JP5187633B2 - ナノサイズEuSe結晶及びナノサイズEuSe結晶の製造方法 - Google Patents

ナノサイズEuSe結晶及びナノサイズEuSe結晶の製造方法 Download PDF

Info

Publication number
JP5187633B2
JP5187633B2 JP2008503756A JP2008503756A JP5187633B2 JP 5187633 B2 JP5187633 B2 JP 5187633B2 JP 2008503756 A JP2008503756 A JP 2008503756A JP 2008503756 A JP2008503756 A JP 2008503756A JP 5187633 B2 JP5187633 B2 JP 5187633B2
Authority
JP
Japan
Prior art keywords
group
euse
crystal
pph
sized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008503756A
Other languages
English (en)
Other versions
JPWO2007102271A1 (ja
Inventor
靖哉 長谷川
壯 河合
隆明 安達
Original Assignee
国立大学法人 奈良先端科学技術大学院大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 奈良先端科学技術大学院大学 filed Critical 国立大学法人 奈良先端科学技術大学院大学
Priority to JP2008503756A priority Critical patent/JP5187633B2/ja
Publication of JPWO2007102271A1 publication Critical patent/JPWO2007102271A1/ja
Application granted granted Critical
Publication of JP5187633B2 publication Critical patent/JP5187633B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/007Tellurides or selenides of metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/30Phosphinic acids R2P(=O)(OH); Thiophosphinic acids, i.e. R2P(=X)(XH) (X = S, Se)
    • C07F9/304Aromatic acids (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic System
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/54Quaternary phosphonium compounds
    • C07F9/5442Aromatic phosphonium compounds (P-C aromatic linkage)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0091Complexes with metal-heteroatom-bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/50Phosphorus bound to carbon only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Description

本発明は、ナノサイズEuSe結晶及び、ナノサイズEuSe結晶を製造する方法に関する。
ファラデー効果やカー効果といった光磁気特性に優れた物質は、光情報通信分野における基板材料(応用例:光アイソレータ)として、また、光記録分野における基板材料(応用例:光磁気メモリ)として重要な役割を担っている。
上記のような光磁気特性に優れた物質として、現在ではBi:YIGなどの結晶が一般に使用されているが、近年、より高い光磁気特性を備えた物質としてユーロピウム(Eu)イオンを用いたナノ結晶であるEuOやEuSが提案されている。一例として、特許文献1には、EuO及びEuSナノ結晶をプラスチック中に固定化する技術が開示されている。EuOやEuSはプラスチック中にドープすることによって大きなファラデー効果を示すため、次世代のアイソレータとしての応用が期待される。
特開2004-354927号公報 Y.Hasegawa, T. Kataoka et al., Size-controlled synthesis of quantum-sized EuS nanoparticles and tuning of their Faraday rotation peak, Chem. Commun., 6038(2005)
上述したような優れた光磁気特性を備えているEuOやEuSを上回る高性能な光磁気材料としてEuSeが存在していることが古くから知られている。しかし、このEuSeをナノサイズ化した例は今までに報告されていなかった。
EuSe結晶を製造するためには、Eu(II)イオンとSeイオンを扱わなければならない。これらの両イオンは大気中で不安定なため、高真空かつ高温(1000℃以上)条件で合成を行う必要がある。しかし、この厳しい反応条件下ではナノサイズの結晶を得ることは困難である。
本願発明者らは、以上のような課題を解決するために研究を重ねた結果、大気中で安定なEu(III)錯体を見出すことにより、ナノサイズEuSe結晶を簡便な方法でもって製造する方法に想到した。
このようにして成された本発明に係るナノサイズEuSe結晶の製造方法は、
一般式
Figure 0005187633

(式中、nは1、2、3又は4を表す。Xは酸素原子、硫黄原子、セレン原子、又はテルル原子を表す。R1及びR2は同一又は異なり、芳香族基、芳香族基の誘導体、C1〜C20の飽和結合又は不飽和結合を含むアルキル基、C1〜C20の飽和結合又は不飽和結合を含むアルキル基の誘導体、ヒドロキシル基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基、又はハロゲン原子を表す。)
で示されるEu(III)錯体を加熱することにより、加熱条件に応じた粒径のナノサイズEuSe結晶を得ることを特徴とする。
また、本発明に係るナノサイズEuSe結晶の製造方法は、好適には、前記Eu(III)錯体と、カウンタカチオン及び/又は溶媒と、から成る混合物を加熱することにより、加熱条件に応じた粒径のナノサイズEuSe結晶を得ることを特徴とする。
さらに、前記Eu(III)錯体として、組成式が[Eu(Se2PPh2)4]-で表されるEu(III)錯体を好適に用いることができる。
また、前記カウンタカチオンとしては、PPh4 +を用いるのが好適である。
本発明に係るナノサイズEuSe結晶の製造方法によれば、これまで製造することが不可能とされてきたナノサイズEuSe結晶を、非常に簡便な方法により製造することが可能となる。
本発明に係るEu(III)錯体の反応温度は、従来の製法において必要であった反応温度(約1000℃)と比較すると低温(例えば[Eu(Se2PPh2)4]-の反応温度は50〜500℃程度)であるから、低コストでEuSeの大量生産が可能となる。
EuSe結晶の吸収波長はその結晶の粒径によって決定されることが知られている(例えば非特許文献1参照)が、本発明に係るEuSe結晶の製造方法では、加熱条件によって結晶の粒径をコントロールすることが可能であるため、目的に合ったナノサイズEuSe結晶を容易に得ることができる。また、上述したように、本発明に係るEu(III)錯体は反応温度が低いため、加熱温度の制御も容易である。従って、EuSe結晶の粒径を細かに調節することが可能である。
さらにまた、前記Eu(III)錯体と、カウンタカチオン及び/又は溶媒と、から成る混合物を加熱することによってナノサイズEuSe結晶を製造する方法によれば、Eu(III)錯体が安定化するため、ナノサイズEuSe結晶の製造時における材料の取扱容易性が向上する。
また、ナノサイズのEuSe結晶は種々の媒体に均一に分散させることが可能であるため、プラスチックやガラスをはじめとする多様な機能性材料を創成することが可能となる。
リガンド(KSe2PPh2)の合成(方法1)を示す反応式。 リガンド(KSe2PPh2)の合成(方法2)を示す反応式。 リガンド(PPh4Se2PPh2)の合成を示す反応式。 Eu錯体(PPh4 +[Eu(Se2PPh2)4]-)の合成を示す反応式。 EuSe結晶の合成を示す反応式。 X線回折測定結果の表。 電子回折パターンの測定結果表。 青色粉末(EuSe結晶)のEDS測定結果を示すグラフ。 青色粉末(EuSe結晶)のTEM像。 EuSe結晶の粒径分布図。 EuSe含有PMMA薄膜の紫外・可視領域における吸収スペクトル。 EuSe含有PMMA薄膜のファラデー測定スペクトル。
以下、本発明に係るEuSeのナノ結晶の製造方法について詳細に説明する。本発明のナノサイズEuSe結晶の製造方法では、原料として一般式が
Figure 0005187633

で示されるEu(III)錯体を用いる。
式中、nは1、2、3又は4を表す。Xは酸素原子、硫黄原子、セレン原子、又はテルル原子を表す。R1及びR2は互いに同一又は異なり、芳香族基(例えばフェニル基、ナフチル基、トリル基)、芳香族基の誘導体、C1〜C20の飽和結合又は不飽和結合を含むアルキル基(例えばメチル基、メチレン基、エチル基、エチレン基、プロピル基、プロピレン基、ブチル基、ペンチル基)、C1〜C20の飽和結合又は不飽和結合を含むアルキル基の誘導体、ヒドロキシル基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基、又はハロゲン原子を表す。なお、本発明においていうアルキル基は、不飽和結合を有するものも含む。R1及びR2としては、EuSe結晶の前駆体であるEu(III)錯体の安定性を不所望に低下させることがないようなもの、例えば100℃以下の温度で構造変化が起こりにくいものを選択するのが好適である。
このようなEu(III)錯体は大気中でも安定であるため、非常に扱いやすい。
上記のEu(III)錯体を所定の加熱条件で加熱することにより、ナノサイズEuSe結晶を得ることができる。加熱条件は温度及び時間をパラメータとして決定する。加熱温度が高くなるにつれて、また、反応時間が長くなるにつれて、生成するナノサイズEuSe結晶の粒径(平均粒径)が大きくなる。このようにして得られるEuSe結晶のサイズは、1nm以下から数百nmまで、任意に操作することが可能である。
本発明では、好適なEu(III)錯体として、組成式が[Eu(Se2PPh2)4]-で表され、構造式が次式
Figure 0005187633

で示されるEu(III)錯体を用いることができる。
また、ナノサイズEuSe結晶の製造をより行い易くするために、本発明に係るEu(III)錯体に加えて、更にカウンタカチオン及び/又は溶媒が含まれる混合物を加熱することもできる。
ここで、カウンタカチオンは特に制限されるものではなく、Eu(III)錯体と結合して電荷が釣り合うものであれば自由に選択することができ、有機カチオンや金属カチオンなど、各種のカチオンを用いることができる。カウンタカチオンとして例えば構造式が次式
Figure 0005187633

で示されるようなPPh4 +を用いることもできる。PPh4 +はEu(III)錯体を大気中で安定化させる効果が高い。またPPh4 +は有機カチオンであるため、金属カチオンと比べてEuSe結晶中に不純物として入り込みにくいというメリットを備える。
溶媒は、Eu(III)錯体やカウンタカチオンを溶かすことができる限り特に制限されるものではない。また、溶媒は常温では固体であって、加熱することによって融解するような物質であっても構わない。溶媒としては例えばHDA(Hexadecylamine)やTOPO(Tri-n-octylphosphine oxide)、エチレングリコール、デカリンを用いることができる。これらの溶媒には反応温度を400℃程度にまで上げることができるという利点がある。また、HDAやTOPOには、EuSe結晶生成後に、これらの溶媒自身が界面活性剤のように結晶の表面に吸着して結晶粒子を保護するというメリットがある。
上記のように、カウンタカチオンや溶媒を用いると、生成した各EuSe結晶粒子が自然に表面修飾される場合がある。従来より知られているように、表面修飾剤の性質によってEuSe粒子の特性(各種溶媒に対する溶解性など)が変化するため、カウンタカチオンや溶媒は、表面修飾の効果を考慮に入れて選択するとよい。
以下、本発明者らが行った、ナノサイズEuSe結晶製造例について説明する。
[リガンド(KSe2PPh2)の合成:方法1(図1)]
四つ口ナスフラスコにAr雰囲気下で、t-BuOK(Potassium tert-butoxide)(1.18g,11.0mmol)、及び、脱水THF(Tetrahydrofuran)(100mL)、PPh2H(Diphenylphosphine)(1.86g,10.0mmol)を加えた。溶液は赤色となった。室温で2時間攪拌を行った。その後、Se(Selenium Powder) (1.58g、20mmol)を加え室温で5時間攪拌を行うことで、溶液の色は黄色に変化した。反応終了後、未反応のSeを取り除くために反応母液をろ過した。続いて、ろ液を濃縮し、n-Hexaneで再沈を行うことで白色固体を析出させ、桐山ろ過により回収した。粗収量:2.82g、粗収率:73.8%であった。
[リガンド(KSe2PPh2)の合成:方法2(図2)]
四つ口ナスフラスコにAr雰囲気下、KPPh2(Potassium diphenylphosphide 0.5N in THF)を50mL(25mmol)と2.2当量のSe(55mmol、4.3g)を加え、3時間攪拌した。得られた溶液の色は黄色であった。反応終了後、未反応のSeを取り除くために反応母液をろ過した。次いで、ろ液を濃縮し、n-Hexaneで再沈を行うことで白色固体を析出させ、桐山ろ過により回収した。粗収量:8.04g、粗収率:84.2%であった。
こうして得た白色固体の構造確認を1H、13C、31PNMRにより行った。結果を以下に示す。
1H NMR (300 MHz, d6-DMSO, TMS) δ(ppm): 8.02 (m, PC6H5, 4H, Hc), 7.24 (m, PC6H5, 6H, Ha, Hb)
13C NMR (75 MHz, d6-DMSO, TMS) δ(ppm): 130.87, 130.72, 128.30, 128.25, 126.77, 126.61
31P NMR(161.84 MHz, d6-DMSO) δ(ppm): 24.02 (s+d satellites, 1JPSe=-649Hz)
また、ESI測定(ElectroSpray Ionization)を行った結果得られた質量電荷比は344.878m/zであり、KSe2PPh2の質量電荷比である344.89m/zと極めて良い一致を見た。
さらに、元素分析を行って得られた結果を以下に示す。
元素分析 for C12H10KPSe Anal. Calc. (%) C:37.71, H:2.64, N:0.00、found C:36.75, H:2.66, N:0.14
以上の結果から、白色固体はKSe2PPh2であると推定される。
[リガンド(PPh4Se2PPh2)の合成(図3)]
MeOHに溶解させたKSe2PPh2(1.54g、4.0mmol)溶液とMeOHに溶解させたPh4PBr(1.69g、4.0mmol)を混合し、一晩攪拌させ沈殿した黄色固体を桐山ろ過をすることで回収(2.75g)した。その固体をCHCl3に溶解させ、水で2回分液を行うことによってKBrを除去した。その後、CHCl3溶液を濃縮し、n-Hexaneに再沈殿させることで、黄色固体を回収した。収量:2.30g、収率:83.9%であった。
このようにして得た黄色固体の構造確認を、1H、13C、NMRにより行った。結果を以下に示す。
1H NMR (300 MHz, d6-DMSO, TMS) δ(ppm): 7.82 (m, PC6H5, 24H, Hc, Hd, He, Hf) , 7.26 (m, PC6H5, 6H, Ha, Hb)
13C NMR (75 MHz, d6-DMSO, TMS) δ(ppm): 135.4, 135.3,134.7,134.5, 130.9, 130.7, 130.5, 130.4, 128.3, 128.2, 126.8, 126.6, 118.3, 117.1
また、ESI測定(ネガ)を行った結果得られた質量電荷比は344.777m/zであり、PPh 4 Se 2 PPh 2の質量電荷比である344.89m/zと良い一致を見た。さらに、ESI測定(ポジ)を行った結果、339.058m/zという値が得られ、これはPPh4の339.13m/zと極めて良い一致を見た。
さらに、元素分析を行って得られた結果を示す。
元素分析 for C36H30P2Se2 Anal. Calc. (%) C:63.21, H:4.43, N:0.00、found C:62.43, H:4.28, N:0.05
以上の結果から、黄色固体はPPh4Se2PPh2であると推定される。
[Eu錯体(PPh4 +[Eu(Se2PPh2)4]-)の合成(図4)]
Ph4Se2PPh2(1.0g、1.46mmol)をMeOHとCH2Cl2の混合溶液に溶解させ、あらかじめMeOHに溶かしたEu(NO3)3・6H2O(0.22g、0.49mmol)溶液を加えた後、60℃で4時間反応させた。反応終了後ろ過を行い、ろ液を濃縮させることで黄色の固体を得た。黄色結晶の吸収バンドはEuとSeのMLCT遷移(Metal to Ligand Charge Transfer)に起因するものなので、これは、PPh4 +[Eu(Se2PPh2)4]-(カウンタカチオン:PPh4 +、Eu(III)錯体:[Eu(Se2PPh2)4]-)であることが確認された(図4参照)。
[EuSe結晶の合成(図5)]
窒素により反応装置の置換脱気を行い、溶媒である11gのHDA(常温では固体であり、加熱すると液状となる)に黄色のEu錯体(PPh4 +[Eu(Se2PPh2)4]-)を加え、室温から300℃に加熱し、2時間攪拌させた。反応終了後、n-Hexaneで希釈し、遠心分離機でn-HexaneとMeOHによって洗浄することで青色粉末を得た。
[EuSe結晶の同定]
上記のようにして得た青色粉末に対してX線回折(XRD:X-ray Diffraction)測定を行った結果、EuSe結晶であることが推定された。X線回折測定結果の表を図6に示す。
また、青色粉末の電子回折パターンを測定した結果、EuSeが単結晶として存在していることが確認された。電子回折パターンの測定結果表を図7に示す。
さらに、エネルギー分散型X線分光装置(EDS:Energy-Dispersive X-ray Spectroscopy)を用いて青色粉末の元素分布を見た(図8)ところ、EuとSeが含まれている(Eu:Se=56:44)ことが確認された。
また、青色粉末を透過電子顕微鏡(TEM:Transmission Electron Microscope)によって観察した(図9)ところ、きれいな縞模様が認められ、このことからもEuSeが単結晶として存在していることが確認された。
図9に示すTEM像を基にしてEuSe結晶の粒径分布を測定したところ、図10に示すような結果が得られ、粒径が1〜6nm程度で分布していることが確認された。平均粒径は3.8nmであった。
本発明に係るEuSe結晶は高い分散性を備えるから、各種のマトリックス樹脂原料に所定の濃度で均一に分散させた後、マトリックス樹脂を重合させることによって、光磁気特性に優れた光磁気応答性プラスチックを得ることができる。この製法は、例えば特許文献1に記載されているような、従来より知られているEuO結晶、EuS結晶を含有する光磁気応答性プラスチックの製造方法を利用することができる。また、分散させる媒体はプラスチック(樹脂)以外にも、ガラスであってももちろん構わない。
光磁気応答性プラスチックの作成に好適な光透過性を有する、透明なマトリックス樹脂としては、例えばポリイミド、ポリアミド、ポリメチルメタクリレート、ポリアクリレート、ポリエステル、ポリウレタン、ポリカーボネート、エポキシ樹脂、ポリスチレン、シロキサンポリマー、これらのハロゲン化物もしくは重水素化物、またはこれらを二以上混合した樹脂を利用することができる。
このようにして得た光磁気応答性プラスチックは、常温で、しかも紫外域から赤外域にかけての広い範囲において、ナノサイズEuSe結晶の粒径、量、表面修飾剤に応じた大きさのファラデー効果を示す。上述したように、EuSe結晶のファラデー効果は、EuO結晶やEuS結晶を用いたプラスチックに比べて高いため、本発明のナノサイズEuSe結晶を用いた光磁気応答性プラスチックによれば、従来よりも小型、軽量の光アイソレータを作成することができる。
また、EuSeが有する、反射光の偏光方向が回転するカー効果を利用して、データの書き込みや読み出しが可能な光磁気ディスクを作成することも容易に可能である。
本願発明者らは、本発明のナノサイズEuSe結晶が優れた磁気光学特性を備えていることを明らかにするため、以下の実験を行った。
(PPh4 +)(Se2P(C6H5)2) (0.30g、0.44mmol)をアセトニトリルに溶かした溶液を、Eu(NO3)3・6H2O(0.20g、0.44mmol)をアセトニトリルに溶かした溶液に窒素雰囲気下にて加え、10分間攪拌した。これを330℃、窒素雰囲気下でHDAに加えた。4時間経過後、室温にまで冷却し、遠心分離機でn-Hexaneによって洗浄することで白色粉末を得た。
こうして得たEuSeの白色粉末をPMMA中に分散させることにより、EuSe含有PMMA薄膜を作成した。薄膜の厚みは7.4μmであり、薄膜中のEuSeの濃度は5w%以下であった。この薄膜の紫外・可視領域における吸収スペクトルを図11に示す。一般に、Eu(II)の4f-5d遷移は可視光領域にて観察されるため、ナノサイズのEuSe結晶の電子遷移過程は4f-5d遷移によるものであると考えられる。このEuSeナノ結晶含有PMMA薄膜のファラデー測定スペクトルを図12に示す。ベルデ定数は0.0021(deg・cm-1・Oe-1)であった。
比較のため、上記EuSeナノ結晶含有PMMA薄膜と同濃度(5w%)のEuSナノ結晶含有薄膜を作成し、そのベルデ定数を測定したところ、0.0003(deg・cm-1・Oe-1)であった。この結果より本発明に係るナノサイズEuSe結晶含有薄膜が、知られたナノサイズEuS結晶を含有する薄膜よりも高い磁気光学定数(ベルデ定数)を備えていることが確認された。
以上、本発明に係るナノサイズEuSe結晶及びナノサイズEuSe結晶の製造方法について例を挙げつつ説明を行ったが、上記は一例であって、本発明の精神内において適宜変更、改良を行っても構わないことはもちろんである。

Claims (13)

  1. 一般式
    Figure 0005187633
    (式中、nは1、2、3又は4を表す。Xは酸素原子、硫黄原子、セレン原子、又はテルル原子を表す。R1及びR2は同一又は異なり、芳香族基、芳香族基の誘導体、C1〜C20の飽和結合又は不飽和結合を含むアルキル基、C1〜C20の飽和結合又は不飽和結合を含むアルキル基の誘導体、ヒドロキシル基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基、又はハロゲン原子を表す。)
    で示されるEu(III)錯体を加熱することにより、加熱条件に応じた粒径のナノサイズEuSe結晶を得ることを特徴とするナノサイズEuSe結晶の製造方法。
  2. 請求項1に記載の前記Eu(III)錯体と、カウンタカチオン及び/又は溶媒と、から成る混合物を加熱することにより、加熱条件に応じた粒径のナノサイズEuSe結晶を得ることを特徴とするナノサイズEuSe結晶の製造方法。
  3. 前記Eu(III)錯体が、組成式が[Eu(Se2PPh2)4]-で表されるEu(III)錯体であることを特徴とする請求項1又は2に記載のナノサイズEuSe結晶の製造方法。
  4. 前記カウンタカチオンがPPh4 +であることを特徴とする請求項2又は3に記載のナノサイズEuSe結晶の製造方法。
  5. KSe2PPh2からPPh4Se2PPh2を合成し、該PPh4Se2PPh2からPPh4 +[Eu(Se2PPh2)4]-を合成し、該PPh4 +[Eu(Se2PPh2)4]-を加熱することにより、加熱条件に応じた粒径のナノサイズEuSe結晶を得ることを特徴とするナノサイズEuSe結晶の製造方法。
  6. 一般式
    Figure 0005187633
    (式中、nは1、2、3又は4を表す。Xは酸素原子、硫黄原子、セレン原子、又はテルル原子を表す。R1及びR2は同一又は異なり、芳香族基、芳香族基の誘導体、C1〜C20の飽和結合又は不飽和結合を含むアルキル基、C1〜C20の飽和結合又は不飽和結合を含むアルキル基の誘導体、ヒドロキシル基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基、又はハロゲン原子を表す。)
    で示されるEu(III)錯体を所定の条件で加熱することにより得られることを特徴とするナノサイズEuSe結晶。
  7. 請求項6に記載の前記Eu(III)錯体と、カウンタカチオン及び/又は溶媒と、から成る混合物を所定の条件で加熱することにより得られることを特徴とするナノサイズEuSe結晶。
  8. 前記Eu(III)錯体が、組成式が[Eu(Se2PPh2)4]-で表されるEu(III)錯体であることを特徴とする請求項6又は7に記載のナノサイズEuSe結晶。
  9. 前記カウンタカチオンがPPh4 +であることを特徴とする請求項7又は8に記載のナノサイズEuSe結晶。
  10. 請求項6〜9のいずれかに記載のナノサイズEuSe結晶を所定の樹脂に含有させたことを特徴とする光磁気応答性プラスチック。
  11. 請求項6〜9のいずれかに記載のナノサイズEuSe結晶から成るファラデー回転子を備えることを特徴とする光アイソレータ。
  12. 請求項10に記載の光磁気応答性プラスチックから成るファラデー回転子を備えることを特徴とする光アイソレータ。
  13. 一般式
    Figure 0005187633
    (式中、nは1、2、3又は4を表す。Xは酸素原子、硫黄原子、セレン原子、又はテルル原子を表す。R1及びR2は同一又は異なり、芳香族基、芳香族基の誘導体、C1〜C20の飽和結合又は不飽和結合を含むアルキル基、C1〜C20の飽和結合又は不飽和結合を含むアルキル基の誘導体、ヒドロキシル基、ニトロ基、アミノ基、スルホニル基、シアノ基、シリル基、ホスホン酸基、ジアゾ基、メルカプト基、又はハロゲン原子を表す。)
    で示されるEu(III)錯体。
JP2008503756A 2006-03-09 2007-02-23 ナノサイズEuSe結晶及びナノサイズEuSe結晶の製造方法 Expired - Fee Related JP5187633B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008503756A JP5187633B2 (ja) 2006-03-09 2007-02-23 ナノサイズEuSe結晶及びナノサイズEuSe結晶の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006064890 2006-03-09
JP2006064890 2006-03-09
JP2008503756A JP5187633B2 (ja) 2006-03-09 2007-02-23 ナノサイズEuSe結晶及びナノサイズEuSe結晶の製造方法
PCT/JP2007/000118 WO2007102271A1 (ja) 2006-03-09 2007-02-23 ナノサイズEuSe結晶及びナノサイズEuSe結晶の製造方法

Publications (2)

Publication Number Publication Date
JPWO2007102271A1 JPWO2007102271A1 (ja) 2009-07-23
JP5187633B2 true JP5187633B2 (ja) 2013-04-24

Family

ID=38474713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008503756A Expired - Fee Related JP5187633B2 (ja) 2006-03-09 2007-02-23 ナノサイズEuSe結晶及びナノサイズEuSe結晶の製造方法

Country Status (4)

Country Link
US (1) US8182774B2 (ja)
JP (1) JP5187633B2 (ja)
CN (1) CN101395089B (ja)
WO (1) WO2007102271A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102115145B (zh) * 2010-11-23 2012-06-27 吉林大学 具有荧光和磁性的稀土铕纳米晶的制备方法
WO2012121111A1 (ja) * 2011-03-04 2012-09-13 国立大学法人北海道大学 Eu(II)化合物及び金属を含有する複合ナノ結晶及び複合薄膜
JP5896361B2 (ja) * 2011-03-04 2016-03-30 国立大学法人北海道大学 金属イオンドープEu(II)化合物のナノ結晶及び薄膜
CN111689478B (zh) * 2020-06-11 2022-01-28 黄湛明 一种高纯纳米硒粉制备方法及制备系统
CN112552916A (zh) * 2020-12-29 2021-03-26 江南大学 一种手性硒化铕纳米粒子的合成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371041A (en) * 1964-06-11 1968-02-27 Ibm Process for modifying curie temperature of ferromagnetic lanthanide chalcogen solid solutions compounds
JP2001354417A (ja) * 2000-06-12 2001-12-25 Japan Science & Technology Corp ナノサイズの希土類酸化物又は硫化物及びそれらの光化学反応を用いた製法。
JP2004354927A (ja) * 2003-05-30 2004-12-16 Kansai Tlo Kk ナノサイズのEuO結晶又はEuS結晶を含有する光磁気応答性プラスチック

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3353907A (en) * 1964-10-02 1967-11-21 Ibm Method for producing rare earth chalcogenides
US3418036A (en) * 1964-11-16 1968-12-24 Ibm Magneto-optical rotation device with europium chalcogenide magneto-optical elements
US3770422A (en) * 1971-06-11 1973-11-06 Rockwell International Corp Process for purifying eu and yb and forming refractory compounds therefrom
JP3811142B2 (ja) * 2003-06-24 2006-08-16 株式会社東芝 希土類錯体を用いたled素子及び発光媒体
CN1239674C (zh) * 2003-07-02 2006-02-01 中国科学院上海硅酸盐研究所 一种稀土掺杂的纳米级氧化钇基发光粉体的制备方法
US6972562B1 (en) * 2004-09-22 2005-12-06 The United States Of America As Represented By The United States Department Of Energy Near-field magneto-optical microscope

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3371041A (en) * 1964-06-11 1968-02-27 Ibm Process for modifying curie temperature of ferromagnetic lanthanide chalcogen solid solutions compounds
JP2001354417A (ja) * 2000-06-12 2001-12-25 Japan Science & Technology Corp ナノサイズの希土類酸化物又は硫化物及びそれらの光化学反応を用いた製法。
JP2004354927A (ja) * 2003-05-30 2004-12-16 Kansai Tlo Kk ナノサイズのEuO結晶又はEuS結晶を含有する光磁気応答性プラスチック

Also Published As

Publication number Publication date
CN101395089B (zh) 2011-08-10
CN101395089A (zh) 2009-03-25
JPWO2007102271A1 (ja) 2009-07-23
WO2007102271A1 (ja) 2007-09-13
US20090015919A1 (en) 2009-01-15
US8182774B2 (en) 2012-05-22

Similar Documents

Publication Publication Date Title
Wang et al. Stabilizing the cubic perovskite phase of CsPbI 3 nanocrystals by using an alkyl phosphinic acid
Lü et al. Preparation and characterization of ZnS–polymer nanocomposite films with high refractive index
JP2020041151A (ja) 発光性結晶及びその製造
JP5187633B2 (ja) ナノサイズEuSe結晶及びナノサイズEuSe結晶の製造方法
Ptatschek et al. Quantized aggregation phenomena in II‐VI‐semiconductor colloids
WO2006135387A2 (en) Quantum dots tailored with electronically-active polymers
JP2008535753A (ja) 表面改質ナノ粒子およびその製造方法
CN104411745A (zh) 包含矿物纳米颗粒的液体可聚合组合物及其生产光学物品的用途
Slang et al. Exposure enhanced photoluminescence of CdS 0.9 Se 0.1 quantum dots embedded in spin-coated Ge 25 S 75 thin films
Yang et al. Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: optical and magnetic properties
Ou et al. Molecular structure and magnetic properties of trans-bis (L-methioninato) copper (II), Cu (C5H10NO2S) 2
Cheng et al. ZnS nanoparticles well dispersed in ethylene glycol: coordination control synthesis and application as nanocomposite optical coatings
Eichhöfer et al. Synthesis, structure, and optical properties of new cadmium chalcogenide clusters of the type [Cd10E4 (E'Ph) 12 (PR3) 4],(E, E'= Te, Se, S)
Luo et al. Multivariant ligands stabilize anionic solvent-oriented α-CsPbX 3 nanocrystals at room temperature
KR101014359B1 (ko) 알칼리 토류 설페이트 나노입자의 생산방법
JP2002020740A (ja) 超分岐構造配位子を有する半導体結晶超微粒子
Tsivadze et al. Liquid-crystalline phthalocyanine-based nanostructures
Kedarnath et al. β-Functionalized ethylchalcogenolate complexes of lead (II): synthesis, structures and their conversion into lead chalcogenide nanoparticles
US20110177340A1 (en) Chemical Modification of Nanocrystal Surfaces
Parzyszek et al. Thermomechanically controlled fluorescence anisotropy in thin films of InP/ZnS quantum dots
KR102545807B1 (ko) 철-셀레늄 양자점의 제조방법
Zheng et al. Multistimuli-responsive materials based on a zinc (II) complex with high-contrast and multicolor switching
CN111892088B (zh) 一种以钼多酸为阴离子模板构筑的八十核硫醇银簇材料及其制备方法
KR100616472B1 (ko) 반도체 나노입자 및 그 전구체와 이들의 제조방법
Nath et al. One-step synthesis of highly fluorescent perovskite nanocrystals in antisolvent for bioimaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees