JP5146757B2 - Beam vibration reduction mechanism - Google Patents

Beam vibration reduction mechanism Download PDF

Info

Publication number
JP5146757B2
JP5146757B2 JP2008204216A JP2008204216A JP5146757B2 JP 5146757 B2 JP5146757 B2 JP 5146757B2 JP 2008204216 A JP2008204216 A JP 2008204216A JP 2008204216 A JP2008204216 A JP 2008204216A JP 5146757 B2 JP5146757 B2 JP 5146757B2
Authority
JP
Japan
Prior art keywords
main
vibration
diagonal
ball screw
inertia mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008204216A
Other languages
Japanese (ja)
Other versions
JP2010038318A (en
Inventor
和彦 磯田
Original Assignee
清水建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清水建設株式会社 filed Critical 清水建設株式会社
Priority to JP2008204216A priority Critical patent/JP5146757B2/en
Publication of JP2010038318A publication Critical patent/JP2010038318A/en
Application granted granted Critical
Publication of JP5146757B2 publication Critical patent/JP5146757B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は建物や各種構造物の構造躯体としての梁、特に大スパン梁を対象として上下方向の振動を低減させるための機構に関する。   The present invention relates to a mechanism for reducing vertical vibration for a beam as a structural frame of a building or various structures, particularly a large span beam.
梁の振動を低減するための機構として、たとえば特許文献1に示されているような所謂チューンド・マス・ダンパー(Tunned Mass Danper:TMD)を利用することが考えられる。TMDは構造物に付加バネを介して付加質量を接続し、それら付加バネと付加質量により定まる固有振動数を構造物の固有振動数に同調させることによって共振点近傍における応答を低減するものであって、これを梁のスパン中央部に設置することで梁の振動を低減する装置が実用化されている。   As a mechanism for reducing the vibration of the beam, it is conceivable to use a so-called Tuned Mass Danper (TMD) as disclosed in Patent Document 1, for example. TMD reduces the response near the resonance point by connecting an additional mass to the structure via an additional spring and tuning the natural frequency determined by the additional spring and the additional mass to the natural frequency of the structure. Thus, an apparatus for reducing the vibration of the beam has been put to practical use by installing it at the center of the span of the beam.
また、特許文献2には、本体梁に対して付加梁を設置してそれらの間に回転慣性質量ダンパーを介装することにより、小質量の回転錘により得られる大きな回転慣性質量を付加質量として利用してTMDとして機能させる構成の振動低減機構が提案されている。   In addition, in Patent Document 2, an additional beam is installed on the main beam, and a rotary inertia mass damper is interposed between them. A vibration reduction mechanism that is configured to function as a TMD has been proposed.
さらに、特許文献3には、歩道橋等の大スパン構造に対する制振対策として補助質量をトグル機構によって増幅させるシステムについての記載がある。
特開昭63−156171号公報 特開2008−115552号公報 国際公開2005/116481号
Furthermore, Patent Document 3 describes a system that amplifies auxiliary mass by a toggle mechanism as a vibration suppression measure for a large span structure such as a footbridge.
JP-A 63-156171 JP 2008-115552 A International Publication No. 2005/116481
特許文献1に示されるような従来一般のTMDを梁を対象とする振動減衰機構として利用する場合、充分な振動低減効果を得るためには付加質量を充分に大きくする必要があり、必然的に大型大重量でコスト高とならざるを得ない。また、振動低減を目的とするとはいえ梁にあまり大きな質量を付加することは応力が増加することから基本的に好ましいことではないし、TMDが大型大重量になるほど設置位置や設置スペースに関しての制約も大きくなるので、通常は付加質量を梁の質量の1〜3%程度とすることが現実的であり、したがって振動低減効果にも自ずと限界がある。   When a conventional general TMD as shown in Patent Document 1 is used as a vibration damping mechanism for a beam, it is necessary to increase the additional mass sufficiently in order to obtain a sufficient vibration reduction effect. It must be expensive due to its large size and weight. Although it is intended to reduce vibration, adding too much mass to the beam is basically not preferable because it increases stress, and the larger the TMD, the greater the restrictions on the installation position and installation space. Since it becomes large, it is usually realistic to set the added mass to about 1 to 3% of the mass of the beam. Therefore, the vibration reducing effect is naturally limited.
特許文献2に示されるような回転慣性質量ダンパーによる振動低減機構は実際の付加質量を軽減できるが、実質的に梁を二重(ダブル)に設ける必要があるので、そのために躯体全体が複雑化してしまうし、付加梁の設置スペースを確保するために通常は階高を大きくしなければならないから一般的な建物には適用し難い。また、付加梁を本体梁の側部に設ける場合には実質的に梁貫通が不可能になることから、天井懐内での設備配管類やダクト類の取り回しに大きな制約が生じ、したがって有効天井高を小さくするか階高を大きくする必要があってやはり現実的ではない。   Although the vibration reduction mechanism using the rotary inertia mass damper as shown in Patent Document 2 can reduce the actual additional mass, it is necessary to substantially provide double beams, which complicates the entire housing. In order to secure the installation space for the additional beam, it is usually difficult to apply it to general buildings because the floor height must be increased. In addition, when an additional beam is provided on the side of the main beam, the beam cannot be penetrated substantially, so that there are significant restrictions on the handling of equipment piping and ducts in the ceiling pocket, and therefore effective ceilings are required. It is not realistic because it is necessary to reduce the height or increase the floor height.
特許文献3には、回転慣性質量ダンパーではなく付加質量をもつトグル機構による変形増幅についての理論が記載されているに過ぎず、それを実際の梁に組み込む場合の具体的な構成についての開示はなく、TMDとしての同調条件も示されておらず、直ちに実用化し得るものでもない。   Patent Document 3 only describes the theory of deformation amplification by a toggle mechanism having an additional mass, not a rotary inertia mass damper, and the disclosure of a specific configuration when incorporating it into an actual beam is disclosed. In addition, the tuning condition as TMD is not shown, and it cannot be put into practical use immediately.
上記事情に鑑み、本発明は梁の上下振動を低減させるための有効適切な機構、特に従来一般のTMDによる場合のように大きな付加質量を必要とせず(鉛直方向あるいは水平方向に振動する付加質量は要しない)、また付加梁を必要とすることもなく、実質的に梁それ自体で充分な減衰効果が得られるような有効適切な振動低減機構を提供することを目的としている。   In view of the above circumstances, the present invention does not require an effective and appropriate mechanism for reducing vertical vibration of a beam, particularly a large additional mass as in the case of a conventional general TMD (an additional mass that vibrates vertically or horizontally). It is an object of the present invention to provide an effective and appropriate vibration reducing mechanism that can obtain a sufficient damping effect by the beam itself without requiring an additional beam.
請求項1記載の発明は、振動を抑制すべき対象の本体梁に組み付けられて該本体梁の上下方向の振動を抑制するための機構であって、前記本体梁の長さ方向中間部に該本体梁の上下方向の振動により作動する回転慣性質量タンパーを設置し、前記回転慣性質量ダンパーに対して前記本体梁の曲げ変形を伝達するための斜材を該本体梁の側部において下に凸の折れ線状をなすように張設して、該斜材の両端部をそれぞれ前記本体梁の両端上部に連結するとともに該斜材の中間部を前記回転慣性質量ダンパーに連結し、前記本体梁と前記回転慣性質量ダンパーとの間に付加バネを介装して、該付加バネにより前記斜材を緊張して該斜材にプレストレスを導入し、前記回転慣性質量ダンパーと前記斜材と前記付加バネとにより構成される付加振動系の固有振動数を、主振動系としての前記本体梁の固有振動数に同調させてなることを特徴とする。 The invention according to claim 1 is a mechanism for suppressing vibration in the vertical direction of the main beam that is assembled to the main beam to be suppressed in vibration, and is provided at the intermediate portion in the longitudinal direction of the main beam. A rotary inertia mass tamper that is actuated by vertical vibrations of the main beam is installed, and a diagonal member for transmitting the bending deformation of the main beam to the rotary inertia mass damper is protruded downward on the side of the main beam. and stretched so as to form a polygonal line, and connecting a middle portion of the oblique member to the rotating inertial mass damper with connecting both ends of the oblique member across the top of each of the body beams, said body beam An additional spring is interposed between the rotary inertia mass damper, the diagonal material is tensioned by the additional spring, and prestress is introduced to the diagonal material, and the rotary inertia mass damper, the diagonal material, and the additional material are added. Additional vibration system composed of springs The natural frequency, characterized by comprising tuned to the natural frequency of the body beam as the main vibration system.
請求項2記載の発明は、請求項1記載の発明の梁の振動低減機構において、前記回転慣性質量ダンパーは、前記本体梁の上下方向の振動を回転運動に変換するボールねじ機構と、該ボールねじ機構により回転せしめられて回転慣性質量を生じるフライホイールと、それらボールねじ機構とフライホイールを収容するケーシングとを備えてなり、前記ケーシングを前記本体梁に対して固定するとともに、前記ボールねじ機構を構成しているボールねじ軸に対して前記斜材を連結し、前記付加バネを前記ボールねじ軸と前記本体梁との間に介装することにより、該付加バネによって前記ボールねじ軸を介して前記斜材を緊張することにより該斜材に対してプレストレスを導入してなることを特徴とする。   According to a second aspect of the present invention, in the vibration reduction mechanism for a beam according to the first aspect, the rotary inertia mass damper includes a ball screw mechanism that converts vertical vibration of the main body beam into a rotational motion, and the ball A flywheel that is rotated by a screw mechanism to generate a rotational inertial mass; a casing that accommodates the ball screw mechanism and the flywheel; and the casing is fixed to the main beam, and the ball screw mechanism The diagonal member is connected to a ball screw shaft that constitutes the structure, and the additional spring is interposed between the ball screw shaft and the main beam so that the additional spring is interposed through the ball screw shaft. Then, prestress is introduced into the diagonal member by tensioning the diagonal member.
請求項3記載の発明は、請求項2記載の発明の梁の振動低減機構において、前記本体梁はH形鋼からなり、前記斜材は前記本体梁としてのH形鋼のウェブと上フランジと下フランジとの間に配置される帯鋼からなり、前記回転慣性質量ダンパーは、前記ケーシングが前記本体梁としてのH形鋼のウェブに対して固定されるとともに、前記ボールねじ軸が該H形鋼の下フランジを挿通してその先端部にストッパーが固定され、前記付加バネは、前記ボールねじ軸の先端部に固定された前記ストッパーと前記本体梁としてのH形鋼の下フランジとの間に介装された皿バネからなることを特徴とする。   According to a third aspect of the present invention, in the beam vibration reducing mechanism according to the second aspect of the present invention, the main body beam is made of an H-shaped steel, and the diagonal member is an H-shaped steel web and an upper flange as the main body beam. The rotary inertia mass damper is made of a steel strip disposed between the lower flange and the casing. The casing is fixed to an H-shaped steel web as the main beam, and the ball screw shaft is the H-shaped. A steel lower flange is inserted and a stopper is fixed to the tip of the steel, and the additional spring is between the stopper fixed to the tip of the ball screw shaft and the lower flange of the H-shaped steel as the main beam. It is characterized by comprising a disc spring interposed between the two.
本発明によれば、回転慣性質量ダンパーが備える質量の錘の数百倍以上もの回転慣性質量が得られるから、小形軽量の機構でありながら大質量の付加質量による通常のTMDを設置する場合と同等の制振効果が得られ、本体梁に大きな負荷がかかることもない。
また、回転慣性質量ダンパーと斜材は本体梁の梁成の範囲内に設置することも可能であり、これを設置するための格別のスペースを確保する必要はないし、有効天井高が小さくなり階高を大きくする必要も生じない。
According to the present invention, a rotational inertial mass that is several hundred times greater than the mass of the mass provided by the rotational inertial mass damper can be obtained, so that a normal TMD with a large additional mass is installed while being a small and lightweight mechanism. The same vibration damping effect can be obtained, and a large load is not applied to the main beam.
It is also possible to install the rotary inertia mass damper and the diagonal member within the range of the beam of the main body. It is not necessary to secure a special space for installing this, and the effective ceiling height is reduced and the floor is reduced. There is no need to increase the height.
本発明の実施形態である振動低減機構の概要を図1に示す。
図中、符号1は振動低減対象の本体梁であり、2はその本体梁1の上下振動を低減するべく本体梁1の側部に組み付けられた振動低減機構である。
An outline of a vibration reducing mechanism according to an embodiment of the present invention is shown in FIG.
In the figure, reference numeral 1 denotes a main body beam to be reduced in vibration, and reference numeral 2 denotes a vibration reduction mechanism assembled to a side portion of the main body beam 1 so as to reduce the vertical vibration of the main body beam 1.
振動低減機構2は、主振動系としての本体梁1に対して付加振動系として付加されるものであって、本体梁1の曲げ変形による上下振動によって作動する回転慣性質量ダンパー3と、本体梁1の上下振動を回転慣性質量ダンパー3に伝達してそれを作動させるための斜材4と、斜材4を緊張してプレストレスを導入するための付加バネ5とにより構成されている。   The vibration reduction mechanism 2 is added as an additional vibration system to the main body beam 1 as the main vibration system, and includes a rotary inertia mass damper 3 that operates by vertical vibration caused by bending deformation of the main body beam 1, and a main body beam. The diagonal member 4 for transmitting the vertical vibration of 1 to the rotary inertia mass damper 3 and operating it, and the additional spring 5 for tensioning the diagonal member 4 to introduce prestress.
回転慣性質量ダンパー3は、特許文献2に示される振動低減機構において用いられているものと同様に、たとえば本体梁1の上下振動をボールねじ機構を介して小質量のフライホイールの回転運動に変換し、それにより生じる回転慣性質量ψ0を付加質量として利用してTMDとして機能せしめることで制振効果を得る構成のものであり、本実施形態では1台の回転慣性質量ダンパー3を本体梁1の中央部に設置している。 The rotary inertia mass damper 3 converts, for example, the vertical vibration of the main body beam 1 into the rotary motion of a small mass flywheel via the ball screw mechanism, similar to that used in the vibration reduction mechanism disclosed in Patent Document 2. The rotational inertia mass ψ 0 generated thereby is used as an additional mass to function as a TMD to obtain a vibration damping effect. In this embodiment, one rotary inertia mass damper 3 is connected to the main beam 1. It is installed in the center of
斜材4は本体梁1の上下振動を回転慣性質量ダンパー3に伝達してそれを作動させるもので、その素材としては充分な引張強度を有する各種の引張材(たとえば帯鋼や丸鋼、鋼管等の鋼材、あるいはPC鋼線等の弦材)が用いられ、その両端が本体梁2の両端上部に固定されるとともに中央部が回転慣性質量ダンパー3に対して連結されることにより、全体として下に凸の折れ線状(図示例の場合には扁平なV状)をなすように張設されている。   The diagonal member 4 transmits the vertical vibration of the main body beam 1 to the rotary inertia mass damper 3 and operates it. Various tensile materials having sufficient tensile strength (for example, strip steel, round steel, steel pipe) are used as the material. As a whole, both ends thereof are fixed to the upper ends of both ends of the main beam 2 and the central portion is connected to the rotary inertia mass damper 3. It is stretched so as to form a downward bent line shape (flat V shape in the illustrated example).
付加バネ5は構造的には回転慣性質量ダンパー3と並列に配置されるもので、斜材4を緊張して所定の張力(プレストレス)を導入することによりその座屈を防止し、かつこの付加バネ5の剛性k0の調整により振動低減機構2全体の固有振動数の設定を行うためのものである。
なお、回転慣性質量ダンパー3と付加バネ5に対してさらに並列に付加減衰6を配置するが、回転慣性質量ダンパー3自体に摩擦、粘性体、磁気抵抗機構などの減衰要素を組み込んで付加減衰6を省略することも可能である。
The additional spring 5 is structurally arranged in parallel with the rotary inertia mass damper 3, and the buckling is prevented by tensioning the diagonal member 4 and introducing a predetermined tension (prestress). This is for setting the natural frequency of the entire vibration reducing mechanism 2 by adjusting the rigidity k 0 of the additional spring 5.
The additional damping 6 is further arranged in parallel with the rotary inertia mass damper 3 and the additional spring 5, but the rotary inertia mass damper 3 itself incorporates a damping element such as a friction, a viscous body, a magnetoresistive mechanism, and the like. Can be omitted.
本実施形態の振動低減機構2では、回転慣性質量ダンパー3と斜材4と付加バネ5とにより構成される付加振動系の固有振動数f0を、主振動系としての本体梁の1次固有振動数f1に同調させることを主眼とする。
具体的には、図2に示すように、回転慣性質量ダンパー3の設置位置において、斜材4と付加バネ5と本体梁1だけからなる構造体に対して、回転慣性質量ダンパー3の上下端に荷重Pが作用したときの上端での変位をδ1、下端での変位をδ2、したがって上下端の鉛直変位をδ=δ1+δ2とし、そのときに生じる回転慣性質量がψ0であるとき、次式のように振動低減機構2の固有振動数f0を本体梁の1次固有振動数f1に同調させる。
In the vibration reduction mechanism 2 of the present embodiment, the natural frequency f 0 of the additional vibration system constituted by the rotary inertia mass damper 3, the diagonal member 4 and the additional spring 5 is used as the primary characteristic of the main beam as the main vibration system. and focus that is tuned to the frequency f 1.
Specifically, as shown in FIG. 2, the upper and lower ends of the rotary inertia mass damper 3 with respect to the structure including only the diagonal member 4, the additional spring 5, and the main body beam 1 at the installation position of the rotary inertia mass damper 3. The displacement at the upper end when the load P is applied to δ is δ 1 , the displacement at the lower end is δ 2 , and thus the vertical displacement at the upper and lower ends is δ = δ 1 + δ 2, and the resulting rotational inertia mass is ψ 0 At some point, the natural frequency f 0 of the vibration reduction mechanism 2 is tuned to the primary natural frequency f 1 of the main beam as in the following equation.
そして、そのような同調を行うためには、本体梁1の有効質量mに対する回転慣性質量ψ0の比ψ0/mを、本体梁1の剛性k1、斜材4の鉛直剛性k2、付加バネ5の剛性k0に基づき、次式の関係を満たすように設定すれば良い(具体的には図2に示す演算過程参照)。つまり、与条件としての本体梁1の質量mと剛性k1に対し、次式を満足するように回転慣性質量ψ0、斜材4の鉛直剛性k2、付加バネ5の剛性k0の諸元を適正に設定すれば良い。
なお、回転慣性質量ψ0はフライホイールの質量やその径寸法、厚さ、径方向の質量分布の調整により自由にかつ幅広く調整可能であるし、付加バネ5の剛性k0や斜材4の鉛直剛性k2等の諸元の調整も同様であるから、固有振動数の同調は容易に行うことができる。
In order to perform such tuning, the ratio ψ 0 / m of the rotational inertia mass ψ 0 to the effective mass m of the main beam 1 is set to the stiffness k 1 of the main beam 1, the vertical stiffness k 2 of the diagonal member 4, Based on the stiffness k 0 of the additional spring 5, it may be set so as to satisfy the relationship of the following equation (specifically, refer to the calculation process shown in FIG. 2). That is, with respect to the mass m and stiffness k 1 of the main beam 1 as given conditions, the rotational inertia mass ψ 0 , the vertical stiffness k 2 of the diagonal member 4, and the stiffness k 0 of the additional spring 5 so as to satisfy the following equation: The origin should be set appropriately.
The rotary inertia mass ψ 0 can be freely and widely adjusted by adjusting the mass of the flywheel, its radial size, thickness, and mass distribution in the radial direction, and the rigidity k 0 of the additional spring 5 and the diagonal material 4 Since the adjustment of the specifications such as the vertical rigidity k 2 is the same, the natural frequency can be easily tuned.
以上により、本実施形態の振動低減機構では、本体梁1に対して回転慣性質量ψ0を付加質量とするTMDを設置した場合と同じ振動低減効果を発揮し得るものとなる。この場合、回転慣性質量ダンパー3が備えるフライホイールの実際の質量は上記の回転慣性質量(付加質量)ψ0の数百分の1以下で済むから、特許文献1に示されるような通常のTMDを設置する場合のように本体梁に大きな負荷がかかることはない。
勿論、特許文献2に示されるような付加梁は必要としないし、後述する具体例のように回転慣性質量ダンパー3と斜材4は本体梁1の梁成の範囲内に設置することも可能であるので、これを設置するための格別のスペースを確保する必要はないし、有効天井高が小さくなったり、階高を大きくする必要も生じない。
As described above, in the vibration reduction mechanism of the present embodiment, the same vibration reduction effect as that in the case where the TMD having the rotation inertia mass ψ 0 as the additional mass is installed on the main body beam 1 can be exhibited. In this case, the actual mass of the flywheel provided in the rotary inertia mass damper 3 can be one hundredth or less of the above rotary inertia mass (additional mass) ψ 0. The main beam is not subjected to a heavy load as in the case of installing.
Of course, an additional beam as shown in Patent Document 2 is not required, and the rotary inertia mass damper 3 and the diagonal member 4 can be installed within the beam forming range of the main body beam 1 as in a specific example described later. Therefore, it is not necessary to secure a special space for installing this, and it is not necessary to reduce the effective ceiling height or increase the floor height.
以上で本実施形態の振動低減機構2の概要を説明したが、具体的な構成例を図3〜図6を参照して説明する。
本例では本体梁1としてH形鋼を採用し、振動低減機構2を本体梁1の一方の側部においてその断面内、つまりウェブと上フランジと下フランジとにより囲まれる範囲内に配置するようにしたものである。
The outline of the vibration reduction mechanism 2 of the present embodiment has been described above, but a specific configuration example will be described with reference to FIGS.
In this example, an H-shaped steel is adopted as the main body beam 1, and the vibration reduction mechanism 2 is arranged in the cross section of one side portion of the main body beam 1, that is, within a range surrounded by the web, the upper flange, and the lower flange. It is a thing.
また、回転慣性質量ダンパー3は、図6に示すように、ボールねじ軸11とボールナット12から構成される周知のボールねじ機構10と、ボールナット12に連結されたフライホイール13と、それらを収容するケーシング14からなり、ボールねじ軸11がボールナット12およびケーシング14に対してその軸方向(上下方向)に変位するとフライホイール13がボールナット12とともに回転せしめられて回転慣性質量ψ0を生じるものである。本例ではナット回転型のボールねじ機構10を利用しており、ボールねじ軸11は回転せず軸方向に出入りするだけである。
なお、付加減衰6として機能する適宜の減衰要素を一体に組み込むことが好ましく、それにより格別の付加減衰を設置する必要がない。例えば、ボールねじとナット部の摩擦トルクを減衰することもでき、予圧を調整することで摩擦トルクを設定できる。
本例においては、図5に示すように回転慣性質量ダンパー3を本体梁1のウェブに対してブラケット15により固定し、ケーシング14から下方に突出しているボールねじ軸11(もしくはボールねじ軸11の先端に連結した他のねじ軸)の中間部に斜材4を連結している。また、ボールねじ軸11(もしくはボールねじ軸11の先端に連結した他のねじ軸)の先端部を下フランジに形成されている孔内に挿通させ、その最先端部にはストッパー16を螺着してストッパー16と下フランジとの間に付加バネ5を介装している。
Further, as shown in FIG. 6, the rotary inertia mass damper 3 includes a known ball screw mechanism 10 including a ball screw shaft 11 and a ball nut 12, a flywheel 13 connected to the ball nut 12, and When the ball screw shaft 11 is displaced in the axial direction (vertical direction) with respect to the ball nut 12 and the casing 14, the flywheel 13 is rotated together with the ball nut 12 to generate a rotational inertia mass ψ 0 . Is. In this example, a nut rotation type ball screw mechanism 10 is used, and the ball screw shaft 11 does not rotate but only enters and exits in the axial direction.
In addition, it is preferable to integrate an appropriate attenuation element that functions as the additional attenuation 6 so that no special additional attenuation is required. For example, the friction torque between the ball screw and the nut portion can be attenuated, and the friction torque can be set by adjusting the preload.
In this example, as shown in FIG. 5, the rotary inertia mass damper 3 is fixed to the web of the main beam 1 by a bracket 15, and the ball screw shaft 11 (or the ball screw shaft 11 of the ball screw shaft 11 protrudes downward from the casing 14). The diagonal member 4 is connected to the middle part of the other screw shaft connected to the tip. Further, the tip of the ball screw shaft 11 (or another screw shaft connected to the tip of the ball screw shaft 11) is inserted into a hole formed in the lower flange, and a stopper 16 is screwed to the most distal portion. The additional spring 5 is interposed between the stopper 16 and the lower flange.
斜材4としては帯鋼が用いられており、図3に示すようにその両端が本体梁1の両端上部に固定され、中央部が上記のように回転慣性質量ダンパー3におけるボールねじ軸11に対して上下のロックナット17により挟持されて連結されることにより、斜材4の全体が下に凸の折れ線状(図示例の場合には本体梁1の全長にわたる扁平なV状)をなすように張設されている。   As the diagonal member 4, a steel strip is used, as shown in FIG. 3, both ends thereof are fixed to the upper ends of both ends of the main body beam 1, and the central portion is connected to the ball screw shaft 11 in the rotary inertia mass damper 3 as described above. On the other hand, the slant member 4 is formed so as to have a downwardly bent polygonal line shape (in the case of the illustrated example, a flat V shape extending over the entire length of the main beam 1) by being sandwiched and connected by the upper and lower lock nuts 17. Is stretched.
付加バネ5としては皿バネが用いられており、その付加バネ5がボールねじ軸11のストッパー16と下フランジとの間に介装されることにより、斜材4はボールねじ軸11を介して付加バネ5により下方に付勢されることによってプレストレスが導入された状態で張設されている。   A disc spring is used as the additional spring 5. The additional spring 5 is interposed between the stopper 16 and the lower flange of the ball screw shaft 11, so that the diagonal member 4 passes through the ball screw shaft 11. It is stretched in a state where prestress is introduced by being biased downward by the additional spring 5.
上記の振動低減機構2を本体梁1に組み付けるための具体的な手順を詳細に説明する。
本体梁1の側部に斜材4を折れ線状に配置してその両端部を本体梁1の両端上部に固定する。回転慣性質量ダンパー3を本体梁1のウェブに固定する際には、ボールねじ軸11をケーシング14内に最大限引っ込めた状態でそのボールねじ軸11(もしくはボールねじ軸11を下方に延長するようにそれに連結した他のねじ軸)に上側のロックナット17を螺着し、ボールねじ軸11を斜材4の中間部に形成しておいた貫通孔に挿通させた後に下側のロックナット17を螺着して、上下のロックナット17により斜材4をボールねじ軸11に対して連結する。
同時に、ボールねじ軸11の先端部を本体梁1の下フランジに形成しておいた貫通孔に挿通させ、そこに付加バネ5(皿バネ)を装着してストッパー16を螺着する。
斜材4に対するプレストレスの導入はストッパー16の締め付け力を調整してボールねじ軸11を介して斜材を下方に引き寄せることで行うが、導入張力が大きい場合には多数の皿バネを重ねて使用すれば良い。
なお、図4〜図5に示すように本体梁1の要所には補強リブ18を取り付ければ良い。
A specific procedure for assembling the vibration reducing mechanism 2 to the main beam 1 will be described in detail.
The diagonal member 4 is arranged in a polygonal line on the side portion of the main body beam 1 and both end portions thereof are fixed to the upper ends of both ends of the main body beam 1. When the rotary inertia mass damper 3 is fixed to the web of the main beam 1, the ball screw shaft 11 (or the ball screw shaft 11 is extended downward) with the ball screw shaft 11 retracted to the maximum in the casing 14. The upper lock nut 17 is screwed onto the other screw shaft and the ball screw shaft 11 is inserted through a through hole formed in the middle portion of the diagonal member 4, and then the lower lock nut 17 is inserted. And the diagonal member 4 is connected to the ball screw shaft 11 by the upper and lower lock nuts 17.
At the same time, the tip of the ball screw shaft 11 is inserted into a through hole formed in the lower flange of the main body beam 1, and an additional spring 5 (disc spring) is attached thereto, and the stopper 16 is screwed.
The prestress is introduced into the diagonal member 4 by adjusting the tightening force of the stopper 16 and pulling the diagonal member downward through the ball screw shaft 11, but when the introduction tension is large, a large number of disc springs are stacked. Use it.
In addition, what is necessary is just to attach the reinforcement rib 18 to the main point of the main body beam 1, as shown in FIGS.
以下、上記実施形態の振動低減機構2のより具体的な設計例とその効果について説明する。
本体梁をスパン16.5mの鉄骨梁(H-900×250×12×22)とし、床荷重は構造体を含め0.6tonf/m2とする。等価な振動モデルにおいて、構造体有効質量m=0.6×3.6×16.5/2=17.8ton、本体梁の断面積A=213cm2、断面2次モーメントI=275000cm4、両端ピンで全長にわたり正曲げ(コンクリートスラブが圧縮側)となるので、合成梁として機能することを考慮して断面2次モーメントの割増係数を2.0、J=550000cm4とする。
本体梁の長期鉛直たわみは中央部で1.8cmより、k1=9.9tonf/cm=9.7MN/m。
斜材のライズ(高低差)を800mmとすると、k2=1.2tonf/cm=1.2MN/m=0.12k1
付加バネとして皿バネ(外径28mm、内径14.2mm、厚さ1.6mm、荷重3760N)を20枚直列使用すると、その全体高さ(厚さ)45mm、バネ剛性k0=0.37tonf/cm=370kN/m=0.038k1
以上の諸元からψ0=0.145m=2.6ton。
固有値解析結果より、本体梁の1次固有振動数はf1=4.07Hz、固有角振動数はω0=2πf1=25.6rad/sec。
付加振動系の減衰は1次振動数でh=0.15として、c0=2hω0ψ0=20.0kN・sec/m=19.6kgf/kine。
本体梁の構造減衰は1次に対してh=0.01とした。
Hereinafter, more specific design examples and effects of the vibration reduction mechanism 2 of the above-described embodiment will be described.
The main beam is a steel beam with a span of 16.5m (H-900 x 250 x 12 x 22), and the floor load including the structure is 0.6 tons / m 2 . In the equivalent vibration model, structure effective mass m = 0.6 × 3.6 × 16.5 / 2 = 17.8ton, cross-sectional area A = 213cm 2 of the body beams, moment of inertia I = 275000cm 4, positive bending over the entire length at both ends pins ( Because the concrete slab is on the compression side), considering that it functions as a composite beam, the additional coefficient of the moment of inertia of the section is 2.0 and J = 550000cm 4 .
Long-term vertical deflection of the main beam is 1.8 cm at the center, and k 1 = 9.9 tonf / cm = 9.7 MN / m.
If the rise of the diagonal material is 800 mm, k 2 = 1.2 tons / cm = 1.2 MN / m = 0.12 k 1 .
When 20 disc springs (outer diameter 28mm, inner diameter 14.2mm, thickness 1.6mm, load 3760N) are used in series as additional springs, their overall height (thickness) 45mm, spring rigidity k 0 = 0.37tonf / cm = 370kN /m=0.038k 1 .
From the above specifications, ψ 0 = 0.145m = 2.6ton.
From the eigenvalue analysis results, the primary natural frequency of the main beam is f 1 = 4.07 Hz, and the natural angular frequency is ω 0 = 2πf 1 = 25.6 rad / sec.
The damping of the additional vibration system is the primary frequency h = 0.15, c 0 = 2hω 0 ψ 0 = 20.0 kN · sec / m = 19.6 kgf / kine.
The structural beam damping was set to h = 0.01 for the first order.
上記設計例の場合における梁中央部の変位応答倍率を図7に示す。縦軸の応答倍率とは加振力が静的に作用したときのたわみに対する比であり、横軸は1次固有角振動数ω0に対する加振角振動数の比を示す。「ダンパーあり」とは本発明の振動低減機構によるもの、「ダンパーなし・剛結」とは回転慣性質量ダンパーにおけるボールねじ機構を拘束して梁中央部で斜材を梁と一体化したもので、梁の剛性を増大したのと等価である。
図7から、本発明の振動低減機構により応答倍率が90%も低減されることが分かる。また、斜材を剛結した場合には単に共振点がやや高振動数側にシフトするだけで応答低減は期待できないことが分かる。
FIG. 7 shows the displacement response magnification at the center of the beam in the case of the above design example. The response magnification on the vertical axis is the ratio to the deflection when the excitation force is applied statically, and the horizontal axis represents the ratio of the excitation angular frequency to the primary natural angular frequency ω 0 . “With damper” is due to the vibration reduction mechanism of the present invention, and “Without damper / rigidly” means that the ball screw mechanism in the rotary inertia mass damper is constrained and the diagonal material is integrated with the beam at the center of the beam. This is equivalent to increasing the rigidity of the beam.
From FIG. 7, it can be seen that the response magnification is reduced by 90% by the vibration reducing mechanism of the present invention. In addition, it is understood that when the diagonal member is rigidly connected, the resonance point is simply shifted to a slightly higher frequency side, and a response reduction cannot be expected.
この場合、一般的なTMDよりも大きな慣性質量を付与しているため、構造諸元の変動に鈍感(したがって再調整の必要が少ない)という特性がある。たとえば、構造体の剛性がコンクリートのクラック等により1/1.5に低下した場合(合成効果が大きく低下した場合)の応答倍率は図8(a)に示すものとなる。また、用途変更などにより床荷重が1.5倍に増大した場合の応答倍率を図8(b)に示す。いずれも最適同調からずれてはいるが、制振なしの場合に比較して1/5以下と安定した応答低減効果を発揮しており、将来変化に対して同調作業をせずとも継続使用できると考えられる。なお、図8ではいずれもその時点の固有1次振動数を基準としている。   In this case, since an inertial mass larger than that of general TMD is given, there is a characteristic that it is insensitive to changes in the structural specifications (thus, there is little need for readjustment). For example, the response magnification when the rigidity of the structure is reduced to 1 / 1.5 due to concrete cracks or the like (when the composite effect is greatly reduced) is as shown in FIG. In addition, FIG. 8B shows the response magnification when the floor load is increased by a factor of 1.5 due to application change or the like. Although they are all out of the optimum tuning, they exhibit a stable response reduction effect of 1/5 or less compared to the case without vibration suppression, and can be used continuously without tuning work against future changes. it is conceivable that. In FIG. 8, all are based on the natural primary frequency at that time.
以上の検討は床上からの加振に対する応答であるが、本発明の振動低減機構は地震時の上下振動も大幅な応答低減が可能である。
上記設計例に対して本体梁の両端から上下動加振したときに応答倍率を図9に示す。床上からの加振モデルで同調させているために地震入力に対してはわずかに同調がずれているが、制振なしと比較すると共振点近傍において大幅な応答低減(約88%減)ができることが分かる。
Although the above examination is a response to the vibration from the floor, the vibration reduction mechanism of the present invention can significantly reduce the vertical vibration during an earthquake.
FIG. 9 shows the response magnification when the vertical motion is applied from both ends of the main beam to the above design example. Although the tuning is slightly shifted for the seismic input due to the tuning with the excitation model from above the floor, the response can be greatly reduced (about 88% reduction) near the resonance point compared to the case without damping. I understand.
上記の設計例おいて1人歩行時の加振入力を与えたときの応答を時刻歴応答解析により検討する。検討用の入力波形を図10(a)に示す(加振力は約30kgf=300N)。このフーリエスペクトルを(b)に示すが、2Hz近傍が大きく卓越することがわかる。
本体梁の固有振動数が約4Hzなので、図7に示した応答倍率グラフの横軸ξ=0.5の入力が卓越することになり、制振による応答低減効果はこの2Hz加振にはほとんど効果が得られないが、加振力による床梁の振動を速やかに減衰させる効果は充分に得られる。
図11〜図12はその場合の応答特性を制振なしの場合と比較して示すものである。本発明による制振により最大応答変位が52μmから42μmへと0.80倍に低減し、また最大応答加速度は3.6galから2.6galへと0.72倍に低減し、10秒以降の後揺れが急峻に収束することが分かる。ただし、2Hzの加振成分については制振による低減効果はやはり小さい。
日本建築学会の「建築物の振動に関する居住性能評価指針」にある鉛直振動に関する性能評価曲線にこの結果をプロットすると図13に示すようになり、制振により一般的な事務所ビルでの性能(V−70)を満足する程度に納まることが分かる(応答結果をオクターブバンド処理せずに単に最大応答値だけで評価しているので、安全側だがやや過大評価となっている)。なお、床上での飛びはね等の衝撃荷重による後揺れについての特性は図11〜図12に示したようになるので、急峻に後揺れが減衰して居住性の向上を図ることができる。
In the above design example, the response when an excitation input is given when walking alone is examined by time history response analysis. An input waveform for examination is shown in FIG. 10A (excitation force is about 30 kgf = 300 N). This Fourier spectrum is shown in (b), and it can be seen that the vicinity of 2 Hz is greatly superior.
Since the natural frequency of the main beam is about 4Hz, the input of the horizontal axis ξ = 0.5 in the response magnification graph shown in Fig. 7 will be dominant, and the response reduction effect by vibration suppression is almost effective for this 2Hz excitation. Although not obtained, the effect of quickly attenuating the vibration of the floor beam due to the excitation force can be sufficiently obtained.
FIGS. 11 to 12 show the response characteristics in that case in comparison with the case without vibration suppression. The vibration control according to the present invention reduces the maximum response displacement from 52 μm to 42 μm by 0.80 times, and the maximum response acceleration from 3.6 gal to 2.6 gal by 0.72 times, and the post shake after 10 seconds converges sharply. I understand that. However, the 2Hz excitation component is still less effective in reducing vibration.
When this result is plotted in the performance evaluation curve for vertical vibration in the “Guidelines for Evaluation of Living Performance for Building Vibration” of the Architectural Institute of Japan, the result is shown in FIG. V-70) is satisfied (it is safe but slightly overestimated because the response result is evaluated only by the maximum response value without performing octave band processing). In addition, since the characteristic about the aftershock by impact loads, such as a splash on a floor, is as having shown in FIGS. 11-12, aftershock attenuate | damps sharply and it can aim at the comfortability.
上記設計例に対して上下動加振入力(地震)を与えたときの応答を検討する。検討用の地震動を図14(a)に示す。これはやや長周期成分の多いHACHINOHE(上下動の最大加速度114gal)であり、これを梁両端から上下動入力する。このフーリエスペクトルを(b)に示すが、2Hz近傍が大きく卓越することが分かる。
上記の上下動加振入力を与えたときの応答結果を図15〜図16に示す(地震波形は30秒であるが後揺れの検討のために40秒間の応答解析とする)。
本発明の制振により最大応答変位が20mmから10mmへと0.50倍に低減し、最大応答加速度は689galから307galへと0.45倍に低減し、30秒以降の後揺れが急峻に収束し、大きな振幅の回数も大幅に低減することが分かる。
Examine the response when vertical motion excitation input (earthquake) is given to the above design example. The ground motion for examination is shown in FIG. This is HACHINOHE (maximum vertical acceleration 114 gal) with a slightly long period component, and this is input vertically from both ends of the beam. This Fourier spectrum is shown in (b), and it can be seen that the vicinity of 2 Hz is greatly superior.
Response results when the above vertical motion excitation input is given are shown in FIGS. 15 to 16 (the seismic waveform is 30 seconds, but a 40-second response analysis is performed in order to examine the back shaking).
With the vibration suppression of the present invention, the maximum response displacement is reduced by 0.50 times from 20 mm to 10 mm, the maximum response acceleration is reduced by 0.45 times from 689 gal to 307 gal, and the post shake after 30 seconds converges sharply, It can be seen that the number of large amplitudes is also greatly reduced.
本発明の振動低減機構の効果を以下に列挙する。
(1)従来のTMD機構と比較して小形軽量ながら大幅に応答低減できる機構である。回転慣性質量は実際の回転錘の数百倍〜千倍以上となり、これが従来のTMDの付加質量と同じに機能することから、従来のTMDでは実現できなかった大きな付加質量効果を付与できるためである。
(2)従来のTMDでは付加質量を構造物の1〜3%程度しか与えることが現実的にできなかったが、本発明によれば10〜50%以上でも容易に実現できるので、風や交通振動のような小振幅だけでなく地震時の応答低減にも適用できる。
The effects of the vibration reduction mechanism of the present invention are listed below.
(1) Compared with the conventional TMD mechanism, it is a mechanism that can significantly reduce the response while being small and lightweight. Rotational inertial mass is several hundred times to 1,000 times greater than the actual rotating weight, and since this functions in the same way as the additional mass of conventional TMD, it can provide a large additional mass effect that could not be realized with conventional TMD. is there.
(2) In conventional TMD, it was practically impossible to give an additional mass of only about 1 to 3% of the structure. However, according to the present invention, it can be easily realized even at 10 to 50% or more. It can be applied not only to small amplitudes such as vibration but also to response reduction during earthquakes.
(3)設置後に構造体の剛性が変化したり、床荷重が変動したりした場合でも、再度同調作業しなくても応答低減効果を維持できる。
(4)本体梁の断面性能をアップさせても共振点が高振動数側に移動するだけであるが、本発明によれば大きな減衰性能を付与できるのではるかに大きな応答適限が図れる。
(5)各構成要素を全てローコストな部品で構成できるため、大スパン梁に対する従来の振動低減対策に比較してローコストでより大きな振動抑制ができ、コストパフォーマンスに優れた機構である。
(6)回転慣性質量ダンパーに作用する反力(負担力)は加振力よりも小さいので容易に対応できる。
(7)構造体にTMDを設置する場合にはその重量が構造体躯体への負荷となるが、本発明の指導低減機構は従来のTMDに較べて遙かに軽量であることから、これを設置しても構造体躯体に対して大きな負荷とならない。
(8)インパクトダンパーと異なり応答低減効果は振幅に依存せず、そのため微振動から大振幅まで幅広く対応できる。
(3) Even if the rigidity of the structure changes after installation or the floor load changes, the response reduction effect can be maintained without re-tuning.
(4) Even if the cross-sectional performance of the main beam is improved, the resonance point only moves to the high frequency side. However, according to the present invention, a large damping performance can be provided, so that a much greater response limit can be achieved.
(5) Since each component can be composed of low-cost parts, it is possible to suppress vibration more greatly at a lower cost than conventional vibration reduction measures for large span beams, and it is a mechanism with excellent cost performance.
(6) Since the reaction force (burden force) acting on the rotary inertia mass damper is smaller than the excitation force, it can be easily handled.
(7) When the TMD is installed in the structure, its weight is a load on the structure housing. However, the instruction reduction mechanism of the present invention is much lighter than the conventional TMD. Even if it is installed, it does not cause a heavy load on the structural frame.
(8) Unlike the impact damper, the response reduction effect does not depend on the amplitude, so it can handle a wide range from micro vibration to large amplitude.
(9)回転慣性質量ダンパーや斜材を本体梁の梁成の範囲内に納めることができるから、格別の設置スペースを必要としないし、階高や天井高に対する制約が少ない。また、斜材として平鋼等の小断面の鋼材を使用できるので省スペースであるばかりでなくローコストでもあり、付加バネによりプレストレスを導入するので座屈することがない。また、付加バネの剛性を調整することで同調周期を容易にかつ幅広く調整することができる。 (9) Since rotary inertia mass dampers and diagonal members can be accommodated within the beam range of the main beam, no special installation space is required, and there are few restrictions on floor height and ceiling height. Further, since a steel material having a small cross section such as a flat steel can be used as the diagonal member, it is not only space-saving, but also low cost, and since prestress is introduced by an additional spring, it does not buckle. Further, the tuning cycle can be easily and widely adjusted by adjusting the rigidity of the additional spring.
以上で本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく各要素の具体的な構成は任意に変更可能である。たとえば本体梁はH形鋼に限らずその構造や断面は任意であることは言うに及ばず、回転慣性質量ダンパーとしては各種形式のものを任意に採用可能であるし、斜材を緊張するための付加バネも皿バネに限らずその形式は任意であるし、付加バネの設置位置も本体梁と回転慣性質量ダンパーとの間に介装する限りにおいて任意である。
また、回転慣性質量ダンパーを作動させるための斜材の素材や張設の形態も、本体梁の側部において下に凸の折れ線状に張設する限りにおいて任意であって、たとえば図17(a)に示すように斜材4の両端を本体梁1の両端部からやや内側の位置に固定することでも良い。
また、上記実施形態では斜材の中央1個所のみを折れ点として扁平なV状の折れ線状に張設したが、たとえば図17(b)に示すように斜材4の中間部に2個所の折れ点を設定したり、さらに多数個所に折れ点を設定して多折れ線状に張設しても良く、いずれにしても斜材4の各折れ点の位置にそれぞれ回転慣性質量ダンパー3を設置して適正な同調を行えば良い。
Although the embodiment of the present invention has been described above, the present invention is not limited to the above embodiment, and the specific configuration of each element can be arbitrarily changed. For example, the main beam is not limited to the H-shaped steel, and it goes without saying that its structure and cross section are arbitrary, and various types of rotary inertia mass dampers can be arbitrarily adopted, and the diagonal material is strained. The additional spring is not limited to the disc spring, and the form thereof is arbitrary, and the installation position of the additional spring is arbitrary as long as it is interposed between the main beam and the rotary inertia mass damper .
In addition, the material of the diagonal member and the form of tension for operating the rotary inertia mass damper are arbitrary as long as the material is stretched downward in the form of a polygonal line that protrudes downward at the side of the main body beam. For example, FIG. ), The both ends of the diagonal member 4 may be fixed at positions slightly inside from both ends of the main beam 1.
Further, in the above embodiment, only one central portion of the diagonal member is stretched in the shape of a flat V-shaped broken line with the break point as the break point. For example, as shown in FIG. It is possible to set break points or set break points at many points and stretch them in a multi-fold line. In any case, a rotary inertia mass damper 3 is installed at each break point position of the diagonal member 4. Therefore, it is only necessary to perform proper tuning.
さらに、上記実施形態では付加振動系としての振動低減機構の固有振動数を主振動系としての本体梁の1次固有振動数に同調させるようにしたが、本体梁に機械振動のような特定の振動数の加振力が作用して共振を生じるような場合には、付加振動系の固有振動数をその特定の共振振動数に同調させることにより共振を防止することができる。したがって、共振問題を生じている既存梁に対して本発明を適用することによりそのような共振問題を解消することができる。   Furthermore, in the above embodiment, the natural frequency of the vibration reducing mechanism as the additional vibration system is synchronized with the primary natural frequency of the main beam as the main vibration system. In the case where resonance is generated by the excitation force of the frequency, the resonance can be prevented by tuning the natural frequency of the additional vibration system to the specific resonance frequency. Therefore, such a resonance problem can be solved by applying the present invention to an existing beam causing the resonance problem.
本発明の実施形態である振動低減機構を示す概略構成図である。It is a schematic block diagram which shows the vibration reduction mechanism which is embodiment of this invention. 同、固有振動数の同調についての説明図である。It is explanatory drawing about the tuning of a natural frequency similarly. 同、具体的な構成例を示す図(本体梁の正面図)である。It is a figure (front view of a main body beam) which shows a specific example of the configuration. 同、具体的な構成例を示す図(本体梁の端部を示す図)である。FIG. 4 is a diagram showing a specific configuration example (a diagram showing an end portion of a main body beam). 同、具体的な構成例を示す図(本体梁の中央部を示す図)である。FIG. 3 is a diagram showing a specific configuration example (a diagram showing a central portion of a main beam). 同、具体的な構成例を示す図(回転慣性質量ダンパーの一例を示す図)である。FIG. 4 is a diagram showing a specific configuration example (a diagram showing an example of a rotary inertia mass damper). 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、時刻歴応答解析に用いる加振入力波形を示す図である。It is a figure which shows the vibration input waveform used for a time history response analysis similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果による性能評価を示す図である。It is a figure which shows the performance evaluation by a response analysis result similarly. 同、時刻歴応答解析に用いる地震動入力波形を示す図である。It is a figure which shows the seismic-motion input waveform used for a time history response analysis similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、応答解析結果を示す図である。It is a figure which shows a response analysis result similarly. 同、他の実施形態を示す概略構成図である。It is a schematic block diagram which shows other embodiment similarly.
符号の説明Explanation of symbols
1 本体梁
2 振動低減機構
3 回転慣性質量ダンパー
4 斜材
5 付加バネ
6 付加減衰
10 ボールねじ機構
11 ボールねじ軸
12 ボールナット
13 フライホイール
14 ケーシング
15 ブラケット
16 ストッパー
17 ロックナット
18 補強リブ
DESCRIPTION OF SYMBOLS 1 Body beam 2 Vibration reduction mechanism 3 Rotating inertia mass damper 4 Diagonal material 5 Additional spring 6 Additional damping 10 Ball screw mechanism 11 Ball screw shaft 12 Ball nut 13 Flywheel 14 Casing 15 Bracket 16 Stopper 17 Lock nut 18 Reinforcement rib

Claims (3)

  1. 振動を抑制すべき対象の本体梁に組み付けられて該本体梁の上下方向の振動を抑制するための機構であって、
    前記本体梁の長さ方向中間部に該本体梁の上下方向の振動により作動する回転慣性質量タンパーを設置し、
    前記回転慣性質量ダンパーに対して前記本体梁の曲げ変形を伝達するための斜材を該本体梁の側部において下に凸の折れ線状をなすように張設して、該斜材の両端部をそれぞれ前記本体梁の両端上部に連結するとともに該斜材の中間部を前記回転慣性質量ダンパーに連結し、
    前記本体梁と前記回転慣性質量ダンパーとの間に付加バネを介装して、該付加バネにより前記斜材を緊張して該斜材にプレストレスを導入し、
    前記回転慣性質量ダンパーと前記斜材と前記付加バネとにより構成される付加振動系の固有振動数を、主振動系としての前記本体梁の固有振動数に同調させてなることを特徴とする梁の振動低減機構。
    A mechanism for suppressing vibration in the vertical direction of the main body beam assembled to the main body beam to be suppressed in vibration,
    A rotary inertia mass tamper that operates by vibration in the vertical direction of the main beam is installed at the middle in the longitudinal direction of the main beam,
    An oblique member for transmitting bending deformation of the main body beam to the rotary inertia mass damper is stretched so as to form a downwardly bent line shape at a side portion of the main body beam, and both end portions of the oblique member are formed. Are connected to the upper ends of both ends of the main body beam, and an intermediate portion of the diagonal member is connected to the rotary inertia mass damper,
    An additional spring is interposed between the main beam and the rotary inertia mass damper, and the diagonal member is tensioned by the additional spring to introduce prestress into the diagonal member ,
    A beam obtained by synchronizing the natural frequency of an additional vibration system including the rotary inertia mass damper, the diagonal member, and the additional spring with the natural frequency of the main beam serving as a main vibration system. Vibration reduction mechanism.
  2. 請求項1記載の梁の振動低減機構であって、
    前記回転慣性質量ダンパーは、前記本体梁の上下方向の振動を回転運動に変換するボールねじ機構と、該ボールねじ機構により回転せしめられて回転慣性質量を生じるフライホイールと、それらボールねじ機構とフライホイールを収容するケーシングとを備えてなり、前記ケーシングを前記本体梁に対して固定するとともに、前記ボールねじ機構を構成しているボールねじ軸に対して前記斜材を連結し、
    前記付加バネを前記ボールねじ軸と前記本体梁との間に介装することにより、該付加バネによって前記ボールねじ軸を介して前記斜材を緊張することにより該斜材に対してプレストレスを導入してなることを特徴とする梁の振動低減機構。
    A vibration reduction mechanism for a beam according to claim 1,
    The rotary inertia mass damper includes a ball screw mechanism that converts vertical vibrations of the main beam into rotary motion, a flywheel that is rotated by the ball screw mechanism to generate a rotary inertia mass, the ball screw mechanism and the flywheel. A casing for housing a wheel, and fixing the casing to the main body beam, and connecting the diagonal member to a ball screw shaft constituting the ball screw mechanism,
    By interposing the additional spring between the ball screw shaft and the main body beam, the diagonal member is prestressed by tensioning the diagonal member via the ball screw shaft by the additional spring. A vibration reduction mechanism for beams characterized by being introduced.
  3. 請求項2記載の梁の振動低減機構であって、
    前記本体梁はH形鋼からなり、
    前記斜材は前記本体梁としてのH形鋼のウェブと上フランジと下フランジとの間に配置される帯鋼からなり、
    前記回転慣性質量ダンパーは、前記ケーシングが前記本体梁としてのH形鋼のウェブに対して固定されるとともに、前記ボールねじ軸が該H形鋼の下フランジを挿通してその先端部にストッパーが固定され、
    前記付加バネは、前記ボールねじ軸の先端部に固定された前記ストッパーと前記本体梁としてのH形鋼の下フランジとの間に介装された皿バネからなることを特徴とする梁の振動低減機構。
    A vibration reduction mechanism for a beam according to claim 2,
    The main body beam is made of H-section steel,
    The diagonal member is made of a steel strip disposed between an H-shaped steel web as the main beam and an upper flange and a lower flange,
    In the rotary inertia mass damper, the casing is fixed to the H-shaped steel web as the main beam, and the ball screw shaft is inserted through the lower flange of the H-shaped steel, and a stopper is provided at the tip thereof. Fixed,
    The additional spring comprises a disc spring interposed between the stopper fixed to the tip of the ball screw shaft and a lower flange of an H-shaped steel as the main beam. Reduction mechanism.
JP2008204216A 2008-08-07 2008-08-07 Beam vibration reduction mechanism Active JP5146757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204216A JP5146757B2 (en) 2008-08-07 2008-08-07 Beam vibration reduction mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204216A JP5146757B2 (en) 2008-08-07 2008-08-07 Beam vibration reduction mechanism

Publications (2)

Publication Number Publication Date
JP2010038318A JP2010038318A (en) 2010-02-18
JP5146757B2 true JP5146757B2 (en) 2013-02-20

Family

ID=42011080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204216A Active JP5146757B2 (en) 2008-08-07 2008-08-07 Beam vibration reduction mechanism

Country Status (1)

Country Link
JP (1) JP5146757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104929268A (en) * 2015-07-15 2015-09-23 大连理工大学 Frequency continuously adjustable mass damper

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5521720B2 (en) * 2010-04-08 2014-06-18 株式会社大林組 Damping structure of joint
JP5226729B2 (en) * 2010-04-14 2013-07-03 株式会社免制震ディバイス Vibration suppression device
JP5777044B2 (en) * 2010-12-08 2015-09-09 清水建設株式会社 Beam vibration reduction mechanism
CN102979995A (en) * 2012-11-30 2013-03-20 中国船舶重工集团公司第七一一研究所 Design method for reducing impedance of equipment under-chassis in vibration isolation system
CN103277454B (en) * 2013-05-09 2016-05-18 张春巍 Tuning rotary inertia damping device
JP5731628B2 (en) * 2013-12-19 2015-06-10 東日本旅客鉄道株式会社 Dynamic vibration absorber mounting structure
CN106012807A (en) * 2016-07-29 2016-10-12 浙江大学建筑设计研究院有限公司 Low-frequency self-adaption tuned mass damper

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI342913B (en) * 2004-05-27 2011-06-01 Univ Nihon
JP5218805B2 (en) * 2006-11-01 2013-06-26 清水建設株式会社 Vibration reduction mechanism and specification method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104929268A (en) * 2015-07-15 2015-09-23 大连理工大学 Frequency continuously adjustable mass damper

Also Published As

Publication number Publication date
JP2010038318A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
De Angelis et al. Dynamic response and optimal design of structures with large mass ratio TMD
Whittaker et al. Seismic testing of steel plate energy dissipation devices
EP2663699B1 (en) Coupling member for damping vibrations in building structures
Pall et al. Response of friction damped braced frames
Pinkaew et al. Seismic effectiveness of tuned mass dampers for damage reduction of structures
KR101263078B1 (en) Connection metal fitting and building with the same
Russo Experimental and finite element analysis of a very large pultruded FRP structure subjected to free vibration
JPWO2010116779A1 (en) Damping device for beam column structure
US7987639B2 (en) Fork configuration dampers and method of using same
Zhang et al. Seismic response control of building structures with superelastic shape memory alloy wire dampers
JP2005330802A (en) Frame with buckling-restrained brace
KR101621966B1 (en) Method and structure for damping movement in buildings
Dieng et al. Use of shape memory alloys damper device to mitigate vibration amplitudes of bridge cables
Panagiotou Seismic design, testing and analysis of reinforced concrete wall buildings
JP2008133947A (en) Vibration reducing mechanism and its specification setting method
US9206616B2 (en) Negative stiffness device and method
Sakai et al. Experimental study on enhancement of self-restoration of concrete beams using SMA wire
JP2009513898A5 (en)
Cardone et al. Experimental behaviour of R/C frames retrofitted with dissipating and re-centring braces
Hwang et al. Analytical and experimental study of toggle-brace-damper systems
JP5269475B2 (en) Vibration control device
JP2006125189A (en) Device for damping movements of structural element and bracing system
Bazzaz et al. Evaluation of the seismic performance of off-centre bracing system with ductile element in steel frames
Kikuchi et al. On the response of yielding seismically isolated structures
JP2009150181A (en) Friction damper

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121114

R150 Certificate of patent or registration of utility model

Ref document number: 5146757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3