JP5182044B2 - 印刷制御装置、印刷システムおよび印刷制御プログラム - Google Patents

印刷制御装置、印刷システムおよび印刷制御プログラム Download PDF

Info

Publication number
JP5182044B2
JP5182044B2 JP2008306355A JP2008306355A JP5182044B2 JP 5182044 B2 JP5182044 B2 JP 5182044B2 JP 2008306355 A JP2008306355 A JP 2008306355A JP 2008306355 A JP2008306355 A JP 2008306355A JP 5182044 B2 JP5182044 B2 JP 5182044B2
Authority
JP
Japan
Prior art keywords
spectral reflectance
target
printing
color
amount set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008306355A
Other languages
English (en)
Other versions
JP2009171555A (ja
Inventor
淳 星井
隆志 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2008306355A priority Critical patent/JP5182044B2/ja
Priority to US12/317,593 priority patent/US8174730B2/en
Publication of JP2009171555A publication Critical patent/JP2009171555A/ja
Application granted granted Critical
Publication of JP5182044B2 publication Critical patent/JP5182044B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/40Picture signal circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/54Conversion of colour picture signals to a plurality of signals some of which represent particular mixed colours, e.g. for textile printing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/603Colour correction or control controlled by characteristics of the picture signal generator or the picture reproducer
    • H04N1/6052Matching two or more picture signal generators or two or more picture reproducers

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Textile Engineering (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)
  • Color, Gradation (AREA)
  • Image Processing (AREA)

Description

本発明は、印刷制御装置、印刷システムおよび印刷制御プログラムに関し、特にターゲットを再現させるための印刷制御装置、印刷システムおよび印刷制御プログラムに関する。
分光的な再現性に注目した印刷方法が提案されている(特許文献1参照。)。この文献においては、ターゲット画像に分光的かつ測色的に一致するような印刷を行うために、プリンティングモデルを使用し、ターゲットの分光反射率(ターゲットスペクトル)にフィッティングするようにプリンタ色(CMYKOG)の組み合わせを最適化している。このようにすれば、当該プリンタ色(CMYKOG)に基づく印刷を行うことにより、分光的にターゲット画像が再現でき、結果として測色的にも再現性の高い印刷結果を得ることができる。
特表2005−508125号公報
しかしながら、プリンタ等の印刷装置で使用可能なインク等の色材の種類は有限であり、すべての可視波長域においてターゲットの分光反射率を正確に再現することは困難である。そのため、分光反射率のフィッティングが十分な程度までに到達しない場合も発生し、色の再現性が不十分なものに留まってしまうという問題があった。特に、人間の視覚にほとんど寄与しないような波長域についてまで分光反射率をフィッティングしようとしたために、かえって人間の視覚に大きく寄与する波長域での分光反射率の再現精度が低下し、視覚的な再現精度が悪く感じられるという問題があった。
本発明は、前記課題にかんがみてなされたもので、分光的な再現性を確保しつつ視覚的な再現性も確保する印刷制御装置、印刷制御方法および印刷制御プログラムを提供する。
前記課題を解決するために、ターゲット分光反射率取得手段は、ターゲットの分光反射率をターゲット分光反射率として取得する。印刷制御手段は、前記ターゲット分光反射率と前記色材量セットとの対応関係を規定したルックアップテーブルを参照する。これにより、前記ターゲット分光反射率に対応する前記色材量セットを取得し、該色材量セットを前記印刷装置に指定して印刷を実行させる。前記ルックアップテーブルにおいては、前記色材量セットと、当該色材量セットを前記印刷装置に指定して印刷を実行させた場合に前記記録媒体上で再現される分光反射率との近似性が高い前記ターゲット色彩値と、の対応関係が規定される。この近似性の評価においては、波長によって異なる重みが加味されることとなる。
なお、前記ターゲット分光反射率取得手段は、実際に前記ターゲットについての分光反射率測定を行うことにより前記ターゲット分光反射率を取得してもよいし、ユーザー等から前記ターゲット分光反射率の選択を受け付けてもよい。また、前記印刷装置は少なくとも複数の前記色材を前記記録媒体に付着させることができればよく、インクジェットプリンタやレーザープリンタや昇華型プリンタ等の種々の印刷装置に本発明を適用することができる。
また、前記重みの好適な一例として、人間の目の分光感度特性に基づいて設定されるものを適用してもよい。このようにすることにより、人間の分光感度が敏感な波長について優先的に分光反射率を近似させることができ、視覚的に再現精度のよい印刷結果を得ることができる。より具体的な例として、前記重みが3刺激値に対応する各等色関数の線形結合に基づいて設定されるようにしてもよい。このようにすれば、3刺激値に対応する各等色関数に対応する波長域を総合的に重視することが可能な前記重みを設定することができる。
さらに、前記重みが前記ターゲット分光反射率に基づいて設定されてもよい。例えば、前記ターゲット分光反射率が強いスペクトルを有している波長域については、分光反射率の近似性が最終的に視覚に大きく影響すると考えられるため、当該波長域を優先させて近似させることが望ましい。また、前記重みが所定の光源の分光エネルギー分布に基づいて設定されてもよい。所定の光源の分光エネルギー分布に応じて前記重みを設定することにより、光源が強いスペクトルを有している波長域について優先させて近似させることでき、当該光源における視覚的再現性を向上させることができる。また、単一光源のみならず複数光源での再現性を総合的に考慮して、前記重みを複数光源の分光エネルギーの線形結合に基づいて設定されるようにしてもよい。
さらに、本発明の技術的思想は、具体的な印刷制御装置にて具現化されるのみならず、その方法としても具現化することができる。すなわち、上述した印刷制御装置が行う各手段に対応する工程を有する方法としても本発明を特定することができる。むろん、上述した印刷制御装置がプログラムを読み込んで上述した各手段を実現する場合には、当該各手段に対応する機能を実行させるプログラムや当該プログラムを記録した各種記録媒体においても本発明の技術的思想が具現化できることは言うまでもない。なお、本発明の印刷制御装置は、単一の装置のみならず、複数の装置によって分散して存在可能であることはいうまでもない。例えば、印刷制御装置が有する各手段が、パーソナルコンピュータ上で実行されるプリンタドライバと、プリンタの双方において分散することも可能である。また、プリンタ等の印刷装置に本発明の印刷制御装置の各手段を包含させることも可能である。
以下、下記の順序に従って本発明の実施形態を説明する。
1.印刷制御装置の構成:
2.印刷データ生成処理:
3.印刷制御処理:
3−1.1D−LUT作成処理:
3−2.印刷制御データ生成処理:
4.分光プリンティングモデル:
5.変形例:
5−1:変形例1:
5−2:変形例2:
5−3:変形例3:
5−4:変形例4:
5−5:変形例5:
5−6:変形例6:
5−7:変形例7:
5−8:変形例8:
1.印刷制御装置の構成
図1は、本発明の一実施形態にかかる印刷制御装置のハードウェア構成を示している。同図において、印刷制御装置は主にコンピュータ10によって構成されており、コンピュータ10はCPU11とRAM12とROM13とハードディスクドライブ(HDD)14と汎用インターフェイス(GIF)15とビデオインターフェイス(VIF)16と入力インターフェイス(IIF)17とバス18とから構成されている。バス18は、コンピュータ10を構成する各要素11〜17の間でのデータ通信を実現するものであり、図示しないチップセット等によって通信が制御されている。HDD14には、オペレーティングシステム(OS)を含む各種プログラムを実行するためのプログラムデータ14aが記憶されており、当該プログラムデータ14aをRAM12に展開しながらCPU11が当該プログラムデータ14aに準じた演算を実行する。GIF 15は、例えばUSB規格に準じたインターフェイスを提供するものであり、外部のプリンタ20と分光反射率計30をコンピュータ10に接続させている。VIF 16はコンピュータ10を外部のディスプレイ40に接続し、ディスプレイ40に画像を表示するためのインターフェイスを提供する。IIF 17はコンピュータ10を外部のキーボード50aとマウス50bに接続し、キーボード50aとマウス50bからの入力信号をコンピュータ10が取得するためのインターフェイスを提供する。
図2は、コンピュータ10にて実行されるプログラムのソフトウェア構成を概略的なデータの流れとともに示している。同図において、コンピュータ10では、おもにOS P1と見本印刷アプリケーション(APL)P2と1D−LUT生成アプリケーション(LUG)P3aとプリンタドライバ(PDV)P3bと分光反射率計ドライバ(MDV)P4とディスプレイドライバ(DDV)P5が実行されている。OS P1は、各プログラムが使用可能なAPIのひとつとして画像機器インターフェイス(GDI) P1aとスプーラP1bを提供しており、APL P2の要求に応じてGDI P1aが呼び出され、さらにGDI P1aの要求に応じてPDV P3bやDDV P5が呼び出される。GDI P1aはコンピュータ10がプリンタ20やディスプレイ40等の画像出力装置における画像出力を制御するための汎用的な仕組みを提供し、一方のPDV P3bやDDV P5はプリンタ20やディスプレイ40の機種固有の処理等を提供する。また、スプーラP1bは、APL P2やPDV P3bやプリンタ20の間に介在し、ジョブのコントロール等を実行する。APL P2は、見本チャートSCを印刷するためのアプリケーションプログラムであり、RGBビットマップ形式の印刷データPDを生成し、GDI P1aに対して当該印刷データPDを出力する。また、印刷データPDを生成するにあたっては、MDV P4からターゲットの測色データMDを取得する。MDV P4は、APL P2の要求に応じて分光反射率計30を制御し、当該制御によって得られた分光反射率データRDをAPL P2に出力する。
APL P2が生成した印刷データPDはGDI P1aやスプーラP1bを経由してPDV P3bに出力され、PDV P3bが印刷データPDに基づいてプリンタ20に出力可能な印刷制御データCDを生成する処理を実行する。PDV P3bが生成した印刷制御データCDはOS P1が提供するスプーラP1bを介してプリンタ20に出力され、プリンタ20が当該印刷制御データCDに基づく動作を行うことにより見本チャートSCを印刷用紙上に印刷させる。以上においては、全体の処理の流れ概略的に説明したが、以下、フローチャートを用いて各プログラムP1〜P4が実行する処理を詳細に説明する。
2.印刷データ生成処理
図3は、APL P2が実行する印刷データ生成処理の流れを示している。図2に示すようにAPL P2はUI部(UIM)P2aと測定制御部(MCM)P2bと印刷データ生成部(PDG)P2cとから構成されており、これらの各モジュールP2a,P2b,P2cが図3に示す各ステップを実行する。ステップS100においては、UIM P2aがGDI P1aおよびDDV P5を介して、見本チャートSCを印刷させる旨の印刷指示を受け付けるためのUI画面を表示させる。前記UI画面においては、見本チャートSCのテンプレートを示す表示が設けられている。
図4は、前記UI画面の一例を示している。同図において、前記テンプレートTPが表示されており、当該テンプレートTPにはカラーパッチをレイアウトするための12個の枠FL1〜FL12が設けられている。前記UI画面には各枠FL1〜FL12をマウス50bのクリックによって選択することが可能となっており、枠FL1〜FL12をクリックすると分光反射率測定を開始させるか否かを指示するための選択ウィンドウWが表示される。また、前記UI画面においては、見本チャートSCの印刷を実行させるか否かを指示するためのボタンBも設けられている。ステップS110においては、UIM P2aがマウス50bによる各枠FL1〜FL12のクリックが検出し、検出された場合にはステップS120にて分光反射率測定を開始させるか否かを指示するための選択ウィンドウWを表示させる。ステップS130においては選択ウィンドウWにおけるマウス50bのクリックを検出し、キャンセルがクリックされた場合にはステップS110に戻る。一方、分光反射率測定実行がクリックされた場合には、ステップS140においてMCM P2bがMDV P4を介して分光反射率計30にターゲットTGの分光反射率R(λ)としてターゲット分光反射率Rt(λ)の測定を実行させ、当該ターゲット分光反射率Rt(λ)を格納した分光反射率データRDを取得する。
ステップS140におけるターゲット分光反射率Rt(λ)の測定が完了すると、最も標準的な光源であるD65光源を照射したときのCIELAB色空間における色彩値(L***値)を算出する。そして、当該L***値を所定のRGBプロファイルを使用してRGB値に変換し、当該RGB値を表示用RGB値として取得する。なお、RGBプロファイルは絶対色空間としてのCIELAB色空間と本実施形態のRGB色空間との等色関係を規定したプロファイルであり、例えばICCプロファイルを使用することができる。
図5は、ステップS140において、分光反射率データRDから表示用RGB値を算出する様子を模式的に示している。ターゲットTGについてターゲット分光反射率Rt(λ)を測定した結果、図示するようターゲット分光反射率Rt(λ)の分布を示す分光反射率データRDが得られたとする。なお、ターゲットTGは、分光的な再現の目標とする物体表面を意味し、例えば他の印刷装置や塗装装置等で形成した人工的物体表面や、自然物の表面等が該当する。一方、D65光源は図示するような可視波長域において不均一な分光エネルギーP(λ)の分布を有しており、ターゲットTGにD65光源を照射したときの各波長の反射光の分光エネルギーは、ターゲット分光反射率Rt(λ)と分光エネルギーP(λ)を各波長について掛け合わせた値となる。さらに、反射光の分光エネルギーのスペクトルに対して人間の分光感度特性に応じた等色関数x(λ),y(λ),z(λ)をそれぞれ畳み込み積分し、係数kによって正規化することにより、3刺激値X,Y,Zを得る。以上を数式で表すと下記の(1)式となる。
Figure 0005182044
3刺激値X,Y,Zを所定の変換式によって変換することにより、ターゲットTGにD65光源を照射したときの色を示すL***値を得ることができ、さらにRGBプロファイルを使用することにより、表示用RGB値を得ることができる。ステップS145においては、テンプレートTPにおいてクリックされた枠FL1〜FL12を前記表示用RGB値で塗りつぶした表示に更新する。これにより、標準的な光源であるD65光源でのターゲットTGの色をUI画面にて感覚的に把握することが可能となる。ステップS145が完了すると、ステップS150において固有のインデックスを生成するとともに、当該インデックスと、ステップS110にてクリックされた枠FL1〜FL12の位置情報と表示用RGB値を分光反射率データRDに対応付けてRAM12に記憶する。ステップS150が完了すると、ステップS110に戻り、ステップS120〜S150を繰り返して実行する。これにより、他の枠FL1〜FL12を選択し、他の枠FL1〜FL12について他のターゲットTGのターゲット分光反射率Rt(λ)の測定を行うことができる。
本実施形態においては、それぞれ異なる12種類のターゲットTG1〜TG12が用意されており、ターゲットTG1〜TG12のそれぞれについてのターゲット分光反射率Rt(λ)が分光反射率測データRDとして取得されるものとする。従って、ステップS150においては、各枠FL1〜FL12についての分光反射率測データRDと固有のインデックスを対応付けたデータが順次RAMに記憶されていくこととなる。なお、インデックスはそれぞれの値が固有となるように生成されればよく、インクリメントによって生成してもよいし、重複しない乱数によって生成してもよい。
ステップS110において、各枠FL1〜FL12のクリックが検出されない場合には、ステップS160にて見本チャートSCの印刷を実行させる旨のボタンBのクリックを検出し、検出されない場合にはステップS110に戻る。一方、見本チャートSCの印刷を実行させる旨のボタンBのクリックが検出された場合には、ステップS170にてPDG P2cが印刷データPDを生成する。
図6は、印刷データPDの構成を模式的に示している。同図において、印刷データPDはドットマトリクス状に配列した多数の画素によって構成されており、各画素が4バイト(8ビット×4)の情報を有している。印刷データPDは、図4に示したテンプレートTPと同様の画像を示しており、テンプレートTPの各枠FL1〜FL12に対応する領域以外の画素は、テンプレートTPに対応する色のRGB値を有している。RGB各チャネルの階調値はそれぞれ8ビット(256階調)によって表現され、上述した4バイトのうち3バイトがRGB値を格納するために使用される。例えば、テンプレートTPの各枠FL1〜FL12以外の色が(R,G,B)=(128,128,128)の一様な中間グレーで表される場合、印刷データPDにおける各枠FL1〜FL12に対応する領域以外の画素は(R,G,B)=(128,128,128)の色情報を有することとなる。なお、残りの1バイトは使用されない。
一方、テンプレートTPの各枠FL1〜FL12に対応する画素も4バイトの情報を有しており、通常、RGB値が格納される3バイトを使用してインデックスを格納する。このインデックスは、ステップS150にて各枠FL1〜FL12ごとに生成した固有のものであり、PDG P2cはインデックスをRAM12から取得し、各枠FL1〜FL12に対応する画素に対応するインデックスを格納する。このようにインデックスをRGB値の代わりに格納した各枠FL1〜FL12に対応する画素については、残りの1バイトを使用してインデックスが格納された旨のフラグを立てる。これにより、各画素がRGB値を格納しているか、インデックスを格納しているかを判別することができる。本実施形態では、インデックスを格納するために3バイトを使用することができるため、3バイト以下の情報量で表現できるインデックスをステップS150で生成しておく必要がある。以上のようにしてビットマップ形式の印刷データPDが生成できると、ステップS180において、PDG P2cがインデックステーブルIDBを生成する。
図7は、インデックステーブルIDBの一例を示している。同図において、各枠FL1〜FL12に対応して生成された固有のインデックスのそれぞれに対して、測定によって得られたターゲット分光反射率Rt(λ)およびD65光源におけるL***値に対応する表示用RGB値が格納されている。インデックステーブルIDBの生成が完了すると、印刷データPDはGDI P1aやスプーラP1bを経由してPDV P3bに出力される。印刷データPDは、外形上、通常のRGBビットマップ形式と変わらないため、OS P1が提供するGDI P1aやスプーラP1bにおいても通常の印刷ジョブと同様に処理することができる。一方、インデックステーブルIDBは、直接、PDV P3bに出力される。なお、本実施形態においては、インデックステーブルIDBを新たに生成するようにしたが、既存のインデックステーブルIDBにインデックスとターゲット分光反射率Rt(λ)と表示用RGB値の新たな対応関係を追記するようにしてもよい。また、以上の印刷データ生成処理と後述する印刷制御処理は必ずしも同一の装置において連続して実行する必要はなく、印刷データ生成処理と印刷制御処理を例えばLANやインターネット等の通信回線によって接続された複数のコンピュータ上にて個別に実行してもよい。
3.印刷制御処理
図8は、LUG P3aとPDV P3bが実行する印刷制御処理の全体的な流れを示している。1D−LUT生成処理(ステップS200)をLUG P3aが担当し、一方の印刷制御データ生成処理(ステップS300)をPDV P3bが担当する。1D−LUT生成処理は印刷制御データ生成処理に先行して行われてもよいし、1D−LUT生成処理と印刷制御データ生成処理を並行して行うようにしてもよい。
3−1.1D−LUT生成処理
図9は、1D−LUT生成処理の流れを示している。図2に示すようにLUG P3aは、インク量セット算出モジュール(ICM)P3a1と分光反射率予測モジュール(RPM)P3a2と評価値算出モジュール(ECM)P3a3とLUT出力モジュール(LOM) P3a4とから構成されている。ステップS210においては、ICM P3a1がインデックステーブルIDBを取得する。ステップS220においては、インデックステーブルIDBから一つのインデックスを選択し、当該インデックスに対応付けられている分光反射率データRDを取得する。ステップS230においては、ICM P3a1が前記分光反射率データRDが示すターゲット分光反射率Rt(λ)と同様の分光反射率R(λ)が再現可能なインク量セットを算出する処理を行う。その際に、上述したRPM P3a2とECM P3a3を使用する。
図10は、前記分光反射率データRDが示すターゲット分光反射率Rt(λ)と同様の分光反射率R(λ)が再現可能なインク量セットを算出する処理の流れを模式的に示している。RPM P3a2は、ICM P3a1からのインク量セットφの入力に応じて、当該インク量セットφに基づいてプリンタ20が所定の印刷用紙にインクを吐出させたときの分光反射率R(λ)を予測し、当該分光反射率R(λ)を予測分光反射率Rs(λ)としてECM P3a3に出力する。
ECM P3a3は、分光反射率データRDが示すターゲット分光反射率Rt(λ)と予測分光反射率Rs(λ)の差分D(λ)を各波長λについて算出し、各波長λごとに重みが課せられた重み関数w(λ)を当該差分D(λ)に乗算する。この値の二乗平均の平方根を評価値E(φ)として算出する。以上の計算を数式で表すと下記の(2)式のように表すことができる。
Figure 0005182044
前記の(2)式において、Nは波長λの有限区分数を意味する。前記の(2)式において、評価値E(φ)が小さければ小さいほど、各波長λにおけるターゲット分光反射率Rt(λ)と予測分光反射率Rs(λ)の差が少ないということができる。すなわち、評価値E(φ)が小さければ小さいほど、入力したインク量セットφによってプリンタ20が印刷したときに記録媒体上にて再現される分光反射率R(λ)と、対応するターゲットTGから得られたターゲット分光反射率Rt(λ)が近似しているということができる。さらに、前記の(1)式によれば、光源の変動に応じてインク量セットφによってプリンタ20が印刷したときの記録媒体と対応するターゲットTGが示す絶対的な色彩値は双方とも変動するものの、分光反射率R(λ)が近似すれば光源の変動に拘わらず相対的には同じ色に知覚されるということができる。従って、評価値(φ)が小さくなるインク量セットφによれば、あらゆる光源においてターゲットTGと同じ色に知覚される印刷結果を得ることができるということができる。
また、本実施形態において、重み関数w(λ)は下記の(3)式のものを使用する。
Figure 0005182044

前記の(3)式においては、等色関数x(λ),y(λ),z(λ)を加算することにより、重み関数w(λ)が定義されている。なお、前記の(3)式の右辺全体に所定の係数を乗算して、重み関数w(λ)の値の範囲を正規化してもよい。前記の(1)式によれば、等色関数x(λ),y(λ),z(λ)が大きい波長域ほど、色彩値(L***値)に大きく影響するということができる。従って、等色関数x(λ),y(λ),z(λ)を加算した重み関数w(λ)を使用すれば、色への影響が大きい波長域を重視した二乗誤差が評価可能な評価値E(φ)を得ることができる。例えば、人間の目に知覚されない近紫外波長域においてはw(λ)が0となり、当該波長域における差分D(λ)は評価値E(φ)の増大に寄与しないこととなる。
すなわち、必ずしも全可視波長域においてターゲット分光反射率Rt(λ)と予測分光反射率Rs(λ)との差が小さくなくても、人間の目に特に強く知覚される波長域においてターゲット分光反射率Rt(λ)と予測分光反射率Rs(λ)とが似ていれば小さい値の評価値E(φ)を得ることができ、人間の目に知覚に即した分光反射率R(λ)の近似性の指標として評価値E(φ)を使用することができる。算出された評価値E(φ)はICM P3a1に返される。すなわち、ICMP 3a1が任意のインク量セットφをRPM P3a2とECM P3a3に出力することにより、最終的に評価値E(φ)がICM P3a1に返される構成となっている。ICM P3a1は任意のインク量セットφに対応して評価値E(φ)を得ることを繰り返し実行することにより、目的関数としての評価値E(φ)が極小化するようなインク量セットφの最適解を算出する。この最適解を算出する手法としては、例えば勾配法といった非線形最適化手法を用いることができる。
図11は、ステップS230においてインク量セットφが最適化されていく様子を模式的に示している。同図において、インク量セットφが最適化されていくにつれて、インク量セットφで印刷を行った場合の予測分光反射率Rs(λ)がターゲット分光反射率Rt(λ)に近づいていく。また、重み関数w(λ)を使用することにより、等色関数x(λ),y(λ),z(λ)が大きい波長域ほど、予測分光反射率Rs(λ)のターゲット分光反射率Rt(λ)への拘束が強くなっており、予測分光反射率Rs(λ)がターゲット分光反射率Rt(λ)の差が小さくなっている。このように、等色関数x(λ),y(λ),z(λ)が大きく、視覚に大きく影響する波長域について優先的に予測分光反射率Rs(λ)をターゲットTGのターゲット分光反射率Rt(λ)に拘束することができるため、任意の光源を照射したときの見た目が近くなるようなインク量セットφを算出することができる。以上により、いずれの光源においてもターゲットTGと似たような見た目をプリンタ20にて再現させることが可能なインク量セットφを算出することができる。なお、最適化の終了条件は、インク量セットφ更新の繰り返し回数としてもよいし、評価値E(φ)の閾値としてもよい。
以上のようにして、ステップS230においてICM P3a1がターゲットTGと同様の分光反射率R(λ)が再現可能なインク量セットφを算出すると、ステップS240においてインデックステーブルIDBに記述されたインデックスのすべてがステップS220にて選択されたか否かを判定し、すべて選択されていない場合にはステップS220に戻り、次のインデックスを選択する。このようにすることにより、すべてのインデックスについてターゲットTGと同様の色が再現可能なインク量セットφを算出することができる。すなわち、印刷データ生成処理(図2)のステップS140において測色を行ったすべてのターゲットTG1〜TG12についてターゲットTG1〜TG12と同様の分光反射率R(λ)が再現可能なインク量セットφを算出することができる。ステップS240において、すべてのインデックスについて最適なインク量セットφが算出されたことが判定されると、ステップS250において、LOM P3a4が1D−LUTを生成し、当該1D−LUTをPDV P3bに出力する。
図12は、1D−LUTの一例を示している。同図において、各インデックスに対応して最適なインク量セットφが格納されている。すなわち、各ターゲットTG1〜TG12について、各ターゲットTG1〜TG12と似たような見た目をプリンタ20にて再現させることが可能なインク量セットφを記述した1D−LUTを用意することができる。1D−LUTをPDV P3bに出力すると、1D−LUT生成処理が完了し、次の印刷制御データ生成処理(ステップS300)を実行させる。
3−2.印刷制御データ生成処理
図13は、印刷制御データ生成処理の流れを示している。図2に示すようにPDV P3bは、モード判別モジュール(MIM)P3b1とインデックス変換モジュール(ISM)P3b2とRGB変換モジュール(CSM)P3b3とハーフトーンモジュール(HTM)P3b4とラスタ化モジュール(RTM)P3b5とから構成されている。ステップS310においては、モード判別モジュール(MIM)P3b1が印刷データPDを取得する。ステップS320において、MIM P3b1は印刷データPDから一の画素を選択する。ステップS330において、MIM P3b1は当該選択した画素にインデックスが格納された旨のフラグが立っているか否かを判定する。当該フラグが立っていないと判定された場合には、ステップS340にてCSM P3b3が3D−LUTを参照して、当該画素についての色変換を実行する。
図14は、3D−LUTの一例を示している。同図において、3D−LUTはRGB値とインク量セットφ(d,d,d,d,dlc,dlm)との対応関係が色空間における複数の代表的な座標について記述されたテーブルであり、CSM P3b3は3D−LUTを参照して当該画素が有するRGB値に対応するインク量セットφを取得する。その際に、3D−LUTに直接記述されていないRGB値については補間演算を行うことにより、対応するインク量セットφを取得する。なお、3D−LUTの作成方法として、特開2006−82460号公報等を採用することができる。当該公報においては、特定光源における色の再現性や、再現色の階調性や、粒状性や、再現色の光源非依存性や、ガマットや、インクデューティが総合的に良好となる3D−LUTが作成される。
一方、ステップS330において、選択した画素にインデックスが格納された旨のフラグが立っていると判定された場合には、ステップS350にてISM P3b2が1D−LUTを参照して、当該画素についての色変換を実行する。すなわち、インデックスが格納された旨のフラグが立っている画素から、インデックスを取得するとともに、1D−LUTにて当該インデックスに対応付けられているインク量セットφを取得する。ステップS340またはステップS350のいずれかにおいて、当該画素についてのインク量セットφが取得できると、ステップS360においてすべての画素についてインク量セットφが取得できたか否かを判定する。ここでインク量セットφが未取得の画素が残っている場合には、ステップS320に戻り次の画素を選択する。
以上の処理を繰り返して実行することにより、すべての画素についてインク量セットφを取得することができる。すべての画素についてインク量セットφが取得できると、すべての画素がインク量セットφで表現された印刷データPDに変換されたこととなる。以上のように各画素について1D−LUTと3D−LUTのいずれを使用するかを判定することにより、インデックスが格納された枠F1〜F12に対応する画素については、各光源において各ターゲットTG1〜TG12に近い色が再現可能なインク量セットφを取得することができるとともに、RGB値が格納された画素については3D−LUTの作成指針(例えば、粒状性を重視する等。)に基づく色再現が可能なインク量セットφを取得させることができる。
ステップS370においては、各画素がインク量セットφで表現された印刷データPDをHTM P3b4が取得し、ハーフトーン処理を実行する。HTM P3b4はハーフトーン処理をするにあたっては公知のディザ法や誤差拡散法等を使用することができる。ハーフトーン処理が完了した印刷データPDにおいては、各画素が各インクを吐出させるか否を示す吐出信号を有している。ステップS380では、ハーフトーン処理が完了した印刷データPDをRTM P3b5が取得し、当該印刷データPDにおける吐出信号をプリンタ20が有する印刷ヘッドの各走査パスおよび各ノズルに割り振る処理を実行する。以上によりプリンタ20に出力可能な印刷制御データCDが生成でき、プリンタ20の制御に必要な信号を添付した印刷制御データCDをスプーラP1bおよびプリンタ20に出力する。これによりプリンタ20が印刷用紙上にインクを吐出して、見本チャートSCを形成する。
以上のようにして印刷用紙上に形成された見本チャートSCの枠FL1〜FL12に対応する領域において、各ターゲットTG1〜TG12のターゲット分光反射率Rt(λ)を再現することができる。すなわち、枠FL1〜FL12に対応する領域は、ターゲットTG1〜TG12の複数光源下での色に追従するようなインク量セットφで印刷されているため、各光源下においてターゲットTG1〜TG12と似たような色を再現することができる。例えば、見本チャートSCを室内で視認したときの各枠FL1〜FL12に対応する領域の色はターゲットTG1〜TG12を室内で視認したときの色を再現するし、見本チャートSCを室外で視認したときの各枠FL1〜FL12に対応する領域の色もターゲットTG1〜TG12を室外で視認したときの色を再現することができる。
なお、究極的には、ターゲットTG1〜TG12と完全に同じ分光反射率R(λ)を有する見本チャートSCを再現すれば、いかなる光源においてもターゲットTG1〜TG12と同様の色を再現することができる。しかしながら、プリンタ20が使用可能なインク(色材の種類)はCMYKlclmに限られているため、ターゲットTG1〜TG12と完全に同じ分光反射率R(λ)が再現可能なインク量セットφを求めることは実質的に不可能である。また、知覚色に影響しない波長域についてもターゲットTG1〜TG12と同様な分光反射率R(λ)が再現可能なインク量セットφを求めても、視覚的な再現精度の実現においては無駄となる。これに対して、本発明では、等色関数x(λ),y(λ),z(λ)に基づく重み付けを行った評価値E(φ)を利用してターゲット分光反射率Rt(λ)への近似性を評価しているため、視覚的に十分な精度が達成可能なインク量セットφを求めることができる。
一方、印刷用紙上に形成された見本チャートSCの枠FL1〜FL12に対応する領域においては、上述した3D−LUTに基づいたインク量セットφによって印刷がなされることとなる。そのため、当該領域についての印刷パフォーマンスは3D−LUTに基づくものとなる。上述したとおり本実施形態においては枠FL1〜FL12以外の領域は中間グレーの一様な画像を示すが、当該領域において3D−LUTが目標とする印刷パフォーマンスを満足させることができる。すなわち、再現色の階調性や、粒状性や、再現色の光源非依存性や、ガマットや、インクデューティが総合的に良好となる印刷を実現することができる。
4.分光プリンティングモデル
図15は、本実施形態のプリンタ20の印刷方式を模式的に示している。同図において、プリンタ20は、CMYKlclmのインクごとに複数のノズル21a,21a・・・を備えた印刷ヘッド21を備えており、ノズル21a,21a・・・が吐出するCMYKlclmのインクごとのインク量を上述したインク量セットφ(dc,dm,dy,dk,dlc,dlm)によって指定された量とする制御が印刷制御データCDに基づいて行われる。各ノズル21a,21a・・・が吐出したインク滴は印刷用紙上において微細なドットとなり、多数のドットの集まりによってインク量セットφ(dc,dm,dy,dk,dlc,dlm)に応じたインク被覆率の印刷画像が印刷用紙上に形成されることとなる。
RPM P3a2が使用する予測モデル(分光プリンティングモデル)は、本実施形態のプリンタ20で使用され得る任意のインク量セットφ(dc,dm,dy,dk,dlc,dlm)で印刷を行った場合の分光反射率R(λ)を予測分光反射率Rs(λ)として予測するための予測モデルである。分光プリンティングモデルにおいては、インク量空間における複数の代表点について実際にカラーパッチを印刷し、その分光反射率R(λ)を分光反射率計によって測定することにより得られた分光反射率データベースRDBを用意する。そして、この分光反射率データベースRDBを使用したセル分割ユール・ニールセン分光ノイゲバウアモデル(Cellular Yule-Nielsen Spectral Neugebauer Model)による予測を行うことにより、正確に任意のインク量セットφ(dc,dm,dy,dk,dlc,dlm)で印刷を行った場合の分光反射率R(λ)を予測する。
図16は、分光反射率データベースRDBを示している。同図に示すように分光反射率データベースRDBはインク量空間(本実施形態では6次元であるが、図の簡略化のためCM面のみ図示。)における複数の格子点のインク量セットφ(dc,dm,dy,dk,dlc,dlm)について実際に印刷/測定をして得られた分光反射率R(λ)が記述されたルックアップテーブルとなっている。例えば、各インク量軸を分割する5グリッドの格子点を発生させる。ここでは513個もの格子点が発生し、膨大な量のカラーパッチの印刷/測定をすることが必要となるが、実際にはプリンタ20にて同時に搭載可能なインク数や同時に吐出可能なインクデューティの制限があるため、印刷/測定をする格子点の数は絞られることとなる。
さらに、一部の格子点のみ実際に印刷/測定をし、他の格子点については実際に印刷/測定を行った格子点の分光反射率R(λ)に基づいて分光反射率R(λ)を予測することにより、実際に印刷/測定を行うカラーパッチの個数を低減させてもよい。分光反射率データベースRDBは、プリンタ20が印刷可能な印刷用紙ごとに用意されている必要がある。厳密には、分光反射率R(λ)は印刷用紙上に形成されたインク膜(ドット)による分光透過率と印刷用紙の反射率によって決まるものであり、印刷用紙の表面物性(ドット形状が依存)や反射率の影響を大きく受けるからである。次に、分光反射率データベースRDBを使用したセル分割ユール・ニールセン分光ノイゲバウアモデルによる予測を説明する。
RPM P3a2は、ICM P3a1の要請に応じて分光反射率データベースRDBを使用したセル分割ユール・ニールセン分光ノイゲバウアモデルによる予測を実行する。この予測にあたっては、ICM P3a1から予測条件を取得し、この予測条件を設定する。具体的には、印刷用紙やインク量セットφを印刷条件として設定する。例えば、光沢紙を印刷用紙として予測を行う場合には、光沢紙にカラーパッチを印刷することにより作成した分光反射率データベースRDBが設定される。
分光反射率データベースRDBの設定ができると、ICM P3a1から入力されたインク量セットφ(dc,dm,dy,dk,dlc,dlm)を分光プリンティングモデルに適用する。セル分割ユール・ニールセン分光ノイゲバウアモデルは、よく知られた分光ノイゲバウアモデルとユール・ニールセンモデルとに基づいている。なお、以下の説明では、説明の簡略化のためCMYの3種類のインクを用いた場合のモデルについて説明するが、同様のモデルを本実施形態のCMYKlclmを含む任意のインクセットを用いたモデルに拡張することは容易である。また、セル分割ユール・ニールセン分光ノイゲバウアモデルについては、Color Res Appl 25, 4-19, 2000およびR Balasubramanian, Optimization of the spectral Neugebauer model for printer characterization, J. Electronic Imaging 8(2), 156-166 (1999)を参照。
図17は、分光ノイゲバウアモデルを示す図である。分光ノイゲバウアモデルでは、任意のインク量セット(dc,dm,dy)で印刷したときの印刷物の予測分光反射率Rs(λ)は、以下の(4)式で与えられる。
Figure 0005182044
ここで、aiはi番目の領域の面積率であり、Ri(λ)はi番目の領域の分光反射率である。添え字iは、インクの無い領域(w)と、シアンインクのみの領域(c)と、マゼンタインクのみの領域(m)と、イエローインクのみの領域(y)と、マゼンタインクとイエローインクが吐出される領域(r)と、イエローインクとシアンインクが吐出される領域(g)と、シアンインクとマゼンタインクが吐出される領域(b)と、CMYの3つのインクが吐出される領域(k)をそれぞれ意味している。また、fc,fm,fyは、CMY各インクを1種類のみ吐出したときにそのインクで覆われる面積の割合(「インク被覆率(Ink area coverage)」と呼ぶ)である。
インク被覆率fc,fm,fyは、図17(B)に示すマーレイ・デービスモデルで与えられる。マーレイ・デービスモデルでは、例えばシアンインクのインク被覆率fcは、シアンのインク量dcの非線形関数であり、例えば1次元ルックアップテーブルによってインク量dcをインク被覆率fcに換算することができる。インク被覆率fc,fm,fyがインク量dc,dm,dyの非線形関数となる理由は、単位面積に少量のインクが吐出された場合にはインクが十分に広がるが、多量のインクが吐出された場合にはインクが重なり合うためにインクで覆われる面積があまり増加しないためである。他の種類のMYインクについても同様である。
分光反射率に関するユール・ニールセンモデルを適用すると、前記(4)式は以下の(5a)式または(5b)式に書き換えられる。
Figure 0005182044

ここで、nは1以上の所定の係数であり、例えばn=10に設定することができる。前記の(5a)式および(5b)式は、ユール・ニールセン分光ノイゲバウアモデル(Yule-Nielsen Spectral Neugebauer Model)を表す式である。
本実施形態で採用するセル分割ユール・ニールセン分光ノイゲバウアモデル(Cellular Yule-Nielsen Spectral Neugebauer Model)は、上述したユール・ニールセン分光ノイゲバウアモデルのインク量空間を複数のセルに分割したものである。
図18(A)は、セル分割ユール・ニールセン分光ノイゲバウアモデルにおけるセル分割の例を示している。ここでは、説明の簡略化のために、CMインクのインク量dc,dmの2つの軸を含む2次元インク量空間でのセル分割を描いている。なお、インク被覆率fc,fmは上述したマーレイ・デービスモデルにてインク量dc,dmと一意の関係にあるため、インク被覆率fc,fmを示す軸と考えることもできる。白丸は、セル分割のグリッド点(「格子点」と呼ぶ)であり、2次元のインク量(被覆率)空間が9つのセルC1〜C9に分割されている。各格子点に対応するインク量セット(dc,dm)は、分光反射率データベースRDBに規定された格子点に対応するインク量セットとされている。すなわち、上述した分光反射率データベースRDBを参照することにより、各格子点の分光反射率R(λ)を得ることができる。従って、各格子点の分光反射率R(λ)00,R(λ)10,R(λ)20・・・R(λ)33は、分光反射率データベースRDBから取得することができる。
実際には、本実施形態ではセル分割もCMYKlclmの6次元インク量空間で行うとともに、各格子点の座標も6次元のインク量セットφ(dc,dm,dy,dk,dlc,dlm)によって表される。そして、各格子点のインク量セットφ(dc,dm,dy,dk,dlc,dlm)に対応する格子点の分光反射率R(λ)が分光反射率データベースRDB(例えば光沢紙のもの)から取得されることとなる。
図18(B)は、セル分割モデルにて使用するインク被覆率fcとインク量dcとの関係を示している。ここでは、1種類のインクのインク量の範囲0〜dcmaxも3つの区間に分割されており、各区間毎に0から1まで単調に増加する非線形の曲線によってセル分割モデルにて使用する仮想的なインク被覆率fcが求められる。他のインクについても同様にインク被覆率fm,fyが求められる。
図18(C)は、図18(A)の中央のセルC5内にある任意のインク量セット(dc,dm)にて印刷を行った場合の予測分光反射率Rs(λ)の算出方法を示している。インク量セット(dc,dm)にて印刷を行った場合の分光反射率R(λ)は、以下の(6)式で与えられる。
Figure 0005182044

ここで、(6)式におけるインク被覆率fc,fmは図18(B)のグラフで与えられる値である。また、セルC5を囲む4つの格子点に対応する分光反射率R(λ)11,(λ)12,(λ)21,(λ)22は分光反射率データベースRDBを参照することにより取得することができる。これにより、(6)式の右辺を構成するすべての値を確定することができ、その計算結果として任意のインク量セットφ(dc,dm)にて印刷を行った場合の予測分光反射率Rs(λ)を算出することができる。波長λを可視波長域にて順次シフトさせていくことにより、可視波長域における予測分光反射率Rs(λ)を得ることができる。インク量空間を複数のセルに分割すれば、分割しない場合に比べて予測分光反射率Rs(λ)をより精度良く算出することができる。以上のようにして、RPM P3a2がICM P3a1の要請に応じて予測分光反射率Rs(λ)を予測することができる。
5.変形例
5−1:変形例1
図19は、変形例においてECM P3a3が設定する重み関数w(λ)を模式的に示している。同図において、ターゲットTGから得られたターゲット分光反射率Rt(λ)が示されており、当該ターゲット分光反射率Rt(λ)と各等色関数x(λ),y(λ),z(λ)との相関係数cx,cy,czがECM P3a3によって算出されている。そして、下記の(7)式によって本変形にかかる重み関数w(λ)を算出する。
Figure 0005182044

前記の(7)式においては、ターゲットTGから得られたターゲット分光反射率Rt(λ)との相関が高い等色関数x(λ),y(λ),z(λ)ほど線形結合の際の重みが大きくなるようにされている。以上のようにして得られた重み関数w(λ)においては、ターゲットTGのターゲット分光反射率Rt(λ)が大きい波長域についての重みを強調することができる。従って、各光源下での反射光の分光エネルギーのスペクトルが強くなりがちな波長域を重視した評価値E(φ)を得ることができる。すなわち、特にターゲットTGのターゲット分光反射率Rt(λ)が大きい波長域については、ターゲットTGのターゲット分光反射率Rt(λ)と予測分光反射率Rs(λ)とのずれを許容しないようなインク量セットφの最適解を得ることができる。むろん、重み関数w(λ)は各等色関数x(λ),y(λ),z(λ)に由来しているため、人間の知覚に適合した評価値E(φ)を得ることができる。
5−2:変形例2
図20は、別の変形例においてECM P3a3が設定する重み関数w(λ)を模式的に示している。同図において、ターゲットTGから得られたターゲット分光反射率Rt(λ)をそのまま重み関数w(λ)として適用している。このようにすることによっても、特にターゲットTGのターゲット分光反射率Rt(λ)が大きい波長域についてターゲットTGの分光反射率R(λ)とターゲット分光反射率Rt(λ)とのずれを許容しないようなインク量セットφの最適解を得ることができる。
5−3:変形例3
図21は、別の変形例においてECM P3a3が設定する重み関数w(λ)を模式的に示している。同図において、5種類(標準昼光系のD50光源,D55光源,D65光源、白熱電球系のA光源、蛍光ランプ系のF11光源)の各光源の分光エネルギーP D50(λ),P D55(λ),P D65(λ),PA(λ),P F11(λ)が示されている。本変形例においては、下記の(8)式によって、これらの分光エネルギーP D50(λ),P D55(λ),P D65(λ),PA(λ),P F11(λ)を線形結合することにより重み関数w(λ)を算出する。
Figure 0005182044
前記の(8)式において、w1〜w5は各光源についての重みを設定する重み係数である。このように、光源の分光エネルギー分布P D50(λ),P D55(λ),P D65(λ),PA(λ),P F11(λ)に由来する重み関数w(λ)を設定することにより、各光源下での反射光の分光エネルギーのスペクトルが強くなりがちな波長域を重視した評価値E(φ)を得ることができる。また、重み係数w1〜w5を調整することも可能である。例えば全光源における色の再現性をバランスよく確保したい場合にはw1=w2=w3=w4=w5とすればよいし、人工光源における色の再現性を重視したい場合にはw1,w2,w3<w4,w5とすればよい。
5−4:変形例4
図22は、変形例においてディスプレイ40に表示されるUI画面を示している。同図において、UI画面において複数のターゲット分光反射率Rt(λ)のグラフが表示されている。このようなUI画面を表示させることにより、ユーザーがステップS140においてターゲットTGのターゲット分光反射率Rt(λ)を測定する代わりに、所望の波形のグラフをターゲットTGのターゲット分光反射率Rt(λ)として選択することができる。このようにすることにより、実際に分光反射率測定をしなくてもターゲット分光反射率Rt(λ)を設定することができる。むろん、グラフの波形をユーザーが直接編集できるようにしてもよい。例えば、新規の物体表面の開発を行う際に目標とするターゲット分光反射率Rt(λ)に編集しておけば、実際に物体表面を試作することなく、目標とするターゲット分光反射率Rt(λ)を有する見本チャートSCをプリンタ20によって印刷させることができる。
5−5:変形例5
図23は、変形例にかかる評価値(φ)を模式的に説明している。同図において、ターゲットTGのターゲット分光反射率Rt(λ)に対して前記5種類の光源を照射したときの色彩値(ターゲット色彩値)を上述した(1)式,図5によって算出する。一方、RPM P3a2が予測した予測分光反射率Rs(λ)に対して前記5種類の光源を照射したときの色彩値(予測色彩値)も上述した(1)式(Rt(λ)をRs(λ)に置き換えて使用),図5によって算出する。そして、各光源におけるターゲット色彩値と予測色彩値の色差ΔE(ΔE2000)をCIE DE2000の色差式に基づいて算出する。そして、各光源についての色差ΔEをΔE D50,ΔE D55,ΔE D65,ΔEA,ΔE F11とし、下記の(9)式によって評価値E(φ)を算出する。
Figure 0005182044

前記の(2)式において、w1〜w5は各光源の重みを設定する重み係数であり、上述した変形例3の重み係数w1〜w5とほぼ同様の性質を有する。ここでも全光源における色の再現性をバランスよく確保したい場合にはw1=w2=w3=w4=w5とすればよいし、人工光源における色の再現性を重視したい場合にはw1,w2,w3<w4,w5とすればよい。
5−6:変形例6
なお、上述した実施形態において選択されていない枠Fに対応する領域については、枠F以外の領域と同じ色で印刷を行うようにすればよい。むろん、選択されていない枠Fに対応する領域については、分光的な再現性を要求する必要がないため、枠F以外の領域と同様に3D−LUTを使用した色変換を行わせるようにすればよい。さらに、ターゲットTGが指定された枠Fに対応する領域以外において、模様や文字やマーク等を印刷するようにしてもよい。例えば、ターゲットTGが指定された枠Fの付近に、ターゲットTGがどのようなものであるかを示す文字が記載できるようにしてもよい。
5−7.変形例7
図24〜図25は、本発明の変形例にかかる印刷システムのソフトウェア構成を示している。図24に示すように、上述した実施形態のLUG P3aに相当する構成がPDV P3bの内部モジュール(1D−LUT作成部)として備えられていてもよい。また、図25に示すように、上述した実施形態のLUG P3aに相当する構成が他のコンピュータ110において実行されてもよい。この場合、コンピュータ10とコンピュータ110とが所定の通信インターフェイスCIFによって接続され、コンピュータ110のLUG P3aにて生成された1D―LUTが通信インターフェイスCIFを介してコンピュータ10に送信される。通信インターフェイスCIFは、インターネットを介在するものであってもよい。その場合、コンピュータ10はインターネット上のコンピュータ110から取得した1D−LUTを参照して色変換を行うことができる。さらに、プリンタ20が各ソフトウェア構成P1〜P5を実行するようにしてもよい。むろん、ソフトウェア構成P1〜P5と同等の処理を実行するハードウェアがプリンタ20に組み込まれる場合にも、本発明を実現することができる。
5−8.変形例8
図26A、図26Bは、本変形例にかかるUI画面(ステップS100において表示)を示している。前実施形態においては、ターゲット分光反射率Rt(λ)を実際に測定し、当該ターゲット分光反射率Rt(λ)とインデックスとを対応付けたインデックステーブルが用意されるようにしたが、予め多数のインデックスとターゲット分光反射率Rt(λ)とが登録されたインデックステーブルが用意されていてもよい。本変形例では、塗料メーカーが製造する各塗料について与えられたインデックスと、各塗料の塗布表面を測定したターゲット分光反射率Rt(λ)との対応関係を登録したインデックステーブルが予め用意されているものとする。当該インデックステーブルにおいては、上述した実施形態と同様に表示用RGB値も登録されている。インデックステーブルが予め用意されている場合、ステップS100では、見本チャートSCに再現したい塗料(インデックス)を選択するための処理がAPL P2によって行われる。
まず、図26Aに示すように、複数のサンプル画像データとユーザー画像データのサムネイルを一覧表示する。サンプル画像データは予めHDD 14に記憶された画像データであり、ユーザー画像データはデジタルスチルカメラ等の画像入力機器から取り込まれた画像データであり、ユーザー画像データ追加ボタンをクリックすることにより、追加することができる。また、インターネット上からダウンロードした画像データをユーザー画像データとして使用するようにしてもよい。各サムネイルはマウス50bによってクリックすることが可能であり、最後にクリックされたサムネイルには枠が表示される。図26AのUI画面においては決定ボタンが設けられており、決定ボタンをクリックすることにより、枠が表示されているサムネイルに対応するユーザー画像データまたはサンプル画像データの選択が確定される。
選択が確定すると、図26BのUI画面に移行する。当該UI画面においては、確定したユーザー画像データまたはサンプル画像データの拡大サムネイルが表示される。図26BのUI画面においては、手動選択ボタンと自動選択ボタンとが設けられている。手動選択ボタンをクリックすると、拡大サムネイル上にマウスポインタを表示し、ドラッグ&ドロップによりユーザーが所望する矩形状の指定領域の左上隅と右下隅の指定を受け付ける。すると、APL P2が指定された矩形領域に属する各画素をディスプレイ40に表示するためのRGB値をDDV P5に対して問い合わせる。DDV P5は、ディスプレイ40に対して拡大サムネイルの各画素を表示するためのRGB値を出力しており、指定領域に属する各画素のRGB値を特定することができる。指定領域に属する各画素のRGB値が得られると、APL P2が各画素のRGB値を平均し、当該平均値を指定RGB値とする。一方、自動選択ボタンをクリックすると、APL P2は拡大サムネイルの全画素のRGB値をDDV P5を取得し、これらのなかから最も代表的なRGB値を指定RGB値とする。例えば、拡大サムネイルの全画素のRGB値のヒストグラムを作成し、最も度数が大きいRGB値を指定RGB値としてもよい。以上のようにして指定RGB値が得られると、当該指定RGB値に最も近い表示用RGB値をインデックステーブルにおいて検索する。ここでは、指定RGB値と各表示用RGB値のRGB空間におけるユークリッド距離が最も小さくなるインデックスを検索する。指定RGB値とのユークリッド距離が最も小さい表示用RGB値を最近似RGB値と表記する。次に、公知の変換式により各表示用RGB値(最近似RGB値も含めて)をHSV値に変換する。
図27は、各表示用RGB値をHSV値に変換したものを、HSV空間においてプロットした様子を示している。同図において、最近似RGB値を変換したHSV値を点Q0で示している。HSV空間において、最近似RGB値を変換したHSV値(Q0)の色相角(H値)に対して±5度以内の断面扇形状の空間を特定する。すなわち、色相角が最近似RGB値に近似する空間を特定する。次に、明度軸(V軸)と彩度軸(S軸)に対して45度で交差する2本の補助軸SAを生成し、当該補助軸SAによって区切られた第1〜第4領域AR1〜AR4を定義する。第1領域AR1は、最近似RGB値と色相角Hが近く、かつ、最近似RGB値より明度Vが大きい特性を有する。また、第2領域AR2は、最近似RGB値と色相角Hが近く、かつ、最近似RGB値より彩度Sがわずかに小さい特性を有する。第3領域AR3は、最近似RGB値と色相角Hが近く、かつ、最近似RGB値より明度Vが小さい特性を有する。第4領域AR4は、最近似RGB値と色相角Hが近く、かつ、最近似RGB値より彩度Sが大きい特性を有する。
第1領域AR1に属し、かつ、点Q0の明度Vに最も近い明度Vを有するHSV値に対応する表示用RGB値(第1近似RGB値、HSV空間において点Q1と表記。)をインデックステーブルにおいて検索する。同様に、第3領域AR3に属し、かつ、点Q0の明度Vに最も近い明度Vを有するHSV値に対応する表示用RGB値(第3近似RGB値、HSV空間において点Q3と表記。)をインデックステーブルにおいて検索する。第1近似RGB値は、最近似RGB値に対して、色相角Hが近似し、かつ、最近似RGB値よりわずかに明度Vが大きいものであると言うことができる。反対に、第3近似RGB値は、最近似RGB値に対して、色相角Hが近似し、かつ、わずかに明度Vが小さいものであると言うことができる。次に、第2領域AR2に属し、かつ、点Q0の彩度Sに最も近い彩度Sを有するHSV値に対応する表示用RGB値(第2近似RGB値、HSV空間において点Q2と表記。)をインデックステーブルにおいて検索する。同様に、第4領域AR4に属し、かつ、点Q0の彩度Sに最も近い彩度Sを有するHSV値に対応する表示用RGB値(第4近似RGB値、HSV空間において点Q4と表記。)をインデックステーブルにおいて検索する。第2近似RGB値は、最近似RGB値に対して、色相角Hが近似し、かつ、最近似RGB値よりわずかに彩度Sが小さいものであると言うことができる。反対に、第4近似RGB値は、最近似RGB値に対して、色相角Hが近似し、かつ、わずかに彩度Sが小さいものであると言うことができる。
さらに、図27に示すように、HSV空間において、最近似RGB値を変換したHSV値(Q0)の明度Vおよび彩度Sに対して±5以内となる明度Vおよび彩度Sとなる円環状空間を特定する。すなわち、明度Vおよび彩度Sが最近似RGB値に近似する空間を特定する。次に、当該円環状空間のうち最近似RGB値を変換したHSV値よりも色相角Hが大きい領域を第5領域AR5とし、色相角Hが小さい領域を第6領域AR6とする。そして、第5領域AR5に属し、かつ、点Q0に最も近い色相角Hを有するHSV値に対応する表示用RGB値(第5近似RGB値、HSV空間において点Q5と表記。)をインデックステーブルにおいて検索する。同様に、第6領域AR6に属し、かつ、点Q0に最も近い色相角Hを有するHSV値に対応する表示用RGB値(第6近似RGB値、HSV空間において点Q6と表記。)をインデックステーブルにおいて検索する。第5近似RGB値は、最近似RGB値に対して、明度Vと彩度Sが近似し、かつ、最近似RGB値よりわずかに色相角Hが大きいものであると言うことができる。反対に、第6近似RGB値は、最近似RGB値に対して、明度Vと彩度Sが近似し、かつ、最近似RGB値よりわずかに色相角Hが小さいものであると言うことができる。以上のようにして、最近似RGB値と、第1〜第6近似RGB値が特定できると、次のUI画面を表示させる。
図28は、次に表示されるUI画面を示している。当該UI画面においては、HSV空間が局所的に示されており、HSV軸がそれぞれ示されている。これらの軸の交点においては、最近似RGB値で塗りつぶした矩形状の注目表示パッチPT0が表示されている。一方、V軸上の明度Vが大きい側に第1近似RGB値で塗りつぶした矩形状の第1表示パッチPT1が表示され、V軸上の明度Vが小さい側に第3近似RGB値で塗りつぶした矩形状の第3表示パッチPT3が表示されている。また、S軸上の明度Sが大きい側に第4近似RGB値で塗りつぶした矩形状の第4表示パッチPT4が表示され、S軸上の明度Sが小さい側に第2近似RGB値で塗りつぶした矩形状の第2表示パッチPT2が表示されている。さらに、H軸上の色相角Hが大きい側に第5近似RGB値で塗りつぶした矩形状の第5表示パッチPT5が表示され、H軸上の色相角Hが小さい側に第6近似RGB値で塗りつぶした矩形状の第6表示パッチPT6が表示されている。
注目表示パッチPT0は、インデックステーブルに登録された表示用RGB値のうち、ユーザーが指定した指定RGB値に最も近似するものによって表示されることとなる。すなわち、インデックステーブルに登録されたインデックス(塗料)のうち、ユーザーが指定した指定RGB値に最も近似する塗料の色を示している。これに対して、第1〜第6表示パッチPT1〜PT6は、インデックステーブルに登録されたインデックス(塗料)のうち、ユーザーが指定した指定RGB値(最近似RGB値)に対して近似する塗料であって、最近似RGB値に対し色相H、明度V、彩度Sがわずかに相違する塗料の色を示しているということができる。これにより、ユーザーが指定した指定RGB値に対して近似する塗料の色、および、これに近似する塗料の色を視認することができる。
図28のUI画面においては、調整ボタンと、見本チャート印刷ボタンとが設けられている。調整ボタンをクリックすると、APL P2がマウス50bに対する操作を監視する。図示は省略するがマウス50bには、クリックボタンの他にホイールも備えられている。調整ボタンをクリックした後、次にクリックボタンが操作されるまでの間、APL P2はマウス50bの移動方向とホイールの回転を監視する。そして、マウス50bの移動方向とホイールの回転に応じて、以下のように図28のUI画面を更新していく。
マウス50bが上(奥)方向に所定量移動した場合には、最近似RGB値を現在の第1近似RGB値によって置き換える。最近似RGB値を現在の第1近似RGB値によって置き換えた上で、上述した手順によって新たな第1〜第6近似RGB値を算出する。そして、新たな最近似RGB値と第1〜第6近似RGB値に基づいて、注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6を表示するように図28のUI画面を更新する。これにより、注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6が高明度側の塗料が示す色にシフトすることとなる。一方、マウス50bが下(手前)方向に所定量移動した場合には、最近似RGB値を現在の第3近似RGB値によって置き換えた上で、新たな注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6を表示するように図28のUI画面を更新する。これにより、注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6が低明度側の塗料が示す色にシフトすることとなる。
マウス50bが右方向に所定量移動した場合には、最近似RGB値を現在の第4近似RGB値によって置き換えた上で、新たな注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6を表示するように図28のUI画面を更新する。同様に、マウス50bが左方向に所定量移動した場合には、最近似RGB値を現在の第2近似RGB値によって置き換えた上で、新たな注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6を表示するように図28のUI画面を更新する。マウス50bのホイールが奥方向に所定量回転した場合には、最近似RGB値を現在の第5近似RGB値によって置き換えた上で、新たな注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6を表示するように図28のUI画面を更新する。マウス50bのホイールが手前方向に所定量回転した場合には、最近似RGB値を現在の第6近似RGB値によって置き換えた上で、新たな注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6を表示するように図28のUI画面を更新する。
このようにすることにより、注目表示パッチPT0の色を、第1〜第6表示パッチPT1〜PT6のいずれかに変更していくことができる。すなわち、注目表示パッチPT0の色を、インデックステーブルに登録された表示用RGB値のなかで、高/低明度側および高/低彩度側および色相角の大/小側にシフトさせることができる。すなわち、マウス50bの操作によってH軸・S軸・V軸に沿って注目表示パッチPT0の色を遷移させていくことができ、感覚的に注目表示パッチPT0の色を調整していくことができる。注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6は、インデックステーブルから検索された表示用RGB値に基づいて表示されるため、いずれかの塗料が示す色を表示することとなる。マウス50bのクリックボタンがクリックされると、マウス50bの操作に基づく図28のUI画面の更新処理を終了させる。これにより、ユーザーが納得のいく注目表示パッチPT0を表示させたところで、図28のUI画面の更新を終了させることができる。
図28のUI画面において見本チャート印刷ボタンをクリックすると、図3のステップS170に移行し、印刷データを生成する。ここでは、基本的に図28のUI画面を印刷するための印刷データPDが生成される。すなわち、注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6が印刷されることとなる。ここで、印刷データPDの画素のうち、注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6に対応する領域以外の画素は、RGB値を格納する。一方、注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6に対応する画素については、インデックステーブルにおいて、注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6を表示する表示用RGB値に対応付けられたインデックスをRGB値の代わりに格納する。このようにすることにより、注目表示パッチPT0と第1〜第6表示パッチPT1〜PT6については、各インデックスに対応付けられた塗料のターゲット分光反射率Rt(λ)を再現する印刷が実行される。
以上のようにして印刷された見本チャートSCにおいては、ユーザーが拡大サムネイルにおいて領域指定等した色に近い色を示す塗料の分光反射率を再現する注目表示パッチPT0を印刷することができる。また、当該注目表示パッチPT0と近い色を示す塗料の分光反射率を再現する第1〜第6表示パッチPT1〜PT6を印刷することができる。注目表示パッチPT0の再現結果がユーザーの意図するものと多少異なるものとなった場合でも、注目表示パッチPT0に近い色を示す第1〜第6表示パッチPT1〜PT6のなかから所望の塗料を選択することができる。
印刷制御装置のハードウェア構成を示すブロック図である。 印刷制御装置のソフトウェア構成を示すブロック図である。 印刷データ生成処理の流れを示すフローチャートである。 UI画面の一例を示す図である。 分光反射率に基づいて色彩値を算出するための計算を説明する図である。 印刷データを示す図である。 インデックステーブルを示す図である。 印刷制御処理の全体的な流れを示すフローチャートである。 1D−LUT生成処理の流れを示すフローチャートである。 インク量セットを最適化する処理の流れを示す模式図である。 インク量セットが最適化されていく様子を示す模式図である。 1D−LUTを示す図である。 印刷制御データ生成処理の流れを示すフローチャートである。 3D−LUTを示す図である。 プリンタの印刷方式を示す模式図である。 分光反射率データベースを示す図である。 分光ノイゲバウアモデルを示す図である。 セル分割ユール・ニールセン分光ノイゲバウアモデルを示す図である。 変形例にかかる重み関数を示す模式図である。 変形例にかかる重み関数を示す模式図である。 変形例にかかる重み関数を示す模式図である。 変形例にかかるUI画面を示す図である。 変形例にかかる評価値を示す模式図である。 変形例にかかる印刷システムのソフトウェア構成を示す図である。 変形例にかかる印刷システムのソフトウェア構成を示す図である。 変形例にかかるUI画面を示す図である。 HSV空間を示す図である。 変形例にかかるUI画面を示す図である。
符号の説明
10…コンピュータ、11…CPU、12…RAM、13…ROM、14…HDD、15…GIF、16…VIF、17…IIF、18…バス、P1…OS、P1a…GDI、P1b…スプーラ、P2…APL、P2a…UIM、P2b…MCM、P2c…PDG、P3b…PDV、P3a1…ICM、P3a2…RPM、P3a3…ECM、P3a4…LOM、P4…MDV、P5…DDV。

Claims (3)

  1. 印刷装置にて複数の色材を記録媒体に付着させて印刷を実行させるにあたり、前記色材の使用量の組み合わせである色材量セットを前記印刷装置に指定し、当該色材量セットに基づく印刷を実行させる印刷制御装置であって、
    ターゲットの分光反射率をターゲット分光反射率として取得するターゲット分光反射率取得手段と、
    前記ターゲット分光反射率と前記色材量セットとの対応関係を規定したルックアップテーブルを参照することにより、前記ターゲット分光反射率に対応する前記色材量セットを取得し、該色材量セットを前記印刷装置に指定して印刷を実行させる印刷制御手段とを具備するとともに、
    前記ルックアップテーブルにおいては、
    前記色材量セットと、当該色材量セットを前記印刷装置に指定して印刷を実行させた場合に前記記録媒体上で再現される分光反射率との近似性が高い前記ターゲット色彩値と、の対応関係が規定されるとともに、
    前記近似性の評価においては、前記記録媒体上で再現される分光反射率の各波長の値に、前記各波長に応じて値が変化する重み関数が加味され、
    前記重み関数の前記各波長に応じた値は、当該波長に対応する前記ターゲット分光反射率の値に基づいて設定されることを特徴とする印刷制御装置。
  2. 複数の色材を記録媒体に付着させて印刷を実行する印刷装置と、前記色材の使用量の組み合わせである色材量セットを前記印刷装置に指定し、当該色材量セットに基づく印刷を実行させる印刷制御装置とからなる印刷システムであって、
    ターゲットの分光反射率をターゲット分光反射率として取得するターゲット分光反射率取得手段と、
    前記ターゲット分光反射率と前記色材量セットとの対応関係を規定したルックアップテーブルを参照することにより、前記ターゲット分光反射率に対応する前記色材量セットを取得し、該色材量セットを前記印刷装置に指定して印刷を実行させる印刷制御手段とを具備するとともに、
    前記ルックアップテーブルにおいては、
    前記色材量セットと、当該色材量セットを前記印刷装置に指定して印刷を実行させた場合に前記記録媒体上で再現される分光反射率との近似性が高い前記ターゲット色彩値と、の対応関係が規定されるとともに、
    前記近似性の評価においては、前記記録媒体上で再現される分光反射率の各波長の値に、前記各波長に応じて値が変化する重み関数が加味され、
    前記重み関数の前記各波長に応じた値は、当該波長に対応する前記ターゲット分光反射率の値に基づいて設定されることを特徴とする印刷システム。
  3. 印刷装置にて複数の色材を記録媒体に付着させて印刷を実行させるにあたり、前記色材の使用量の組み合わせである色材量セットを前記印刷装置に指定し、当該色材量セットに基づく印刷を実行させる機能をコンピュータに実行させるためのコンピュータ読み取り可能な印刷制御プログラムであって、
    ターゲットの分光反射率をターゲット分光反射率として取得するターゲット分光反射率取得機能と、
    前記ターゲット分光反射率と前記色材量セットとの対応関係を規定したルックアップテーブルを参照することにより、前記ターゲット分光反射率に対応する前記色材量セットを取得し、該色材量セットを前記印刷装置に指定して印刷を実行させる印刷制御機能とをコンピュータに実行させるとともに、
    前記ルックアップテーブルにおいては、
    前記色材量セットと、当該色材量セットを前記印刷装置に指定して印刷を実行させた場合に前記記録媒体上で再現される分光反射率との近似性が高い前記ターゲット色彩値と、の対応関係が規定されるとともに、
    前記近似性の評価においては、前記記録媒体上で再現される分光反射率の各波長の値に、前記各波長に応じて値が変化する重み関数が加味され、
    前記重み関数の前記各波長に応じた値は、当該波長に対応する前記ターゲット分光反射率の値に基づいて設定されることを特徴とするコンピュータ読み取り可能な印刷制御プログラム。
JP2008306355A 2007-12-21 2008-12-01 印刷制御装置、印刷システムおよび印刷制御プログラム Expired - Fee Related JP5182044B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008306355A JP5182044B2 (ja) 2007-12-21 2008-12-01 印刷制御装置、印刷システムおよび印刷制御プログラム
US12/317,593 US8174730B2 (en) 2007-12-21 2009-03-26 Printing control device, printing system and printing control program

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007330783 2007-12-21
JP2007330783 2007-12-21
JP2008306355A JP5182044B2 (ja) 2007-12-21 2008-12-01 印刷制御装置、印刷システムおよび印刷制御プログラム

Publications (2)

Publication Number Publication Date
JP2009171555A JP2009171555A (ja) 2009-07-30
JP5182044B2 true JP5182044B2 (ja) 2013-04-10

Family

ID=40972170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008306355A Expired - Fee Related JP5182044B2 (ja) 2007-12-21 2008-12-01 印刷制御装置、印刷システムおよび印刷制御プログラム

Country Status (2)

Country Link
US (1) US8174730B2 (ja)
JP (1) JP5182044B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5147390B2 (ja) * 2007-12-28 2013-02-20 キヤノン株式会社 色処理装置およびその方法
JP5909887B2 (ja) 2011-06-14 2016-04-27 セイコーエプソン株式会社 画像処理装置、印刷装置、画像処理方法、ルックアップテーブルの生成方法
EP2690857B1 (en) * 2012-07-27 2020-05-20 Kyocera Document Solutions Inc. Color adjustment apparatus, color adjustment method, and non-transitory computer-readable recording medium storing a color adjustment program
JP5622805B2 (ja) * 2012-07-27 2014-11-12 京セラドキュメントソリューションズ株式会社 色調整装置、色調整方法、及び、色調整プログラム
CN103540187B (zh) * 2013-03-29 2015-03-18 慈溪市校杰电器有限公司 打印机墨水配方的改进方法
JP6213139B2 (ja) * 2013-10-18 2017-10-18 凸版印刷株式会社 分光反射率予測方法および予測装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3885344B2 (ja) 1998-03-24 2007-02-21 コニカミノルタホールディングス株式会社 色彩データ保持方法およびカラーマネージメント方法
US6698860B2 (en) 2001-11-01 2004-03-02 E. I. Du Pont De Nemours And Company Spectral color reproduction with six color output
JP3968565B2 (ja) * 2002-03-20 2007-08-29 セイコーエプソン株式会社 印刷制御装置、印刷制御方法、印刷制御プログラム、印刷制御プログラムを記録した媒体、色変換装置、色変換方法、色変換テーブルの作成方法および色変換テーブル
US7379588B2 (en) * 2003-11-25 2008-05-27 Xerox Corporation Systems for spectral multiplexing of source images to provide a composite image, for rendering the composite image, and for spectral demultiplexing the composite image to obtain a normalized color image
JP2006082460A (ja) 2004-09-17 2006-03-30 Seiko Epson Corp 印刷支援システム、印刷装置および印刷支援プログラム、並びに印刷支援方法
CN101147390B (zh) 2005-03-24 2012-11-21 大日本油墨化学工业株式会社 色料配合率算出装置和色料配合率算出方法
JP4590424B2 (ja) * 2006-05-12 2010-12-01 キヤノン株式会社 色処理装置及びその方法

Also Published As

Publication number Publication date
US8174730B2 (en) 2012-05-08
JP2009171555A (ja) 2009-07-30
US20090185231A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
JP5157856B2 (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
US8199367B2 (en) Printing control device, printing system and printing control program
JP4590424B2 (ja) 色処理装置及びその方法
US7589873B2 (en) Setting a color tone to be applied to an image
JP2009230739A (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
US20050094871A1 (en) Production of color conversion profile for printing
JP2009171556A (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
JP2009169941A (ja) 印刷制御装置、印刷データ生成装置、印刷システムおよび印刷制御プログラム
JP6349707B2 (ja) 色変換装置、ルックアップテーブル生成方法、及び、ルックアップテーブル生成装置
US20090213392A1 (en) Printing control device, printing system and printing control program
JP5182044B2 (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
US8243329B2 (en) Printing control device, print data generation device, printing system and printing control program
JP4946908B2 (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
JP2009177789A (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
JP6349708B2 (ja) ルックアップテーブル生成方法、及び、ルックアップテーブル生成装置
JP4924414B2 (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
JP5157873B2 (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
JP2010147783A (ja) 印刷結果予測方法および印刷制御装置
JP5157872B2 (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
JP4985475B2 (ja) 印刷制御装置、印刷システムおよび印刷制御プログラム
JP3968565B2 (ja) 印刷制御装置、印刷制御方法、印刷制御プログラム、印刷制御プログラムを記録した媒体、色変換装置、色変換方法、色変換テーブルの作成方法および色変換テーブル
JP2011101255A (ja) 測色器を備えた印刷装置における同測色器の補正装置、測色器の補正用lut
JP2016058765A (ja) 画像処理装置、表示制御装置、画像処理方法、及び、画像処理プログラム
JP2007221702A (ja) 色変換装置、色変換方法および色変換プログラム
JP2010166202A (ja) 印刷装置、印刷装置用色変換テーブルの生成方法および印刷装置の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R150 Certificate of patent or registration of utility model

Ref document number: 5182044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees