient of the attenuation constant of the additional system and the change in the maximum value of the displacement response magnification.
FIG. 7 shows the response magnification of the softer single-type device and the two-stage adjustable device.
FIG. 8 shows the response magnification of the harder single-type device and the two-stage adjustable device.

図2〜図8から、以下のことがわかる。
(1)単一型装置の応答倍率と多段調整型装置の応答倍率に、有意な差がある。
(2)特に、多段調整型装置の応答倍率は、単一型装置の応答倍率に比べ、主系の固有振動数の周辺で顕著に小さくなる。
(3)「柔らかい方」の最適同調振動数比と最適減衰定数を設定した場合、質量比0.2以下で、多段調整型装置の変位応答倍率が単一型装置の変位応答倍率より一様に小さくなる。
(4)「硬い方」の最適同調振動数比と最適減衰定数を設定した場合、全ての質量比で、多段調整型装置の変位応答倍率が単一型装置の変位応答倍率より一様に小さくなる。
(5)多段調製型の装置は、同等の変位応答倍率を得るのに単一型装置より小さな減衰係数を設定できる。
(6)多段調製型の装置は、同じ応答倍率を得ることのできる固有振動数の幅が単一型装置のそれよりも広い。
(7)多段調製型の装置は、単一型装置に比較してより大きな質量比を設定できる。例えば、単一型での質量比は0.25以下であり、多段調整型装置での質量比は0.352以下である。
(8)免震効果、制振効果が主系の固有振動数の変動の影響を受けにくい。例えば、「柔らかい方」の多段調整型装置では、特に質量比0.2以下で主系のバネ定数の変動0.9以上で、単一型装置よりも有利である。「硬い方」の多段調整型装置では、全ての質量比において単一型装置よりも有利である。
上記において、一般的に、質量比は0%〜10%の誤差を含み、主系のバネ定数の変動は±5%の誤差を含む。
The following can be understood from FIGS.
(1) There is a significant difference between the response magnification of the single-type device and the response magnification of the multistage adjustment type device.
(2) In particular, the response magnification of the multistage adjustment type device is significantly smaller around the natural frequency of the main system than the response magnification of the single type device.
(3) When the optimum tuning frequency ratio and optimum damping constant of the “softer” are set, the displacement response magnification of the multistage adjustment type device is more uniform than the displacement response magnification of the single type device at a mass ratio of 0.2 or less. Becomes smaller.
(4) When the optimal tuning frequency ratio and optimal damping constant of “harder” are set, the displacement response magnification of the multistage adjustment type device is uniformly smaller than the displacement response magnification of the single type device at all mass ratios. Become.
(5) A multistage preparation type device can set a smaller attenuation coefficient than a single type device to obtain an equivalent displacement response magnification.
(6) The multistage preparation type device has a wider natural frequency range than that of the single type device, which can obtain the same response magnification.
(7) A multistage preparation type apparatus can set a larger mass ratio than a single type apparatus. For example, the mass ratio in the single type is 0.25 or less, and the mass ratio in the multistage adjustment type apparatus is 0.352 or less.
(8) The seismic isolation effect and damping effect are not easily affected by fluctuations in the natural frequency of the main system. For example, the “softer” multistage adjustment type device is more advantageous than the single type device, particularly with a mass ratio of 0.2 or less and a fluctuation of the main system spring constant of 0.9 or more. The “harder” multistage adjustable device is more advantageous than the single device at all mass ratios.
In the above, the mass ratio generally includes an error of 0% to 10%, and the fluctuation of the spring constant of the main system includes an error of ± 5%.

次に、本発明の第二の実施形態にかかる免震装置または制振装置を説明する。
図9は、本発明の第二の実施形態に係る装置の最適同調振動数比のグラフである。図10は、本発明の第二の実施形態に係る装置の最適減衰定数のグラフである。
本発明の第二の実施形態に係る免震装置または制振装置は、加速度応答倍率を評価基準として諸元を設定する。
Next, the seismic isolation device or the vibration damping device according to the second embodiment of the present invention will be described.
FIG. 9 is a graph of the optimum tuning frequency ratio of the device according to the second embodiment of the present invention. FIG. 10 is a graph of the optimum attenuation constant of the device according to the second embodiment of the present invention.
The seismic isolation device or the vibration damping device according to the second embodiment of the present invention sets specifications using the acceleration response magnification as an evaluation criterion.

N個のダンパー固有振動数ωj(j=1〜N)はN個の最適同調振動数に各々に略一致する。
ここで、N個の最適同調振動数は、N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上でN個のバネ付き粘性マスダンパーの持つ各々の減衰係数cの値のいかんにかかわらず一定値となる少なくとも(N+1)個の定点での値が略等しくなる様なN個のダンパー固有振動数ωj(j=1〜N)である。
The N damper natural frequencies ωj (j = 1 to N) substantially correspond to the N optimum tuning frequencies, respectively.
Here, the N optimum tuning frequencies are assumed to be that each damper natural frequency ωj (j = 1 to N) of the N spring mass viscous dampers matches the N optimum tuning frequencies. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is set as the horizontal axis, and the response magnification of the target structure Is a vertical axis, and at least (N + 1) fixed points that are constant regardless of the value of the damping coefficient c of each of the N spring mass viscous dampers on the line indicating the response magnification. N damper natural frequencies ωj (j = 1 to N) whose values are substantially equal.

さらに、N個の減衰係数cがN個の最適減衰係数に略一致する。
ここで、N個の最適減衰係数は、N個の減衰係数cがN個の最適減衰係数に各々に一致すると仮定したとき(N+1)個の定点での値が各々に実質的に略極大になる様なN個の減衰係数cである。
Further, the N attenuation coefficients c substantially match the N optimum attenuation coefficients.
Here, assuming that the N optimum attenuation coefficients are equal to the N optimum attenuation coefficients, the values at the (N + 1) fixed points are substantially substantially maximal. N attenuation coefficients c such that

以下で、2個のバネ付き粘性マスダンパーの諸元を決定する場合を例に説明する。
特に断らないかぎり、2個のバネ付き粘性マスダンパーの各々のみかけの慣性質量mj(j=1、2)は等しいものとする。
諸元は、固有振動数、みかけの慣性質量、減衰係数である。
Below, the case where the item of the two viscous mass dampers with a spring is determined is demonstrated to an example.
Unless otherwise specified, the apparent inertia mass mj (j = 1, 2) of each of the two spring-loaded viscous mass dampers is assumed to be equal.
The specifications are natural frequency, apparent inertial mass, and damping coefficient.

p/ωsを横軸とし対象構造物の応答倍率を縦軸としたとき、加速度応答倍率を示す線の上で2個のバネ付き粘性マスダンパーの持つ各々の減衰係数c1、c2の値のいかんにかかわらず一定値となる少なくとも3個の定点での値が略等しくなる条件式は以下の通りである。

Figure 0005123772
上記の2つの式を満足する2個のバネ付き粘性マスダンパーの各々のダンパー固有振動数ω1、ω2が最適同調振動数である。 When p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, the values of the respective damping coefficients c1 and c2 of the two spring-loaded viscous mass dampers on the line indicating the acceleration response magnification. Regardless of the above, the conditional expression in which the values at at least three fixed points that are constant values are substantially equal is as follows.
Figure 0005123772
The damper natural frequencies ω1 and ω2 of the two spring-loaded viscous mass dampers that satisfy the above two expressions are the optimum tuning frequencies.

加速度応答倍率は以下の式により求められる。

Figure 0005123772
上記の式を用いて、3個の定点での値が各々に実質的に略極大になる条件を求める。
例えば、上記の式より極大値を求め、求めた極大値が等しくなるh1、h2の組み合わせをパラメータスタディにより求める。
例えば、上記の式の微分式から定点が極大となる減衰定数h1、h2を求める。
Figure 0005123772
上記の条件を満足する2個のバネ付き粘性マスダンパーの各々の減衰定数が最適減衰定数である。 The acceleration response magnification is obtained by the following equation.
Figure 0005123772
Using the above equation, a condition is obtained in which the values at the three fixed points are each substantially substantially maximal.
For example, a maximum value is obtained from the above equation, and a combination of h1 and h2 at which the obtained maximum values are equal is obtained by a parameter study.
For example, the attenuation constants h1 and h2 at which the fixed points are maximized are obtained from the differential expression of the above expression.
Figure 0005123772
The damping constant of each of the two spring mass dampers satisfying the above conditions is the optimum damping constant.

加速度応答倍率を評価基準としたとき、2個のバネ付き粘性マスダンパーの最適同調振動数、最適減衰定数を、図を基に、説明する。
図9は、本発明の第二の実施形態に係る装置の最適同調振動数比のグラフである。図10は、本発明の第二の実施形態に係る装置の最適減衰定数のグラフである。
図9は、質量比を変化させたときの最適同調振動数比を示す。
図10は、質量比を変化させたときの最適減衰定数を示す。
質量比は、N個のバネ付き粘性マスダンパーの各々の慣性質量の総和Σmjと主系の質量Msの比である。
最適同調振動数比は、最適同調振動数ωjと主系の固有振動数ωsとの比である。
When the acceleration response magnification is used as an evaluation criterion, the optimum tuning frequency and optimum damping constant of the two viscous mass dampers with springs will be described with reference to the drawings.
FIG. 9 is a graph of the optimum tuning frequency ratio of the device according to the second embodiment of the present invention. FIG. 10 is a graph of the optimum attenuation constant of the device according to the second embodiment of the present invention.
FIG. 9 shows the optimum tuning frequency ratio when the mass ratio is changed.
FIG. 10 shows the optimum attenuation constant when the mass ratio is changed.
The mass ratio is the ratio of the sum Σmj of the inertial mass of each of the N spring mass viscous dampers to the mass Ms of the main system.
The optimum tuning frequency ratio is the ratio between the optimum tuning frequency ωj and the natural frequency ωs of the main system.

理論式から導いた最適同調振動数比と最適減衰定数とを得る近似式は、以下の通りである。

Figure 0005123772
条件式を解析的に解くのは容易でないが、上記の近似式を用いることにより、簡便に最適同調振動数νと最適減衰定数hを選ぶことができる。 An approximate expression for obtaining the optimum tuning frequency ratio and the optimum damping constant derived from the theoretical formula is as follows.
Figure 0005123772
Although it is not easy to solve the conditional expression analytically, the optimum tuning frequency ν and the optimum damping constant h can be easily selected by using the above approximate expression.

2個のダンパー固有振動数ωj(j=1〜N)を2個の最適同調振動数に各々に略一致させ、2個の減衰係数を最適減衰係数に一致させたときの加速度応答倍率を、図を基に、単一側と比較して、説明する。
図11は、単一側の装置の加速度応答倍率のグラフである。図12は、本発明の第二の実施形態に係る装置の加速度応答倍率のグラフである。図13は、本発明の第二の実施形態に係る装置の最大加速度応答倍率のグラフである。図14は、本発明の第二の実施形態に係る装置の減衰定数−最大加速度応答倍率グラフである。
The acceleration response magnification when the two damper natural frequencies ωj (j = 1 to N) are substantially matched with the two optimum tuning frequencies, respectively, and the two damping coefficients are matched with the optimum damping coefficients, Based on the figure, it will be described in comparison with a single side.
FIG. 11 is a graph of the acceleration response magnification of the single-side device. FIG. 12 is a graph of the acceleration response magnification of the device according to the second embodiment of the present invention. FIG. 13 is a graph of the maximum acceleration response magnification of the device according to the second embodiment of the present invention. FIG. 14 is an attenuation constant-maximum acceleration response magnification graph of the device according to the second embodiment of the present invention.

図11は、比較のための単一型装置の加速度応答倍率を示す。
単一型装置では、諸元の同一の2個のバネ付き粘性マスダンパーを用い、加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の加速度応答倍率を縦軸としたとき、加速度応答倍率を示す線の上でバネ付き粘性マスダンパーの持つ減衰係数cの値のいかんにかかわらず一定値となる少なくとも2個の定点での値が略等しくなる様にダンパー固有振動数を選定し、その2個の定点が極大値となる様に減衰係数を選択する。
図12は、2個のバネ付き粘性マスダンパー各々のダンパー固有振動数ωjと減衰定数とを最適同調振動数と最適減衰定数とに各々に略一致させたときの系の加速度応答倍率を質量比をパラメータとしてグラフ化したものを示す。
FIG. 11 shows the acceleration response magnification of a single type device for comparison.
In the single-type device, two natural mass dampers with springs with the same specifications are used, and the natural vibration of the vibration mode that is displaced in a specific direction of the system composed of the excitation frequency p, the main frame, and the target structure When the ratio p / ωs to the number ωs is the horizontal axis and the acceleration response magnification of the target structure is the vertical axis, the value of the damping coefficient c of the viscous mass damper with a spring on the line indicating the acceleration response magnification. Regardless of the above, the damper natural frequency is selected so that the values at at least two fixed points that are constant values are substantially equal, and the damping coefficient is selected so that the two fixed points have the maximum values.
FIG. 12 shows the acceleration response magnification of the system when the damper natural frequency ωj and the damping constant of each of the two spring-loaded viscous mass dampers substantially match the optimum tuning frequency and the optimum damping constant, respectively. This is a graph using

図13は、質量比と加速度応答倍率の最大値の関係を示している。
以下、加速度応答倍率の最大値を最大加速度応答倍率と呼称する。
ψ’sは、単一型装置の最大加速度応答倍率である。
ψ’dは、多段調整型装置の最大加速度応答倍率である。
図14は、付加系の減衰定数の変動係数と加速度応答倍率の最大値の変化の関係を示す。
FIG. 13 shows the relationship between the mass ratio and the maximum value of the acceleration response magnification.
Hereinafter, the maximum value of the acceleration response magnification is referred to as the maximum acceleration response magnification.
ψ ′s is the maximum acceleration response magnification of the single-type device.
ψ′d is the maximum acceleration response magnification of the multistage adjustment type device.
FIG. 14 shows the relationship between the variation coefficient of the attenuation constant of the additional system and the change in the maximum value of the acceleration response magnification.

図9〜図14から、以下のことがわかる。
(1)単一型装置の応答倍率と多段調整型装置の応答倍率に、有意な差がある。
(2)特に、多段調整型装置の応答倍率は、単一型装置の応答倍率に比べ、主系の固有振動数の周辺で顕著に小さくなる。
(3)質量比0.1以下で、多段調整型装置の変位応答倍率が単一型装置の加速度応答倍率より一様に小さくなる。
(4)多段調製型の装置は、同等の変位応答倍率を得るのに単一型装置より小さな減衰係数を設定できる。
(5)多段調製型の装置は、同じ応答倍率を得ることのできる固有振動数の幅が単一型装置のそれよりも広い。
(6)多段調製型の装置は、単一型装置に比較してより大きな質量比を設定できる。例えば、単一型での質量比は0.499以下であり、多段調整型装置での質量比は0.992以下である。
(7)免震効果、制振効果が主系の固有振動数の変動の影響を受けにくい。特に質量比0.1以下で主系のバネ定数の変動0.98〜1.02の範囲で、単一型装置よりも有利である。
上記において、一般的に、質量比は0%〜10%の誤差を含み、主系のバネ定数の変動は±5%の誤差を含む。
The following can be understood from FIGS.
(1) There is a significant difference between the response magnification of the single-type device and the response magnification of the multistage adjustment type device.
(2) In particular, the response magnification of the multistage adjustment type device is significantly smaller around the natural frequency of the main system than the response magnification of the single type device.
(3) When the mass ratio is 0.1 or less, the displacement response magnification of the multistage adjustment type device is uniformly smaller than the acceleration response magnification of the single type device.
(4) A multistage preparation type device can set a smaller attenuation coefficient than a single type device to obtain an equivalent displacement response magnification.
(5) The multistage preparation type apparatus has a wider natural frequency range than that of the single type apparatus, which can obtain the same response magnification.
(6) A multistage preparation type apparatus can set a larger mass ratio than a single type apparatus. For example, the mass ratio in a single type is 0.499 or less, and the mass ratio in a multistage adjustment type apparatus is 0.992 or less.
(7) The seismic isolation effect and damping effect are not easily affected by fluctuations in the natural frequency of the main system. In particular, the mass ratio is 0.1 or less, and the variation of the spring constant of the main system is in the range of 0.98 to 1.02.
In the above, the mass ratio generally includes an error of 0% to 10%, and the fluctuation of the spring constant of the main system includes an error of ± 5%.

以下に、第一または第二の実施形態で説明したバネ付き粘性マスダンパーの諸元の決定する方法とは異なる方法を説明する。   Hereinafter, a method different from the method for determining the specifications of the viscous mass damper with spring described in the first or second embodiment will be described.

本発明の第三の実施形態にかかる免震装置または制振装置を説明する。
第三の実施形態にかかる免震装置または制振装置は、N個のダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致する値とする。
N個の最適同調振動数は、N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上で極大値を持つ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まる様になったN個のダンパー固有振動数である。
また、N個の減衰係数cj(j=1〜N)がN個の最適減衰係数に各々に略一致する。
N個の最適減衰係数は、N個のバネ付き粘性マスダンパーの持つ各々の減衰係数cj(j=1〜N)がN個の最適減衰係数に各々に一致すると仮定するときに応答倍率を示す線の上で極大値をもつN個のピーク点での各々の応答倍率の平均値が略最小となるN個の減衰係数である。
A seismic isolation device or vibration damping device according to a third embodiment of the present invention will be described.
In the seismic isolation device or the vibration damping device according to the third embodiment, the N damper natural frequencies ωj (j = 1 to N) are set to values that substantially match the N optimum tuning frequencies, respectively.
The N optimum tuning frequencies are assumed to be that each damper natural frequency ωj (j = 1 to N) of the N spring mass viscous dampers corresponds to the N optimum tuning frequencies, respectively. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is taken as the horizontal axis, and the response magnification of the target structure is taken as the vertical axis. Is the N damper natural frequencies at which the variation of each response magnification at the (N + 1) peak points having a maximum value on the line indicating the response magnification falls within a predetermined range. .
Further, the N attenuation coefficients cj (j = 1 to N) substantially coincide with the N optimum attenuation coefficients, respectively.
The N optimum damping coefficients indicate response magnifications when it is assumed that each damping coefficient cj (j = 1 to N) of the N spring mass viscous dampers matches the N optimum damping coefficients. N attenuation coefficients at which the average value of each response magnification at the N peak points having the maximum value on the line is substantially the minimum.

以下に、「応答倍率を示す線の上で極大値を持つ(N+1)個のピーク点での各々の応答倍率のばらつきを」を演算する関数式Gと「応答倍率を示す線の上で極大値をもつN個のピーク点での各々の応答倍率の平均値」を演算する関数式Hを示す。

Figure 0005123772
ここで、Pmaxは、応答倍率の極大値となる点である。
諸元の異なるN個のバネ付き粘性マスダンパーを備える場合、(N+1)個の極大値が発生する。 The following is a functional expression G for calculating “variation of response magnification at each of (N + 1) peak points having a maximum value on a line indicating response magnification” and “maximum on a line indicating response magnification”. A functional expression H for calculating the “average value of response magnifications at N peak points having values” is shown.
Figure 0005123772
Here, Pmax is a point at which the response magnification becomes a maximum value.
When N viscous mass dampers with springs having different specifications are provided, (N + 1) maximum values are generated.

N個のバネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)と減衰係数cj(j=1〜N)と質量比μ=Σmj/Msとを任意に選択して、関数Gが所定の値以下になり、関数Hが最小となる条件を決定する。
N個のバネ付き粘性マスダンパーの固有振動数ωj(j=1〜N)が互いに異なる条件では、関数Hが小さくなると関数Gが大きくなる傾向を有するので、関数Gの値を比較する所定の値の設定により求められる条件が変化する。
A function G is selected by arbitrarily selecting a damper natural frequency ωj (j = 1 to N), a damping coefficient cj (j = 1 to N), and a mass ratio μ = Σmj / Ms of N viscous mass dampers with springs. Is determined to be less than a predetermined value and the function H is minimized.
Under a condition where the natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs are different from each other, the function G tends to increase as the function H decreases. The required condition changes depending on the value setting.

次に、本発明の第四の実施形態にかかる免震装置または制振装置を説明する。
N個のダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致する値とする。
N個の最適同調振動数は、N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上で極少値を持つN個のピーク点での各々の応答倍率の平均値が略最小となる様になった、N個のダンパー固有振動数ωj(j=1〜N)である。
Next, a seismic isolation device or a vibration damping device according to a fourth embodiment of the present invention will be described.
It is assumed that the N damper natural frequencies ωj (j = 1 to N) substantially coincide with the N optimum tuning frequencies, respectively.
The N optimum tuning frequencies are assumed to be that each damper natural frequency ωj (j = 1 to N) of the N spring mass viscous dampers corresponds to the N optimum tuning frequencies, respectively. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is taken as the horizontal axis, and the response magnification of the target structure is taken as the vertical axis. The N damper natural frequencies ωj (j for which the average value of each response magnification at the N peak points having the minimum value on the line indicating the response magnification is substantially minimized. = 1 to N).

以下に、「応答倍率を示す線の上で極少値を持つN個のピーク点での各々の応答倍率の平均値」を演算する関数式を示す。

Figure 0005123772
ここで、Pmimは、応答倍率の極小値となる点である。
N個のバネ付き粘性マスダンパーを備える場合、N個の極小値が発生する。 A functional expression for calculating “the average value of each response magnification at N peak points having a minimum value on the line indicating the response magnification” is shown below.
Figure 0005123772
Here, Pmim is a point at which the response magnification becomes a minimum value.
When N viscous mass dampers with springs are provided, N local minimum values are generated.

次に、本発明の第五の実施形態にかかる免震装置または制振装置を説明する。
N個のダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致する。
N個の最適同調振動数は、N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上で所定の幅の加振周波数pでの連続した応答倍率の平均が略最小となる様になった、N個のダンパー固有振動数ωj(j=1〜N)である。
Next, a seismic isolation device or a vibration damping device according to a fifth embodiment of the present invention will be described.
The N damper natural frequencies ωj (j = 1 to N) substantially correspond to the N optimum tuning frequencies, respectively.
The N optimum tuning frequencies are assumed to be that each damper natural frequency ωj (j = 1 to N) of the N spring mass viscous dampers corresponds to the N optimum tuning frequencies, respectively. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is taken as the horizontal axis, and the response magnification of the target structure is taken as the vertical axis. , N damper natural frequencies ωj (j = 1) such that the average of the continuous response magnifications at the excitation frequency p having a predetermined width on the line indicating the response magnifications is substantially minimized. ~ N).

次に、N個のバネ付き粘性マスダンパーの配置方法と取付方法とを説明する。
例えば、 2個以上であるN個のバネ付き粘性マスダンパーを有する第一バネ付き粘性マスダンパー組と、2個以上であるN個のバネ付き粘性マスダンパーを有する第二バネ付き粘性マスダンパー組とを備える。
第一バネ付き粘性マスダンパー組に属するN個のバネ付き粘性マスダンパーをN個の第一バネ付き粘性マスダンパーと呼称する。
第二バネ付き粘性マスダンパー組に属するN個のバネ付き粘性マスダンパーをN個の第二バネ付き粘性マスダンパーと呼称する。
N個の第一バネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が互いに異なり、N個の第二バネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が互いに異なる。
N個の第一バネ付き粘性マスダンパーの減衰係数cj(j=1〜N)が互いに異なり、N個の第二バネ付き粘性マスダンパーの減衰係数cj(j=1〜N)が互いに異なる。
N個の第一バネ付き粘性マスダンパーの各々のダンパー固有振動数ωj(j=1〜N)とN個の第二バネ付き粘性マスダンパーの各々のダンパー固有振動数ωj(j=1〜N)とが1対毎に略一致し、N個の第一バネ付き粘性マスダンパー(j=1〜N)の各々の減衰係数cj(j=1〜N)とN個の第二バネ付き粘性マスダンパー(j=1〜N)の各々の減衰係数cj(j=1〜N)とが1対毎に略一致する。
N個の第一バネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパーとが対象構造物の剛心を基準に1対毎に各々に点対称になる様に又は対称構造体の剛心を貫く仮想線を基準に1対毎に各々に線対称になる様に、N個の第一バネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパーとが支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる。
Next, an arrangement method and an attachment method of the N pieces of viscous mass dampers with springs will be described.
For example, a viscous mass damper set with a first spring having two or more N viscous mass dampers with a spring, and a viscous mass damper set with a second spring having two or more N viscous mass dampers with a spring With.
The N spring mass viscous dampers belonging to the first spring mass viscous damper set are referred to as N first spring mass viscous dampers.
The N spring mass viscous dampers belonging to the second spring mass viscous damper set are referred to as N second spring mass viscous dampers.
The damper natural frequency ωj (j = 1 to N) of N viscous mass dampers with first springs is different from each other, and the damper natural frequency ωj (j = 1 to N) of N second viscous mass dampers with springs Are different from each other.
The damping coefficients cj (j = 1 to N) of the N first viscous mass dampers with springs are different from each other, and the damping coefficients cj (j = 1 to N) of the N second viscous mass dampers with springs are different from each other.
The damper natural frequency ωj (j = 1 to N) of each of the N first spring-attached viscous mass dampers and the damper natural frequency ωj (j = 1 to N) of each of the N second spring-attached viscous mass dampers. ) Substantially coincide with each other, the damping coefficient cj (j = 1 to N) of each of the N first spring-attached viscous mass dampers (j = 1 to N) and the N second spring-attached viscosities. The damping coefficients cj (j = 1 to N) of the mass dampers (j = 1 to N) substantially coincide with each other.
N pieces of viscous mass dampers with first springs and N pieces of viscous mass dampers with second springs are point-symmetric with respect to each other with respect to the rigid center of the target structure, or the rigidity of symmetrical structures N pieces of viscous mass dampers with first springs and N pieces of viscous mass dampers with second springs are used as a support and target structure so that each pair is symmetrical with respect to a virtual line passing through the center. Or within each of the target structures.

例えば、2個以上のN個のバネ付き粘性マスダンパーを各々に有する複数組のバネ付き粘性マスダンパー組を備える。
同じ組のバネ付き粘性マスダンパー組に属するN個のバネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が各々に異なり、同じ組のバネ付き粘性マスダンパー組に属するN個のバネ付き粘性マスダンパーの減衰係数cj(j=1〜N)が各々に異なる。
複数のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーの全体から異なる組に属する1個のバネ付き粘性マスダンパーを選択して組み合わせた複数のバネ付き粘性マスダンパーの各々のダンパー固有振動数ωj(j=1〜N)が各々に略一致し、複数のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーの全体から異なる組に属する1個のバネ付き粘性マスダンパーを選択して組み合わせた複数のバネ付き粘性マスダンパーの各々の減衰係数cj(j=1〜N)が各々に略一致する。
異なる組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーの発生する反力により対象構造物の剛心の周りに作用する各々の回転モーメントが一つの組毎に各々に相殺する様に複数組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーが支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる。
For example, a plurality of sets of viscous mass dampers with springs are provided, each having two or more N viscous mass dampers with springs.
The damper natural frequency ωj (j = 1 to N) of N spring mass viscous dampers belonging to the same set of spring viscous mass damper sets is different, and N pieces belonging to the same set of spring viscous mass damper sets The damping coefficients cj (j = 1 to N) of the viscous mass dampers with springs are different from each other.
Each of the plurality of spring-attached viscous mass dampers obtained by selecting and combining one spring-attached viscous mass damper belonging to a different group from the whole of the N spring-attached viscous mass dampers belonging to the plurality of spring-attached viscous mass damper sets. The damper natural frequency ωj (j = 1 to N) is substantially equal to each other, and each of the N spring-loaded viscous mass dampers belonging to a plurality of spring-attached viscous mass damper sets has one spring belonging to a different set. The damping coefficients cj (j = 1 to N) of the plurality of spring-attached viscous mass dampers obtained by selecting and combining the viscous mass dampers substantially coincide with each other.
Each rotational moment acting around the rigid core of the target structure is canceled out by each group by the reaction force generated by each of N spring mass viscous dampers belonging to different sets of spring mass viscous dampers. In this way, each of N spring-loaded viscous mass dampers belonging to a plurality of sets of spring-attached viscous mass damper sets is attached between the support and the target structure or inside the target structure.

以下に、本発明の実施形態にかかるダンパー配置を、図を基に、詳述する。
最初に、本発明の第一の実施形態にかかるダンパー配置を、図を基に、説明する。
図15は、本発明の第一の実施形態に係るダンパー配置の概念図である。
本発明の第一の実施形態にかかる免震装置または制振装置は、3個のバネ付き粘性マスダンパーを各々に有する4組のバネ付き粘性マスダンパー組を備える。
4組のバネ付き粘性マスダンパー組は、3個のバネ付き粘性マスダンパーを各々に持つ。
4組のバネ付き粘性マスダンパー組を、「第一バネ付き粘性マスダンパー組」。「第二バネ付き粘性マスダンパー組」、「第三バネ付き粘性マスダンパー組」、「第四バネ付き粘性マスダンパー組」と呼称する。
第一〜第四バネ付き粘性マスダンパー組に属するバネ付き粘性マスダンパーを各々に、第一〜第四バネ付き粘性マスダンパーと呼称する。
Below, the damper arrangement concerning the embodiment of the present invention is explained in full detail based on a figure.
First, the damper arrangement according to the first embodiment of the present invention will be described with reference to the drawings.
FIG. 15 is a conceptual diagram of a damper arrangement according to the first embodiment of the present invention.
The seismic isolation device or vibration damping device according to the first embodiment of the present invention includes four sets of spring-attached viscous mass damper sets each having three spring-attached viscous mass dampers.
The four sets of spring-loaded viscous mass damper sets each have three spring-loaded viscous mass dampers.
Four sets of viscous mass dampers with springs are called “viscous mass dampers with first springs”. They are referred to as “viscous mass damper set with second spring”, “viscous mass damper set with third spring”, and “viscous mass damper set with fourth spring”.
Each of the viscous mass dampers with springs belonging to the first to fourth spring-equipped viscous mass damper sets is referred to as a first to fourth viscous mass damper with a spring.

図中で、3個のバネ付き粘性マスダンパーは、Type−1,Type−2、Type−3と各々に表される。
Type番号の異なるバネ付き粘性マスダンパーは異なる諸元を持つ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なるダンパー固有振動数ωをもつ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なる弾性係数kbをもつ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なる減衰係数cをもつ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なる慣性質量mをもつ。
Type番号の同一のバネ付き粘性マスダンパーは同一の諸元を持つ。
例えば、Type番号の同一のバネ付き粘性マスダンパーは同一のダンパー固有振動ω、同一の弾性係数kb、同一の減衰係数c、同一の慣性質量mを持つ。
3個の第一バネ付き粘性マスダンパーと3個の第二バネ付き粘性マスダンパーとが対象構造物の剛心を基準に1対毎に点対称になる様に、支持体と対象構造体との間または対象構造体の各フロアーの間に配される。
3個の第三バネ付き粘性マスダンパーと3個の第四バネ付き粘性マスダンパーとが対象構造物の剛心を基準に1対毎に点対称になる様に、支持体と対象構造体との間または対象構造体の各フロアーの間に配される。
In the drawing, the three viscous mass dampers with springs are represented as Type-1, Type-2, and Type-3, respectively.
Viscous mass dampers with springs with different Type numbers have different specifications.
For example, spring-type viscous mass dampers with different Type numbers have different damper natural frequencies ω.
For example, spring-type viscous mass dampers having different Type numbers have mutually different elastic coefficients kb.
For example, spring-type viscous mass dampers with different Type numbers have different damping coefficients c.
For example, spring-type viscous mass dampers with different Type numbers have different inertial masses m.
The same spring type viscous mass damper with the same type number has the same specifications.
For example, a viscous mass damper with the same type number and a spring has the same damper natural vibration ω, the same elastic coefficient kb, the same damping coefficient c, and the same inertia mass m.
The support and the target structure are arranged so that the three viscous mass dampers with the first spring and the three viscous mass dampers with the second spring are point-symmetrical with respect to the rigid center of the target structure. Or between each floor of the target structure.
The support body and the target structure are arranged so that the three viscous mass dampers with the third spring and the three viscous mass dampers with the fourth spring are point-symmetric with respect to the rigid center of the target structure. Or between each floor of the target structure.

この様にするので、異なる組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーの発生する反力により対象構造物の剛心の周りに作用する各々の回転モーメントが一つの組毎に各々に相殺する。
従って、バネ付き粘性マスダンパーの発生する反力により対象構造体にねじりが作用することを抑制できる。
In this way, each rotational moment acting around the rigid core of the target structure by one reaction force generated by each of the N spring mass viscous dampers belonging to different sets of spring mass viscous dampers is one. Offset each pair.
Therefore, it can suppress that a torsion acts on a target structure by the reaction force which a viscous mass damper with a spring generates.

次に本発明の第二の実施形態にかかるダンパー配置を、図を基に、説明する。
図16は、本発明の第二の実施形態に係るダンパー配置の平面図である。
本発明の第二の実施形態にかかる免震装置または制振装置は、2個のバネ付き粘性マスダンパーを各々に有する2組のバネ付き粘性マスダンパー組を備える。
対象構造体は、2つの背のたかい対象構造体をエキスパンションで繋いだ構造をする。
2組のバネ付き粘性マスダンパー組は、2個のバネ付き粘性マスダンパーを各々に持つ。
2組のバネ付き粘性マスダンパー組を、「第一バネ付き粘性マスダンパー組」。「第二バネ付き粘性マスダンパー組」と呼称する。
第一バネ付き粘性マスダンパー組は、2個のバネ付き粘性マスダンパーで構成される。
第二バネ付き粘性マスダンパー組は、2個のバネ付き粘性マスダンパーで構成される。

第一バネ付き粘性マスダンパー組に属するバネ付き粘性マスダンパーを第一バネ付き粘性マスダンパーと呼称する。
第二バネ付き粘性マスダンパー組に属するバネ付き粘性マスダンパーを第二バネ付き粘性マスダンパーと呼称する。
Next, the damper arrangement according to the second embodiment of the present invention will be described with reference to the drawings.
FIG. 16 is a plan view of a damper arrangement according to the second embodiment of the present invention.
The seismic isolation device or damping device according to the second embodiment of the present invention includes two sets of spring-attached viscous mass damper sets each having two spring-attached viscous mass dampers.
The target structure has a structure in which two tall target structures are connected by expansion.
The two sets of viscous mass dampers with springs each have two viscous mass dampers with springs.
Two sets of viscous mass dampers with springs are called “viscous mass dampers with first spring”. This is referred to as “second spring-attached viscous mass damper set”.
The first spring-attached viscous mass damper set is composed of two spring-attached viscous mass dampers.
The second spring-attached viscous mass damper set is composed of two spring-attached viscous mass dampers.

The spring-attached viscous mass damper belonging to the first spring-attached viscous mass damper set is referred to as a first spring-attached viscous mass damper.
A viscous mass damper with a spring belonging to the viscous mass damper set with a second spring is called a viscous mass damper with a second spring.

図中で、2個の第一〜第二バネ付き粘性マスダンパーは、Type−1,Type−2と各々に表させる。
Type番号の異なるバネ付き粘性マスダンパーは異なる諸元を持つ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なるダンパー固有振動数ωをもつ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なる弾性係数kbをもつ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なる減衰係数cをもつ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なる慣性質量mをもつ。
Type番号の同一のバネ付き粘性マスダンパーは同一の諸元を持つ。
例えば、Type番号の同一のバネ付き粘性マスダンパーは同一のダンパー固有振動ω、同一の弾性係数kb、同一の減衰係数c、同一の慣性質量mを持つ。
2個の第一バネ付き粘性マスダンパーと2個の第二バネ付き粘性マスダンパーとが対象構造物の剛心を貫く仮想線を基準に1対毎に各々に線対称になる様に、N個の第一バネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパーとが支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる。
すなわち、Type番号の同一のバネ付き粘性マスダンパーが1対毎に対象構造物の剛心を貫く仮想線を基準に1対毎に線対称になる様に、支持体と対象構造体との間または対象構造体の各フロアーの間に配される。
In the drawing, two first and second spring-loaded viscous mass dampers are represented as Type-1 and Type-2, respectively.
Viscous mass dampers with springs with different Type numbers have different specifications.
For example, spring-type viscous mass dampers with different Type numbers have different damper natural frequencies ω.
For example, spring-type viscous mass dampers having different Type numbers have mutually different elastic coefficients kb.
For example, spring-type viscous mass dampers with different Type numbers have different damping coefficients c.
For example, spring-type viscous mass dampers with different Type numbers have different inertial masses m.
The same spring type viscous mass damper with the same type number has the same specifications.
For example, a viscous mass damper with the same type number and a spring has the same damper natural vibration ω, the same elastic coefficient kb, the same damping coefficient c, and the same inertia mass m.
N so that the two viscous mass dampers with the first spring and the two viscous mass dampers with the second spring are symmetric with respect to each other with respect to the virtual line passing through the rigid center of the target structure. A plurality of viscous mass dampers with first springs and N second viscous mass dampers with springs are respectively attached between the support and the target structure or inside the target structure.
That is, between the support and the target structure, the viscous mass dampers with the same spring of the Type number are symmetrical with respect to each other with respect to a virtual line passing through the rigid center of the target structure for each pair. Or it is arranged between each floor of the object structure.

この様にするので、異なる組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーの発生する反力により対象構造物の剛心の周りに作用する各々の回転モーメントが一つの組毎に各々に相殺する様になる。
従って、バネ付き粘性マスダンパーの発生する反力により対象構造体にねじりが作用することを抑制できる。
In this way, each rotational moment acting around the rigid core of the target structure by one reaction force generated by each of the N spring mass viscous dampers belonging to different sets of spring mass viscous dampers is one. Each pair will cancel each other.
Therefore, it can suppress that a torsion acts on a target structure by the reaction force which a viscous mass damper with a spring generates.

最初に、本発明の第三の実施形態にかかるダンパー配置を、図を基に、説明する。
図17は、本発明の第三の実施形態に係るダンパー配置の概念図である。
本発明の第三の実施形態にかかる免震装置または制振装置は、2個のバネ付き粘性マスダンパーを各々に有する2組のバネ付き粘性マスダンパー組を備える。
対象構造体は、ラーメン構造をしている。
バネ付き粘性マスダンパーがラーメン構造に斜め材として配置される。
2組のバネ付き粘性マスダンパー組を備える。
2組のバネ付き粘性マスダンパー組を、「第一バネ付き粘性マスダンパー組」。「第二バネ付き粘性マスダンパー組」と呼称する。
第一バネ付き粘性マスダンパー組は、2個のバネ付き粘性マスダンパーを持つ。
第二バネ付き粘性マスダンパー組は、2個のバネ付き粘性マスダンパーを持つ。
第一〜第二バネ付き粘性マスダンパー組に属するバネ付き粘性マスダンパーを、各々、第一〜第二バネ付き粘性マスダンパーと呼称する。
Initially, the damper arrangement concerning 3rd embodiment of this invention is demonstrated based on a figure.
FIG. 17 is a conceptual diagram of a damper arrangement according to the third embodiment of the present invention.
The seismic isolation device or damping device according to the third embodiment of the present invention includes two sets of spring-attached viscous mass damper sets each having two spring-attached viscous mass dampers.
The target structure has a ramen structure.
A viscous mass damper with a spring is arranged as an oblique member in the ramen structure.
Two sets of viscous mass dampers with springs are provided.
Two sets of viscous mass dampers with springs are called “viscous mass dampers with first spring”. This is referred to as “second spring-attached viscous mass damper set”.
The first spring-attached viscous mass damper set has two spring-attached viscous mass dampers.
The second spring-attached viscous mass damper set has two spring-attached viscous mass dampers.
The spring-loaded viscous mass dampers belonging to the first to second spring-loaded viscous mass damper sets are referred to as first to second spring-loaded viscous mass dampers, respectively.

図中で、2個の第一〜第二バネ付き粘性マスダンパーは、Type−1,Type−2と各々に表させる。
Type番号の異なるバネ付き粘性マスダンパーは異なる諸元を持つ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なるダンパー固有振動数ωをもつ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なる弾性係数kbをもつ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なる減衰係数cをもつ。
例えば、Type番号の異なるバネ付き粘性マスダンパーは互いに異なる慣性質量mをもつ。
Type番号の同一のバネ付き粘性マスダンパーは同一の諸元を持つ。
例えば、Type番号の同一のバネ付き粘性マスダンパーは同一のダンパー固有振動ω、同一の弾性係数kb、同一の減衰係数c、同一の慣性質量mを持つ。
2個の第一バネ付き粘性マスダンパーと2個の第二バネ付き粘性マスダンパーとが対象構造物の剛心を貫く仮想線を基準に1対毎に線対称になる様に、対象構造帯のフロアとフロアとの間に配されえる。
すなわち、Type番号の同一のバネ付き粘性マスダンパーが1対毎に対象構造物の剛心を貫く仮想線を基準に1対毎に線対称になる様に、支持体と対象構造体との間または対象構造体の各フロアーの間に配される。
In the drawing, two first and second spring-loaded viscous mass dampers are represented as Type-1 and Type-2, respectively.
Viscous mass dampers with springs with different Type numbers have different specifications.
For example, spring-type viscous mass dampers with different Type numbers have different damper natural frequencies ω.
For example, spring-type viscous mass dampers having different Type numbers have mutually different elastic coefficients kb.
For example, spring-type viscous mass dampers with different Type numbers have different damping coefficients c.
For example, spring-type viscous mass dampers with different Type numbers have different inertial masses m.
The same spring type viscous mass damper with the same type number has the same specifications.
For example, a viscous mass damper with the same type number and a spring has the same damper natural vibration ω, the same elastic coefficient kb, the same damping coefficient c, and the same inertia mass m.
The target structural band so that the two viscous mass dampers with the first spring and the two viscous mass dampers with the second spring are line symmetric with respect to each other with respect to an imaginary line passing through the rigid center of the target structure. Can be placed between floors.
That is, between the support and the target structure, the viscous mass dampers with the same spring of the Type number are symmetrical with respect to each other with respect to a virtual line passing through the rigid center of the target structure for each pair. Or it is arranged between each floor of the object structure.

この様にするので、異なる組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーの発生する反力により対象構造物の剛心の周りに作用する各々の回転モーメントが一つの組毎に各々に相殺する。
従って、バネ付き粘性マスダンパーの発生する反力により対象構造体にねじりが作用することを抑制できる。
In this way, each rotational moment acting around the rigid core of the target structure by one reaction force generated by each of the N spring mass viscous dampers belonging to different sets of spring mass viscous dampers is one. Offset each pair.
Therefore, it can suppress that a torsion acts on a target structure by the reaction force which a viscous mass damper with a spring generates.

次に、本発明の実施形態にかかるダンパー取付構造を説明する。
最初に、本発明の第一の実施形態にかかるダンパー取付構造を、図を基に、説明する。
図19は、本発明の第一の実施形態に係るダンパー取付構造の側面図である。
図19に、バネ付き粘性マスダンパーを対象構造体のフロアの間に配置する場合の取付構造を示す。
バネ付き粘性マスダンパーの構造は先に説明したものと同じなので、説明を省略する。
図19(A)では、粘性ダンパーとバネ要素を直接接続したものを直動軸の長手方向の水平方向に沿わせて配置する。
バネ付き粘性マスダンパーの一端が下のフロアに固定される。
バネ付き粘性マスダンパーの他端が上のフロアから下方に伸びた構造部材に固定される。
図19(B)では、粘性ダンパーとバネ要素との間にトルクキャンセル機構を設けた構造を示している。その他の構造は(A)で示したものと同じである。
この様に取り付けると、上下のフロアの水平方向を特定方向とする相対変位を伴う振動を免震、または制振できる。
Next, a damper mounting structure according to an embodiment of the present invention will be described.
First, the damper mounting structure according to the first embodiment of the present invention will be described with reference to the drawings.
FIG. 19 is a side view of the damper mounting structure according to the first embodiment of the present invention.
FIG. 19 shows a mounting structure when a viscous mass damper with a spring is arranged between the floors of the target structure.
Since the structure of the viscous mass damper with a spring is the same as that described above, the description thereof is omitted.
In FIG. 19A, the viscous damper and the spring element directly connected are arranged along the horizontal direction of the longitudinal direction of the linear motion shaft.
One end of the viscous mass damper with spring is fixed to the lower floor.
The other end of the spring-loaded viscous mass damper is fixed to a structural member extending downward from the upper floor.
FIG. 19B shows a structure in which a torque cancellation mechanism is provided between the viscous damper and the spring element. Other structures are the same as those shown in FIG.
When attached in this way, vibration accompanied by relative displacement with the horizontal direction of the upper and lower floors as a specific direction can be isolated or controlled.

次に、本発明の第二の実施形態にかかるダンパー取付構造を、図を基に、説明する。
図20は、本発明の第二の実施形態に係るダンパー取付構造の側面図である。
図20に、バネ付き粘性マスダンパーを対象構造体のフロアの間に配置する場合の取付構造を示す。
バネ付き粘性マスダンパーの構造は先に説明したものと同じなので、説明を省略する。
図19(A)では、粘性ダンパーを上から懸垂した板状のバネ構造に直列接続され、直動軸を水平方向に沿わせて配置する。
粘性マスダンパーの一端が下のフロアに固定される。
粘性マスダンパーの他端が上のフロアから下方に伸びた板状のバネ要素に固定される。
図19(B)では、粘性ダンパーとバネ要素との間にトルクキャンセル機構を設けた構造を示している。その他の構造は(A)で示したものと同じである。
この様に取り付けると、上下のフロアの水平方向を特定方向とする相対変位を伴う振動を免震、または制振できる。
Next, the damper attachment structure concerning 2nd embodiment of this invention is demonstrated based on a figure.
FIG. 20 is a side view of the damper mounting structure according to the second embodiment of the present invention.
FIG. 20 shows a mounting structure when the viscous mass damper with a spring is arranged between the floors of the target structure.
Since the structure of the viscous mass damper with a spring is the same as that described above, the description thereof is omitted.
In FIG. 19A, the viscous damper is connected in series to a plate-like spring structure suspended from above, and the linear motion shaft is disposed along the horizontal direction.
One end of the viscous mass damper is fixed to the lower floor.
The other end of the viscous mass damper is fixed to a plate-like spring element extending downward from the upper floor.
FIG. 19B shows a structure in which a torque cancellation mechanism is provided between the viscous damper and the spring element. Other structures are the same as those shown in FIG.
When attached in this way, vibration accompanied by relative displacement with the horizontal direction of the upper and lower floors as a specific direction can be isolated or controlled.

次に、本発明の第三の実施形態にかかるダンパー取付構造を、図を基に、説明する。
図21は、本発明の第三の実施形態に係るダンパー取付構造の側面図である。
図21に、バネ付き粘性マスダンパーを対象構造体のフロアの間に斜めに配置する場合の取付構造を示す。
バネ付き粘性マスダンパーの構造は先に説明したものと同じなので、説明を省略する。
図21では、粘性ダンパーとバネ要素を直接接続したものを直動軸の長手方向の斜め方向に沿わせて配置する。
バネ付き粘性マスダンパーの一端が下のフロアに固定される。
バネ付き粘性マスダンパーの他端が上のフロアに固定される。
この様に取り付けると、斜め方向を特定方向とする相対変位を伴う振動を免震、または制振できる。
Next, a damper mounting structure according to a third embodiment of the present invention will be described with reference to the drawings.
FIG. 21 is a side view of the damper mounting structure according to the third embodiment of the present invention.
FIG. 21 shows a mounting structure when the viscous mass damper with spring is disposed obliquely between the floors of the target structure.
Since the structure of the viscous mass damper with a spring is the same as that described above, the description thereof is omitted.
In FIG. 21, what directly connected the viscous damper and the spring element is arranged along the oblique direction of the longitudinal direction of the linear motion shaft.
One end of the viscous mass damper with spring is fixed to the lower floor.
The other end of the spring-loaded viscous mass damper is fixed to the upper floor.
If attached in this way, vibration with relative displacement with the oblique direction as a specific direction can be isolated or controlled.

次に、本発明の第四の実施形態にかかるダンパー取付構造を、図を基に、説明する。
図22は、本発明の第四の実施形態に係るダンパー取付構造の側面図である。
図22に、バネ付き粘性マスダンパーを対象構造体のフロアの間に垂直に配置する場合の取付構造を示す。
バネ付き粘性マスダンパーの構造は先に説明したものと同じなので、説明を省略する。
図22では、粘性ダンパーとバネ要素を直接接続したものを直動軸の長手方向を垂直方向に沿わせて配置する。
バネ付き粘性マスダンパーの一端が下のフロアに固定される。
バネ付き粘性マスダンパーの他端が上のフロアに固定される。
この様に取り付けると、上下のフロアの垂直方向を特定方向とする相対変位を伴う振動を免震、または制振できる。
Next, a damper mounting structure according to a fourth embodiment of the present invention will be described with reference to the drawings.
FIG. 22 is a side view of a damper mounting structure according to the fourth embodiment of the present invention.
FIG. 22 shows a mounting structure when the viscous mass damper with a spring is vertically arranged between the floors of the target structure.
Since the structure of the viscous mass damper with a spring is the same as that described above, the description thereof is omitted.
In FIG. 22, the viscous damper and the spring element directly connected are arranged with the longitudinal direction of the linear motion shaft along the vertical direction.
One end of the viscous mass damper with spring is fixed to the lower floor.
The other end of the spring-loaded viscous mass damper is fixed to the upper floor.
If attached in this way, vibration with relative displacement with the vertical direction of the upper and lower floors in a specific direction can be isolated or controlled.

次に、本発明の第五の実施形態にかかるダンパー取付構造を、図を基に、説明する。
図23は、本発明の第五の実施形態に係るダンパー取付構造の側面図である。
図23に、バネ付き粘性マスダンパーを対象構造体のフロアの間に水平に配置する場合の取付構造を示す。
バネ付き粘性マスダンパーの構造は先に説明したものと直動軸と回転体とがフレームの両端に設けられる点を異にし、その他の構造が同じである。
図23では、粘性ダンパーを直動軸の長手方向を垂直方向に沿わせて配置する。
粘性ダンパの中央部が上のフロアから降りてきた弾性部材に固定される。
バネ付き粘性マスダンパーの両端が下のフロアに固定される。
この様に取り付けると、上下のフロアの水平方向を特定方向とする相対変位を伴う振動を免震、または制振できる。
Next, a damper mounting structure according to a fifth embodiment of the present invention will be described based on the drawings.
FIG. 23 is a side view of the damper mounting structure according to the fifth embodiment of the present invention.
FIG. 23 shows a mounting structure when the viscous mass damper with a spring is horizontally disposed between the floors of the target structure.
The structure of the viscous mass damper with a spring is the same as that described above except that the linear motion shaft and the rotating body are provided at both ends of the frame.
In FIG. 23, the viscous damper is arranged with the longitudinal direction of the linear motion shaft along the vertical direction.
The central portion of the viscous damper is fixed to the elastic member descending from the upper floor.
Both ends of the spring-loaded viscous mass damper are fixed to the lower floor.
When attached in this way, vibration accompanied by relative displacement with the horizontal direction of the upper and lower floors as a specific direction can be isolated or controlled.

先に説明した構造とは異なる構造をしたバネ付き粘性マスダンパーを説明する。
図25は、本発明の第六の実施形態に係るダンパー取付構造の側面図である。
先に説明したバネ付き粘性マスダンパーと異なる点を説明する。
回転体が円板形状をし、粘性流体が円板の側面とフレームとの間に封入される。
A springy viscous mass damper having a structure different from the structure described above will be described.
FIG. 25 is a side view of the damper mounting structure according to the sixth embodiment of the present invention.
The difference from the previously described viscous mass damper with spring will be described.
The rotating body has a disk shape, and the viscous fluid is sealed between the side surface of the disk and the frame.

次に、第一の実施形態にかかる免震装置または制振装置において、主系の振動特性が変化した場合の免震性能または制振性能について、図を基に、説明する。
図26は、本発明の第一の実施形態に係る装置の最大変位応答倍率の変化を示すグラフ1である。
図26は、変位応答倍率を最適化する「柔らかい方」のダンパー固有振動数をもつ免震装置または制振装置において、主系のバネ定数が変化した際の変位応答倍率の最大値を示している。
グラフにおいて、横軸は、主系の変化したバネ定数と最適応答倍率を求めた際の主系のバネ定数の比を示す。縦軸は、変位応答倍率の最大値を示す。
比較のために単一型装置の場合のデータも示した。
Next, in the seismic isolation device or the vibration damping device according to the first embodiment, the seismic isolation performance or the vibration damping performance when the main system vibration characteristics are changed will be described with reference to the drawings.
FIG. 26 is a graph 1 showing a change in the maximum displacement response magnification of the device according to the first embodiment of the present invention.
FIG. 26 shows the maximum value of the displacement response magnification when the spring constant of the main system changes in the seismic isolation device or the vibration control device having the “softer” damper natural frequency that optimizes the displacement response magnification. Yes.
In the graph, the horizontal axis indicates the ratio between the spring constant of the main system and the spring constant of the main system when the optimum response magnification is obtained. The vertical axis represents the maximum value of the displacement response magnification.
For comparison, data for a single type device is also shown.

図26から、以下のことが言える。
(1)2段調整型装置では、全体的に単一側装置にくらべ最大変位応答倍率の変化がすくなくなる傾向がある。
(2)特に、2段調整型装置の免震性能または制振性能は、質量比が0.2以下でバネ定数の変動比が0.9以上において、単一型装置よりも主系の固有振動数の変化の影響を受けにくい。
(3)特に2段調整型装置の免震性能または制振性能は、質量比が0.2以下でバネ定数の変動比が0.9以上において、減衰係数の変動の影響を受けにくい。
上記において、一般的に、質量比は0%〜10%の誤差を含み、主系のバネ定数の変動は±5%の誤差を含む。
From FIG. 26, the following can be said.
(1) In the two-stage adjustment type device, the change in the maximum displacement response magnification tends to be less overall as compared with the single side device.
(2) In particular, the seismic isolation performance or damping performance of the two-stage adjustable device is more specific to the main system than the single-type device when the mass ratio is 0.2 or less and the spring constant fluctuation ratio is 0.9 or more Less susceptible to changes in frequency.
(3) In particular, the seismic isolation performance or damping performance of the two-stage adjustment type device is less susceptible to fluctuations in the damping coefficient when the mass ratio is 0.2 or less and the spring constant fluctuation ratio is 0.9 or more.
In the above, the mass ratio generally includes an error of 0% to 10%, and the fluctuation of the spring constant of the main system includes an error of ± 5%.

図27は、本発明の第一の実施形態に係る装置の最大変位応答倍率の変化を示すグラフ2である。
図27は、変位応答倍率を最適化する「硬い方」のダンパー固有振動数をもつ免震装置または制振装置において、主系のバネ定数が変化した際の変位応答倍率の最大値を示している。
グラフにおいて、横軸は、主系の変化したバネ定数と最適応答倍率を求めた際の主系のバネ定数の比を示す。縦軸は、変位応答倍率の最大値を示す。
比較のために単一型装置の場合のデータも示した。
FIG. 27 is a graph 2 showing a change in the maximum displacement response magnification of the device according to the first embodiment of the present invention.
FIG. 27 shows the maximum value of the displacement response magnification when the spring constant of the main system is changed in the seismic isolation device or the vibration control device having the “harder” damper natural frequency that optimizes the displacement response magnification. Yes.
In the graph, the horizontal axis indicates the ratio between the spring constant of the main system and the spring constant of the main system when the optimum response magnification is obtained. The vertical axis represents the maximum value of the displacement response magnification.
For comparison, data for a single type device is also shown.

図27から、以下のことが言える。
(1)2段調整型装置では、全体的に単一側装置にくらべ最大変位応答倍率の変化がすくなくなる傾向がある。
(2)特に、2段調整型装置の免震性能または制振性能は、全ての質量比で、単一型装置よりも主系の固有振動数の変化の影響を受けにくい。
(3)特に2段調整型装置の免震性能または制振性能は、全ての質量比において、減衰係数の変動の影響を受けにくい。
From FIG. 27, the following can be said.
(1) In the two-stage adjustment type device, the change in the maximum displacement response magnification tends to be less overall as compared with the single side device.
(2) In particular, the seismic isolation performance or damping performance of the two-stage adjustable device is less susceptible to changes in the natural frequency of the main system than the single-type device at all mass ratios.
(3) In particular, the seismic isolation performance or damping performance of the two-stage adjustable device is not easily affected by fluctuations in the damping coefficient at all mass ratios.

次に、第二の実施形態にかかる免震装置または制振装置において、主系の振動特性が変化した場合の免震性能または制振性能について、図を基に、説明する。
図28は、本発明の第二の実施形態に係る装置の最大加速度応答倍率の変化を示すグラフ1である。
図28は、加速度応答倍率を最適化するダンパー固有振動数をもつ免震装置または制振装置において、主系の固有振動数が変化した際の加速度応答倍率の最大値を示している。
グラフにおいて、横軸は、主系の変化したバネ定数と最適応答倍率を求めた際の主系のバネ定数の比を示す。縦軸は、加速度応答倍率の最大値を示す。
比較のために単一型装置の場合のデータも示した。
Next, in the seismic isolation device or damping device according to the second embodiment, the seismic isolation performance or damping performance when the main system vibration characteristics change will be described with reference to the drawings.
FIG. 28 is a graph 1 showing a change in the maximum acceleration response magnification of the device according to the second embodiment of the present invention.
FIG. 28 shows the maximum value of the acceleration response magnification when the natural frequency of the main system changes in the seismic isolation device or the vibration damping device having the damper natural frequency that optimizes the acceleration response magnification.
In the graph, the horizontal axis indicates the ratio between the spring constant of the main system and the spring constant of the main system when the optimum response magnification is obtained. The vertical axis represents the maximum value of the acceleration response magnification.
For comparison, data for a single type device is also shown.

図28のグラフから、以下のことが言える。
(1)2段調整型装置では、全体的に単一型装置にくらべ最大変位応答倍率の変化がすくなくなる傾向がある。
(2)特に、2段調整型装置の免震性能または制振性能は、質量比が0.1以下でバネ定数が0.98〜1.02の変化幅において、単一型装置よりも主系の固有振動数の変化の影響を受けにくい。
(3)特に2段調整型装置の免震性能または制振性能は、質量比が0.1以下でバネ定数が0.98〜1.02の変化幅において、減衰定数の変動の影響を受けにくい。
上記において、一般的に、質量比は0%〜10%の誤差を含み、主系のバネ定数の変動は±5%の誤差を含む。
The following can be said from the graph of FIG.
(1) In the two-stage adjustment type apparatus, the change in the maximum displacement response magnification tends to be less overall as compared with the single type apparatus.
(2) In particular, the seismic isolation performance or damping performance of the two-stage adjustment type device is greater than that of the single type device in the variation range where the mass ratio is 0.1 or less and the spring constant is 0.98 to 1.02. Less susceptible to changes in the natural frequency of the system.
(3) In particular, the seismic isolation performance or damping performance of the two-stage adjustable device is affected by fluctuations in the damping constant when the mass ratio is 0.1 or less and the spring constant is 0.98 to 1.02. Hateful.
In the above, the mass ratio generally includes an error of 0% to 10%, and the fluctuation of the spring constant of the main system includes an error of ± 5%.

次に、本発明の第六の実施形態にかかる免震装置または制振装置を説明する。
N個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値である。
または、N個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの高い方の最適同調振動数に略一致する。
また、N個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの高い方の最適同調振動数より僅かにずれた値である。
または、N個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
Next, a seismic isolation device or a vibration damping device according to a sixth embodiment of the present invention will be described.
Of the N damper natural frequencies ωj (j = 1 to N), the lower damper natural frequency ωj is a value lower than the lower optimum tuning frequency of the N optimum tuning frequencies.
Alternatively, the lower damper natural frequency ωj of N damper natural frequencies ωj (j = 1 to N) is lower than the lower optimal tuning frequency of the N optimal tuning frequencies. Yes, of the N damper natural frequencies ωj (j = 1 to N), the higher damper natural frequency ωj substantially matches the higher one of the N optimum tuned frequencies.
Further, the lower damper natural frequency ωj among the N damper natural frequencies ωj (j = 1 to N) is lower than the lower optimum tuning frequency among the N optimum tuning frequencies. Yes, of the N damper natural frequencies ωj (j = 1 to N), the higher damper natural frequency ωj is slightly shifted from the higher optimal tuning frequency of the N optimal tuning frequencies. Value.
Alternatively, the lower damper natural frequency ωj of N damper natural frequencies ωj (j = 1 to N) is lower than the lower optimal tuning frequency of the N optimal tuning frequencies. Yes, of the N damper natural frequencies ωj (j = 1 to N), the higher damper natural frequency ωj is higher than the higher one of the N optimum tuned frequencies. is there.

N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
または、N個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの低い方の最適同調振動数に略一致し、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
または、N個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの低い方の最適同調振動数より僅かにずれた値であり、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
Of the N damper natural frequencies ωj (j = 1 to N), the higher damper natural frequency ωj is higher than the higher one of the N optimum tuned frequencies.
Alternatively, the lower damper natural frequency ωj of N damper natural frequencies ωj (j = 1 to N) substantially matches the lower optimal tuning frequency of the N optimal tuning frequencies, Of the N damper natural frequencies ωj (j = 1 to N), the higher damper natural frequency ωj is higher than the higher one of the N optimum tuned frequencies.
Alternatively, the lower damper natural frequency ωj out of the N damper natural frequencies ωj (j = 1 to N) is slightly shifted from the lower optimal tuning frequency among the N optimal tuning frequencies. Of the N damper natural frequencies ωj (j = 1 to N), the higher damper natural frequency ωj is higher than the higher optimal tuning frequency of the N optimal tuning frequencies. Value.

「高い方」とは、「全体の内で高い方」の意味である。
「低い方」とは「全体の内で低い方」の意味である。
例えば、「高い方」とは「平均より高い方」の意味である。
例えば、「低い方」とは「平均より低い方」の意味である。
“Higher” means “higher of the whole”.
“Lower” means “lower in the whole”.
For example, “higher” means “higher than average”.
For example, “lower” means “lower than average”.

ここで、N個の最適同調振動数は、N個のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に一致すると仮定するときに加振周波数pと主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上でN個のダンパー要素の減衰抵抗力を相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなる様なN個のダンパー固有振動数ωj(j=1〜N)の値である。   Here, the N optimum tuning frequencies are assumed to be that each damper natural frequency ωj (j = 1 to N) of the N spring mass viscous dampers matches the N optimum tuning frequencies. The ratio p / ωs between the vibration frequency p and the natural frequency ωs of the vibration mode displaced in a specific direction of the system composed of the main frame and the target structure is set as the horizontal axis, and the response magnification of the target structure Is a constant value regardless of the value of the N damping coefficients c, which is a value obtained by dividing the damping resistance force of the N damper elements by the relative speed on the line indicating the response magnification. It is a value of N damper natural frequencies ωj (j = 1 to N) such that values at (N + 1) fixed points are substantially equal.

また、N個の減衰係数cがN個の最適減衰係数に略一致する。
ここで、最適減衰係数は、N個の減衰係数cがN個の最適減衰係数に各々に一致すると仮定したとき(N+1)個の定点での値が各々に実質的に略極大になる様なN個の減衰係数である。
Further, the N attenuation coefficients c substantially coincide with the N optimum attenuation coefficients.
Here, the optimal attenuation coefficient is such that the value at (N + 1) fixed points is substantially substantially maximum in each of the N attenuation coefficients c, assuming that the N attenuation coefficients c match the N optimal attenuation coefficients. N attenuation coefficients.

以下に、本発明の第六の実施形態にかかる免震装置または制振装置の特性を、複数のケースの演算例を基に、説明する。
以下で、ダンパー固有振動数から最適固有振動数を差し引いた値を最適固有振動数で割った値を「ずらし量」と呼称する。
また、主系の固有振動数の変動を主系のバネ定数の変動として説明する。主系の質量の変動についても同等である。
The characteristics of the seismic isolation device or the vibration damping device according to the sixth embodiment of the present invention will be described below based on calculation examples in a plurality of cases.
Hereinafter, a value obtained by subtracting the optimum natural frequency from the damper natural frequency and dividing the value by the optimum natural frequency is referred to as “shift amount”.
The fluctuation of the natural frequency of the main system will be described as the fluctuation of the spring constant of the main system. The same is true for the mass variation of the main system.

図29は、本発明の第六の実施形態に係るケース1の最大変位応答倍率の変化を示すグラフである。
ケース1は、質量比が0.1の場合に、2個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、2個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
低い方へのずらし量と高い方へのずらし量の比が1:1である。
この結果から以下のことが分かる。
(1)主系のバネ定数の変動が0.7〜1.3の範囲で変化すると想定される場合
変動0.7、変動1.3で応答倍率の最大値が下がる。
硬いバネの方が同じずらし量で応答倍率の低減効果が高い。
(2)主系のバネ定数の変動が0.9〜1.1の範囲であると想定される場合
柔らかい方のバネでは、ずらし量3.5%までは応答倍率の最大値が下がるが、3.5%以上になると低減効果が悪くなる。
硬い方のバネでは、ずらし量1.5%までは応答倍率の最大値が下がるが、1.5%以上になると低減効果が悪くなる。
以上のことから適切なずらし量が存在すると判断される。
主系のバネ定数の変動幅を想定すると、適切なずらし量を決定できる。硬い方のバネは柔らかい方のバネより少ないずらし量で大きな低減効果を期待できる。
FIG. 29 is a graph showing a change in the maximum displacement response magnification of case 1 according to the sixth embodiment of the present invention.
In case 1, when the mass ratio is 0.1, of the two damper natural frequencies ωj (j = 1 to N), the lower damper natural frequency ωj is the optimal tuning frequency of the two The value is lower than the lower optimal tuning frequency, and the higher damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is the value of the two optimal tuning frequencies. It is a value higher than the higher optimum tuning frequency.
The ratio of the shift amount toward the lower side and the shift amount toward the higher side is 1: 1.
From this result, the following can be understood.
(1) When it is assumed that the fluctuation of the spring constant of the main system changes in the range of 0.7 to 1.3. The maximum value of the response magnification decreases with the fluctuation of 0.7 and the fluctuation of 1.3.
A hard spring has the same effect of reducing the response magnification with the same shift amount.
(2) When the fluctuation of the spring constant of the main system is assumed to be in the range of 0.9 to 1.1. With the softer spring, the maximum value of the response magnification decreases up to a displacement of 3.5%. When it is 3.5% or more, the reduction effect becomes worse.
With the harder spring, the maximum value of the response magnification is reduced up to a shift amount of 1.5%, but when it is 1.5% or more, the reduction effect becomes worse.
From the above, it is determined that there is an appropriate shift amount.
Assuming the fluctuation range of the spring constant of the main system, an appropriate shift amount can be determined. The harder spring can be expected to have a greater reduction effect with a smaller shift amount than the softer spring.

図30は、本発明の第六の実施形態に係るケース2の最大変位応答倍率の変化を示すグラフである。
ケース2は、質量比が0.1の場合に、2個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの低い方の最適同調振動数より高い値であり、2個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの高い方の最適同調振動数より低い値である、
低い方へのずらし量と高い方へのずらし量の比が1:1である。
この結果から以下のことが分かる。
(1)ケース2の条件では、主系のバネ定数の変動をどの様に想定しても、硬い方のバネ、柔らかい方のバネの何方もずらし量が大きくなるにつれ応答倍率が大きくなる。
FIG. 30 is a graph showing a change in the maximum displacement response magnification of case 2 according to the sixth embodiment of the present invention.
In case 2, when the mass ratio is 0.1, the lower damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is The value is higher than the lower optimum tuning frequency, and the higher damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is the higher of the two optimum tuning frequencies. Lower than the optimum tuning frequency of
The ratio of the shift amount toward the lower side and the shift amount toward the higher side is 1: 1.
From this result, the following can be understood.
(1) Under the condition of Case 2, no matter how the fluctuation of the spring constant of the main system is assumed, the response magnification increases as the shift amount of either the hard spring or the soft spring increases.

図31は、本発明の第六の実施形態に係るケース3の最大変位応答倍率の変化を示すグラフである。
ケース3は、質量比が0.1の場合に、2個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、2個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
低い方へのずらし量と高い方へのずらし量の比が2:1である。
この結果から以下のことが分かる。
(1)柔らかい方のバネのずらし量のケース1でのずらし量の2倍にすると、主系のバネ定数の変動0.7で応答倍率の最大値が下がる。
主系のバネ定数の変動1.3での応答倍率に変化がない。
FIG. 31 is a graph showing changes in the maximum displacement response magnification of case 3 according to the sixth embodiment of the present invention.
In the case 3, when the mass ratio is 0.1, the lower damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is The value is lower than the lower optimal tuning frequency, and the higher damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is the value of the two optimal tuning frequencies. It is a value higher than the higher optimum tuning frequency.
The ratio of the shift amount toward the lower side and the shift amount toward the higher side is 2: 1.
From this result, the following can be understood.
(1) When the amount of the softer spring is doubled in the case 1, the maximum value of the response magnification decreases with a fluctuation of the spring constant of the main system of 0.7.
There is no change in the response magnification when the spring constant fluctuation of the main system is 1.3.

図32は、本発明の第六の実施形態に係るケース4の最大変位応答倍率の変化を示すグラフである。
ケース4は、質量比が0.1の場合に、2個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、2個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
低い方へのずらし量と高い方へのずらし量の比が3:1である。
この結果から以下のことが分かる。
(1)柔らかい方のバネのずらし量をケース2の1.5倍にすると、主系のバネ定数の変動0.7での応答倍率の最大値が下がる。主系のばね定数の変動0.8〜1.2付近の応答倍率はケース2よりも大きい。
(2)ずらし量−15%、+5%のケースで主系のバネ定数の変動が1.0で極大値をもつ。
FIG. 32 is a graph showing changes in the maximum displacement response magnification of the case 4 according to the sixth embodiment of the present invention.
In the case 4, when the mass ratio is 0.1, the lower damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is The value is lower than the lower optimal tuning frequency, and the higher damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is the value of the two optimal tuning frequencies. It is a value higher than the higher optimum tuning frequency.
The ratio of the shift amount toward the lower side and the shift amount toward the higher side is 3: 1.
From this result, the following can be understood.
(1) When the amount of shift of the softer spring is 1.5 times that of Case 2, the maximum value of the response magnification with a fluctuation of the main system spring constant of 0.7 decreases. The response magnification near the fluctuation of the spring constant of the main system of 0.8 to 1.2 is larger than that of Case 2.
(2) When the shift amount is -15% and + 5%, the fluctuation of the spring constant of the main system is 1.0 and the maximum value is obtained.

図33は、本発明の第六の実施形態に係るケース5の最大変位応答倍率の変化を示すグラフである。
ケース5は、質量比が0.1の場合に、2個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、2個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
低い方へのずらし量と高い方へのずらし量の比が4:1である。
この結果から以下のことが分かる。
(1)極大値が、主系のバネ定数の変動1.0以下にシフトしている。
(2)柔らかい方のバネ定数のずらし量をケース3の1.3倍にすると、主系のバネ定数の変動が0.7でずらし量が16%以上で応答倍率の最大値が大きくなる。
(2)このことから適切なずらし量が存在することが分かる。
FIG. 33 is a graph showing changes in the maximum displacement response magnification of case 5 according to the sixth embodiment of the present invention.
In the case 5, when the mass ratio is 0.1, the lower damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is The value is lower than the lower optimal tuning frequency, and the higher damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is the value of the two optimal tuning frequencies. It is a value higher than the higher optimum tuning frequency.
The ratio of the shift amount toward the lower side and the shift amount toward the higher side is 4: 1.
From this result, the following can be understood.
(1) The maximum value is shifted to a fluctuation of the main system spring constant of 1.0 or less.
(2) If the shift amount of the softer spring constant is 1.3 times that of Case 3, the maximum value of the response magnification becomes large when the shift amount of the main system spring constant is 0.7 and the shift amount is 16% or more.
(2) From this, it can be seen that there is an appropriate shift amount.

図34は、本発明の第六の実施形態に係るケース6の最大変位応答倍率の変化を示すグラフである。
ケース6は、質量比が0.2の場合に、2個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、2個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
低い方へのずらし量と高い方へのずらし量の比が1:1である。
この結果から以下のことが分かる。
(1)質量比0.2の場合、主系のバネ定数の変動0.7(柔らかいバネに依存する側)では応答倍率が小さくなる効果がある。
(2)主系のバネ定数の変動1.3(硬いばねに依存する側)ではずらし量5%以上で応答倍率が定点理論による最適解に相当する応答倍率より大きくなり効果が減る。
FIG. 34 is a graph showing changes in the maximum displacement response magnification of the case 6 according to the sixth embodiment of the present invention.
In the case 6, when the mass ratio is 0.2, the lower damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is The value is lower than the lower optimal tuning frequency, and the higher damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is the value of the two optimal tuning frequencies. It is a value higher than the higher optimum tuning frequency.
The ratio of the shift amount toward the lower side and the shift amount toward the higher side is 1: 1.
From this result, the following can be understood.
(1) In the case of a mass ratio of 0.2, there is an effect that the response magnification is reduced when the fluctuation of the spring constant of the main system is 0.7 (the side depending on the soft spring).
(2) When the fluctuation of the spring constant of the main system is 1.3 (on the side depending on the hard spring), the response magnification becomes larger than the response magnification corresponding to the optimal solution based on the fixed point theory when the shift amount is 5% or more, and the effect is reduced.

図35は、本発明の第六の実施形態に係るケース7の最大変位応答倍率の変化を示すグラフである。
ケース7は、質量比が0.2の場合に、2個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、2個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの高い方の最適同調振動数よりさらに高い値である。
低い方へのずらし量と高い方へのずらし量の比が1:1である。
この結果から以下のことが分かる。
(1)質量比0.2の場合、主系のバネ定数の変動0.7(柔らかいバネに依存する側)の効果はケース6とほぼ同じである。
(2)主系のバネ定数の変動1.3(硬いバネに依存する側)でもケース6より応答倍率が小さい。
(3)質量比が0.1より大きいと、ずらし量が少なくても、硬いバネに依存する側の応答倍率を小さくすることができる。
FIG. 35 is a graph showing a change in the maximum displacement response magnification of the case 7 according to the sixth embodiment of the present invention.
In the case 7, when the mass ratio is 0.2, the lower damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is The value is lower than the lower optimal tuning frequency, and the higher damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is the value of the two optimal tuning frequencies. It is a value higher than the higher optimum tuning frequency.
The ratio of the shift amount toward the lower side and the shift amount toward the higher side is 1: 1.
From this result, the following can be understood.
(1) When the mass ratio is 0.2, the effect of fluctuation of the main system spring constant of 0.7 (the side depending on the soft spring) is almost the same as that of the case 6.
(2) The response magnification is smaller than that of the case 6 even when the fluctuation of the spring constant of the main system is 1.3 (the side depending on the hard spring).
(3) If the mass ratio is greater than 0.1, the response magnification on the side depending on the hard spring can be reduced even if the shift amount is small.

図36は、本発明の第六の実施形態に係るケース8の最大変位応答倍率の変化を示すグラフである。
ケース9は、質量比が0.22の場合に、2個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値であり、2個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjが2個の最適同調振動数のうちの高い方の最適同調振動数に略一致する。
低い方へのずらし量と高い方へのずらし量の比が1:1である。
この結果から以下のことが分かる。
(1)質量比0.25の場合、主系のバネ定数0.7(柔らかいバネに依存する側)では応答倍率が小さくなる効果がある。
(2)主系のバネ定数の変動1.3(硬いバネに依存する側)ではずらし量が2%以上で応答倍率が定点理論による最適解に相当する応答倍率より大きくなり効果が減る。
(3)質量比が0.2より大きくなると、同じずらし量でも変動1.3の応答倍率が大きくならない。
FIG. 36 is a graph showing changes in the maximum displacement response magnification of the case 8 according to the sixth embodiment of the present invention.
In the case 9, when the mass ratio is 0.22, the lower damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is The value is lower than the lower optimal tuning frequency, and the higher damper natural frequency ωj of the two damper natural frequencies ωj (j = 1 to N) is the value of the two optimal tuning frequencies. It almost coincides with the higher optimal tuning frequency.
The ratio of the shift amount toward the lower side and the shift amount toward the higher side is 1: 1.
From this result, the following can be understood.
(1) In the case of a mass ratio of 0.25, there is an effect that the response magnification is reduced when the spring constant of the main system is 0.7 (the side depending on the soft spring).
(2) When the fluctuation of the spring constant of the main system is 1.3 (on the side depending on the hard spring), the shift amount is 2% or more, and the response magnification becomes larger than the response magnification corresponding to the optimal solution according to the fixed point theory, and the effect is reduced.
(3) When the mass ratio is greater than 0.2, the response magnification of the variation 1.3 does not increase even with the same shift amount.

上記の結果から、N個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの低い方の最適同調振動数よりさらに低い値に設定し、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjがN個の最適同調振動数のうちの高い方の最適同調振動数に略一致または僅かにずれる様に設定すると、主系の固有振動数が変動しても、応答倍率の変動が小さくなることが予測される。   From the above results, the lower damper natural frequency ωj among the N damper natural frequencies ωj (j = 1 to N) is more than the lower optimal tuning frequency among the N optimum tuning frequencies. The lower damper natural frequency ωj (j = 1 to N) is set to a lower value, and the higher damper natural frequency ωj is set to the higher optimum tuning frequency among the N optimum tuning frequencies. If it is set so as to be substantially coincident or slightly shifted, it is predicted that the fluctuation of the response magnification will be small even if the natural frequency of the main system fluctuates.

次に、本発明の第七の実施形態に係る免震装置または制振装置を、図を基に、説明する。
図37は、本発明の第七の実施形態に係る装置のロバスト最適化法を示す概念図である。図38は、本発明の第七の実施形態に係る装置の最大変位応答倍率の変化を示すグラフである。
第七の実施形態に係る免震装置または制振装置は、第六の実施形態にかかる免震装置または制振装置において、N個のダンパー固有振動数ωj(j=1〜N)の各々のダンパー固有振動数ωjがN個の所定値に略一致する。
N個の所定値は、N個のダンパー固有振動数ωj(j=1〜N)がN個の所定値に各々に一致すると仮定すると、固有振動数ωsが最小固有振動数ωminと最大固有振動数ωmaxとの間の値をとったときの応答倍率を示す線上での最大値Pmaxが、固有振動数ωsが最小固有振動数ωminであるときの最大値Pmaxより低くかつ固有振動数ωsが最大固有振動数ωmaxであるときの最大値Pmaxより低くなる様なN個のダンパー固有振動数ωjである。
図38は、第七の実施形態に係る免震装置または制振装置の変位応答倍率の一例を示す。
図中で、調整例として示したのが第七の実施形態に係る免震装置または制振装置の変位応答倍率である。破線で示したのが単一型装置の変位応答倍率である。実線で示したのが第一の実施形態にかかる免震装置または制振装置の変位応答倍率である。
上記の様にN個のダンパー固有振動数ωjを決定すると、固有振動数ωsが最小固有振動数ωminと最大固有振動数ωmaxとの範囲内で、変位応答倍率の変動が小さくなる。
したがって、主系の慣性質量または弾性係数が変化して固有振動数が変化しても、主系の振動を効果的に免震でき、制振できる。
Next, a seismic isolation device or a vibration damping device according to a seventh embodiment of the present invention will be described with reference to the drawings.
FIG. 37 is a conceptual diagram showing a robust optimization method of the apparatus according to the seventh embodiment of the present invention. FIG. 38 is a graph showing changes in the maximum displacement response magnification of the device according to the seventh embodiment of the present invention.
The seismic isolation device or damping device according to the seventh embodiment is the same as the seismic isolation device or damping device according to the sixth embodiment, except that each of the N damper natural frequencies ωj (j = 1 to N). The damper natural frequency ωj substantially matches the N predetermined values.
Assuming that N damper natural frequencies ωj (j = 1 to N) correspond to the N predetermined values, the N predetermined values are equal to the minimum natural frequency ωmin and the maximum natural vibration. The maximum value Pmax on the line indicating the response magnification when taking a value between several ωmax is lower than the maximum value Pmax when the natural frequency ωs is the minimum natural frequency ωmin and the natural frequency ωs is the maximum N damper natural frequencies ωj that are lower than the maximum value Pmax at the natural frequency ωmax.
FIG. 38 shows an example of the displacement response magnification of the seismic isolation device or damping device according to the seventh embodiment.
In the figure, the displacement response magnification of the seismic isolation device or the vibration damping device according to the seventh embodiment is shown as an adjustment example. The broken line indicates the displacement response magnification of the single-type device. The solid line indicates the displacement response magnification of the seismic isolation device or the vibration damping device according to the first embodiment.
When N damper natural frequencies ωj are determined as described above, the variation of the displacement response magnification is small when the natural frequency ωs is within the range of the minimum natural frequency ωmin and the maximum natural frequency ωmax.
Therefore, even if the inertial mass or elastic coefficient of the main system changes and the natural frequency changes, the main system vibration can be effectively isolated and controlled.

また、以上説明したように、本発明に係る免震装置または制振装置は、その構成により、以下の効果を有する。
振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素とダンパー要素とを並列接続した系である粘性マスダンパーとバネ要素とを直列接続された系であるバネ付き粘性マスダンパーを複数用意し、複数のバネ付き粘性マスダンパーを対象構造体に各々に取り付け、複数のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)が互いに異なる様にしたので、異なるダンパー固有振動数を持つN個のバネ付き粘性マスダンパーが対象構造物の振動エネルギーをより広い周波数帯域に分散し応答を低下させる。
直動軸と直動軸にねじ込まれた回転体と回転体とフレームとの隙間に封入された粘性流体とで構成された粘性マスダンパーとバネ要素を直列接続した系であるのバネ付き粘性マスダンパーを複数用意し、複数のバネ付き粘性マスダンパーを対象構造体に各々に取り付け、複数のバネ付き粘性マスダンパーの持つ各々のダンパー固有振動数ωj(j=1〜N)が互いに異なる様にしたので、異なるダンパー固有振動数を持つN個のバネ付き粘性マスダンパーが対象構造物の振動エネルギーをより広い周波数帯域に分散し応答を低下させる。
また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上で複数のバネ付き粘性マスダンパーの持つ各々の減衰係数cの値のいかんにかかわらず一定値となる少なくとも(N+1)個の定点での値が略等しくなる様にN個のダンパー固有振動数ωj(j=1〜N)を設定されているので、(N+1)個の定点での値が等しくなるので、(N+1)個の定点に対応する周波数の付近での応答倍率を均等にして、応答倍率のピークを下げることができる。
また、(N+1)個の定点での値が各々に実質的に略極大になる様にN個の減衰係数cを設定されているので、(N+1)個の定点での応答倍率が極大値をもつピークになり、全体の応答倍率をピークでの応答倍率より下げられる。
Further, as described above, the seismic isolation device or the vibration damping device according to the present invention has the following effects due to its configuration.
A spring that is a system in which a viscous mass damper and a spring element are connected in series, which is a system in which an inertia connecting element and a damper element that convert relative displacement in a specific direction generated by vibration into a rotation amount of a rotating body are connected in parallel A plurality of viscous mass dampers with springs are prepared, and a plurality of viscous mass dampers with springs are respectively attached to the target structure, and the respective natural frequencies ωj (j = 1 to N) of the dampers having the plurality of viscous mass dampers with springs are mutually connected. Since they are made different, the N viscous mass dampers with springs having different damper natural frequencies disperse the vibration energy of the target structure in a wider frequency band and reduce the response.
A viscous mass with a spring which is a system in which a viscous mass damper composed of a linear motion shaft, a rotating body screwed into the linear motion shaft, and a viscous fluid enclosed in a gap between the rotational body and the frame and a spring element are connected in series. Prepare a plurality of dampers, attach a plurality of spring-equipped viscous mass dampers to the target structure, and have a plurality of damper-equipped mass dampers with different damper natural frequencies ωj (j = 1 to N) different from each other. Therefore, the N viscous mass dampers with springs having different damper natural frequencies disperse the vibration energy of the target structure in a wider frequency band and reduce the response.
Further, when p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, the values of the respective damping coefficients c of the plurality of spring-attached viscous mass dampers on the line indicating the response magnification. Regardless, N damper natural frequencies ωj (j = 1 to N) are set so that the values at at least (N + 1) fixed points that are constant values are substantially equal. Therefore, (N + 1) fixed points are set. Therefore, the response magnification in the vicinity of the frequencies corresponding to (N + 1) fixed points can be equalized, and the peak response magnification can be lowered.
In addition, since N attenuation coefficients c are set so that the values at (N + 1) fixed points are substantially substantially maximal, the response magnification at (N + 1) fixed points has a maximum value. The overall response magnification is lowered from the peak response magnification.

また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上で極大値を持つ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まる様に、N個のダンパー固有振動数ωj(j=1〜N)を設定されているので、極大値をもつ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まり、ピーク点の付近での応答倍率を均一にできる。
また、応答倍率を示す線の上で極大値をもつN個のピーク点での各々の応答倍率の平均値が略最小となる様にN個の減衰係数cj(j=1〜N)を設定されているので、極大値をもつ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まる範囲で、ピークの付近での応答倍率を下げられる。
また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上で極少値を持つN個のピーク点での各々の応答倍率の平均値が略最小となる様に、N個のダンパー固有振動数ωj(j=1〜N)を設定されているので、極少値を持つN個のピーク点での各々の応答倍率の平均値が略最小となり、N個のピーク点の付近の応答倍率を下げられ、全体の応答倍率を下げられる。
また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上で所定の幅の加振周波数pでの連続した応答倍率の平均が略最小となる様に、N個のダンパー固有振動数ωj(j=1〜N)を設定されているので、所定の幅の加振周波数pでの連続した応答倍率の平均が略最小となり、所定の幅の加振周波数pの付近での応答倍率を下げられる。
Also, when p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, the variation of each response magnification at (N + 1) peak points having a maximum value on a line indicating the response magnification. N damper natural frequencies ωj (j = 1 to N) are set so that is within a predetermined range, so that variation in response magnification at each of (N + 1) peak points having a maximum value is set. Falls within a predetermined range, and the response magnification near the peak point can be made uniform.
In addition, N attenuation coefficients cj (j = 1 to N) are set so that the average value of the response magnifications at the N peak points having the maximum values on the line indicating the response magnification is substantially minimized. Therefore, the response magnification in the vicinity of the peak can be lowered within a range where the variation of each response magnification at the (N + 1) peak points having the maximum value falls within a predetermined range.
Further, when p / ωs is taken as the horizontal axis and the response magnification of the target structure is taken as the vertical axis, the average value of each response magnification at N peak points having a minimum value on the line indicating the response magnification is Since N damper natural frequencies ωj (j = 1 to N) are set so as to be approximately the minimum, the average value of each response magnification at the N peak points having the minimum value is approximately the minimum. Thus, the response magnification near the N peak points can be lowered, and the overall response magnification can be lowered.
In addition, when p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, the average of the continuous response magnifications at the excitation frequency p of a predetermined width on the line indicating the response magnification is substantially minimum. N damper natural frequencies ωj (j = 1 to N) are set so that the average of the continuous response magnifications at the excitation frequency p of a predetermined width becomes substantially minimum. The response magnification in the vicinity of the excitation frequency p of the width can be lowered.

また、p/ωsを横軸とし対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上でN個のダンパー要素の減衰抵抗力を相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなるN個の最適同調振動数よりも、N個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjをさらに低い値に設定し、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjを略一致する値に設定されているので、(N+1)個の定点よりも周波数側がより広い周波数の定点での値が等しくなり、(N+1)個の定点に対応する周波数に比べより拡がった付近での応答倍率を均等にして、応答倍率のピークを下げることができる。
また、p/ωsを横軸とし対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上でN個のダンパー要素の減衰抵抗力を相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなるN個の最適同調振動数よりも、N個のダンパー固有振動数ωj(j=1〜N)のうち低い方のダンパー固有振動数ωjをさらに低い値に設定され、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjを略一致する値に設定されているので、(N+1)個の定点よりも周波数側がより低い定点での値が等しくなるので、(N+1)個の定点に対応する周波数に比べ低い側がより低い側へ拡がった付近での応答倍率を均等にして、応答倍率のピークを下げることができる。。
また、p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたとき、応答倍率を示す線の上でN個のダンパー要素の減衰抵抗力を相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での値が略等しくなるN個の最適同調振動数よりも、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjをさらに高い値に設定され、N個のダンパー固有振動数ωj(j=1〜N)のうち高い方のダンパー固有振動数ωjを略一致する値に設定されているので、(N+1)個の定点よりも周波数側がより高い定点での値が等しくなるので、(N+1)個の定点に対応する周波数に比べ低い側がより高い側へ拡がった付近での応答倍率を均等にして、応答倍率のピークを下げることができる。。
また、(N+1)個の定点での値が各々に実質的に略極大になる様にN個の減衰係数cを設定されているので、(N+1)個の定点での応答倍率が極大値をもつピークになり、全体の応答倍率をピークでの応答倍率より下げられる。
Further, when p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, N pieces which are values obtained by dividing the damping resistance force of the N damper elements by the relative speed on the line indicating the response magnification. N damper natural frequencies ωj (j = 1) rather than N optimum tuned frequencies at which the values at (N + 1) fixed points that are constant are substantially equal regardless of the value of the damping coefficient c. ˜N), the lower damper natural frequency ωj is set to a lower value, and the higher damper natural frequency ωj among the N damper natural frequencies ωj (j = 1 to N) is substantially matched. Since the value at the fixed point of the frequency wider than the (N + 1) fixed points is equal, the response magnification in the vicinity that is wider than the frequency corresponding to the (N + 1) fixed points is set. Can be made uniform, and the peak response magnification can be lowered.
Further, when p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, N pieces which are values obtained by dividing the damping resistance force of the N damper elements by the relative speed on the line indicating the response magnification. N damper natural frequencies ωj (j = 1) rather than N optimum tuned frequencies at which the values at (N + 1) fixed points that are constant are substantially equal regardless of the value of the damping coefficient c. ˜N), the lower damper natural frequency ωj is set to a lower value, and the higher damper natural frequency ωj of the N damper natural frequencies ωj (j = 1 to N) is substantially matched. Since the value at the fixed point lower on the frequency side than (N + 1) fixed points is equal because the value is set to the value, the lower side is expanded to the lower side compared to the frequency corresponding to (N + 1) fixed points. The response magnification at You can. .
In addition, when p / ωs is the horizontal axis and the response magnification of the target structure is the vertical axis, N is a value obtained by dividing the damping resistance force of the N damper elements by the relative speed on the line indicating the response magnification. The N damper natural frequencies ωj (j = j = r) than the N optimum tuned frequencies at which the values at (N + 1) fixed points that are constant regardless of the values of the damping coefficients c are substantially equal. 1 to N), the higher damper natural frequency ωj is set to a higher value, and of the N damper natural frequencies ωj (j = 1 to N), the higher damper natural frequency ωj is substantially the same. Since the values at the fixed points higher on the frequency side than (N + 1) fixed points are equal, the lower side is expanded to the higher side compared to the frequencies corresponding to (N + 1) fixed points. Reduce the response magnification peak by equalizing the response magnification in the vicinity. be able to. .
In addition, since N attenuation coefficients c are set so that the values at (N + 1) fixed points are substantially substantially maximal, the response magnification at (N + 1) fixed points has a maximum value. The overall response magnification is lowered from the peak response magnification.

また、固有振動数ωsが最小固有振動数ωminと最大固有振動数ωmaxとの間の値をとったときの応答倍率を示す線上での最大値Pmaxが、固有振動数ωsが最小固有振動数ωminであるときの最大値Pmaxより低くかつ固有振動数ωsが最大固有振動数ωmaxであるときの最大値Pmaxより低くなる様に、N個のダンパー固有振動数ωj(j=1〜N)を設定されているので、主架構と対象構造物とで構成される系の特定方向に変位する振動モードの固有振動数ωsが変化した際に、応答倍率の変化が一定の程度に抑えられる。   Further, the maximum value Pmax on the line indicating the response magnification when the natural frequency ωs takes a value between the minimum natural frequency ωmin and the maximum natural frequency ωmax, and the natural frequency ωs is the minimum natural frequency ωmin. N damper natural frequencies ωj (j = 1 to N) are set so that the natural frequency ωs is lower than the maximum value Pmax when the natural frequency ωs is the maximum natural frequency ωmax. Therefore, when the natural frequency ωs of the vibration mode that is displaced in a specific direction of the system constituted by the main frame and the target structure is changed, the change in the response magnification is suppressed to a certain level.

また、互いに諸元の一致するバネ付き粘性マスダンパーを持つ第一バネ付き粘性マスダンパー組の各々のバネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパー組のバネ付き粘性マスダンパーとを対称構造体の剛体を中心として1対毎に点対称になるように配したので剛心の周りの各々の回転モーメントとが各々に相殺される。
その結果、バネ付き粘性マスダンパーの反力により主架構と対象構造物とで構成される系にねじれ動誘導が生じるの抑制し、ねじれ振動を誘発するエネルギーを免震または制振できる。
また、互いに諸元の一致するバネ付き粘性マスダンパーの属する複数のバネ付き粘性ダンパー組に各々属するN個のバネ付き粘性マスダンパーの発生する反力により生ずる剛心の周りの回転モーメントとが組毎に各々に相殺する様に、複数のバネ付き粘性マスダンパーを支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる。
その結果、バネ付き粘性マスダンパーの反力により主架構と対象構造物とで構成される系にねじれ動誘導が生じるの抑制し、ねじれ振動を誘発するエネルギーを免震または制振できる。
In addition, each of the viscous mass dampers with a spring having a viscous mass damper with a spring having the same specifications, and each of the viscous mass dampers with a spring of the N second viscous mass dampers with a spring, Are arranged so as to be point symmetric with respect to each pair about the rigid body of the symmetric structure, so that each rotational moment around the rigid core cancels each other.
As a result, torsional motion induction can be suppressed in the system composed of the main frame and the target structure due to the reaction force of the viscous mass damper with spring, and the energy that induces torsional vibration can be isolated or controlled.
In addition, the rotational moment around the rigid core generated by the reaction force generated by the N spring mass viscous dampers belonging to each of the plurality of spring mass viscous dampers to which the spring mass viscous dampers whose specifications match each other belongs. A plurality of spring mass viscous dampers are attached between the support and the target structure or inside the target structure so as to cancel each other.
As a result, torsional motion induction can be suppressed in the system composed of the main frame and the target structure due to the reaction force of the viscous mass damper with spring, and the energy that induces torsional vibration can be isolated or controlled.

本発明は以上に述べた実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で各種の変更が可能である。
N個のバネ付き粘性マスダンパーを備える例で説明したが、追加して他の免震機器、制振機器を備えていてもよい。
The present invention is not limited to the embodiments described above, and various modifications can be made without departing from the scope of the invention.
Although it demonstrated by the example provided with the N viscous mass dampers with a spring, you may provide other seismic isolation equipment and vibration control equipment in addition.

本発明の実施形態に係る免震装置・制振装置の概念図である。1 is a conceptual diagram of a seismic isolation device / vibration control device according to an embodiment of the present invention. 本発明の第一の実施形態に係る装置の最適同調振動数比のグラフである。It is a graph of the optimal tuning frequency ratio of the apparatus which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る装置の最適減衰定数のグラフである。It is a graph of the optimal attenuation constant of the apparatus which concerns on 1st embodiment of this invention. 単一型装置の変位応答倍率のグラフである。It is a graph of the displacement response magnification of a single type apparatus. 本発明の第一の実施形態に係る装置の変位応答倍率のグラフである。It is a graph of the displacement response magnification of the apparatus which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る装置の最大変位応答倍率のグラフである。It is a graph of the maximum displacement response magnification of the apparatus which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る装置の減衰定数−最大変位応答倍率グラフ1である。It is the attenuation constant-maximum displacement response magnification graph 1 of the apparatus which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る装置の減衰定数−最大変位応答倍率グラフ2である。It is the attenuation constant-maximum displacement response magnification graph 2 of the apparatus which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る装置の最適同調振動数比のグラフである。It is a graph of the optimal tuning frequency ratio of the apparatus which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る装置の最適減衰定数のグラフである。It is a graph of the optimal damping constant of the apparatus which concerns on 2nd embodiment of this invention. 単一側の装置の加速度応答倍率のグラフである。It is a graph of the acceleration response magnification of the apparatus of the single side. 本発明の第二の実施形態に係る装置の加速度応答倍率のグラフである。It is a graph of the acceleration response magnification of the apparatus which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る装置の最大加速度応答倍率のグラフである。It is a graph of the maximum acceleration response magnification of the apparatus which concerns on 2nd embodiment of this invention. 本発明の第二の実施形態に係る装置の減衰定数−最大加速度応答倍率グラフである。It is an attenuation constant-maximum acceleration response magnification graph of the apparatus concerning 2nd embodiment of this invention. 本発明の第一の実施形態に係るダンパー配置の平面図である。It is a top view of damper arrangement concerning a first embodiment of the present invention. 本発明の第二の実施形態に係るダンパー配置の平面図である。It is a top view of damper arrangement concerning a second embodiment of the present invention. 本発明の第三の実施形態に係るダンパー配置の斜視図である。It is a perspective view of damper arrangement concerning a third embodiment of the present invention. 本発明の第四の実施形態に係るダンパー配置の概念図である。。It is a conceptual diagram of the damper arrangement | positioning which concerns on 4th embodiment of this invention. . 本発明の第一の実施形態に係るダンパー取付構造の側面図である。It is a side view of the damper attachment structure concerning a first embodiment of the present invention. 本発明の第二の実施形態に係るダンパー取付構造の側面図である。It is a side view of the damper attachment structure concerning a second embodiment of the present invention. 本発明の第三の実施形態に係るダンパー取付構造の側面図である。It is a side view of the damper attachment structure which concerns on 3rd embodiment of this invention. 本発明の第四の実施形態に係るダンパー取付構造の側面図である。It is a side view of the damper mounting structure which concerns on 4th embodiment of this invention. 本発明の第五の実施形態に係るダンパー取付構造の側面図である。It is a side view of the damper mounting structure which concerns on 5th embodiment of this invention. 本発明の第一の実施形態に係るダンパー取付構造の平面図である。It is a top view of the damper attachment structure concerning a first embodiment of the present invention. 本発明の第六の実施形態に係るダンパー取付構造の側面図である。It is a side view of the damper attachment structure concerning a 6th embodiment of the present invention. 本発明の第一の実施形態に係る装置の最大変位応答倍率の変化を示すグラフ1である。It is the graph 1 which shows the change of the maximum displacement response magnification of the apparatus which concerns on 1st embodiment of this invention. 本発明の第一の実施形態に係る装置の最大変位応答倍率の変化を示すグラフ1である。It is the graph 1 which shows the change of the maximum displacement response magnification of the apparatus which concerns on 1st embodiment of this invention. 本発明の第二の実施形態に係る装置の最大変位応答倍率の変化を示すグラフ2である。It is the graph 2 which shows the change of the maximum displacement response magnification of the apparatus which concerns on 2nd embodiment of this invention. 本発明の第六の実施形態に係るケース1の最大変位応答倍率の変化を示すグラフである。It is a graph which shows the change of the maximum displacement response magnification of case 1 concerning a 6th embodiment of the present invention. 本発明の第六の実施形態に係るケース2の最大変位応答倍率の変化を示すグラフである。It is a graph which shows the change of the maximum displacement response magnification of case 2 concerning a 6th embodiment of the present invention. 本発明の第六の実施形態に係るケース3の最大変位応答倍率の変化を示すグラフである。It is a graph which shows the change of the maximum displacement response magnification of case 3 concerning a 6th embodiment of the present invention. 本発明の第六の実施形態に係るケース4の最大変位応答倍率の変化を示すグラフである。It is a graph which shows the change of the maximum displacement response magnification of case 4 concerning a 6th embodiment of the present invention. 本発明の第六の実施形態に係るケース5の最大変位応答倍率の変化を示すグラフである。It is a graph which shows the change of the maximum displacement response magnification of case 5 which concerns on 6th embodiment of this invention. 本発明の第六の実施形態に係るケース6の最大変位応答倍率の変化を示すグラフである。It is a graph which shows the change of the maximum displacement response magnification of case 6 concerning a 6th embodiment of the present invention. 本発明の第六の実施形態に係るケース7の最大変位応答倍率の変化を示すグラフである。It is a graph which shows the change of the maximum displacement response magnification of case 7 concerning a 6th embodiment of the present invention. 本発明の第六の実施形態に係るケース8の最大変位応答倍率の変化を示すグラフである。It is a graph which shows the change of the maximum displacement response magnification of case 8 which concerns on 6th embodiment of this invention. 本発明の第七の実施形態に係る装置のロバスト最適化法を示す概念図である。It is a conceptual diagram which shows the robust optimization method of the apparatus which concerns on 7th embodiment of this invention. 本発明の第七の実施形態に係る装置の最大変位応答倍率の変化を示すグラフである。It is a graph which shows the change of the maximum displacement response magnification of the apparatus which concerns on 7th embodiment of this invention. 本発明の実施形態に係る粘性マスダンパーの一例を示す断面図である。It is sectional drawing which shows an example of the viscous mass damper which concerns on embodiment of this invention. 本発明の実施形態に係るバネ要素の一例を示す断面図である。It is sectional drawing which shows an example of the spring element which concerns on embodiment of this invention. 本発明の実施形態に係るバネ付き粘性マスダンパーの取付構造の一例を示す概念図である。It is a conceptual diagram which shows an example of the attachment structure of the viscous mass damper with a spring which concerns on embodiment of this invention.

符号の説明Explanation of symbols

Ms 主系の質量
Cs 主系の減衰係数
mj バネ付き粘性マスダンパーの見かけの質量
cj バネ付き粘性マスダンパーの減衰係数
kbj バネ付き粘性マスダンパーの弾性係数
μ 質量比((Σmj)/Ms)
sψ’ 最大変位応答倍率(柔)
hψ’ 最大加度応答倍率(硬)
ψ’ 最大加度応答倍率
5 支持体
10 対象構造物
11 取付部
12 取付部
13 取付部
20 主架構
30 慣性接続要素
40 バネ要素
50 ダンパー要素
100 粘性マスダンパー
110 リニアガイド
120 直動軸
130 回転体
131 ねじナット
132 回転円筒
140 フレーム
141 ねじナットフレーム
142 回転円筒フレーム
143 軸受
150 粘性流体
200 バネ要素
210 弾性体
220 第一部材
221 フランジ
222 弾性体支持部材
230 第二部材
231 フランジ
232 弾性体支持部材
Ms Mass of main system Cs Damping coefficient of main system mj Apparent mass of viscous mass damper with spring cj Damping coefficient of viscous mass damper with spring kbj Elastic coefficient of viscous mass damper with spring μ Mass ratio ((Σmj) / Ms)
sψ 'Maximum displacement response magnification (soft)
hψ 'Maximum addition response magnification (hard)
ψ 'Maximum addition response magnification 5 Support 10 Target structure 11 Mounting portion 12 Mounting portion 13 Mounting portion 20 Main frame 30 Inertial connection element 40 Spring element 50 Damper element 100 Viscous mass damper 110 Linear guide 120 Linear motion shaft 130 Rotating body 131 Screw Nut 132 Rotating Cylinder 140 Frame 141 Thread Nut Frame 142 Rotating Cylindrical Frame 143 Bearing 150 Viscous Fluid 200 Spring Element 210 Elastic Body 220 First Member 221 Flange 222 Elastic Body Support Member 230 Second Member 231 Flange 232 Elastic Body Support Member

Claims (13)

支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置であって、
2個以上であるN個のバネ付き粘性マスダンパーを、
備え、
前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持つ、
または、
前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させた際に前記直動方向に作用する前記回転体の慣性力により生ずる反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する前記粘性流体の減衰抵抗力により生ずる反力を前記相対速度で割った値に対応する減衰係数cとを持つ、
のうちのどちらか一方であり、
ここで、弾性係数kbとみかけの慣性質量mとダンパー固有振動数ωとは以下の関係にあり、
Figure 0005123772
互いに異なるダンパー固有振動数ωj(j=1〜N)を各々にもつN個の前記バネ付き粘性マスダンパーが、対象構造物の特定方向の相対変位に対応して、各々相対変位する様に対象構造体に取り付けられ、
N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致し、
ここで、N個の最適同調振動数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに、前記応答倍率と比p/ωsとの関係を示す線の上で、N個の前記バネ付き粘性マスダンパーの持つ各々の減衰係数cの値のいかんにかかわらず一定値となる少なくとも(N+1)個の定点での該応答倍率の値が略等しくなるN個の前記ダンパー固有振動数ωjであり
前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである、
ことを特徴とする免震装置または制振装置。
A seismic isolation device or a vibration control device for damping the vibration of the target structure supported by the main frame on the basis of the support,
N spring mass viscous dampers that are 2 or more
Prepared,
An inertial connection element that converts a relative displacement in a specific direction generated by vibration of the viscous mass damper with a spring into a rotation amount of the rotating body, and an elastic reaction force that acts along the specific direction corresponding to the relative displacement in the specific direction. A system in which the inertia connecting element and the damper element are connected in parallel with a spring element that generates a damping force and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. A system in which a certain viscous mass damper and the spring element are connected in series,
The spring-equipped viscous mass damper has a damper natural frequency ω corresponding to an elastic coefficient kb of the spring element and an apparent inertia mass m with respect to a relative acceleration in a specific direction of the inertia connecting element, and the damping resistance force of the damper element. A damping coefficient c corresponding to the value divided by the relative velocity,
Or
The spring-attached viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. A viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous mass damper and the spring element are connected in series,
An elastic coefficient kb which is a value obtained by dividing a reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper. To the apparent inertia mass m, which is a value obtained by dividing the reaction force generated by the inertial force of the rotating body acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration. When the corresponding damper natural frequency ω and the linear motion shaft of the viscous mass damper are linearly moved at a constant relative speed, the reaction force generated by the damping resistance force of the viscous fluid acting in the linear motion direction is the relative force. A damping coefficient c corresponding to the value divided by the speed,
One of the
Here, the elastic coefficient kb, the apparent inertia mass m, and the damper natural frequency ω are in the following relationship:
Figure 0005123772
The N viscous mass dampers with springs each having different damper natural frequencies ωj (j = 1 to N) are subject to relative displacement corresponding to the relative displacement in a specific direction of the target structure. Attached to the structure,
N damper natural frequencies ωj (j = 1 to N) substantially correspond to N optimum tuning frequencies, respectively.
Here, the N optimum tuning frequencies are expressed as a mass system having a structure in which the N viscous mass dampers with a spring and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification as the vertical axis, each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs corresponds to the N optimal tuning frequencies. Assuming that, on the line indicating the relationship between the response magnification and the ratio p / ωs, a constant value is obtained regardless of the value of each damping coefficient c of the N viscous mass dampers with springs. The value of the response magnification at at least (N + 1) fixed points There are N number of the damper natural frequency ωj substantially equal ing,
The response magnification is a dynamic response magnification, which is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly vibrated and the amplitude of the target structure that vibrates in response. Vibration in response to the displacement response magnification, which is the ratio of the displacement of the support when it is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced One of the acceleration response magnifications, which is the ratio to the acceleration of the target object,
A seismic isolation device or a vibration control device.
N個の前記減衰係数cj(j=1〜N)がN個の最適減衰係数に各々に略一致する値である、
ここで、N個の前記最適減衰係数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記減衰係数cがN個の前記最適減衰係数に各々に一致すると仮定したとき(N+1)個の前記定点での前記応答倍率の値が各々に実質的に略極大になるN個の前記減衰係数cjである
ことを特徴とする請求項1に記載の免震装置または制振装置。
N attenuation coefficients cj (j = 1 to N) are values that approximately match the N optimal attenuation coefficients, respectively.
Here, the N optimum damping coefficients are expressed by a mass system having a structure in which the N viscous mass dampers with springs and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification on the vertical axis, assuming that the N attenuation coefficients c match the N optimal attenuation coefficients, the response magnification values at the (N + 1) fixed points are respectively N attenuation coefficients cj that are substantially maximal.
The seismic isolation device or the vibration damping device according to claim 1.
支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置であって、
2個以上であるN個のバネ付き粘性マスダンパーを、
備え、
前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持つ、
または、
前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させた際に前記直動方向に作用する前記回転体の慣性力により生ずる反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する前記粘性流体の減衰抵抗力により生ずる反力を前記相対速度で割った値に対応する減衰係数cとを持つ、
のうちのどちらか一方であり、
ここで、弾性係数kbとみかけの慣性質量mとダンパー固有振動数ωとは以下の関係にあり、
Figure 0005123772
互いに異なるダンパー固有振動数ωj(j=1〜N)を各々にもつN個の前記バネ付き粘性マスダンパーが、対象構造物の特定方向の相対変位に対応して、各々相対変位する様に対象構造体に取り付けられ、
N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致し、
ここで、N個の最適同調振動数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに、前記応答倍率と比p/ωsとの関係を示す線の上で極大値を持つ(N+1)個のピーク点での各々の応答倍率のばらつきが所定範囲内に納まるN個の前記ダンパー固有振動数ωjであり
前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである、
ことを特徴とする免震装置または制振装置。
A seismic isolation device or a vibration control device for damping the vibration of the target structure supported by the main frame on the basis of the support,
N spring mass viscous dampers that are 2 or more
Prepared,
An inertial connection element that converts a relative displacement in a specific direction generated by vibration of the viscous mass damper with a spring into a rotation amount of the rotating body, and an elastic reaction force that acts along the specific direction corresponding to the relative displacement in the specific direction. A system in which the inertia connecting element and the damper element are connected in parallel with a spring element that generates a damping force and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. A system in which a certain viscous mass damper and the spring element are connected in series,
The spring-equipped viscous mass damper has a damper natural frequency ω corresponding to an elastic coefficient kb of the spring element and an apparent inertia mass m with respect to a relative acceleration in a specific direction of the inertia connecting element, and the damping resistance force of the damper element. A damping coefficient c corresponding to the value divided by the relative velocity,
Or
The spring-attached viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. A viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous mass damper and the spring element are connected in series,
An elastic coefficient kb which is a value obtained by dividing a reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper. To the apparent inertia mass m, which is a value obtained by dividing the reaction force generated by the inertial force of the rotating body acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration. When the corresponding damper natural frequency ω and the linear motion shaft of the viscous mass damper are linearly moved at a constant relative speed, the reaction force generated by the damping resistance force of the viscous fluid acting in the linear motion direction is the relative force. A damping coefficient c corresponding to the value divided by the speed,
One of the
Here, the elastic coefficient kb, the apparent inertia mass m, and the damper natural frequency ω are in the following relationship:
Figure 0005123772
The N viscous mass dampers with springs each having different damper natural frequencies ωj (j = 1 to N) are subject to relative displacement corresponding to the relative displacement in a specific direction of the target structure. Attached to the structure,
N damper natural frequencies ωj (j = 1 to N) substantially correspond to N optimum tuning frequencies, respectively.
Here, the N optimum tuning frequencies are expressed as a mass system having a structure in which the N viscous mass dampers with a spring and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification as the vertical axis, each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs corresponds to the N optimal tuning frequencies. when assuming, variations in response factor of each at (N + 1) pieces of peak point having the maximum value on the line indicating the relationship between the response magnification and the ratio p / .omega.s is that Osama within a predetermined range N The damper natural frequency ωj ,
The response magnification is a dynamic response magnification, which is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly vibrated and the amplitude of the target structure that vibrates in response. Vibration in response to the displacement response magnification, which is the ratio of the displacement of the support when it is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced One of the acceleration response magnifications, which is the ratio to the acceleration of the target object,
A seismic isolation device or a vibration control device.
N個の前記減衰係数cj(j=1〜N)がN個の最適減衰係数に各々に略一致し、
ここで、N個の前記最適減衰係数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記バネ付き粘性マスダンパーの持つ各々の前記減衰係数cj(j=1〜N)がN個の前記最適減衰係数に各々に一致すると仮定するときに前記応答倍率と比p/ωsとの関係を示す線の上で極大値をもつN個のピーク点での各々の応答倍率の平均値が略最小となるN個の前記減衰係数cjである
ことを特徴とする請求項3に記載の免震装置または制振装置。
N attenuation coefficients cj (j = 1 to N) approximately match N optimal attenuation coefficients,
Here, the N optimum damping coefficients are expressed by a mass system having a structure in which the N viscous mass dampers with springs and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification as the vertical axis, when it is assumed that the respective damping coefficients cj (j = 1 to N) of the N spring mass dampers with springs correspond to the N optimum damping coefficients, respectively. Are the N attenuation coefficients cj at which the average value of the response magnifications at the N peak points having the maximum value on the line indicating the relationship between the response magnification and the ratio p / ωs is substantially minimum. ,
The seismic isolation device or the vibration damping device according to claim 3.
支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置であって、
2個以上であるN個のバネ付き粘性マスダンパーを、
備え、
前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持つ、
または、
前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させた際に前記直動方向に作用する前記回転体の慣性力により生ずる反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する前記粘性流体の減衰抵抗力により生ずる反力を前記相対速度で割った値に対応する減衰係数cとを持つ、
のうちのどちらか一方であり、
ここで、弾性係数kbとみかけの慣性質量mとダンパー固有振動数ωとは以下の関係にあり、
Figure 0005123772
互いに異なるダンパー固有振動数ωj(j=1〜N)を各々にもつN個の前記バネ付き粘性マスダンパーが、対象構造物の特定方向の相対変位に対応して、各々相対変位する様に対象構造体に取り付けられ、
N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致し、
ここで、N個の最適同調振動数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに、前記応答倍率と比p/ωsとの関係を示す線の上で極少値を持つN個のピーク点での各々の応答倍率の平均値が略最小となるN個の前記ダンパー固有振動数ωjであり
前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである、
ことを特徴とする免震装置または制振装置。
A seismic isolation device or a vibration control device for damping the vibration of the target structure supported by the main frame on the basis of the support,
N spring mass viscous dampers that are 2 or more
Prepared,
An inertial connection element that converts a relative displacement in a specific direction generated by vibration of the viscous mass damper with a spring into a rotation amount of the rotating body, and an elastic reaction force that acts along the specific direction corresponding to the relative displacement in the specific direction. A system in which the inertia connecting element and the damper element are connected in parallel with a spring element that generates a damping force and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. A system in which a certain viscous mass damper and the spring element are connected in series,
The spring-equipped viscous mass damper has a damper natural frequency ω corresponding to an elastic coefficient kb of the spring element and an apparent inertia mass m with respect to a relative acceleration in a specific direction of the inertia connecting element, and the damping resistance force of the damper element. A damping coefficient c corresponding to the value divided by the relative velocity,
Or
The spring-attached viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. A viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous mass damper and the spring element are connected in series,
An elastic coefficient kb which is a value obtained by dividing a reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper. To the apparent inertia mass m, which is a value obtained by dividing the reaction force generated by the inertial force of the rotating body acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration. When the corresponding damper natural frequency ω and the linear motion shaft of the viscous mass damper are linearly moved at a constant relative speed, the reaction force generated by the damping resistance force of the viscous fluid acting in the linear motion direction is the relative force. A damping coefficient c corresponding to the value divided by the speed,
One of the
Here, the elastic coefficient kb, the apparent inertia mass m, and the damper natural frequency ω are in the following relationship:
Figure 0005123772
The N viscous mass dampers with springs each having different damper natural frequencies ωj (j = 1 to N) are subject to relative displacement corresponding to the relative displacement in a specific direction of the target structure. Attached to the structure,
N damper natural frequencies ωj (j = 1 to N) substantially correspond to N optimum tuning frequencies, respectively.
Here, the N optimum tuning frequencies are expressed as a mass system having a structure in which the N viscous mass dampers with a spring and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification as the vertical axis, each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs corresponds to the N optimal tuning frequencies. when assuming, the response magnification and the ratio p / .omega.s and the average value of each of the response ratio in the N peak points having a very small value on the line indicating the relationship of N substantially minimum and ing of Damper natural frequency ωj ,
The response magnification is a dynamic response magnification, which is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly vibrated and the amplitude of the target structure that vibrates in response. Vibration in response to the displacement response magnification, which is the ratio of the displacement of the support when it is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced One of the acceleration response magnifications, which is the ratio to the acceleration of the target object,
A seismic isolation device or a vibration control device.
支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置であって、
2個以上であるN個のバネ付き粘性マスダンパーを、
備え、
前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持つ、
または、
前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させた際に前記直動方向に作用する前記回転体の慣性力により生ずる反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する前記粘性流体の減衰抵抗力により生ずる反力を前記相対速度で割った値に対応する減衰係数cとを持つ、
のうちのどちらか一方であり、
ここで、弾性係数kbとみかけの慣性質量mとダンパー固有振動数ωとは以下の関係にあり、
Figure 0005123772
互いに異なるダンパー固有振動数ωj(j=1〜N)を各々にもつN個の前記バネ付き粘性マスダンパーが、対象構造物の特定方向の相対変位に対応して、各々相対変位する様に対象構造体に取り付けられ、
N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の最適同調振動数に各々に略一致し、
ここで、N個の最適同調振動数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに、前記応答倍率と比p/ωsとの関係を示す線の上で所定の幅の加振振動数pでの応答倍率の平均が略最小となるN個の前記ダンパー固有振動数ωjであり
前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである、
ことを特徴とする免震装置または制振装置。
A seismic isolation device or a vibration control device for damping the vibration of the target structure supported by the main frame on the basis of the support,
N spring mass viscous dampers that are 2 or more
Prepared,
An inertial connection element that converts a relative displacement in a specific direction generated by vibration of the viscous mass damper with a spring into a rotation amount of the rotating body, and an elastic reaction force that acts along the specific direction corresponding to the relative displacement in the specific direction. A system in which the inertia connecting element and the damper element are connected in parallel with a spring element that generates a damping force and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. A system in which a certain viscous mass damper and the spring element are connected in series,
The spring-equipped viscous mass damper has a damper natural frequency ω corresponding to an elastic coefficient kb of the spring element and an apparent inertia mass m with respect to a relative acceleration in a specific direction of the inertia connecting element, and the damping resistance force of the damper element. A damping coefficient c corresponding to the value divided by the relative velocity,
Or
The spring-attached viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. A viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous mass damper and the spring element are connected in series,
An elastic coefficient kb which is a value obtained by dividing a reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper. To the apparent inertia mass m, which is a value obtained by dividing the reaction force generated by the inertial force of the rotating body acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration. When the corresponding damper natural frequency ω and the linear motion shaft of the viscous mass damper are linearly moved at a constant relative speed, the reaction force generated by the damping resistance force of the viscous fluid acting in the linear motion direction is the relative force. A damping coefficient c corresponding to the value divided by the speed,
One of the
Here, the elastic coefficient kb, the apparent inertia mass m, and the damper natural frequency ω are in the following relationship:
Figure 0005123772
The N viscous mass dampers with springs each having different damper natural frequencies ωj (j = 1 to N) are subject to relative displacement corresponding to the relative displacement in a specific direction of the target structure. Attached to the structure,
N damper natural frequencies ωj (j = 1 to N) substantially correspond to N optimum tuning frequencies, respectively.
Here, the N optimum tuning frequencies are expressed as a mass system having a structure in which the N viscous mass dampers with a spring and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification as the vertical axis, each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs corresponds to the N optimal tuning frequencies. when assuming, the response magnification and the ratio p / relationship predetermined vibration the damper natural frequency average of N substantially minimum and ing the response magnification at a frequency p of a width on the line indicating the between ωs A number ωj ,
The response magnification is a dynamic response magnification, which is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly vibrated and the amplitude of the target structure that vibrates in response. Vibration in response to the displacement response magnification, which is the ratio of the displacement of the support when it is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced One of the acceleration response magnifications, which is the ratio to the acceleration of the target object,
A seismic isolation device or a vibration control device.
支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置であって、
2個以上であるN個のバネ付き粘性マスダンパーを、
備え、
前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持つ、
または、
前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させた際に前記直動方向に作用する前記回転体の慣性力により生ずる反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する前記粘性流体の減衰抵抗力により生ずる反力を前記相対速度で割った値に対応する減衰係数cとを持つ、
のうちのどちらか一方であり、
ここで、弾性係数kbとみかけの慣性質量mとダンパー固有振動数ωとは以下の関係にあり、
Figure 0005123772
互いに異なるダンパー固有振動数ωj(j=1〜N)を各々にもつN個の前記バネ付き粘性マスダンパーが、対象構造物の特定方向の相対変位に対応して、各々相対変位する様に対象構造体に取り付けられ、
N個の前記ダンパー固有振動数ωj(j=1〜N)のうち平均より低い方の前記ダンパー固有振動数ωjがN個の最適同調振動数のうちの平均より低い方の最適同調振動数よりさらに低い値であり、
N個の前記ダンパー固有振動数ωj(j=1〜N)のうち平均より高い方の前記ダンパー固有振動数ωjがN個の最適同調振動数のうちの平均より高い方の最適同調振動数に略一致または僅かにずれ、
ここで、N個の最適同調振動数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに、前記応答倍率と比p/ωsとの関係を示す線の上で、N個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での該応答倍率の値が略等しくなるN個の前記ダンパー固有振動数ωjであり
前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである、
ことを特徴とする免震装置または制振装置。
A seismic isolation device or a vibration control device for damping the vibration of the target structure supported by the main frame on the basis of the support,
N spring mass viscous dampers that are 2 or more
Prepared,
An inertial connection element that converts a relative displacement in a specific direction generated by vibration of the viscous mass damper with a spring into a rotation amount of the rotating body, and an elastic reaction force that acts along the specific direction corresponding to the relative displacement in the specific direction. A system in which the inertia connecting element and the damper element are connected in parallel with a spring element that generates a damping force and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. A system in which a certain viscous mass damper and the spring element are connected in series,
The spring-equipped viscous mass damper has a damper natural frequency ω corresponding to an elastic coefficient kb of the spring element and an apparent inertia mass m with respect to a relative acceleration in a specific direction of the inertia connecting element, and the damping resistance force of the damper element. A damping coefficient c corresponding to the value divided by the relative velocity,
Or
The spring-attached viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. A viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous mass damper and the spring element are connected in series,
An elastic coefficient kb which is a value obtained by dividing a reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper. To the apparent inertia mass m, which is a value obtained by dividing the reaction force generated by the inertial force of the rotating body acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration. When the corresponding damper natural frequency ω and the linear motion shaft of the viscous mass damper are linearly moved at a constant relative speed, the reaction force generated by the damping resistance force of the viscous fluid acting in the linear motion direction is the relative force. A damping coefficient c corresponding to the value divided by the speed,
One of the
Here, the elastic coefficient kb, the apparent inertia mass m, and the damper natural frequency ω are in the following relationship:
Figure 0005123772
The N viscous mass dampers with springs each having different damper natural frequencies ωj (j = 1 to N) are subject to relative displacement corresponding to the relative displacement in a specific direction of the target structure. Attached to the structure,
Of the N damper natural frequencies ωj (j = 1 to N), the damper natural frequency ωj lower than the average is lower than the average optimum tuning frequency of the N optimum tuning frequencies. Even lower values,
Of the N damper natural frequencies ωj (j = 1 to N), the damper natural frequency ωj that is higher than the average is set to the optimum tuning frequency that is higher than the average of the N optimum tuning frequencies. Nearly coincident or slightly off,
Here, the N optimum tuning frequencies are expressed as a mass system having a structure in which the N viscous mass dampers with a spring and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification as the vertical axis, each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs corresponds to the N optimal tuning frequencies. Assuming that N damping coefficients c are values obtained by dividing the damping resistance force of the N damper elements by the relative speed on a line indicating the relationship between the response magnification and the ratio p / ωs. (N + 1) fixed points that are constant regardless of the value of An N-number of the damper natural frequency ωj value of the response magnification is substantially equal ing in,
The response magnification is a dynamic response magnification, which is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly vibrated and the amplitude of the target structure that vibrates in response. Vibration in response to the displacement response magnification, which is the ratio of the displacement of the support when it is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced One of the acceleration response magnifications, which is the ratio to the acceleration of the target object,
A seismic isolation device or a vibration control device.
支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置であって、
2個以上であるN個のバネ付き粘性マスダンパーを、
備え、
前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持つ、
または、
前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させた際に前記直動方向に作用する前記回転体の慣性力により生ずる反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する前記粘性流体の減衰抵抗力により生ずる反力を前記相対速度で割った値に対応する減衰係数cとを持つ、
のうちのどちらか一方であり、
ここで、弾性係数kbとみかけの慣性質量mとダンパー固有振動数ωとは以下の関係にあり、
Figure 0005123772
互いに異なるダンパー固有振動数ωj(j=1〜N)を各々にもつN個の前記バネ付き粘性マスダンパーが、対象構造物の特定方向の相対変位に対応して、各々相対変位する様に対象構造体に取り付けられ、
N個の前記ダンパー固有振動数ωj(j=1〜N)のうち平均より低い方の前記ダンパー固有振動数ωjがN個の最適同調振動数のうちの平均より低い方の最適同調振動数よりさらに低い値であり、
ここで、N個の最適同調振動数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに、前記応答倍率と比p/ωsとの関係を示す線の上で、N個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での該応答倍率の値が略等しくなるN個の前記ダンパー固有振動数ωjであり
前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである、
ことを特徴とする免震装置または制振装置。
A seismic isolation device or a vibration control device for damping the vibration of the target structure supported by the main frame on the basis of the support,
N spring mass viscous dampers that are 2 or more
Prepared,
An inertial connection element that converts a relative displacement in a specific direction generated by vibration of the viscous mass damper with a spring into a rotation amount of the rotating body, and an elastic reaction force that acts along the specific direction corresponding to the relative displacement in the specific direction. A system in which the inertia connecting element and the damper element are connected in parallel with a spring element that generates a damping force and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. A system in which a certain viscous mass damper and the spring element are connected in series,
The spring-equipped viscous mass damper has a damper natural frequency ω corresponding to an elastic coefficient kb of the spring element and an apparent inertia mass m with respect to a relative acceleration in a specific direction of the inertia connecting element, and the damping resistance force of the damper element. A damping coefficient c corresponding to the value divided by the relative velocity,
Or
The spring-attached viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. A viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous mass damper and the spring element are connected in series,
An elastic coefficient kb which is a value obtained by dividing a reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper. To the apparent inertia mass m, which is a value obtained by dividing the reaction force generated by the inertial force of the rotating body acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration. When the corresponding damper natural frequency ω and the linear motion shaft of the viscous mass damper are linearly moved at a constant relative speed, the reaction force generated by the damping resistance force of the viscous fluid acting in the linear motion direction is the relative force. A damping coefficient c corresponding to the value divided by the speed,
One of the
Here, the elastic coefficient kb, the apparent inertia mass m, and the damper natural frequency ω are in the following relationship:
Figure 0005123772
The N viscous mass dampers with springs each having different damper natural frequencies ωj (j = 1 to N) are subject to relative displacement corresponding to the relative displacement in a specific direction of the target structure. Attached to the structure,
Of the N damper natural frequencies ωj (j = 1 to N), the damper natural frequency ωj lower than the average is lower than the average optimum tuning frequency of the N optimum tuning frequencies. Even lower values,
Here, the N optimum tuning frequencies are expressed as a mass system having a structure in which the N viscous mass dampers with a spring and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification as the vertical axis, each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs corresponds to the N optimal tuning frequencies. Assuming that N damping coefficients c are values obtained by dividing the damping resistance force of the N damper elements by the relative speed on a line indicating the relationship between the response magnification and the ratio p / ωs. (N + 1) fixed points that are constant regardless of the value of An N-number of the damper natural frequency ωj value of the response magnification is substantially equal ing in,
The response magnification is a dynamic response magnification, which is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly vibrated and the amplitude of the target structure that vibrates in response. Vibration in response to the displacement response magnification, which is the ratio of the displacement of the support when it is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced One of the acceleration response magnifications, which is the ratio to the acceleration of the target object,
A seismic isolation device or a vibration control device.
支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置であって、
2個以上であるN個のバネ付き粘性マスダンパーを、
備え、
前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持つ、
または、
前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させた際に前記直動方向に作用する前記回転体の慣性力により生ずる反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する前記粘性流体の減衰抵抗力により生ずる反力を前記相対速度で割った値に対応する減衰係数cとを持つ、
のうちのどちらか一方であり、
ここで、弾性係数kbとみかけの慣性質量mとダンパー固有振動数ωとは以下の関係にあり、
Figure 0005123772
互いに異なるダンパー固有振動数ωj(j=1〜N)を各々にもつN個の前記バネ付き粘性マスダンパーが、対象構造物の特定方向の相対変位に対応して、各々相対変位する様に対象構造体に取り付けられ、
N個の前記ダンパー固有振動数ωj(j=1〜N)のうち平均より高い方の前記ダンパー固有振動数ωjがN個の前記最適同調振動数のうちの平均より高い方の前記最適同調振動数よりさらに高い値であり、
ここで、N個の最適同調振動数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記バネ付き粘性マスダンパーの持つ各々の前記ダンパー固有振動数ωj(j=1〜N)がN個の前記最適同調振動数に各々に一致すると仮定するときに前記応答倍率と比p/ωsとの関係を示す線の上で、N個の前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値であるN個の減衰係数cの値のいかんにかかわらず一定値となる(N+1)個の定点での該応答倍率の値が略等しくなるN個の前記ダンパー固有振動数ωjであり
前記応答倍率は、対象構造物を強制加振させた際の加振力による対象構造物の静的変位と応答して振動した対象構造物の振幅との比である動的応答倍率、支持体を強制加振した際の支持体の変位と応答して振動した対象構造物の変位との比である変位応答倍率、または支持体を強制加振した際の支持体の加速度と応答して振動した対象物の加速度との比である加速度応答倍率のうちのひとつである、
ことを特徴とする免震装置または制振装置。
A seismic isolation device or a vibration control device for damping the vibration of the target structure supported by the main frame on the basis of the support,
N spring mass viscous dampers that are 2 or more
Prepared,
An inertial connection element that converts a relative displacement in a specific direction generated by vibration of the viscous mass damper with a spring into a rotation amount of the rotating body, and an elastic reaction force that acts along the specific direction corresponding to the relative displacement in the specific direction. A system in which the inertia connecting element and the damper element are connected in parallel with a spring element that generates a damping force and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. A system in which a certain viscous mass damper and the spring element are connected in series,
The spring-equipped viscous mass damper has a damper natural frequency ω corresponding to an elastic coefficient kb of the spring element and an apparent inertia mass m with respect to a relative acceleration in a specific direction of the inertia connecting element, and the damping resistance force of the damper element. A damping coefficient c corresponding to the value divided by the relative velocity,
Or
The spring-attached viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. A viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous mass damper and the spring element are connected in series,
An elastic coefficient kb which is a value obtained by dividing a reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper. To the apparent inertia mass m, which is a value obtained by dividing the reaction force generated by the inertial force of the rotating body acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration. When the corresponding damper natural frequency ω and the linear motion shaft of the viscous mass damper are linearly moved at a constant relative speed, the reaction force generated by the damping resistance force of the viscous fluid acting in the linear motion direction is the relative force. A damping coefficient c corresponding to the value divided by the speed,
One of the
Here, the elastic coefficient kb, the apparent inertia mass m, and the damper natural frequency ω are in the following relationship:
Figure 0005123772
The N viscous mass dampers with springs each having different damper natural frequencies ωj (j = 1 to N) are subject to relative displacement corresponding to the relative displacement in a specific direction of the target structure. Attached to the structure,
Of the N damper natural frequencies ωj (j = 1 to N), the higher of the damper natural frequencies ωj than the average of the N optimum tuned frequencies of the optimal tuned vibrations Higher than the number,
Here, the N optimum tuning frequencies are expressed as a mass system having a structure in which the N viscous mass dampers with a spring and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification as the vertical axis, each of the damper natural frequencies ωj (j = 1 to N) of the N viscous mass dampers with springs corresponds to the N optimal tuning frequencies. Assuming that N damping coefficients c are values obtained by dividing the damping resistance force of the N damper elements by the relative speed on a line indicating the relationship between the response magnification and the ratio p / ωs . (N + 1) fixed points that are constant regardless of the value Wherein a damper natural frequency ωj of the N values of the response magnification is substantially equal ing,
The response magnification is a dynamic response magnification, which is a ratio between the static displacement of the target structure due to the excitation force when the target structure is forcedly vibrated and the amplitude of the target structure that vibrates in response. Vibration in response to the displacement response magnification, which is the ratio of the displacement of the support when it is forced to vibrate and the displacement of the target structure that vibrates in response, or the acceleration of the support when the support is forced One of the acceleration response magnifications, which is the ratio to the acceleration of the target object,
A seismic isolation device or a vibration control device.
N個の前記減衰係数cj(j=1〜N)がN個の最適減衰係数に略一致し、
ここで、N個の前記最適減衰係数とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記減衰係数cがN個の前記最適減衰係数に各々に一致すると仮定したとき(N+1)個の前記定点での値が各々に実質的に略極大になるN個の前記減衰係数cjである
ことを特徴とする請求項7または請求項8のうちのひとつに記載の免震装置または制振装置。
N attenuation coefficients cj (j = 1 to N) substantially match N optimal attenuation coefficients,
Here, the N optimum damping coefficients are expressed by a mass system having a structure in which the N viscous mass dampers with springs and the main frame support the target structure in parallel on the basis of the support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, In the graph with the response magnification as the vertical axis, assuming that the N attenuation coefficients c match the N optimum attenuation coefficients, the values at the (N + 1) fixed points are substantially substantially N attenuation coefficients cj that are maximal,
The seismic isolation device or the vibration damping device according to claim 7, wherein the seismic isolation device or the vibration damping device is provided.
N個の前記ダンパー固有振動数ωj(j=1〜N)の各々の前記ダンパー固有振動数ωjがN個の所定値に略一致し、
ここで、N個の前記所定値とは、支持体を基礎としてN個の前記バネ付き粘性マスダンパーと主架構とが並列して対象構造物を支持する構成を持つものを質点系で表して該質点系を数値解析して得られる加振振動数pと対象構造物の特定方向に変位する一つの振動モードの固有振動数ωsとの比p/ωsを横軸とし、対象構造物の応答倍率を縦軸としたグラフにおいて、N個の前記ダンパー固有振動数ωj(j=1〜N)がN個の所定値に各々に一致すると仮定すると、前記固有振動数ωsが最小固有振動数ωminと最大固有振動数ωmaxとの間の値をとったときの前記応答倍率と比p/ωsとの関係を示す線の上での最大値Pmaxが、前記固有振動数ωsが最小固有振動数ωminであるときの最大値Pmaxより低くかつ前記固有振動数ωsが最大固有振動数ωmaxであるときの最大値Pmaxより低くなるN個の前記ダンパー固有振動数ωjである
ことを特徴とする請求項7乃至請求項9のうちのひとつに記載の免震装置または制振装置。
The damper natural frequency ωj of each of the N damper natural frequencies ωj (j = 1 to N) substantially matches N predetermined values,
Here, the N predetermined values are expressed in a mass system that has a structure in which the N viscous mass dampers with a spring and a main frame support the target structure in parallel on the basis of a support. The ratio p / ωs between the vibration frequency p obtained by numerical analysis of the mass system and the natural frequency ωs of one vibration mode displaced in a specific direction of the target structure is taken as the horizontal axis, and the response of the target structure Assuming that the N damper natural frequencies ωj (j = 1 to N) coincide with N predetermined values in the graph with the magnification as the vertical axis , the natural frequency ωs is the minimum natural frequency ωmin. The maximum value Pmax on the line indicating the relationship between the response magnification and the ratio p / ωs when taking a value between the maximum natural frequency ωmax and the natural frequency ωs is the minimum natural frequency ωmin. The natural vibration is lower than the maximum value Pmax when ωs is N number of the damper natural frequency ωj be lower than the maximum value Pmax when the maximum natural frequency .omega.max,
The seismic isolation device or the vibration damping device according to any one of claims 7 to 9.
支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置であって、
2個以上であるN個のバネ付き粘性マスダンパーを、
備え、
前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持ち、
または、
前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させた際に前記直動方向に作用する前記回転体の慣性力により生ずる反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する前記粘性流体の減衰抵抗力により生ずる反力を前記相対速度で割った値に対応する減衰係数cとを持ち、
のうちのどちらか一方であり、
ここで、弾性係数kbとみかけの慣性質量mとダンパー固有振動数ωとは以下の関係にあり、
Figure 0005123772
互いに異なるダンパー固有振動数ωj(j=1〜N)を各々にもつN個の前記バネ付き粘性マスダンパーが、対象構造物の特定方向の相対変位に対応して、各々相対変位する様に対象構造体に各々に取り付けられ、

2個以上であるN個の前記バネ付き粘性マスダンパーであるN個の第一バネ付き粘性マスダンパーを有する第一バネ付き粘性マスダンパー組と、
2個以上であるN個の前記バネ付き粘性マスダンパーであるN個の第二バネ付き粘性マスダンパーを有する第二バネ付き粘性マスダンパー組と、
を備え、
N個の第一バネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が互いに異なり、
N個の第二バネ付き粘性マスダンパーのダンパー固有振動数ωj(j=1〜N)が互いに異なり、
N個の第一バネ付き粘性マスダンパーの減衰係数cj(j=1〜N)が互いに異なり、
N個の第二バネ付き粘性マスダンパーの減衰係数cj(j=1〜N)が互いに異なり、
N個の前記第一バネ付き粘性マスダンパーの各々の前記ダンパー固有振動数ωj(j=1〜N)とN個の前記第二バネ付き粘性マスダンパーの各々の前記ダンパー固有振動数ωj(j=1〜N)とが1対毎に略一致し、
N個の前記第一バネ付き粘性マスダンパー(j=1〜N)の各々の前記減衰係数cj(j=1〜N)とN個の前記第二バネ付き粘性マスダンパー(j=1〜N)の各々の減衰係数cj(j=1〜N)とが1対毎に略一致し、
N個の第一バネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパーとが対象構造物の剛心を基準に1対毎に各々に点対称になる様に又は対象構造物の剛心を貫く仮想線を基準に1対毎に各々に線対称になる様に、N個の第一バネ付き粘性マスダンパーとN個の第二バネ付き粘性マスダンパーとが支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる、
ことを特徴とする免震装置または制振装置。
A seismic isolation device or a vibration control device for damping the vibration of the target structure supported by the main frame on the basis of the support,
N spring mass viscous dampers that are 2 or more
Prepared,
An inertial connection element that converts a relative displacement in a specific direction generated by vibration of the viscous mass damper with a spring into a rotation amount of the rotating body, and an elastic reaction force that acts along the specific direction corresponding to the relative displacement in the specific direction. A system in which the inertia connecting element and the damper element are connected in parallel with a spring element that generates a damping force and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. A system in which a certain viscous mass damper and the spring element are connected in series,
The spring-equipped viscous mass damper has a damper natural frequency ω corresponding to an elastic coefficient kb of the spring element and an apparent inertia mass m with respect to a relative acceleration in a specific direction of the inertia connecting element and the damping resistance of the damper element. Having a damping coefficient c corresponding to the value divided by the relative velocity,
Or
The spring-attached viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. A viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous mass damper and the spring element are connected in series,
An elastic coefficient kb which is a value obtained by dividing a reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper. To the apparent inertia mass m, which is a value obtained by dividing the reaction force generated by the inertial force of the rotating body acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration. When the corresponding damper natural frequency ω and the linear motion shaft of the viscous mass damper are linearly moved at a constant relative speed, the reaction force generated by the damping resistance force of the viscous fluid acting in the linear motion direction is the relative force. A damping coefficient c corresponding to the value divided by the speed,
One of the
Here, the elastic coefficient kb, the apparent inertia mass m, and the damper natural frequency ω are in the following relationship:
Figure 0005123772
The N viscous mass dampers with springs each having different damper natural frequencies ωj (j = 1 to N) are subject to relative displacement corresponding to the relative displacement in a specific direction of the target structure. Attached to each structure,

A viscous mass damper set with a first spring having N viscous mass dampers with N first springs, which are N or more viscous mass dampers with springs;
A second spring-attached viscous mass damper set comprising N second spring-attached viscous mass dampers that are N or more of said spring-attached viscous mass dampers;
With
The damper natural frequencies ωj (j = 1 to N) of the N first viscous mass dampers with springs are different from each other,
The damper natural frequency ωj (j = 1 to N) of the N second viscous mass dampers with springs is different from each other,
The damping coefficients cj (j = 1 to N) of the N first viscous mass dampers with springs are different from each other,
The damping coefficients cj (j = 1 to N) of the N second viscous mass dampers with springs are different from each other,
The damper natural frequency ωj (j = 1 to N) of each of the N number of viscous mass dampers with the first spring and the damper natural frequency ωj (j of each of the N number of viscous mass dampers with the second spring) = 1 to N) approximately matches each pair,
The damping coefficient cj (j = 1 to N) of each of the N first viscous mass dampers with springs (j = 1 to N) and the N viscous mass dampers with second springs (j = 1 to N) ) Of each of the attenuation coefficients cj (j = 1 to N) substantially coincide with each other,
N pieces of viscous mass dampers with first springs and N pieces of viscous mass dampers with second springs are symmetric with respect to each other with respect to the rigid center of the target structure, or the rigidity of the target structure. N pieces of viscous mass dampers with first springs and N pieces of viscous mass dampers with second springs are used as a support and target structure so that each pair is symmetrical with respect to a virtual line passing through the center. Attached to each other or inside the target structure,
A seismic isolation device or a vibration control device.
支持体を基礎として主架構に支持される対象構造物の振動を免震する免震装置または制振する制振装置であって、
2個以上であるN個のバネ付き粘性マスダンパーを、
備え、
前記バネ付き粘性マスダンパーが振動に伴って発生する特定方向の相対変位を回転体の回転量に変換する慣性接続要素と特定方向の相対変位に対応して特定方向にそって作用する弾性反力を発生するバネ要素と特定方向の相対速度に対応して特定方向にそって作用する減衰抵抗力を発生するダンパー要素とを有して前記慣性接続要素と前記ダンパー要素とを並列接続した系である粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素の弾性係数kbと前記慣性接続要素の特定方向の相対加速度に対するみかけの慣性質量mとに対応するダンパー固有振動数ωと前記ダンパー要素の前記減衰抵抗力を前記相対速度で割った値に対応する減衰係数cとを持ち、
または、
前記バネ付き粘性マスダンパーが雄ねじを設けられた直動軸と該雄ねじに嵌めあう雌ねじを設けられた回転体と該回転体を回転自在に支持するフレームと該フレームの内面と該回転体との隙間に封入された粘性流体とを持つ粘性マスダンパーと弾性体を持つバネ要素とを有し前記粘性マスダンパーと前記バネ要素とを直列接続された系であり、
前記バネ付き粘性マスダンパーが前記バネ要素を直動方向に相対距離だけ変位させた際に発生する反力を前記相対距離で割った値である弾性係数kbと前記粘性マスダンパーの前記直動軸を直動方向に所定の相対加速度で直動させた際に前記直動方向に作用する前記回転体の慣性力により生ずる反力を前記相対加速度で割った値であるみかけの慣性質量mとに対応するダンパー固有振動数ωと前記粘性マスダンパーの前記直動軸を一定の相対速度で直動させた際に前記直動方向に作用する前記粘性流体の減衰抵抗力により生ずる反力を前記相対速度で割った値に対応する減衰係数cとを持ち、
のうちのどちらか一方であり、
ここで、弾性係数kbとみかけの慣性質量mとダンパー固有振動数ωとは以下の関係にあり、
Figure 0005123772
互いに異なるダンパー固有振動数ωj(j=1〜N)を各々にもつN個の前記バネ付き粘性マスダンパーが、対象構造物の特定方向の相対変位に対応して、各々相対変位する様に対象構造体に取り付けられ、
2個以上のN個の前記バネ付き粘性マスダンパーを各々に有する複数組のバネ付き粘性マスダンパー組を備え、
同じ組のバネ付き粘性マスダンパー組に属するN個の前記バネ付き粘性マスダンパーの前記ダンパー固有振動数ωj(j=1〜N)が各々に異なり、
同じ組のバネ付き粘性マスダンパー組に属するN個の前記バネ付き粘性マスダンパーの前記減衰係数cj(j=1〜N)が各々に異なり、
複数のバネ付き粘性マスダンパー組に属する各々N個の前記バネ付き粘性マスダンパーの全体から異なる組に属する1個のバネ付き粘性マスダンパーを選択して組み合わせた複数の前記バネ付き粘性マスダンパーの各々の前記ダンパー固有振動数ωj(j=1〜N)が各々に略一致し、
複数のバネ付き粘性マスダンパー組に属する各々N個の前記バネ付き粘性マスダンパーの全体から異なる組に属する1個のバネ付き粘性マスダンパーを選択して組み合わせた複数の前記バネ付き粘性マスダンパーの各々の前記減衰係数cj(j=1〜N)が各々に略一致し、
異なる組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーの発生する反力により対象構造物の剛心の周りに作用する各々の回転モーメントが一つの組毎に各々に相殺する様に複数組のバネ付き粘性マスダンパー組に属する各々N個のバネ付き粘性マスダンパーが支持体と対象構造物との間または対象構造体の内部に各々に取り付けられる、
ことを特徴とする免震装置または制振装置。
A seismic isolation device or a vibration control device for damping the vibration of the target structure supported by the main frame on the basis of the support,
N spring mass viscous dampers that are 2 or more
Prepared,
An inertial connection element that converts a relative displacement in a specific direction generated by vibration of the viscous mass damper with a spring into a rotation amount of the rotating body, and an elastic reaction force that acts along the specific direction corresponding to the relative displacement in the specific direction. A system in which the inertia connecting element and the damper element are connected in parallel with a spring element that generates a damping force and a damper element that generates a damping resistance acting along a specific direction corresponding to a relative speed in a specific direction. A system in which a certain viscous mass damper and the spring element are connected in series,
The spring-equipped viscous mass damper has a damper natural frequency ω corresponding to an elastic coefficient kb of the spring element and an apparent inertia mass m with respect to a relative acceleration in a specific direction of the inertia connecting element and the damping resistance of the damper element. Having a damping coefficient c corresponding to the value divided by the relative velocity,
Or
The spring-attached viscous mass damper includes a linear motion shaft provided with a male screw, a rotating body provided with a female screw fitted to the male screw, a frame that rotatably supports the rotating body, an inner surface of the frame, and the rotating body. A viscous mass damper having a viscous fluid sealed in a gap and a spring element having an elastic body, and the viscous mass damper and the spring element are connected in series,
An elastic coefficient kb which is a value obtained by dividing a reaction force generated when the spring-equipped viscous mass damper displaces the spring element by a relative distance in the linear motion direction, and the linear motion shaft of the viscous mass damper. To the apparent inertia mass m, which is a value obtained by dividing the reaction force generated by the inertial force of the rotating body acting in the linear motion direction by the relative acceleration when the linear motion is linearly moved in the linear motion direction at a predetermined relative acceleration. When the corresponding damper natural frequency ω and the linear motion shaft of the viscous mass damper are linearly moved at a constant relative speed, the reaction force generated by the damping resistance force of the viscous fluid acting in the linear motion direction is the relative force. A damping coefficient c corresponding to the value divided by the speed,
One of the
Here, the elastic coefficient kb, the apparent inertia mass m, and the damper natural frequency ω are in the following relationship:
Figure 0005123772
The N viscous mass dampers with springs each having different damper natural frequencies ωj (j = 1 to N) are subject to relative displacement corresponding to the relative displacement in a specific direction of the target structure. Attached to the structure,
A plurality of sets of spring-attached viscous mass dampers each having two or more N spring-attached viscous mass dampers;
The damper natural frequency ωj (j = 1 to N) of the N viscous mass dampers with springs belonging to the same set of viscous mass dampers with springs is different from each other,
The damping coefficients cj (j = 1 to N) of the N viscous mass dampers with springs belonging to the same set of viscous mass dampers with springs are different from each other,
A plurality of the above-mentioned spring-attached viscous mass dampers obtained by selecting and combining one spring-attached viscous mass damper belonging to a different set from the whole of the above-mentioned N pieces of spring-attached viscous mass dampers belonging to a plurality of spring-attached viscous mass damper sets Each of the damper natural frequencies ωj (j = 1 to N) substantially coincides with each other,
A plurality of the above-mentioned spring-attached viscous mass dampers obtained by selecting and combining one spring-attached viscous mass damper belonging to a different set from the whole of the above-mentioned N pieces of spring-attached viscous mass dampers belonging to a plurality of spring-attached viscous mass damper sets Each of the attenuation coefficients cj (j = 1 to N) substantially matches with each other,
Each rotational moment acting around the rigid core of the target structure is canceled out by each group by the reaction force generated by each of N spring mass viscous dampers belonging to different sets of spring mass viscous dampers. In this way, N pieces of spring-loaded viscous mass dampers belonging to a plurality of sets of spring-attached viscous mass damper sets are respectively attached between the support and the target structure or inside the target structure.
A seismic isolation device or a vibration control device.
JP2008187862A 2008-07-18 2008-07-18 Seismic isolation devices and vibration control devices Expired - Fee Related JP5123772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008187862A JP5123772B2 (en) 2008-07-18 2008-07-18 Seismic isolation devices and vibration control devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008187862A JP5123772B2 (en) 2008-07-18 2008-07-18 Seismic isolation devices and vibration control devices

Publications (2)

Publication Number Publication Date
JP2010025241A JP2010025241A (en) 2010-02-04
JP5123772B2 true JP5123772B2 (en) 2013-01-23

Family

ID=41731271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008187862A Expired - Fee Related JP5123772B2 (en) 2008-07-18 2008-07-18 Seismic isolation devices and vibration control devices

Country Status (1)

Country Link
JP (1) JP5123772B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103470676A (en) * 2013-09-17 2013-12-25 中国北方车辆研究所 Inertia mass energy accumulation type vibration isolation device with parallel connected dampers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5574337B2 (en) * 2009-12-28 2014-08-20 清水建設株式会社 Vertical motion isolation system
JP7408471B2 (en) * 2020-04-15 2024-01-05 東海旅客鉄道株式会社 Vibration damping device for structures

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4750072B1 (en) * 1966-09-19 1972-12-15
JPH0718272B2 (en) * 1988-09-29 1995-03-01 三菱製鋼株式会社 Dynamic vibration absorber for structures
JPH09177362A (en) * 1995-12-25 1997-07-08 Shimizu Corp Damping structure for building
JPH10184786A (en) * 1996-12-27 1998-07-14 Sumitomo Constr Co Ltd Damping piece and damping device therewith
JP4843882B2 (en) * 2001-08-13 2011-12-21 株式会社大林組 Vibration control device using inertia force installed between building layers
JP2004092112A (en) * 2002-08-30 2004-03-25 Sekisui House Ltd Floor vibration damping device
JP4255124B2 (en) * 2004-04-05 2009-04-15 一登 背戸 Dynamic vibration absorber
JP4515220B2 (en) * 2004-10-29 2010-07-28 学校法人日本大学 Vibration control device
JP4147535B2 (en) * 2005-03-14 2008-09-10 テクノロジーシードインキュベーション株式会社 Beam equipment
JP2007002455A (en) * 2005-06-22 2007-01-11 Fujita Corp Vibration control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103470676A (en) * 2013-09-17 2013-12-25 中国北方车辆研究所 Inertia mass energy accumulation type vibration isolation device with parallel connected dampers

Also Published As

Publication number Publication date
JP2010025241A (en) 2010-02-04

Similar Documents

Publication Publication Date Title
JP5062561B2 (en) Vibration reduction mechanism and specification method thereof
US9169894B2 (en) Device for vibration control of a structure
Serrand et al. Multichannel feedback control for the isolation of base-excited vibration
JP5123623B2 (en) Seismic isolation devices and vibration control devices
JP5123772B2 (en) Seismic isolation devices and vibration control devices
JP5190652B2 (en) Vibration reduction mechanism and specification method thereof
JP2009007916A (en) Vibration damping structure and its specification setting method
Rafieipour et al. A novel semi-active TMD with folding variable stiffness spring
CN107559376A (en) A kind of movable additional mass induction becomes the vibration absorber and method of characteristics of mode
JP2001349094A (en) Synchronous pendulum type vibration control device
JP4743439B2 (en) Vibration reduction mechanism and specification method thereof
JP2004239323A (en) Dynamic vibration absorber
CN108729569A (en) A kind of multidimensional whirlpool spring and helical spring combined type tune vibration absorber
JP4868357B2 (en) Multilayer structure
JP2014132201A (en) Vibration reduction mechanism and its specification setting method
JP6289929B2 (en) Structure damping device and specification setting method thereof
JP7170461B2 (en) Vibration control damper and vibration control device
JP5146770B2 (en) Damping structure and its specification method
JP5787933B2 (en) Tower structure
JP5023129B2 (en) Mass damper and damping device using mass damper
WO2019200426A1 (en) Mountings for vibrating machines and methods of isolating vibrations
JP6726381B2 (en) Installation structure of rotary mass damper
JPH0310817B2 (en)
JP7220100B2 (en) Vibration damping device and method of designing a vibration damping device
JP2024011320A (en) Vibration control mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5123772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees