以下、本発明による建設機械の好適な実施形態について図面を参照しながら説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
図1は、本発明の一実施形態に係る建設機械の外観を示す斜視図である。この実施形態の建設機械は、所謂ハイブリッド型建設機械であり、その一例としてのリフティングマグネット車両を示すものである。
図1に示すように、リフティングマグネット車両1は、無限軌道を含む走行機構2と、走行機構2の上部に旋回機構3を介して回動自在に搭載された旋回体4とを備えている。旋回体4には、ブーム5と、ブーム5の先端にリンク接続されたアーム6と、アーム6の先端にリンク接続されたリフティングマグネット7とが取り付けられている。このリフティングマグネット7は、鋼材などの吊荷Gを磁力により吸着して捕獲するための設備である。ブーム5、アーム6及びリフティングマグネット7は、各々ブームシリンダ8、アームシリンダ9及びバケットシリンダ10によって油圧駆動される。
また、旋回体4には、リフティングマグネット7の位置や励磁動作及び釈放動作を操作する操作者を収容するための運転室4aや、油圧を発生するための動力源であるエンジン11(図2参照)といった動力源等を収容したハウス部4bが設けられている。エンジン11は、例えばディーゼルエンジンで構成される。
図2は、図1に示す建設機械の電気系統や油圧系統等の内部構成を示すブロック図であり、構成は所謂パラレル方式と称されるものである。なお、図2では、機械的に動力を伝達する系統を二重線で、油圧系統を太い実線で、操縦系統を破線で、電気系統を細い実線でそれぞれ示している。また、図3は、図2中の蓄電手段120の内部構成を示す図である。
図2に示すように、リフティングマグネット車両1は電動発電機(発電手段)12及び変速機13を備えており、エンジン11及び電動発電機12の回転軸は、共に変速機13の入力軸に接続されることにより互いに連結されている。エンジン11の負荷が大きいときには、電動発電機12がこのエンジン11を作業要素として駆動することによりエンジン11の駆動力を補助(アシスト)し、電動発電機12の駆動力が変速機13の出力軸を経てメインポンプ14に伝達される。一方、エンジン11の負荷が小さいときには、エンジン11の駆動力が変速機13を経て電動発電機12に伝達されることにより、電動発電機12が発電を行う。
電動発電機12は、例えば、磁石がロータ内部に埋め込まれたIPM(Interior Permanent Magnetic)モータによって構成される。電動発電機12の駆動と発電との切り替えは、リフティングマグネット車両1における電気系統の駆動制御を行うコントローラ30により、エンジン11の負荷等に応じて行われる。
変速機13の出力軸にはメインポンプ14及びパイロットポンプ15が接続されており、メインポンプ14には高圧油圧ライン16を介してコントロールバルブ17が接続されている。コントロールバルブ17は、リフティングマグネット車両1における油圧系の制御を行う装置である。このコントロールバルブ17には、図1に示した走行機構2を駆動するための左右の油圧モータ2a,2bの他、ブームシリンダ8、アームシリンダ9及びバケットシリンダ10が高圧油圧ラインを介して接続されており、コントロールバルブ17は、これらに供給する油圧を運転者の操作入力に応じて制御する。
電動発電機12の電気的な端子には、インバータ回路18Aの出力端が接続されている。インバータ回路18Aの入力端には、蓄電手段120が接続されている。蓄電手段120は、図3に示すように、直流母線であるDCバス110、昇降圧コンバータ100及びキャパシタ19を備えている。すなわち、インバータ回路18Aの入力端は、DCバス110を介して昇降圧コンバータ100の入力端に接続されている。昇降圧コンバータ100の出力端には、キャパシタ19が接続されている。キャパシタ19は、ここでは、多数のセルを有する構成とされている。なお、キャパシタに代えてバッテリを用いることもできる。
図2に戻って、インバータ回路18Aは、コントローラ30からの指令に基づき、電動発電機12の運転制御を行う。すなわち、インバータ回路18Aが電動発電機12を電動(アシスト)運転させる際には、必要な電力をキャパシタ19と昇降圧コンバータ100からDCバス110を介して電動発電機12に供給する。また、電動発電機12を発電運転させる際には、電動発電機12により発電された電力をDCバス110及び昇降圧コンバータ100を介してキャパシタ19に充電する。なお、昇降圧コンバータ100の昇圧動作と降圧動作の切替制御は、DCバス電圧値、キャパシタ電圧値及びキャパシタ電流値に基づき、コントローラ30によって行われる。これにより、DCバス110を、予め定められた一定電圧値に蓄電された状態に維持することができる。
また、蓄電手段120のDCバス110には、インバータ回路20Bを介して図1に示したリフティングマグネット7が接続されている。リフティングマグネット7は、金属物を磁気的に吸着させるための磁力を発生する電磁石を含んでおり、インバータ回路20Bを介してDCバス110から電力が供給される。インバータ回路20Bは、コントローラ30からの指令に基づき、電磁石をオンにする際には、リフティングマグネット7へ要求された電力をDCバス110より供給する。また、電磁石をオフにする場合には、回生された電力をDCバス110に供給する。
さらに、蓄電手段120には、インバータ回路20Aが接続されている。インバータ回路20Aの一端には作業用電動機としての旋回用電動機(交流電動機;電動駆動手段)21が接続されており、インバータ回路20Aの他端は蓄電手段120のDCバス110に接続されている。旋回用電動機21は、旋回体4を旋回させる図1に示した旋回機構3の動力源である。旋回用電動機21の回転軸21Aには、レゾルバ22、メカニカルブレーキ23及び旋回減速機24が接続される。
旋回用電動機21が力行運転を行う際には、旋回用電動機21の回転駆動力の回転力が旋回減速機24にて増幅され、旋回体4が加減速制御され回転運動を行う。また、旋回体4の慣性回転により、旋回減速機24にて回転数が増加されて旋回用電動機21に伝達され、回生電力を発生させる。旋回用電動機21は、PWM(Pulse Width Modulation)制御信号によりインバータ回路20Aによって交流駆動される。旋回用電動機21としては、例えば、磁石埋込型のIPMモータが好適である。
レゾルバ22は、旋回用電動機21の回転軸21Aの回転位置及び回転角度を検出するセンサであり、旋回用電動機21と機械的に連結することで回転軸21Aの回転角度及び回転方向を検出する。レゾルバ22が回転軸21Aの回転角度を検出することにより、旋回機構3の回転角度及び回転方向が導出される。メカニカルブレーキ23は、機械的な制動力を発生させる制動装置であり、コントローラ30からの指令によって、旋回用電動機21の回転軸21Aを機械的に停止させる。旋回減速機24は、旋回用電動機21の回転軸21Aの回転速度を減速して旋回機構3に機械的に伝達する減速機である。
なお、DCバス110には、インバータ回路18A,20A,20Bを介して、電動発電機12、旋回用電動機21及びリフティングマグネット7が接続されているため、電動発電機12で発電された電力がリフティングマグネット7又は旋回用電動機21に直接的に供給される場合もあり、リフティングマグネット7で回生された電力が電動発電機12又は旋回用電動機21に供給される場合もあり、さらに、旋回用電動機21で回生された電力が電動発電機12又はリフティングマグネット7に供給される場合もある。
パイロットポンプ15には、パイロットライン25を介して操作装置26が接続されている。操作装置26は、旋回用電動機21、走行機構2、ブーム5、アーム6及びリフティングマグネット7を操作するための操作装置であり、操作者によって操作される。操作装置26には、油圧ライン27を介してコントロールバルブ17が接続され、また、油圧ライン28を介して圧力センサ29が接続される。操作装置26は、パイロットライン25を通じて供給される油圧(1次側の油圧)を操作者の操作量に応じた油圧(2次側の油圧)に変換して出力する。操作装置26から出力される2次側の油圧は、油圧ライン27を通じてコントロールバルブ17に供給されると共に、圧力センサ29によって検出される。
圧力センサ29は、操作装置26に対して旋回機構3を旋回させるための操作が入力されると、この操作量を油圧ライン28内の油圧の変化として検出する。圧力センサ29は、油圧ライン28内の油圧を表す電気信号を出力する。この電気信号は、コントローラ30に入力され、旋回用電動機21の駆動制御に用いられる。
コントローラ30は、本実施形態における制御回路を構成する。コントローラ30は、CPU及び内部メモリを含む演算処理装置によって構成され、内部メモリに格納された駆動制御用のプログラムをCPUが実行することにより実現される。また、コントローラ30の電源は、キャパシタ19とは別のバッテリ(例えば24V車載バッテリ)である。コントローラ30は、圧力センサ29から入力される信号のうち、旋回機構3を旋回させるための操作量を表す信号を速度指令に変換し、旋回用電動機21の駆動制御を行う。また、コントローラ30は、電動発電機12の運転制御(アシスト運転及び発電運転の切り替え)、リフティングマグネット7の駆動制御(励磁と消磁の切り替え)、並びに、昇降圧コンバータ100を駆動制御することによるキャパシタ19の充放電制御を行う。
ここで、本実施形態における昇降圧コンバータ100について詳細に説明する。図3に示すように、昇降圧コンバータ100は、昇降圧型のスイッチング制御方式を備えており、リアクトル101、トランジスタ100B,100Cを有する。トランジスタ100Bは昇圧用のスイッチング素子であり、トランジスタ100Cは降圧用のスイッチング素子である。トランジスタ100B,100Cは、例えばIGBT(Insulated Gate Bipolar Transistor)によって構成され、互いに直列に接続されている。
具体的には、トランジスタ100Bのコレクタとトランジスタ100Cのエミッタとが相互に接続され、トランジスタ100Bのエミッタはキャパシタ19の負側端子およびDCバス110の負側配線に接続され、トランジスタ100CのコレクタはDCバス110の正側配線に接続されている。そして、リアクトル101は、その一端がトランジスタ100Bのコレクタ及びトランジスタ100Cのエミッタに接続されると共に、他端がキャパシタ19の正側端子に接続されている。トランジスタ100B,100Cのゲートには、コントローラ30からPWM電圧が印加される。
なお、トランジスタ100Bのコレクタとエミッタとの間には、整流素子であるダイオード100bが逆方向に並列接続されている。同様に、トランジスタ100Cのコレクタとエミッタとの間には、ダイオード100cが逆方向に並列接続されている。トランジスタ100Cのコレクタとトランジスタ100Bのエミッタとの間(すなわち、DCバス110の正側配線と負側配線との間)には、DCバス110において平滑用のコンデンサ110aが接続される。コンデンサ110aは、昇降圧コンバータ100からの出力電圧、電動発電機12からの発電電圧や旋回用電動機21からの回生電圧を平滑化する。
このような構成を備える昇降圧コンバータ100において、直流電力をキャパシタ19からDCバス110へ供給する際には、コントローラ30からの指令によってトランジスタ100BのゲートにPWM電圧が印加される。そして、トランジスタ100Bのオン/オフに伴ってリアクトル101に発生する誘導起電力がダイオード100cを介して伝達され、この電力がコンデンサ110aにより平滑化される。また、直流電力をDCバス110からキャパシタ19へ供給する際には、コントローラ30からの指令によってトランジスタ100CのゲートにPWM電圧が印加されると共に、トランジスタ100Cから出力される電流がリアクトル101により平滑化される。
続いて、旋回体4について説明する。図4は、旋回体4のハウス部4bを示す斜視図である。以下、ハウス部4bの構成の説明においては、特に断らない限り、前後左右はリフティングマグネット車両1を基準としている。図4に示すように、ハウス部4bは、平面視において略コの字状を成すように構成され、コの字を構成する開放部が前方を向くように配置されている。ここで、ハウス部4bにおいて、車両における右前部分(図4の図示左手前部分)を右前部Rf、右後ろ部分(図4の図示左奥部分)を右後部Rr、左前部分(図4の図示右手前部分)を左前部Lf、左後ろ部分(図4の図示右奥部分)を左後部Lr、及び右前部Rfと左前部Lfとの間の部分を中央部Cと呼ぶ。
このようなハウス部4bの左前部Lfに対応して、図1に示す運転室4aが設けられ、中央部Cには、図1に示すブーム5の基端が上下動可能に取り付けられる。そして、ハウス部4bを有する旋回体4は、中央部Cの下部に設けられた旋回用電動機21(図2参照)により上下方向の軸心回りに回転し、すなわち、旋回方向Dに沿って左右に旋回する。右前部Rfには、メンテナンス作業用のステップ31及び手摺り32が設けられている。
右前部Rf内には、図2に示した蓄電手段120、インバータ回路18A,20A,20B、及びコントローラ30が設置されている。右前部Rfの左右面下部には各々開口部が形成されており、右面の開口部34(図5参照)と左面の開口部33との間には、蓄電手段120のキャパシタ19が設置されている。すなわち、左右面の開口部34,33は、キャパシタ19を冷却するための空気を左右方向に通す通気口として形成されている。
図5は、右前部Rfの下部に設置されたキャパシタ19等を前方から見た断面図である。図5には、ハウス部4bの底部を形成する骨格部材である底部フレームBaと、底部フレームBaの周縁(図5では左側)において立設された外周フレームBbと、から構成されるベースフレームBが示されている。
図5に示すように、右前部Rfにおいて、右面の開口部34及び左面の開口部33の内側には、ルーバー36,35が各々設けられている。そして、ルーバー35,36の間には、キャパシタ19を含むキャパシタボックス80が、台座155及び防振ゴム156を介して底部フレームBa上に設置されている。キャパシタ19は、上段及び下段に各々多数のセル41を並設し纏めたもので、上段のセル41の集合体により上段モジュール45が、下段のセル41の集合体により下段モジュール45が各々構成され、これらのモジュール45,45を、左右方向に通気可能に外枠で囲い補強したものがキャパシタボックス80である。
キャパシタボックス80の右側(図5では左側)には、吸気ダクト40が接続されると共に、吸気ダクト40内の上流側の端部には、ルーバー36に対向してルーバー38が設けられている。また、キャパシタボックス80の左側(図5では右側)端部には、上下段のセル41,41のそれぞれに対応して、冷却風を図示左から右へと流すためのファン43,43が設けられ、さらに左側(図5では右側)には、排気ダクト39が接続されると共に、排気ダクト39内の下流側の端部には、ルーバー35に対向してルーバー37が設けられている。
吸気側のルーバー36は、図示左から右へと流れる冷却風の流れ方向に対して下方に傾斜し、これより下流の吸気ダクト40内のルーバー38は、ルーバー36とは反対に上方に傾斜している。さらに、排気ダクト39内のルーバー37は、冷却風の流れ方向に対して下方に傾斜し、これより下流の排気側のルーバー35は、ルーバー37とは反対に上方に傾斜している。このようなルーバーの構成により、キャパシタボックス80内に対する防水が図られている。
また、上記のように、キャパシタボックス80は底部フレームBa上に設置されているため、その設置位置は、右面の開口部34及び左面の開口部33に対して低くなっている。このため、吸気ダクト40及び排気ダクト39は、上下非対称な形状をなしている。すなわち、吸気ダクト40及び排気ダクト39は、両側のルーバー38,37からキャパシタボックス80に向かうにつれて、下方に広がる形状とされている。
さらに、吸気ダクト40内には、上段モジュール45と下段モジュール45との間の上流側端部と、ルーバー38の下流側端部とを連結し、吸気ダクト40内を上下に仕切る仕切壁44が設けられている。この仕切壁44は、上下に並設されたルーバー38に対して正対せずに下方にずれて配置された下段のモジュール45に対しても、上段のモジュール45と同量の冷却風を分配するためのものであり、上側の入口(ルーバー38の出口)での流量より下側の入口での流量が大きくなるように、水平では無く冷却風の流れ方向に対して下方に傾斜する構成とされている。
なお、ここでは、キャパシタボックス80、吸気ダクト40、排気ダクト39、開口部34、開口部33等は右前部Rfに設置されることとしたが、左前部Lfにおいて運転室4aの下方に設置されていてもよい。
また、図4の左後部Lr内には、エンジン用ラジエタ、オイルクーラ、インタークーラ、燃料クーラ、ハイブリッドシステム用ラジエタ(ハイブリッド用ラジエタ)、運転室4aのエアコンディショナ用熱交換器(エアコン用コンデンサ)、(いずれも図示せず)といった冷却器が設置されている。
さらに、左後部Lrから右後部Rrにかけて、すなわち天板を構成するエンジンフードHの下方には、図2に示したエンジン11、変速機13、電動発電機12、及びメインポンプ14等が設置されている。エンジン11にはファン(図示せず)が接続されており、エンジン11の回転に伴いファンが回転することにより、左前部Lfの左側面に設けられた通気口46から左後部Lr内に向けて空気が流れ、左後部Lr内に設置された上記の各冷却器が冷却される。また、右後部Rr内には、上記の電動発電機12及びメインポンプ14を収容するポンプ室(図示せず)が形成されている。
中央部Cには、ブーム5を上下動可能に挟むようにして支持する枠体である所謂Aフレーム47、及びブームシリンダ8の基端が取り付けられる枠体であるブームシリンダフレーム48が設けられている。Aフレーム47の後方近傍には、旋回用電動機21(図2参照)が配置されている。
続いて、キャパシタボックス80の電気的な構成について説明する。図6は、キャパシタボックス80の内部構成を示す回路図である。キャパシタボックス80は、セル41の集合体から成る上段モジュール45及び下段モジュール45と、モジュール45,45の間に設けられた安全スイッチ51と、モジュール45,45から成るキャパシタ19で蓄電された電力を図3に示した昇降圧コンバータ100との間で入出力するための部分であるジャンクションボックス50と、を備えている。
ジャンクションボックス50は、上段モジュール45の正側端部に対して正側キャパシタケーブル61(図8参照)により接続されキャパシタ19の正側の端子となる正側端子52と、上段モジュール45と正側端子52との間に直列に設けられた正側リレー53及びヒューズ54と、下段モジュール45の負側端部に対して負側キャパシタケーブル62(図8参照)により接続されキャパシタ19の負側の端子となる負側端子55と、下段モジュール45と負側端子55との間に設けられた負側リレー56と、を備えている。
安全スイッチ51は、メンテナンスの際にキャパシタ19の回路を手動で遮断するためのスイッチである。ジャンクションボックス50の正側リレー53及び負側リレー56は、操作者によるイグニッションキーのオンオフに連動してキャパシタ19の回路を接続・遮断することによりキャパシタ19における電力の入出力を切断可能とするものである。ヒューズ54は、短絡等により所定の流量以上の電流がキャパシタ19の回路を流れた場合に当該回路を切断するものである。
図7は、ハウス部4bの右前部Rfを示す側面図である。図7に示すように、ベースフレームB上には、下から上に向けて、吸気ダクト40及び排気ダクト39が接続されたキャパシタボックス80、インバータ回路18A,20A,20B,昇降圧コンバータ100、及びコントローラ30が搭載されている。キャパシタボックス80は、吸気ダクト40及び排気ダクト39と共に前部及び上部がステップ(階段)31に覆われることにより、また、インバータ回路18A,20A,20B,昇降圧コンバータ100、及びコントローラ30は、前部及び上部がステップを構成する前面板58及びハウス部4bの天板59に覆われることにより、前方や上方からの荷重・衝撃に対して保護されている。なお、右前部Rfの右側面(図示手前側)には開閉可能なサイドパネルが設けられ(図7では開の状態)、このサイドパネルには、前述したように、右前部Rfの右面の開口部34やルーバー36(ともに図5参照)が設けられている。
また、右前部Rf最下段に配置されたキャパシタボックス80において、安全スイッチ51は車両前方側(図7の右側)に、ジャンクションボックス50は車両後方側(図7の左側)に設けられている。車両のメンテナンス時において、安全スイッチ51は、上記サイドパネルを開くことにより右方からアクセス可能とされ、またジャンクションボックス50は、右前部Rf下面に設けられたアンダーカバー(図示せず)を取り外すことにより下方からアクセス可能とされている。
図8は、キャパシタボックス80を背面側すなわち車両後方側から見た斜視図である。図8には、キャパシタボックス80の右側に接続された吸気ダクト40及びルーバー38と、キャパシタボックス80の左側に接続された排気ダクト39及びルーバー37とが、キャパシタボックス80と共に示されている。キャパシタボックス80の本体部82は、図5及び図6に示した上下段のモジュール45,45から構成されたキャパシタ19を中空の略直方体形状を成す外枠81により囲ったものである。ジャンクションボックス50は、本体部82の車両後方側(図示手前側)に配置され、図6に示した正側端子52,負側端子55等といった電力の入出力部を覆うジャンクションボックスカバー(端子台カバー)60を備えている。
図9は、図8に示したジャンクションボックスカバー60内に収容された端子台67等を示す斜視図である。図9に示すように、ジャンクションボックスカバー60内には、外枠81の背面側に固定され、正側端子52及び負側端子55(いずれも図6参照)が設けられた端子台67と、端子台67の上部に取り付けられ、正側端子52及び負側端子55の各々に接続された正側リレー53及び負側リレー56とが収容されている。外枠81に収容された上段モジュール45(図5、図6参照)からの正側キャパシタケーブル61及び下段モジュール45(図5、図6参照)からの負側キャパシタケーブル62は、正側リレー53及び負側リレー56に各々接続されている。
また、端子台67には、昇降圧コンバータ100のリアクトル101(図3参照)に接続された正側ケーブル63及びDCバス110(図3参照)の負側配線である負側ケーブル64が挿通され、その各々は、端子台67の内部において正側端子52及び負側端子55に接続されている(詳しくは後述)。さらに、この正側の接続部と負側の接続部との間には、接続部同士の短絡を防止するための上部隔壁68が形成されている。
また、図8及び図9に示すように、正側キャパシタケーブル61及び負側キャパシタケーブル62のジャンクションボックスカバー60における挿通部には、ジャンクションボックスカバー60内への雨水や高圧洗浄水の浸入を防ぐための防水コネクタ66が設けられている。
図10は、図8のX−X線断面図である。図10には、負側端子55と負側ケーブル64との結合状態が示されている。ここで、端子台67に設けられた負側端子としてのバスバー55には、端子結合ネジ74が挿通可能な挿通部55aが形成されている。また、端子台67の挿通部55aに対応する部分にも、端子結合ネジ74が挿通可能な挿通部が形成されている。負側ケーブル64の先端に設けられたケーブル端子73は、端子結合ネジ74が挿通可能な挿通部を有する丸型の端子とされている。そして、ケーブル端子73の挿通部を端子台67の挿通部に重ねた状態にて、下方から上方に向けて端子結合ネジ74が挿入され、バスバー55の挿通部55aを通した雄ネジ部をバスバー55上に予め設けられた雌ネジ部57に螺合することにより、バスバー55と負側ケーブル64とが電気的に結合される。
図11は、端子台67を底面側から見た斜視図、図12は、ジャンクションボックス50を底面側から見た図である。図11に示すように、正側ケーブル63においても、上述した負側ケーブル64の結合と同様に、端子結合ネジ72が下方から上方に向けて挿入され、雌ネジ部と螺合することにより、正側端子52である正側のバスバー(図示せず)と正側ケーブル63とが電気的に結合される。
また、端子台67には、正側の端子結合ネジ72と負側の端子結合ネジ74とを離隔すべく、ケーブル端子71,73を左右両側から各々囲むよう下方に向かって突出する正側隔壁78と負側隔壁79とが形成されている。
端子台67の下部には、正側隔壁78の右側方においてヒューズ配置部75が設けられており、ヒューズ配置部75の下側にはヒューズ54が取り付けられている。このヒューズ54は、2本のヒューズ取付ネジ77が下方から上方に向けて挿入され、上記端子結合ネジ72,74の場合と同様に、下側からネジ止めされることによりヒューズ配置部75に対して取り付けられている。
図10に戻って、ジャンクションボックス50内の防水を図るため、ジャンクションボックスカバー60と本体部82の外枠81との間には、ジャンクションボックスカバー60の外枠81に対する接合面の全周囲においてパッキン76が設けられている。また、負側ケーブル64のジャンクションボックスカバー60に挿通される部分にも、その周囲に防水用のOリング70が設けられている。これと同様に、正側ケーブル63のジャンクションボックスカバー60に挿通される部分にも、Oリング(図示せず)が設けられている。
さらに、図10及び図12に示すように、ジャンクションボックスカバー60の下面には、端子結合ネジ72,74に対応する下方位置に、メンテナンス用の開口部84,84が形成されており、開口部84,84を下方から開閉可能に覆うメンテナンス用カバー85が取り付けられている。ジャンクションボックスカバー60とメンテナンス用カバー85との間には、防水のためのパッキン86が設けられている。
図12に示すように、ジャンクションボックスカバー60の下面には、開口部84,84の右側方においてヒューズ54に対応する下方位置に開口部88が形成されており、開口部88を下方から開閉可能に覆うメンテナンス用カバー89が取り付けられている。ジャンクションボックスカバー60とメンテナンス用カバー89との間には、防水のためのパッキン(図示せず)が設けられている。
以上説明した本実施形態のリフティングマグネット車両1によれば、蓄電手段120のキャパシタ19における電力の入出力部である端子台67において、下方から上方に向けて端子結合ネジ72,74が挿入されて螺合状態とされることにより、正側端子52に正側ケーブル63が、負側端子55に負側ケーブル64が各々電気的に結合される。このように端子と配線とを結合するための端子結合ネジ72,74が下方から上方に向けて配置されることにより、端子台67において結露等により水分が生じた場合であっても、その水分は自ずと下方に落下し、端子結合ネジ72,74には付着・滞留しないため、短絡を防止できる。
また、リフティングマグネット車両1によれば、ジャンクションボックスカバー60の下面にメンテナンス用の開口部84,84が形成されるため、メンテナンス用カバー85を取り外すことにより開口部84,84を通して端子と配線とを結合する端子結合ネジ72,74が露出し、下方からのメンテナンスが可能とされ、容易にメンテナンスができメンテナンス性の向上が図られる。さらに、メンテナンス時以外においては、メンテナンス用カバー85を装着することにより水分や粉塵の下方からの進入が防止され端子台の保護が図られる。
また、本体部82の外枠81とジャンクションボックスカバー60との間にはパッキン76が設けられているため、本体部82の外側に配置される端子台67を、水分や粉塵から好適に保護することができる。
また、ジャンクションボックスカバー60内には、キャパシタ19における電力の入出力を切断可能とする正側リレー53及び負側リレー56が配置されているため、イグニッションキーのキーオフ時に当該リレー53,56により電力の入出力が切断可能とされ、安全性が高められると共に、ジャンクションボックスカバー60内にリレー53,56が配置されることによりリレー53,56の保護が図られる。
また、端子台67には、正側の端子結合ネジ72と負側の端子結合ネジ74との間に正側隔壁78及び負側隔壁79が形成されているため、隔壁78,79により正側端子52と負側端子55とが確実に離隔され、水分等による短絡や作業時の工具による短絡を防止できる。
また、端子台67は、ヒューズ54を取り付けるためのヒューズ配置部75を有し、ヒューズ54はヒューズ配置部75に対して下側からネジ止めされているため、ジャンクションボックスカバー60の下面に形成された開口部88を通じて下方からヒューズ54にアクセス可能となり、ネジの取り付け、取り外しによりヒューズを容易に着脱できる。
さらにまた、端子台67はキャパシタ19を有する本体部82に対して車両後方側に配置されているため、車両前方から衝撃が加わる場合であっても端子台67を好適に保護することができる。
図13は、さらに他の実施形態に係る建設機械の電気系統や油圧系統等の内部構成を示すブロック図である。
図13に示す構成は、所謂シリーズ方式と称されるもので、図2に示すパラレル方式の構成において、変速機13とメインポンプ14とを連結する構成に代えて、ポンプ用電動機140及びインバータ18Dを別途設け、エンジン11の全ての動力を一旦電気エネルギに変換して、各種の駆動要素を駆動するものである。
具体的には、インバータ18Dは、蓄電手段120のDCバス110(図3参照)と電気的に接続されると共に、コントローラ30により制御される。また、インバータ18Dの出力端は、ポンプ用電動機140に接続されており、ポンプ用電動機140は、インバータ18Dにより駆動制御される。また、ポンプ用電動機140においてメインポンプ14により発電された電力は、回生エネルギとしてインバータ18Dを経て蓄電手段120に供給される。
以上、本発明をその実施形態に基づき具体的に説明したが、本発明は上記実施形態に限定されるものではなく、例えば、上記実施形態においては、特に好適であるとして、リフティングマグネットタイプのハイブリッド型建設機械に対する適用を述べているが、ショベルやホイルローダ、クレーン等の他の建設機械に対しても適用可能である。