JP5177427B2 - 蛍光性化合物及びそれから成る標識剤 - Google Patents

蛍光性化合物及びそれから成る標識剤 Download PDF

Info

Publication number
JP5177427B2
JP5177427B2 JP2008513292A JP2008513292A JP5177427B2 JP 5177427 B2 JP5177427 B2 JP 5177427B2 JP 2008513292 A JP2008513292 A JP 2008513292A JP 2008513292 A JP2008513292 A JP 2008513292A JP 5177427 B2 JP5177427 B2 JP 5177427B2
Authority
JP
Japan
Prior art keywords
group
compound
fluorescence
mmol
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008513292A
Other languages
English (en)
Other versions
JPWO2007126052A1 (ja
Inventor
鈴木  孝治
啓太郎 梅澤
弘 牧野
ダニエル チッテリオ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Original Assignee
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University filed Critical Keio University
Priority to JP2008513292A priority Critical patent/JP5177427B2/ja
Publication of JPWO2007126052A1 publication Critical patent/JPWO2007126052A1/ja
Application granted granted Critical
Publication of JP5177427B2 publication Critical patent/JP5177427B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • C07F5/022Boron compounds without C-boron linkages
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

本発明は、蛍光性化合物及びそれから成る標識剤に関する。
蛍光色素は、試料を可視化する目的で用いられ、生物および生化学分野においては標識材料(ラベル化色素)や染色色素、生体関連物質の認識プローブ、光線力学療法(PDT)などに広く用いられる。また、長波長とりわけ近赤外領域(具体的には650 900nm)に吸収および蛍光を有する蛍光色素は、生体組織や血液、脂質や水といった生体物質の存在下でもこれらの光学的妨害を受けることなく測定できる。さらに低エネルギーかつ高い光浸透性といった利点から、生体深部組織のイメージングへの応用が期待される。
また、長波長の蛍光色素は生物や生化学分野に限らず化学系およびその他の分野でも用いられる。例えば赤色の表示材料や色素レーザー、光学記録材料などに頻繁に用いられる。このように、長波長の蛍光色素は生物分野のみならず、幅広い分野で求められている。
優れた長波長蛍光色素、たとえば生体物質の標識材料を目的とした蛍光色素として求められる特性は、以下のような項目がある。
1) 長波長の蛍光
2) 高いモル吸光係数
3) 高い蛍光量子収率
4) 鋭い吸収スペクトル
5) 非環境応答性(溶媒に対する応答が小さいこと)
6) 波長の多様性(さまざまな波長の色素が合成できること)
現在、上記の条件の一部を満たす分子として、下記構造式で示されるボロンジピロメテン骨格(4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes)がある。
Figure 0005177427
ボロンジピロメテン骨格は、高い光耐久性、高い蛍光量子収率、鋭い吸収スペクトルをもつ優れた色素であるが、基本骨格の蛍光波長はおおよそ500 nm前後であるため、近赤外蛍光色素としての十分な機能を持っていない。そこでボロンジピロメテンの長波長化に関する研究がいくつか行われてきた。その手法としては、1)強い電子供与基の導入、2)骨格の堅牢化、3)共役系の拡張などが挙げられる。
1)に関しては、例えば特許文献1や非特許文献1に代表されるように、R1とR7に強い電子供与基を導入することで長波長化は達成できるが、 モル吸光係数の向上は達成できていない。また導入する官能基の電子供与性が強くなるほど、光誘起電子移動(PET)が起こり易くなるため、蛍光量子収率の低下が起こるとともに、溶媒極性に対する蛍光量子収率の依存性が強くなる。具体的には、水やメタノールなどの極性溶媒中においては、これらの分子の蛍光量子収率は著しく低下するため、バイオ分析などには適していない。
2)は、例えば非特許文献2に代表されるように、ボロンジピロメテンのR1およびR7に導入された電子供与基を、R2およびR6と適切なメチレン鎖ないしはヘテロ原子で架橋することで長波長化している報告例であるが、モル吸光係数の向上は達成しておらず、合成法も煩雑であるためバリエーションは限定される。
3)は、例えばシアニン系色素のようにオレフィンなどの共役二重結合を拡張することにより長波長化するというものであるが、これはシアニン系色素などでしばしば報告されているようなオレフィンの光異性化に由来する光安定性や蛍光量子収率の低下が懸念されるため、有効は手法とはいえない。また、例えば特許文献2および特許文献3に代表されるように、芳香環をR2, R3およびR5, R6に縮合することで長波長化を達成することができるが、モル吸光係数の向上は達成できていない。また、報告されている合成法では、縮合できる環も芳香環に限定され、色素のバリエーションも限られる。
米国特許第5,248,782号 米国特許第5,433,896号 米国特許第6,005,113号 A. Burghart et. al. J. Org. Chem. 1999, 64, 7813. J. Chen et. al. J. Org. Chem. 2000, 65, 2900. Current Medicinal Chemistry 2005, 12, 795-895.
従って、本発明の目的は、高い光耐久性、高い蛍光量子収率、鋭い吸収スペクトルを持ち、かつ、長波長領域の蛍光を発し、モル吸光係数が高い新規な蛍光性化合物及び標識剤としてのその用途を提供することである。
本発明らは、鋭意研究の結果、上記したボロンジピロメテン骨格において、R1とR2、及び/又は、R6とR7で特定のヘテロ環を形成することにより、ボロンジピロメテン骨格を含む蛍光色素が有する高い光耐久性、高い蛍光量子収率及び鋭い吸収スペクトルという優れた特性を維持したまま、蛍光の長波長化及びモル吸光係数の向上が達成されることを見出し、本発明を完成した。
すなわち、本発明は、下記一般式[I]
Figure 0005177427
(ただし、式中、
R1とR2は互いに協働して、イオウ、酸素、窒素及びリンから成る群より選ばれる少なくとも1個のヘテロ原子を含む5員若しくは6員のヘテロ環を形成するか又は該ヘテロ環を形成しない場合には互いに独立に水素原子若しくは前記化合物の蛍光を阻害しない任意の基を表し、
R6とR7は互いに協働して、イオウ、酸素、窒素及びリンから成る群より選ばれる少なくとも1個のヘテロ原子を含む5員若しくは6員のヘテロ環を形成するか又は該ヘテロ環を形成しない場合には互いに独立に水素原子若しくは前記化合物の蛍光を阻害しない任意の基を表し、
(1)R1とR2、及び、(2)R6とR7、の少なくともいずれか一方は上記ヘテロ環を形成し、
Qは炭素原子又は窒素原子を表し、
R3、R4及びR5は互いに独立に水素原子又は前記化合物の蛍光を阻害しない任意の基を表し(ただし、Qが窒素原子の場合にはR4は存在しない)、
R8及びR9は互いに独立にハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基又はヘテロアリール基を示し、
前記R 1 とR 2 、及び/又はR 6 とR 7 により形成される前記ヘテロ環が、互いに独立に、下記式
Figure 0005177427
(ただし、これらの式中、X、Y及びZは、互いに独立にイオウ、酸素、窒素又はリン原子を示し、R 10 ないしR 17 は互いに独立に水素原子又は前記化合物の蛍光を阻害しない任意の基を表す)
で表されるいずれかの構造を有する
で示される構造を有する蛍光性化合物を提供する。
また、本発明は、上記本発明の蛍光性化合物から成る標識剤を提供する。さらに、本発明は、上記本発明の標識剤で標識した物質を反応に供し、反応後、該標識剤を発光させて該物質を測定することを含む標識物質の測定方法を提供する。
本発明によれば、ボロンジピロメテン骨格を含む蛍光色素が有する高い光耐久性、高い蛍光量子収率及び鋭い吸収スペクトルという優れた特性を維持したまま、長波長の蛍光を発し、高いモル吸光係数を有する新規な蛍光性化合物が提供された。本発明の蛍光性化合物は、蛍光波長が長いので、これを標識剤として用いた場合、生体組織や血液、脂質や水といった生体物質の存在下でもこれらの光学的妨害を受けることなく測定できる。さらに低エネルギーかつ高い光浸透性といった利点から、生体深部組織のイメージングへの応用が可能である。また、赤色の表示材料や色素レーザー、光学記録材料、光線力学治療(PDT)などに用いることもできる。さらに、本発明の蛍光性化合物は、蛍光量子収率及びモル吸光係数が高いので、これを標識剤として用いることにより、高感度の測定が可能になる。
本発明の蛍光性化合物と、市販の蛍光性化合物Cy7(商品名)の吸光度の経時変化を示す図である。
上記の通り、本発明の蛍光性化合物は、上記一般式[I]で表される化学構造を有する。一般式[I]中、R1とR2は互いに協働して、イオウ、酸素、窒素及びリンから成る群より選ばれる少なくとも1個のヘテロ原子を含む5員若しくは6員のヘテロ環を形成するか又は該ヘテロ環を形成しない場合には互いに独立に水素原子若しくは前記化合物の蛍光を阻害しない任意の基を表し、同様に、R6とR7も互いに協働して、イオウ、酸素、窒素及びリンから成る群より選ばれる少なくとも1個のヘテロ原子を含む5員若しくは6員のヘテロ環を形成するか又は該ヘテロ環を形成しない場合には互いに独立に水素原子若しくは前記化合物の蛍光を阻害しない任意の基を表わす。そして、(1)R1とR2、及び、(2)R6とR7、の少なくともいずれか一方は上記ヘテロ環を形成する。このヘテロ環により、蛍光が長波長化される。
上記ヘテロ環としては、下記式のいずれかで表される化学構造を有するものである。上記ヘテロ環が2個形成される場合には、互いに独立である。
Figure 0005177427
ただし、これらの式中、X、Y及びZは、互いに独立にイオウ、酸素、窒素又はリン原子を示し、R10ないしR17は互いに独立に水素原子又は本発明の蛍光性化合物の蛍光を阻害しない任意の基を表す。なお、これらの式中、左側の2本の波線は、各ヘテロ環が結合している、本発明の化合物の一部分を模式的に表すものである。好ましいヘテロ環を示す上記各式から明らかなように、ヘテロ環は、最も好ましくは5員環である。また、ヘテロ原子として、酸素原子又はイオウ原子を有するものが好ましい。上記各式で表されるヘテロ環の中でも、特に下記式のいずれかで表される化学構造を有するものが特に好ましい。
Figure 0005177427
上記各式中、R10ないしR17は互いに独立に水素原子又は本発明の蛍光性化合物の蛍光を阻害しない任意の基を表す(本発明の蛍光性化合物の蛍光を阻害しない任意の基については、R3ないしR5の説明の項で併せて後述する)が、R10ないしR17として、電子供与性基を有するものが、蛍光の波長がより長波長になるので好ましい。特に、電子供与性が高い基ほど、蛍光の波長がより長波長になるので好ましい。R10ないしR17が1つのヘテロ環上に2個存在する場合には、少なくともいずれか一方が電子供与性基を有するものが好ましい。
電子供与性基の例としては、アルキル基、フェニル基、p-アルコキシフェニル基、p-ジアルキルアミノフェニル基、2-チエニル基、2-フリル基、ジアルコキシフェニル基(好ましくは3,6-ジアルコキシフェニル基)等を挙げることができる。これらのうち、アルキル基又はアルキル部分を含む基のアルキル部分の炭素数は、特に限定されないが、1〜10程度が好ましい。これらの電子供与性基のうち、特に炭素数1〜10のアルキル基又はアルキル部分の炭素数が1〜10のアルコキシフェニル基が好ましい。
上記一般式[I]中、Qは炭素原子又は窒素原子を表す。Qが窒素原子の場合には、Qが炭素原子の場合に比べて蛍光が長波長化される。なお、Qが炭素原子の場合、R4に電子吸引性の置換基(例えばニトロ基、シアノ基、トリフルオロメチル基等)を導入することによりQが窒素原子の場合と同様、蛍光が長波長化される。
R3、R4及びR5は互いに独立に水素原子又は本発明の蛍光性化合物の蛍光を阻害しない任意の基を表す。ただし、Qが窒素原子の場合にはR4は存在しない。
上記一般式[I]中のR3ないしR5、ヘテロ環を形成しない場合のR1とR2又はR6とR7や上記した好ましいヘテロ環中のR10ないしR17が表す、本発明の蛍光性化合物の蛍光を阻害しない任意の基としては、次のものを挙げることができる。なお、ここで、「蛍光を阻害しない」とは、蛍光の波長を短くしたり、モル吸光係数を低下させたり、蛍光量子係数を低下させたりすることが全く又はほとんどない(好ましくは、その置換基を有さない化合物の値の95%以上を有する)ことを意味する。なお、蛍光を阻害しない任意の基が、後述する標的イオンや標的化合物の認識部位である場合には、標的との結合の有無により蛍光が変化するが、標的と結合した場合及び結合していない場合の少なくともいずれかにおいて、蛍光を阻害しないことを意味する。
ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、アルデヒド基、スルホン酸基、イソシアネート基、チオイソシアネート基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルコキシカルボニル基、アシル基、ハロゲノアシル基、モノアルキルアミノ基、ジアルキルアミノ基、アルキルチオ基、アルキルカルボニルアミド基、アルキルアミドカルボニル基、モノアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基、アルキルスルフォニル基、ハロゲノスルフォニル基、アリール基及びヘテロアリール基。
これらの置換基中、「アルキル基」は、炭素数1〜20のものが好ましく、直鎖状、分岐状及び環状(すなわち、シクロアルキル基)のいずれであってもよい。この場合、アルキル基に含まれる水素原子はすべて置換されていないか、あるいはそのうち1つ以上が、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、アルデヒド基、スルホン酸基、イソシアネート基、チオイソシアネート基、アリール基及びヘテロアリール基から成る群より選ばれる少なくとも1種で置換されていてもよい。また、上記置換基中のアルコキシ基、アルキルチオ基等の、アルキル基部分を含む基中のアルキル基についても同様である。なお、アルキル基上の上記した置換基は特に必要ではない。
また、上記各置換基中、「アルケニル基」は、炭素数2〜20のものが好ましく、直鎖状、分岐状及び環状(すなわち、シクロアルケニル基)のいずれであってもよい。この場合、アルケニル基に含まれる水素原子はすべて置換されていないか、あるいはそのうち1つ以上が、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、アルデヒド基、スルホン酸基、イソシアネート基、チオイソシアネート基、アリール基及びヘテロアリール基から成る群より選ばれる少なくとも1種で置換されていてもよい。もっとも、アルケニル基上のこれらの置換基は特に必要ではない。
また、上記各置換基中、「アルキニル基」は、炭素数2〜20のものが好ましく、直鎖状、分岐状及び環状(すなわち、シクロアルキニル基)のいずれであってもよい。この場合、アルキニル基に含まれる水素原子はすべて置換されていないか、あるいはそのうち1つ以上が、ハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、アルデヒド基、スルホン酸基、イソシアネート基、チオイソシアネート基、アリール基及びヘテロアリール基から成る群より選ばれる少なくとも1種で置換されていてもよい。もっとも、アルキニル基上のこれらの置換基は特に必要ではない。
また、上記各置換基(上記したアルキル基、アルケニル基、アルキニル基上に置換しているものも包含する)中、アリール基としては、芳香環数1〜4で構成される芳香環ないしは縮合多環が好ましく、例えばフェニル基、1-または2-ナフチル基、1-, 2-または9-アントラニル基、1-, 2-または4-ピレニル基などが好ましい。この場合、芳香環に含まれる水素原子はすべて置換されていないか、あるいはそのうち1つ以上がハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、アルデヒド基、スルホン酸基、イソシアネート基、チオイソシアネート基、アリール基、ヘテロアリール基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルコキシカルボニル基、アシル基、ハロゲノアシル基、モノアルキルアミノ基、ジアルキルアミノ基、アルキルチオ基、アルキルカルボニルアミド基、アルキルアミドカルボニル基、モノアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基、アルキルスルフォニル基及びハロゲノスルフォニル基から成る群より選ばれる少なくとも1種で置換されていてもよい。もっとも、アリール基上のこれらの置換基は特に必要ではない。
また、上記各置換基(上記したアルキル基、アルケニル基、アルキニル基上に置換しているものも包含する)中、ヘテロアリール基としては、ヘテロ原子を1〜3つ含む芳香環(5員環または6員環)あるいは、ヘテロ芳香環に芳香環が1〜2つ縮合されたものが好ましい。ここでいうヘテロ原子は、酸素、窒素又はイオウが好ましく、これらの組み合わせは限定されない。たとえば2-, 3-フリル基、2-, 3-チエニル基、N-, 2-, 3-ピロリル基、2-, 3-ベンゾフラニル基、2-, 3-ベンゾチエニル基、N-, 2-, 3-インドリル基、N-, 1-, 2-イソインドリル基、2-, 3-, 4-ピリジル基、2-, 3-, 4-キノリル基、1-, 3-, 4-イソキノリル基、2-, 4-, 5-(1,3-オキサゾリル)基、2-ベンゾキサゾリル基、2-, 4-, 5-(1,3-チアゾリル)基、2-ベンゾチアゾリル基、N-, 2-, 4-イミダゾリル基、N-, 2-ベンズイミダゾリル基、1-, 2-ナフトフラニル基、1-, 2-ナフトチエニル基、N-, 2-, 3-ベンズインドリル基などである。この場合、ヘテロ芳香環に含まれる水素原子はすべて置換されていないか、あるいはそのうち1つ以上がハロゲン原子、ニトロ基、シアノ基、ヒドロキシ基、アミノ基、チオール基、カルボキシル基、アルデヒド基、スルホン酸基、イソシアネート基、チオイソシアネート基、アリール基、ヘテロアリール基、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アルコキシカルボニル基、アシル基、ハロゲノアシル基、モノアルキルアミノ基、ジアルキルアミノ基、アルキルチオ基、アルキルカルボニルアミド基、アルキルアミドカルボニル基、モノアルキルシリル基、ジアルキルシリル基、トリアルキルシリル基、モノアルコキシシリル基、ジアルコキシシリル基、トリアルコキシシリル基、アルキルスルフォニル基及びハロゲノスルフォニル基から成る群より選ばれる少なくとも1種で置換されていてもよい。もっとも、ヘテロアリール基上のこれらの置換基は特に必要ではない。
上記一般式[I]中、R8及びR9は互いに独立にハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基又はヘテロアリール基を表す。ここで、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基又はヘテロアリール基については、上記したR3〜R5及びR10〜R17により表されるこれらの基についての説明がそのまま当てはまる。R8及びR9は互いに独立にハロゲン原子であることが好ましく、特に両者ともフッ素原子であることが好ましい。
本発明の蛍光性化合物はまた、上記した本発明の蛍光性化合物の蛍光を阻害しない任意の基として、以下(1)〜(6)の機能性基を1個又は複数有していてもよい。なお、上記した蛍光を阻害しない任意の置換基がアリール基又はヘテロアリール基の場合に、該アリール基又はヘテロアリール基上に以下の1個又は複数の機能性基を置換してもよい。
(1) 結合性基
本発明の蛍光性化合物は、少なくとも1つ、結合性基を有することが好ましい。ここで、結合性基は、他の化合物に結合させるために利用できる基を意味する。蛍光標識剤は、タンパク質、ポリペプチド、糖等の生体関連物質に結合されることが多いため、結合性基としては、これらの生体関連物質との結合に好都合な、アミノ基、水酸基、カルボキシル基、スルホン酸基、チオール基、ジスルフィド基、イソシアネート基、チオイソシアネート基、スクシンイミジルエステル基、ペンタフルオロフェニルエステル基、マレイミド基等を好ましい例としてあげることができる。なお、これらの基は、他の化合物との結合のために用いることができればよいので、これらの基の少なくともいずれかを含む任意の基(例えば、アミノアルキル基等)も結合性基として利用することができる。なお、結合性基は、1つあれば足り、また、結合部位を1つに特定するためにも1つであることが通常好ましいが、2個以上の結合性基を含んでいてもよい。また、後述する嵩高基の一部に上記したアミノ基、水酸基、カルボキシル基、スルホン酸基等を結合させて結合性基と嵩高基を兼用することも可能である。
(2) 嵩高基
合成の収率を上げるために、本発明の蛍光性化合物は、少なくとも1つ、嵩高基を有していることが好ましい。本発明の化学発光性化合物は、ボロンジピロメテン骨格部分の平面性が高く、また、化学発光基も平面性が高い場合が多いので、化合物が全体として平面的になる場合が多い。このような場合、平面的な化合物が積層され、それぞれの芳香環のπ結合間で生じて各分子同士がπ−π結合され(π−πスタッキング)て凝集が生じ、収率が低下することがある。このような事態を避け、合成収率が低下しないように、π−πスタッキングを防止する嵩高な基を一般式[I]中の一般式中のR1〜R17、あるいはアリール基やヘテロアリール基へ導入する置換基として、少なくとも1つ有していることが好ましい。ここで、嵩高基は、少なくとも直鎖状のアルキル基よりも厚さ方向(ボロンジピロメテン骨格を平面として、該平面に垂直な方向)に厚みのある基であり、好ましくは炭素数10以上、さらには炭素数10〜20の分枝アルキル基や分枝アルコキシル基が好ましい。
(3) 脂溶性又は水溶性調整基
さらに、必要に応じ、少なくとも1つ、溶解性(脂溶性又は水溶性)を調整する基を含ませてもよい。蛍光標識剤は、水系で用いられることが多いので、蛍光性化合物の親水性を高めて水系中での溶解性を向上させることが望まれる場合には、少なくとも1つ親水性基を含ませてもよい。このような親水性基としては、水酸基、アミノ基、カルボニル基、カルボキシル基、スルホン酸基、エーテル結合等の親水性の基を1個又は複数含むアルキル基やアルコキシル基(炭素数は1〜6が好ましい)等を例示することができるがこれらに限定されるものではない。また、このような親水性の基は上記した嵩高基、結合性基と兼用させてもよい。また、脂溶性を増大させたい場合には、好ましくは炭素数10以上、さらには炭素数10〜20のアルキル基やアリール基、又はこれらの両者を含む基等を含ませてもよい。なお、下記実施例で合成した本発明の蛍光性化合物は、脂溶性を増大させる基として、下記の化学構造を有する基をR4として有している。
Figure 0005177427
なお、この基において、エーテル部分は、合成を容易にするために含まれている。また、ベンゼン環上の2つのメチル基は、この置換基の回転運動を阻害し、この置換基の回転運動に起因する蛍光量子収率の低下を防止するものである。
(4) 化学発光基
化学発光基は、化学反応により発光する構造を有する基である。本発明の蛍光性化合物に化学発光基を導入することにより、該化学発光基が発する光により蛍光色素部分が蛍光を発し、この蛍光が測定される。したがって、化学発光基は、必ずしも可視光を発光するものである必要はなく、蛍光色素部分を励起して蛍光を発せさせることができる光を発するものであればいずれのものをも採用することができる。このような化学発光基としては、この分野において標識剤として用いられているものであればいずれのものをも用いることができ、種々のものが公知ないしは周知である。好ましい例として、フタルカルバジド誘導体、ジオキセタン誘導体、ロフィン誘導体、アクリジン誘導体、インドール誘導体、シュウ酸誘導体、ジフェノイル誘導体又はルシフェリン誘導体を挙げることができ、これらはいずれもこの分野において周知である。これらの化学発光基は、それぞれ以下の一般式で示されるものである。
Figure 0005177427
Figure 0005177427
Figure 0005177427
Figure 0005177427
Figure 0005177427
Figure 0005177427
Figure 0005177427
(5) ポリマーへの重合部位(末端に不飽和二重結合を有する分子)
本発明の蛍光性化合物は、少なくとも1つ、重合部位を有することが好ましい。ここで、重合部位は、有機高分子に共重合させる部位を示す。一般に、有機高分子に色素を導入することで、蛍光強度やモル吸光係数が増加し、検出感度が上がることが知られている。また、共重合させることで色素が溶媒にリークしない(流出しない)ので、有機高分子膜による連続測定などにも適している。重合部位としては、ビニル基を有するものであればかまわない。具体的には、ビニルアルキル基、ビニルアルコキシ基、ビニルアルコキシカルボニル基、ビニルアリール基、ビニルへテロアリール基などであるが、これらに限定されない。
(6) 標的イオンや標的化合物の認識部位(クラウンエーテルなどのように特定のイオンや物質を選択的に捕捉する基)
ベンゾクラウン、アザクラウン、N-アリールアザクラウンなどのイオンや分子を認識する基や、p-ジメチルアミノフェニル基などの周囲の溶媒極性(pHや溶媒極性)に応答する基を導入することで、特定の物質や環境を認識し、光学情報へ変換する蛍光プローブとしての機能をもたせることもできる。この際、標的(ターゲット)の認識前後で認識部位の電子供与性が変化するため、色素の光学特性も変化する。最も好ましいのは上記したR4、R10、R12、R15又はR16に認識部位を導入することであるが、これに限定されない。なお、ここで、認識部位とは、標的のイオンや標的化合物を捕捉する部位のことを示す。一般に、蛍光化合物に認識部位を持たせ、特定の物質を測定する際には、認識前後で光学応答が変化することが望ましい。例えば、認識前後で蛍光量子収率が変化したり、吸収あるいは蛍光極大波長が変化したりすることで、特定の物質の測定が可能となる。
本発明の蛍光性化合物は、例えば次のようにして製造することができる。すなわち、任意の位置にホルミル基を有するヘテロアリール環にアジド酢酸エチルを加えてアジド化合物を合成後、トルエン中で加熱還流し、ヘテロアリール環にピロールを縮環する。ピロールのα位のカルボン酸エチルエステルを脱保護後、強塩基存在下で加熱してα位のカルボン酸を脱炭酸する。このピロール環をホルミル基を有する芳香環と縮合し、ジピロメテン化合物を合成する。ジピロメテン化合物を合成する方法はこれに限らず、例えばピロール環同士をオルトギ酸トリアルキルおよび酸触媒存在下で反応させることや、ホルミル基を有するヘテロピロール環と酸存在下で反応させることでも得られる。また、ヘテロピロール環を亜硝酸ナトリウムにてニトロソ化することで、架橋部分に窒素原子を有するジピロアザメテン化合物を合成することができる。得られたジピロメテン化合物およびジピロアゾメテン化合物を、トリエチルアミンおよび三フッ化ホウ素ジエチルエーテル錯体存在下で反応させれば、目的とする化合物が得られる。また、ヘテロアリール環にハロゲン原子ないしはボロン酸を有するものであれば、鈴木カップリングにより任意のアリール環やヘテロアリール環を直結することが可能であり、さまざまな波長の色素を提供することが可能となる。
すなわち、例えば、上記のようにして先にR1とR2、及び/又はR6とR7で形成されるヘテロ環とピロール環との縮合環を合成し、2個の縮合環をジクロロメタンにより、1個の炭素原子を介して結合させ、BF3等を反応させてBR8R9部分を結合させることにより本発明の蛍光性化合物を合成することができる。置換基を有する場合には、さらに置換基を結合させることができる。ただし、R4として置換基を有する場合には、上記したジクロロメタンと同時に該置換基含有化合物を反応させることにより、前記縮合環がジクロロメタンで結合されるのと同時に該ジクロロメタンの炭素原子に該置換基を結合させることができる。複数の本発明の蛍光性化合物の詳細な合成方法が下記実施例に記載されているので、当業者であればそれらを参照して本発明の蛍光性化合物を容易に製造することができる。
本発明の蛍光性化合物は、蛍光標識剤として用いることができる。蛍光標識剤自体は周知であり、本発明の蛍光性化合物も従来の蛍光標識剤と同様にして用いることができる。すなわち、本発明の蛍光性化合物を、標識すべき被標識物質に結合させることにより被標識物質を標識する。本発明の蛍光性化合物が上記した結合性基を有する場合には、常法により上記結合性基を介して本発明の蛍光性化合物を被標識物質に結合する。結合性基を有さない場合には、常法により結合性基を導入した中間体を調製し、これを被標識物質と結合することができる。
蛍光標識剤の使用の態様は従来と全く同様であり、上記のように被標識物質を標識した後、標識した物質(本明細書において「標識物質」という)を反応に供し、必要に応じて洗浄工程等を行なった後、標識に励起光を当て、蛍光を発光させ、該蛍光を測定する。ここで、反応とは、例えば免疫測定の場合には抗原抗体反応、核酸の検出の場合には、核酸同士のハイブリダイゼーション等を意味するがこれらに限定されるものではない。例えば、蛍光標識剤が広く用いられている免疫測定の場合、次のようにして標識剤を利用することができる。例えば、サンドイッチ法により被検試料中の標的抗原を免疫測定する場合、標的抗原に対する一次抗体を固相に結合し、これを被検試料と反応させて、被検試料中の標的抗原を固相化一次抗体に結合させる。洗浄後、蛍光標識剤で標識した第二抗体を反応させる。洗浄後、標的抗原に結合した第二抗体の蛍光標識剤を、常法に従い励起光により蛍光発光させ、蛍光を測定する。最適な励起光の波長は、各蛍光性化合物について吸収極大波長を測定することにより容易に設定することができる、通常、570nm〜680nm程度、好ましくは660nm〜680nm程度である。なお、本明細書及び特許請求の範囲において「測定」には検出、定量、半定量のいずれもが包含される。
また、蛍光標識剤は、上記したサンドイッチ法のみならず、免疫組織化学等の他の免疫測定法においても広く用いられている。さらに、核酸を蛍光標識剤で標識し、特定の塩基配列を有する核酸を検出することも広く行なわれており、これらの用途にも本発明の蛍光標識剤を従来の蛍光標識剤と同様に用いることができる。
さらに、本発明の蛍光性化合物は、標識剤以外にも、赤色の蛍光色素として、赤色の表示材料や色素レーザー、光学記録材料などの種々の分野において用いることができる。
本発明の蛍光性化合物は、蛍光波長のピークが580nm〜700nm程度の橙〜近赤外の長波長領域にある。これを標識剤として用いた場合、生体組織や血液、脂質や水といった生体物質の存在下でもこれらの光学的妨害を受けることなく測定できる。さらに低エネルギーかつ高い光浸透性といった利点から、生体深部組織のイメージングへの応用が可能である。例えば、動物内の特定の臓器や腫瘍細胞に特異的に集積するようなポリクローナル抗体、モノクローナル抗体、一本鎖抗体、ペプチド鎖、糖鎖などに標識し、動物内に注入することで、特定の臓器や腫瘍細胞に標識剤が集積する。したがって、動物をCCDカメラなどで撮像することにより、特定の臓器や腫瘍細胞を可視化することが可能となる。もっとも、生体イメージングの例はこれに限定されるものではない。また、赤色の表示材料や色素レーザー、光学記録材料、光線力学療法(PDT)などに用いることもできる。さらに、本発明の蛍光性化合物は、蛍光量子収率及びモル吸光係数が高いので、これを標識剤として用いることにより、高感度の測定が可能になる。
以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
本発明の蛍光性化合物の合成
下記の反応スキームに従い、本発明の蛍光性化合物を合成した。なお、反応スキーム中(後述の反応スキームにおいても同じ)、「r.t.」は室温を意味する。
Figure 0005177427
Figure 0005177427
Ar気流下、0℃にて5-メチル-2-チオフェンカルバルデヒド1 (3.67 g, 29.1 mmol, 1.0 eq.) とアジド酢酸エチル (7.51 g, 58.2 mmol, 2.0 eq.) のエタノール溶液 (100 mL) に、ナトリウムエトキシド20% エタノール溶液 (19.9 g, 58.3 mmol, 2.0 eq.) をエタノール(50 mL) で希釈した溶液をゆっくり滴下した。3時間撹拌後、飽和塩化アンモニウム水溶液を加えpHを中性にし、析出した黄色い沈殿をろ別し、沈殿を水で洗浄後、真空乾燥した。得られた粗生成物をカラムクロマトグラフィー (シリカゲル, ヘキサン :酢酸エチル = 9 : 1) により分離精製し、薄黄色液体2 (3.61 g) を得た。
TLC (シリカ): Rf = 0.8 (シリカゲル, ヘキサン :酢酸エチル = 4 : 1)
Figure 0005177427
2のトルエン溶液 (60 ml) を30分還流撹拌した。減圧濃縮後、得られた粗生成物をカラムクロマトグラフィー (シリカ, ヘキサン :酢酸エチル = 9 : 1) により分離精製し、薄肌色固体3 (1.82 g, 25.0%) を得た。
TLC (シリカ): Rf = 0.3 (ヘキサン :酢酸エチル = 4 : 1)
Figure 0005177427
3 (1.82 g, 8.70 mmol, 1 eq.) のエタノール溶液 (100 ml) に水酸化ナトリウム (5.35 g, 134 mmol, 15.4 eq.) の水溶液 (50 ml) を加え、30分還流撹拌した。放冷後、6N 塩酸水溶液を加えた。発生した沈殿をろ過後、ろ物を水で洗浄、真空乾燥し、白色固体4 (1.41 g, 89.5%) を得た。
TLC (シリカ): Rf = 0.2 (ヘキサン :酢酸エチル = 1 : 1)
Figure 0005177427
4 (571 mg, 3.15 mmol, 1 eq.) のエチレングリコール溶液 (20 ml) に水酸化ナトリウム (1.34 g, 33.5 mmol, 10.6 eq.) を加え、Ar気流下、140℃で4時間撹拌した。放冷後、酢酸エチルを加え、水で2回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、得られた茶色オイル状の粗生成物をカラムクロマトグラフィー (シリカ, ヘキサン:酢酸エチル=4 : 1) により分離精製し、茶色液体5 (303 mg, 70.1 %) を得た。
Figure 0005177427
5 (56.8 mg, 0.414 mmol, 2 eq.) の塩化メチレン溶液 (5 ml) にオルトギ酸トリエチル (1.00 mL, 6.21 mmol, 30 eq.) を加え、Ar気流下、室温にて撹拌した。トリフルオロ酢酸1滴を加え、さらに室温にて90分攪拌した。多量の水を加えて反応を終了させ、有機層を飽和炭酸水素ナトリウム水溶液で1回、水で1回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、得られた粗生成物をカラムクロマトグラフィー (アルミナ, クロロホルム:酢酸エチル=3 : 1) により分離精製し、紫色固体6 (57.5 mg) を得た。
Figure 0005177427
6 (57.5 mg, 0.201 mmol, 1 eq.) をトルエン (10 ml)に溶解し、トリエチルアミン (0.3 ml, 2.08 mmol, 10 eq.)、三フッ化ホウ素ジエチルエーテル錯体 (0.40 mL, 3.11 mmol, 15 eq.) を加え、 1時間加熱還流した。放冷後、不溶物をシリカゲルクロマトグラフィーにて分離し、溶出液を減圧濃縮した。得られた組成生物をカラムクロマトグラフィー (シリカ, トルエン) により分離精製し、 光沢のある緑色固体の形態にある蛍光性化合物 (5.8 mg, 8.46%, 2工程) を得た。
TLC (silica) Rf = 0.6 (toluene)
1H-NMR (300 MHz, CDCl3) σ2.59 (s, 6H), 6.89 (s, 2H), 6.95 (s, 2H), 7.24 (s, 1H)
蛍光性化合物の合成
下記の反応スキームに従い、本発明の蛍光性化合物を合成した。なお、反応スキーム中(後述の反応スキームにおいても同じ)、「DDQ」は2,3-ジシアノ-5,6-ジクロロ-p-ベンゾキノン(酸化剤の一種)を意味する。
Figure 0005177427
Figure 0005177427
Ar気流下、0℃にて5-メチル-2-フルアルデヒド7 (1.80 g, 16.3 mmol, 1 eq) とアジド酢酸エチル (2.80 g, 32.7 mmol, 2 eq) のエタノール溶液 (90 ml) に、ナトリウムエトキシド20% エタノール溶液 (11.1 ml, 32.7 mmol, 2 eq) をエタノール(30 ml) で希釈した溶液をゆっくり滴下した。2時間撹拌後、飽和塩化アンモニウム水溶液を加えpHを中性にし、酢酸エチルを加え、水で2回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、得られた粗生成物をカラムクロマトグラフィー (シリカゲル, ヘキサン :酢酸エチル = 9 : 1) により分離精製し、薄黄色液体8 (1.26 g, 34.8 %) を得た。
TLC (シリカ): Rf = 0.42 (シリカゲル, ヘキサン :酢酸エチル = 9 : 1)
Figure 0005177427
8 (1.257 g, 5.68 mmol) のトルエン溶液 (30 ml) を1時間還流撹拌した。減圧濃縮後、得られた粗生成物をカラムクロマトグラフィー (シリカ, ヘキサン :酢酸エチル = 4 : 1) により分離精製し、薄肌色固体9 (979 mg, 89.3 %) を得た。
TLC (シリカ): Rf = 0.13 (ヘキサン :酢酸エチル = 9 : 1)
Figure 0005177427
9 (287 mg, 1.49 mmol, 1 eq) のエタノール溶液 (10 ml) に水酸化ナトリウム (868 mg, 21.7 mmol, 15 eq) の水溶液 (5 ml) を加え、1時間還流撹拌した。放冷後、6N 塩酸水溶液を加えた。発生した沈殿をろ過後、ろ物を水で洗浄、真空乾燥し、灰色固体10 (205 mg, 83.7%) を得た。
TLC (シリカ): Rf = 0.14 (ヘキサン :酢酸エチル = 1 : 1)
1H-NMR(CDCl3): δ = 2.37 (s, 3H), 6.14 (s, 1H), 6.63 (s, 1H)
Figure 0005177427
10 (200 mg, 1.21 mmol, 1 eq) のエチレングリコール溶液 (5 ml) に水酸化ナトリウム (484 mg, 12.1 mmol, 10 eq) を加え、Ar気流下、140℃で3時間撹拌した。放冷後、酢酸エチルを加え、水で2回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、得られた茶色オイル状の粗生成物をカラムクロマトグラフィー (シリカ, 9:1 hexane/ethylacetate) により分離精製し、茶色液体11 (68.0 mg, 45.5 %) を得た。
TLC (シリカ): Rf = 0.62 (ヘキサン :酢酸エチル = 4 : 1)
1H-NMR(CDCl3): δ = 2.39 (s, 3H), 6.07 (s, 1H), 6.12 (d, 1H, J = 2.9 Hz), 6.67 (t, 1H, J = 2.9 Hz), 7.65 (bs, 1H)
Figure 0005177427
11 (60 mg, 0.5 mmol, 2 eq) の塩化メチレン溶液 (25 ml) に4-(1-ブチルペンチロキシ)-2,6-ジメチルベンズアルデヒド (69 mg, 0.25 mmol, 1 eq) を加え、減圧脱気し、完全にAr置換した。トリフルオロ酢酸3滴を加え、室温で24時間撹拌後、p-クロラニル (62 mg, 0.25 mmol, 1 eq) を加えた。室温で1時間撹拌後、減圧濃縮し、カラムクロマトグラフィー(アルミナ、クロロホルム)で不溶物を分離し、ろ液を濃縮して紫色固体12を得た。12は精製せずそのまま次の反応に用いた。
Figure 0005177427
12をトルエン (10 ml)、トリエチルアミン (0.2 ml)、三フッ化ホウ素ジエチルエーテル錯体 (0.3 ml) を加えた。室温で1時間撹拌後、飽和炭酸水素ナトリウム水溶液を加えて洗浄し、トルエンで3回抽出、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた粗生成物をカラムクロマトグラフィー (シリカ, ヘキサン : 酢酸エチル = 4 : 1) により分離精製し、蛍光性化合物 (22.0 mg, 18.2 %、11からの総収率) を得た。
TLC (シリカ): Rf = 0.50 (4:1 hexane/ethylacetate)
1H-NMR(CDCl3): δ = 0.85-0.96 (m, 6H), 1.22-1.29 (m, 8H), 1.42-1.68 (m, 4H), 2.15 (s, 6H), 2.44 (s, 6H), 4.25 (m, 1H), 5.97 (s, 2H), 6.34 (s, 2H), 6.63 (s, 2H)
蛍光性化合物の合成
下記の反応スキームに従い、本発明の蛍光性化合物を合成した。
Figure 0005177427
Figure 0005177427
5は実施例2と同様にして合成した。5 (150 mg, 1.09 mmol, 2 eq.) の塩化メチレン溶液 (50 ml) に4-(1-ブチルペンチロキシ)-2,6-ジメチルベンズアルデヒド (151 mg, 0.547 mmol, 1 eq.) を加え、減圧脱気し、完全にAr置換した。トリフルオロ酢酸1滴を加え、室温で24時間撹拌後、2,3-ジクロロ-5,6-ジシアノベンゾキノン (151 mg, 0.547 mmol, 1 eq.) を加えた。室温で30分撹拌後、有機層を飽和炭酸水素ナトリウム水溶液で4回、飽和食塩水で1回洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をカラムクロマトグラフィー (アルミナ, 9 : 1 ヘキサン : 酢酸エチル) により分離精製し、赤色固体13 (82.0 mg, 28.3%) を得た。
TLC (silica) Rf = 0.8 (n-hexane : ethyl acetate = 90 : 10)
Figure 0005177427
13 (82.0 mg) をトルエン (10 ml) 溶液に溶かし、トリエチルアミン (0.2 ml)、三フッ化ホウ素エーテル錯体 (0.3 ml) を加えた。室温で1時間撹拌後、飽和炭酸水素ナトリウム水溶液を加えて洗浄し、トルエンで3回抽出、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた粗生成物をカラムクロマトグラフィー (シリカ, ヘキサン : 酢酸エチル = 4 : 1) により分離精製し、Compound 3 (22.0 mg, 18.2 %) を得た。
1H-NMR (300 MHz, CDCl3) σ0.94 (t, 6H, J = 7.1 Hz), 1.35-1.45 (m, 8H), 1.65-1.72 (m, 4H), 2.15 (s, 6H), 2.58 (s, 6H), 4.25 (quant, 1H, J = 5.9 Hz), 6.57 (s, 2H), 6.64 (s, 2H), 6.93 (s, 2H)
蛍光性化合物の合成
下記の反応スキームに従い、本発明の蛍光性化合物を合成した。
Figure 0005177427
Figure 0005177427
Ar気流下、0℃にてチオフェン-3-カルバルデヒド14 (550 mg, 4.90 mmol, 1.0 eq.) とアジド酢酸エチル (1.40 g, 10.8 mmol, 2.2 eq.) のエタノール溶液 (30 ml) に、ナトリウムエトキシド20% エタノール溶液 (3.33 g, 9.81 mmol, 2.0 eq.) をエタノール(20 ml) で希釈した溶液をゆっくり滴下した。6時間撹拌後、飽和塩化アンモニウム水溶液を加えpHを中性にし、酢酸エチルを加え、水で2回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、薄黄色液体15を得た。15は精製せず、次の反応に用いた。
TLC (シリカ): Rf = 0.8 (シリカゲル, ヘキサン :酢酸エチル = 4 : 1)
Figure 0005177427
15のトルエン溶液 (20 ml) を30時間還流撹拌した。減圧濃縮後、得られた粗生成物をカラムクロマトグラフィー (シリカ, ヘキサン:酢酸エチル = 3 : 1) により分離精製し、薄肌色固体16 (295 mg, 30.8%) を得た。
TLC (シリカ): Rf = 0.5 (ヘキサン :酢酸エチル = 4 : 1)
Figure 0005177427
16 (226 mg, 1.16 mmol, 1 eq.) のエタノール溶液 (10 ml) に水酸化ナトリウム (740 mg, 18.5 mmol, 15.9 eq.) の水溶液 (5 ml) を加え、1時間還流撹拌した。放冷後、6N 塩酸水溶液を加えた。反応系に酢酸エチルを加え、水で2回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、灰色固体17 (190 mg, 97.7%) を得た。
TLC (シリカ): Rf = 0.4 (ヘキサン :酢酸エチル = 1 : 1)
Figure 0005177427
17 (190 mg, 1.14 mmol, 1 eq.) のエチレングリコール溶液 (5 ml) に水酸化ナトリウム (340 mg, 8.49 mmol, 7.4 eq.) を加え、Ar気流下、140℃で2時間撹拌した。放冷後、酢酸エチルを加え、水で2回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、得られた茶色オイル状の粗生成物をカラムクロマトグラフィー (シリカ, 9:1 hexane/ethylacetate) により分離精製し、茶色液体18 (99.3 mg, 70.9 %) を得た。
TLC (シリカ): Rf = 0.62 (ヘキサン :酢酸エチル = 4 : 1)
Figure 0005177427
18 (93.0 mg, 0.755 mmol, 2 eq.) の塩化メチレン溶液 (50 ml) に4-(1-ブチルペンチロキシ)-2,6-ジメチルベンズアルデヒド (102 mg, 0.377 mmol, 1 eq.) を加え、減圧脱気し、完全にAr置換した。トリフルオロ酢酸1滴を加え、室温で24時間撹拌後、p-クロラニル (120 mg, 0.488 mmol, 1.3 eq.) を加えた。室温で30分撹拌後、有機層を飽和炭酸水素ナトリウム水溶液で4回、飽和食塩水で1回洗浄し、無水硫酸ナトリウムで乾燥後、減圧濃縮した。得られた粗生成物をカラムクロマトグラフィー (アルミナ, クロロホルム) により分離精製し、赤色固体19 (68.4 mg, 36.0%) を得た。
Figure 0005177427
19 (38.4 mg, 0.0764 mmol, 1 eq.) をトルエン (5 ml) 溶液に溶かし、トリエチルアミン (0.20 mL, 1.38 mmol, 18 eq.)、三フッ化ホウ素ジエチルエーテル錯体 (0.30 mL, 2.30 mmol, 30 eq.) を加えた。室温で1時間撹拌後、飽和炭酸水素ナトリウム水溶液を加えて洗浄し、トルエンで3回抽出、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた粗生成物をカラムクロマトグラフィー (シリカ, ヘキサン : 酢酸エチル = 4 : 1) およびゲル浸透クロマトグラフィー(クロロホルム)により分離精製し、蛍光性化合物(7.4 mg, 17.7 %) を得た。
TLC (silica) Rf = 0.6 (toluene)
1H-NMR (300 MHz, CDCl3) σ0.94 (t, 6H, J = 7.1 Hz), 1.34-1.44 (m, 8H), 1.65-1.72 (m, 4H), 2.16 (s, 6H), 2.58 (s, 6H), 4.27 (quant, 1H, J = 5.9 Hz), 6.65 (s, 2H), 6.66 (s, 2H), 6.77 (d, 2H, J = 5.3 Hz), 6.97 (d, 2H, J = 5.3 Hz)
蛍光性化合物の合成
下記の反応スキームに従い、本発明の蛍光性化合物を合成した。
Figure 0005177427
Figure 0005177427
2-フランボロン酸20 (6.00 g, 53.5 mmol, 1 eq) の5:1トルエン/メタノール溶液 (320 ml) にp-ブロモアニソール (10.0 g, 53.5 mmol, 1 eq) および2M 炭酸ナトリウム水溶液 (53 ml) を加え、減圧脱気し、完全にAr置換した。テトラキス(トリフェニルホスフィン)パラジウム(0) (619 mg, 0.535 mmol, 0.01 eq) を加え、80℃で3時間撹拌した。放冷後、飽和炭酸水素ナトリウム水溶液を加えて洗浄し、酢酸エチルで3回抽出、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた粗生成物をカラムクロマトグラフィー (シリカ, 2:1 ヘキサン:塩化メチレン) により分離精製し、橙色固体21 (4.42 g, 78.2 %) を得た。
TLC (シリカ): Rf = 0.66 (4:1 hexane/ethylacetate)
1H-NMR(CDCl3): δ = 3.84 (s, 3H), 6.45 (t, 1H, J = 1.6 Hz ), 6.51 (d, 1H, J = 3.4 Hz), 6.92 (d, 2H, J = 8.8 Hz), 7.43 (d, 1H, J = 1.2 Hz), 7.60 (d, 1H, J = 8.8 Hz)
Figure 0005177427
21 (700 mg, 4.0 mmol, 1 eq) の1,2-ジクロロエタン溶液 (20 ml) に塩化ホスホリス (0.72 ml, 8.0 mmol, 2 eq) を加え、室温で5分間撹拌した。N,N-ジメチルホルムアミド (0.62 ml, 8.0 mmol, 2 eq) を加え、80℃で30分間撹拌した。放冷後、0℃で5N 水酸化ナトリウム水溶液を滴下した。水を加え、塩化メチレンで5回抽出し、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた粗生成物をカラムクロマトグラフィー (シリカ, 4:1 hexane/ethylacetate) により分離精製し、橙色液体22 (667.3 mg, 82.9 %) を得た。
TLC (シリカ): Rf = 0.40 (4:1 hexane/ethylacetate) 1H-NMR(CDCl3): δ = 3.87 (s, 3H), 6.72 (d, 1H, J = 3.9 Hz), 6.97 (d, 2H, J = 8.8 Hz), 7.31 (d, 1H, J = 3.7 Hz), 7.77 (d, 2H, J = 9.0 Hz), 9.60 (s, 1H)
Figure 0005177427
Ar気流下、0℃で、22 (202 mg, 1.0 mmol, 1 eq) とアジド酢酸エチル (516 mg, 4.0 mmol, 4 eq) のエタノール溶液 (10 ml) に、ナトリウムエトキシド20%エタノール溶液 (1.4 ml, 4 mmol, 4 eq) をエタノール(2 ml) で希釈した溶液をゆっくり滴下した。2時間撹拌後、飽和塩化アンモニウム水溶液を加えpHを中性にし、酢酸エチルを加え、水で2回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、得られた粗生成物をカラムクロマトグラフィー (シリカ, 9:1 hexane/ethylacetate) により分離精製し、橙色固体23 (273 mg, 87.5 %) を得た。
TLC (シリカ): Rf = 0.39 (9:1 hexane/ethylacetate) 1H-NMR(CDCl3): δ = 1.39 (t, 3H, J = 7.1 Hz), 3.87 (s, 3H), 4.35 (q, 2H, J = 7.1 Hz), 6.67 (d, 1H, J = 3.7 Hz), 6.92 (s, 1H), 6.93 (d, 2H, J = 7.6 Hz), 7.18 (d, 1H, J = 3.4 Hz), 7.65 (d, 2H, J = 8.3 Hz)
Figure 0005177427
23 (273 mg, 0.875 mmol) のトルエン溶液 (5 ml) を5時間還流撹拌した。減圧濃縮後、得られた粗生成物をカラムクロマトグラフィー (シリカ, chloroform) により分離精製し、茶色固体24 (117 mg, 46.9 %) を得た。
TLC (シリカ): Rf = 0.35 (4:1 hexane/ethylacetate) 1H-NMR(CDCl3): δ = 1.38 (t, 3H, J = 7.2 Hz), 3.84 (s, 3H), 4.35 (q, 2H, J = 7.1 Hz), 6.57 (s, 1H), 6.80 (s, 1H), 6.94 (d, 2H, J = 8.8 Hz), 7.66 (d, 2H, J = 9.0 Hz), 8.78 (bs, 1H)
Figure 0005177427
24 (71.0 mg, 0.25 mmol, 1 eq) のエタノール溶液 (10 ml) に水酸化ナトリウム (150 mg, 3.75 mmol, 15 eq) の水溶液 (5 ml) を加え、1時間還流撹拌した。放冷後、6N 塩酸水溶液を加えた。酢酸エチルを加え水で2回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮、真空乾燥し、緑色固体25 (60.0 mg, 93.0%) を得た。
TLC (シリカ): Rf = 0.38 (ethylacetate)
Figure 0005177427
25 (140 mg, 0.55 mmol, 1 eq) のエチレングリコール溶液 (4 ml) に水酸化ナトリウム (200 mg, 5 mmol, 9 eq) を加え、Ar気流下、160℃で2時間撹拌した。放冷後、酢酸エチルを加え、水で2回洗浄、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し、茶色液体26 (138 mg) を得た。26は精製せずにそのまま次の反応に用いた。
TLC (シリカ): Rf = 0.23 (4:1 hexane/ethylacetate)
Figure 0005177427
26 (67.0 mg, 0.31 mmol, 2 eq)の1,2-ジクロロエタン溶液 (30 ml) に4-(1-ブチルペンチロキシ)-2,6-ジメチルベンズアルデヒド(42 mg, 0.15 mmol, 1 eq)を加え、減圧脱気し、完全にAr置換した。トリフルオロ酢酸1滴を加え、2時間加熱還流した。放冷後、溶媒を減圧濃縮し、青緑色の固体27を得た。27は分離精製せず、次の反応に用いた。
Figure 0005177427
27をトルエン (5 ml) 溶液に溶かし、トリエチルアミン (0.20 mL)、三フッ化ホウ素ジエチルエーテル錯体 (0.30 mL) を加えた。室温で30分間撹拌後、飽和炭酸水素ナトリウム水溶液を加えて洗浄し、クロロホルムで3回抽出、飽和食塩水で1回洗浄した。無水硫酸ナトリウムで乾燥後、減圧濃縮し得られた粗生成物をカラムクロマトグラフィー (シリカ, chloroform) により分離精製し、蛍光性化合物(0.9 mg, 0.5 %, 2工程) を得た。
TLC (シリカ): Rf = 0.23 (1:1 toluene/chloroform) 1H-NMR(CDCl3): δ = 0.85-0.97 (m, 6H), 1.25-1.42 (m, 8H), 1.57-1.68 (m, 4H), 2.19 (s, 6H), 3.87 (s, 6H), 4.28 (m, 1H), 6.04 (s, 2H), 6.66 (s, 2H), 6.85 (s, 2H), 6.97 (d, 4H, J = 9.0 Hz), 7.75 (d, 4H, J = 9.0 Hz)
光学特性
実施例2、3及び5で合成した本発明の蛍光性化合物及びの吸収スペクトル及び蛍光発光スペクトルを測定した。吸収スペクトルは、市販の分光光度計(U-2001、日立製作所)を用い、測定波長300〜750nm、測定波長間隔1nmで測定した。蛍光発光スペクトルは、市販の蛍光光度計(F-4500、日立製作所)を用い、最大吸収波長の励起光を用いて以下の条件で測定した。
・測定波長:蛍光性化合物及び;550-700 nm
蛍光性化合物;600-750 nm
ペリレン;520-700 nm
・測定波長間隔:0.2 nm
・スキャンスピード:60 nm/min
・レスポンス:AUTO
・スリット幅:励起側 2.5 nm
受光側 2.5 nm
・フォトマルチプライヤー:700 V
測定されたスペクトルから、モル吸光係数ε(M-1cm-1)、蛍光量子収率Φ、半値幅fwhm(full width at half maximum height)(nm)を算出した。結果を下記表1に示す。
Figure 0005177427
蛍光量子収率Φは、N,N'-ビス (1-ヘキシルヘプチル)-3,4:9,10-ペリレンビス (ジカルボキシイミド) (Φ= 1.00、CH2Cl2中)をレファレンスとし、A = Aref = 0.1、Φref = 1.00、nref = 1.46 (CH2Cl2)、n = 1.484 (CHCl3)、1.407 (THF)、1.3284 (MeOH)を代入し、FにはA = 0.1の波長で励起し検出された蛍光強度面積の積算値を代入して求めた。なお、蛍光量子収率Φは、次の式で算出される。
Φ=Φref×(Aref×F×n2)/(A×Fref×nref 2)
(ただし、Aは吸光度、Fは蛍光スペクトルの波数積分値、nは溶媒の屈折率を示し、refは参照色素(リファレンス)を示す)。
蛍光性化合物の光学特性について
蛍光性化合物の極大吸収波長は581 nm, 586 nmとであり、ボロンジピロメテン(R1 = R3 = R5 = R7 = Me)に比べ約80 nmほど長波長シフトした。分子設計どおり、縮合環の導入によるπ共役系の拡張によりボロンジピロメテンの蛍光が長波長化した。蛍光性化合物は蛍光極大波長588 nmと596 nmに強く鋭い蛍光を発し、シャープなスペクトル形状をしている。表1の数値を見ると、半値幅fwhmは約20 nmと小さく、スペクトルがきわめてシャープであることがわかる。これらの結果から, 蛍光性化合物はボロンジピロメテン骨格と同等の骨格の堅さを有したまま、長波長シフトしていることがわかる。蛍光性化合物は高極性のMeOH中においても、低極性のTHF中においても高い蛍光量子収率を示した。これは蛍光性化合物がボロンジピロメテン本来のきわめて低い環境応答性を有していることを表す。さらに極性の高い水系溶媒においても同様の蛍光を発すると考えられ、バイオ計測への応用のために必要不可欠な特性を有しているといえる。
蛍光性化合物の光学特性について
蛍光性化合物の極大吸収波長は673 nmとボロンジピロメテン(R1=R3=R5=R7=Me)に比べ約170 nmほど、蛍光性化合物に比べて約90 nmほど長波長シフトした。分子設計どおり、縮合環の導入と電子供与性置換基の導入によりボロンジピロメテン骨格に比べて長波長化し、近赤外領域に極大吸収波長を持たせることに成功した。また、蛍光性化合物は蛍光極大波長685 nmに強く鋭い蛍光を発し、シャープなスペクトル形状をしている。表1の数値を見ると、半値幅fwhmは約30 nmと小さく、スペクトルがきわめてシャープであることがわかる。これらの結果から、蛍光性化合物はp-メトキシフェニル基を導入したにもかかわらず、蛍光性化合物と同等の骨格の堅さを有していることがわかる。 蛍光性化合物は高極性のMeOH中においても、低極性のTHF中においても高い蛍光量子収率を示した。これは蛍光性化合物がボロンジピロメテン本来のきわめて低い環境応答性を有していることを表す。さらに極性の高い水系溶媒においても同様の蛍光を発すると考えられ、近赤外光を用いたバイオ計測への応用のために必要不可欠な特性を有しているといえる。
以上のことより、蛍光性化合物は近赤外領域に極大吸収を持ち、その波長域においても強く鋭い蛍光を発することがわかった。蛍光性化合物の光学特性は既存の近赤外蛍光色素の中でも最も優れたものの中の一つであるといえる。
比較例1
広く用いられている市販の蛍光色素であるCy5 (商品名、1-[3-(4-モノメトキシトリチロキシ)プロピル]-1'-[3-[(2-シアノエチル)-(N,N-ジイソプロピル)フォスフォロアミジチル]プロピル]-3,3,3',3'-テトラメチルインドジカルボシアニンクロリド)について、実施例6と同様に光学特性を調べた。結果を下記表2に示す。なお、表2には、対比のため、実施例5で合成した本発明の蛍光性化合物の光学特性も併せて示す。
Figure 0005177427
a:Amersham Biosciences社から得たPBS中の値
表2に示すように、同程度の吸収・蛍光極大波長を持つ市販の近赤外蛍光色素Cy5(商品名)と比べると、本発明の蛍光性化合物はモル吸光係数ではほぼ同等の値を示し、蛍光量子収率でははるかに高い値を示した。したがって、蛍光性化合物は既存の近赤外蛍光色素に代わってより高感度なバイオ計測のために汎用的に利用される可能性を持つことが示された。
比較例2〜4
特許文献1に記載されている化合物(比較化合物1)、特許文献2に記載されている化合物(比較化合物2)、及び上記一般式[I]において、R1とR2、R6とR7がそれぞれ芳香環を形成するが、芳香環中にヘテロ原子を含まない化合物(比較化合物3)を合成し、実施例6と同様にして光学特性を測定した。比較化合物1〜3の構造を以下に示す。
Figure 0005177427
Figure 0005177427
Figure 0005177427
結果を下記表3に示す。なお、表3には、対比のため、実施例5で合成した本発明の蛍光性化合物の光学特性も併せて示す。
Figure 0005177427
a:フルオレッセイン(Φ=0.92, 0.1M NaOH中)をレファレンスとして用いた。
b:ナイルブルー(Φ=0.25, MeOH中) をレファレンスとして用いた。
c: 測定せず
表3に示されるように、本発明の蛍光性化合物は、比較例2〜4の化合物と比較してモル吸光係数が顕著に高く、また、蛍光量子収率も高かった。
本発明の蛍光性化合物の合成
下記の反応スキームに従い、本発明の蛍光性化合物を合成した。
Figure 0005177427
5-(4-メトキシフェニル)-フラン-2-カルボアルデヒド(2)の合成
Figure 0005177427
Ar気流下,500mL三口フラスコに4-メトキシフェニルボロン酸(1)(2.99 g , 19.7 mmol , 1.0 eq)を入れ ,トルエン(120 ml)に溶解し、 [1,1'-ビス (ジフェニルホスフィノ)-フェロセン]パラジウム (II)ジクロリド ジクロロメタン複合体 (1:1)(100 mg) 、エタノール(30 ml)、5-ブロモ-2-フラルデヒド (3.46 g, 19.8 mmol, 1.0 eq)および2M炭酸ナトリウム水溶液 (20 ml) を加え、80℃で14時間撹拌した。
反応終了後、有機相を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、乾燥剤をろ別して溶媒を減圧濃縮した。得られた粗生成物をフラッシュシリカゲルクロマトグラフィー (溶離液 ; ヘキサン/酢酸エチル = 19/1→4/1)で分離精製し、目的化合物 (2) (3.39 g, 84.8 %) を薄黄色液体として得た。
TLC (シリカ): Rf = 0.31 (溶離液 ; ヘキサン/酢酸エチル = 4/1)
1H-NMR(CDCl3): δ = 3.86 (s, 3H), 6.72 (d, 1H, J = 3.6 Hz ), 6.96 (d, 2H, J = 9.0 Hz), 7.30 (d, 1H, J = 3.9 Hz), 7.77 (d, 2H, J = 9.0 Hz), 9.60 (s, 1H)
2-アジド-3-[5-(4-メトキシフェニル)-フラン-2-イル]-アクリル酸エチルエステル(3)の合成
Figure 0005177427
1000mL三口フラスコにAr気流下,5-(4-メトキシフェニル)-フラン-2-カルボアルデヒド(2)(3.39 g, 16.8 mmol, 1.0 eq) とアジド酢酸エチル (8.65 g, 67.0 mmol, 4.0 eq) をエタノール(300 ml)に溶解し、次いで20% ナトリウムエトキシドエタノール溶液 (22.8 g, 67.0 mmol, 4.0 eq)を0℃氷浴中でゆっくり滴下し,2時間撹拌した。
反応終了後、飽和塩化アンモニウム水溶液を加えpHを弱酸性にし、水を加えて吸引ろ過を行い、得られたろ物を乾燥し、黄色固体(3) (3.31 g)を得た。得られた化合物(3)は精製せずにそのまま次の反応に用いた。
TLC (シリカ): Rf = 0.38 (溶離液 ; ヘキサン/酢酸エチル = 9/1)
2-(4-メトキシフェニル)-4H-フロ[3,2-b]ピロール-5-カルボン酸エチルエステル(4)の合成
Figure 0005177427
200mLナスフラスコに化合物(3) (3.31 g,10.6 mmol,1 eq)を入れ、トルエン (60 ml) に溶解し、1.5時間還流撹拌した。
減圧濃縮後、得られた粗生成物を再結晶(溶液 ; ヘキサン,酢酸エチル)を行った後に吸引ろ過し、得られたろ物を乾燥し、目的化合物(4)(2.32 g, 48.6% (2工程)) を茶色結晶として得た。
TLC (シリカ): Rf = 0.32 (溶離液 ; クロロホルム)
1H-NMR(CDCl3): δ = 1.38 (t, 3H), 3.85 (s, 3H), 4.35 (q, 2H, J = 7.1 Hz), 6.58 (s, 1H), 6.80 (s, 1H), 6.94 (d, 2H, J = 9.0 Hz), 7.67(d, 2H, J = 9.0 Hz), 8.72(s, 1H)
2-(4-メトキシフェニル)-4H-フロ[3,2-b]ピロール-5-カルボン酸(5)の合成
Figure 0005177427
300mLフラスコに2-(4-メトキシフェニル)-4H-フロ[3,2-b]ピロール-5-カルボン酸エチルエステル(4) (1.90 g, 6.66 mmol, 1 eq) を入れ、エタノール (60 ml) に溶解し、sodium hydroxide (3.90 g, 97.5 mmol, 14.6 eq) エタノール溶液 (30 ml) を加え、1時間還流撹拌した。
放冷後、6N HCl水溶液を加え、溶液を酸性にし、水を加えて吸引ろ過を行い、得られたろ物を真空乾燥し、目的化合物 (5) ( 1.56 g, 91.0 %) を薄緑灰色固体として得た。
TLC (シリカ): Rf = 0.40 ( 溶離液 ;酢酸エチル)
1H-NMR(CDCl3): δ = 3.86 (s, 3H), 6.60 (s, 1H ), 6.83 (s, 1H ), 6.95(d, 2H, J = 9.0 Hz) ,7.28 (s , 1H) , 7.68 (d, 2H, J = 9.0 Hz)
Figure 0005177427
30mL二口フラスコに 2-(4-メトキシフェニル)-4H-フロ[3,2-b]ピロール-5-カルボン酸(5) (101 mg, 0.391 mmol, 2 eq) 、TFA (1 ml)、1,2-ジクロロエタン(2 ml)を入れ、Ar気流下、30 ℃で30分間撹拌した。次いで、1,2-ジクロロエタン(6 ml)を加え、窒素でバブリングを行った後、オルトギ酸トリエチル(49.8 mg, 0.336 mmol, 1.7 eq) を加え、室温で1時間撹拌した。
反応終了後、飽和炭酸水素ナトリウム水溶液を加え、有機相を洗浄した。有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、得られた粗生成物をアルミナクロマトグラフィー (溶離液 ; クロロホルム)でおおまかに分離し、黒色固体 (6) (46.4 mg)を得た。化合物(6)は精製せずにそのまま次の反応に用いた。
TLC (アルミナ): Rf = 0.82 (溶離液 ; クロロホルム/酢酸エチル = 10/1)
蛍光性化合物の合成
Figure 0005177427
化合物 (6) (19.9 mg)が入った100mLフラスコに、1,2-ジクロロエタン(15 ml)、三フッ化ホウ素ジエチルエーチル錯体(0.1ml)、TEA (0.8ml)を加え、60℃で40分間撹拌した。
反応終了後、酢酸エチルと飽和炭酸水素ナトリウム水溶液を加え、有機相を抽出、洗浄した。有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、得られた粗生成物をシリカゲルクロマトグラフィー (溶離液 ; クロロホルム)でおおまかに分離し、緑色固体を得た.これをメタノールおよびアセトンで洗浄し、得られた固体を真空乾燥し、蛍光性化合物(3.5 mg, 8.5%, 3工程) を緑色結晶として得た。
TLC (シリカ): Rf = 0.24 (溶離液 ; クロロホルム)
本発明の蛍光性化合物の合成
下記の反応スキームに従い、本発明の蛍光性化合物を合成した。
Figure 0005177427
5-(2,5-ジメトキシフェニル)-フラン-2-カルボアルデヒド(9)の合成
Figure 0005177427
Ar気流下、500mL三口フラスコに2,5-ジメトキシフェニルボロン酸(8)(3.64 g , 20.0 mmol, 1.0 eq)を入れ、トルエン(120 ml)に溶解し、[1,1'-ビス (ジフェニルホスフィノ)-フェロセン]パラジウム(II)ジクロリド ジクロロメタン複合体 (1:1) (110 mg)、エタノール(30 ml)、5-ブロモ-2-フロアルデヒド (3.50 g, 20.0 mmol, 1.0 eq)および2M 炭酸ナトリウム水溶液 (20 ml) を加え、80℃で3時間撹拌した。
反応終了後、有機相を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、乾燥剤をろ別して溶媒を減圧濃縮した。得られた粗生成物をシリカゲルクロマトグラフィー (溶離液 ; トルエン/酢酸エチル = 20/1)で分離精製し、目的化合物 (9) (3.82 g, 82.2 %) を薄黄色液体として得た。
TLC (シリカ): Rf = 0.23 (溶離液 ; トルエン/酢酸エチル = 20/1)
1H-NMR(CDCl3): δ = 3.85 (s, 3H), 3.92 (s, 3H), 6.93 (d, 2H, J = 1.7 Hz), 7.17(d, 1H, J = 3.7 Hz) , 7.33 (d, 1H, J = 3.7 Hz), 7.56 (t, 1H, J = 1.7 Hz), 9.65 (s, 1H)
2-アジド-3-[5-(2,5-ジメトキシフェニル)-フラン-2-イル]-アクリル酸エチルエステル(10)の合成
Figure 0005177427
1000mL三口フラスコにAr気流下、5-(2,5-ジメトキシフェニル)-フラン -2-カルボアルデヒド(9)(3.82 g, 16.4 mmol, 1.0 eq) とアジド酢酸エチル (8.50 g, 65.7 mmol, 4.0 eq) をエタノール(300 ml)に溶解し、次いで20%ナトリウムエトキシドエタノール溶液 ( 22.8 g, 65.7 mmol, 4.0 eq)を0℃氷浴中でゆっくり滴下し、3時間撹拌した。
反応終了後、飽和塩化アンモニウム水溶液を加えpHを弱酸性にし、水を加えて吸引ろ過を行い、得られたろ物を乾燥し、黄色固体(10)(3.30 g)を得た。(10)は精製せずにそのまま次の反応に用いた。
TLC (シリカ): Rf = 0.61 (溶離液 ; ヘキサン/酢酸エチル = 4/1)
2-(2,5-ジメトキシフェニル)-4H-フロ[3,2-b]ピロール-5-カルボン酸エチル(11)の合成
Figure 0005177427
200mLナスフラスコに化合物(10) (3.30 g, 9.61mmol, 1 eq) を入れ、トルエン (60 ml) に溶解し、1時間還流撹拌した。
減圧濃縮後、得られた粗生成物を再結晶(溶液 ; ヘキサン、酢酸エチル)を行った後に吸引ろ過し、得られたろ物を乾燥し、目的化合物(11)(2.70 g, 52.1%, 2工程) を茶色結晶として得た。
TLC (シリカ): Rf = 0.26 (溶離液 ; クロロホルム)
1H-NMR(CDCl3): δ =1.39(t , 3H, J = 7.2 Hz) , 3.86 (s, 3H), 3.92 (s, 3H), 4.36(quant. , 2H J = 7.2 Hz) , 6.80 - 6.84 (m, 2H), 6.90(d, 1H, J = 9.0 Hz) , 7.09 (s, 1H), 7.52 (d, 1H, J = 3.3 Hz), 8.71(s, 1H)
2-(2,5-ジメトキシフェニル)-4H-フロ[3,2-b]ピロール-5-カルボン酸(12)の合成
Figure 0005177427
500mLフラスコに2-(2,5-ジメトキシフェニル)-4H-フロ[3,2-b]ピロール-5-カルボン酸エチル(11) (2.67 g, 8.47 mmol, 1 eq) を入れ、エタノール (100 ml) に溶解し、水酸化ナトリウム (5.08 g, 127mmol, 15 eq) 水溶液 (50 ml) を加え、1時間還流撹拌した。
放冷後、6N HCl水溶液を加え、溶液を酸性にして30分間攪拌した後、水を加えて吸引ろ過を行い、得られたろ物を真空乾燥し、目的化合物 (12) ( 1.90 g, 78.1 %) を緑灰色固体として得た。
TLC (シリカ): Rf = 0.37 ( 溶離液 ;酢酸エチル)
1H-NMR(CDCl3): δ =3.86 (s, 3H), 3.92 (s, 3H), 6.84 (dd, 1H, J 1= 8.8 Hz, J 2= 2.9 Hz), 6.93-6.89(m, 2H) , 7.11 (s, 1H), 7.52 (d, 1H, J 2= 2.9 Hz), 8.88(s, 1H)
Figure 0005177427
30mL二口フラスコに2-(2,5-ジメトキシフェニル)-4H-フロ[3,2-b]ピロール-5-カルボン酸(12) (97.0 mg, 0.338 mmol, 2 eq) 、TFA (1 ml)、1,2-ジクロロエタン(2 ml)を入れ、Ar気流下、40℃で35分間撹拌した。次いで、 オルソギ酸トリメチル (65.1 mg, 0.439 mmol, 2.6 eq) を加え、室温で40分間撹拌した。
反応終了後、飽和炭酸水素ナトリウム水溶液を加え、有機相を洗浄した。有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、得られた粗生成物をアルミナクロマトグラフィー (溶離液 ; ヘキサン/酢酸エチル = 1/1)でおおまかに分離し、紫色固体 (13)(20.0 mg)を得た。化合物 (13)は精製せずにそのまま次の反応に用いた。
TLC (アルミナ): Rf = 0.90 (溶離液 ; クロロホルム/酢酸エチル = 10/1)
Figure 0005177427
化合物(13)(20.0 mg)が入った50mLフラスコに、1,2-ジクロロエタン(15 ml)、三フッ化ホウ素ジエチルエーテル複合体 (約0.1ml)、TEA (約0.8ml)を加え、室温で25分間攪拌後、60℃で5分間撹拌した。
反応終了後、酢酸エチルと飽和炭酸水素ナトリウム水溶液を加え、有機相を抽出、洗浄した。有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、得られた粗生成物をシリカクロマトグラフィー (溶離液 ; クロロホルム)、ゲル浸透クロマトグラフィー(溶離液 ; 特級クロロホルム)および分取用薄層シリカゲルクロマトグラフィー (溶離液 ; クロロホルム)で分離精製し、蛍光性化合物(0.9 mg, 0.49 %(3 step)) を緑色結晶として得た。
TLC (シリカ): Rf = 0.85 (溶離液 ; クロロホルム/酢酸エチル = 10/1)
1H-NMR(CDCl3): δ =3.86 (s, 6H), 3.97 (s, 6H), 6.47 (s, 2H), 6.95 (d, 4H, J = 1.8 Hz) , 7.08 (s, 1H), 7.33(s, 2H), 7.51 (t, 2H, J = 1.8 Hz)
本発明の蛍光性化合物の合成
下記の反応スキームに従い、本発明の蛍光性化合物を合成した。
Figure 0005177427
30mL三口フラスコに2-(4-メトキシフェニル)-4H-フロ [3,2-b]ピロール-5-カルボン酸 (5) (98.5 mg, 0.38 mmol, 2 eq)、TFA (5 ml)を入れ、Ar気流下、50 ℃で15分間撹拌後、放冷し、氷浴中で0℃に冷やした。次いで、亜硝酸ナトリウム(14.2 mg, 0.206 mmol, 1.1 eq)を加え、0 ℃で10分間撹拌後、TFAA(2 ml)を加えて室温で10分攪拌し、ついで60℃で1時間攪拌した。
反応終了後、飽和炭酸水素ナトリウム水溶液および氷を加え、溶液を中和し、酢酸エチルを加え、有機相を抽出した。有機相を水および飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、得られた粗生成物をアルミナクロマトグラフィー (溶離液 ;クロロホルム)でおおまかに分離し、青緑色固体 (15)(11.5 mg)を得た。化合物(15)は精製せずにそのまま次の反応に用いた。
TLC (アルミナ): Rf = 0.63 (溶離液 ; クロロホルム)
Figure 0005177427
化合物 (15) (11.5 mg)が入った50 mLフラスコに、1,2-ジクロロエタン(20 ml)、三フッ化ホウ素ジエチルエーテル錯体(0.1ml)、TEA (0.08ml)を加え、40℃で30分間撹拌した。
反応終了後、塩化メチレンと飽和炭酸水素ナトリウム水溶液を加え、有機相を抽出、洗浄した。有機相を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、得られた粗生成物をシリカゲルクロマトグラフィー (溶離液 ; クロロホルム)でおおまかに分離し、減圧濃縮した後、アセトンを加えて吸引ろ過を行い、得られたろ物を真空乾燥し、蛍光性化合物(9.2 mg,4.4 %(3工程)) を緑色結晶として得た。
TLC (シリカ): Rf = 0.50 (溶離液 ; クロロホルム)
1H-NMR(CDCl3): δ = 3.90 (s, 6H), 6.73 (quant, 2H, J = 2.2 Hz), 6.82 (s, 2H), 7.00(d, 4H, J = 8.8 Hz) , 7.80 (d, 4H, J = 9.0 Hz)
19F-NMR(CDCl3): δ = -54.32 (s, 3F), 149.02(quant, 2F)
なお、上記実施例及び比較例において、試薬は分析級試薬あるいは最上級品位のものを用いた。また、すべての1H-NMRスペクトルはテトラメチルシランを内部標準物質とし、r. t.で測定された。機器は、JOEL JNM-GSX300、JOEL JMM-LA300 FT-NMRを用いた。
また、上記実施例及び比較例において用いた略号は以下のとおりである。
Me: メチル基
Et: エチル基
DDQ: 2,3-ジクロロ-5,6-ジシアノ-p-ベンゾキノン
TEA: トリエチルアミン
TFA: トリフロロ酢酸
TFAA: トリフロロ無水酢酸
MeOH: メタノール
r.t.: 室温
min: 分
h: 時間
実施例7〜9で合成した本発明の蛍光性化合物及びの光学特性を実施例6と同様にして測定した。結果を下記表4に示す。
Figure 0005177427
a 誤差10%含む
b 測定せず (not determined)
蛍光性化合物6および7の蛍光量子収率Φは、3,3'-ジエチル-ジチアジカルボシアニン(Φref = 0.33、 MeOH中)をリファレンスとし、A = Aref = 0.079,Φref = 0.33,nref = 1.329(MeOH),n = 1.445 (CHCl3), 1.407 (THF:テトラヒドロフラン), 1.329 (MeOH)を代入し、Fには650nmの励起光で励起し検出された蛍光強度面積の積算値を代入して求めた。
Φ = Φref×(Aref×F×n2)/ (A×Fref×nref 2)
(ただし、Aは吸光度、Fは蛍光スペクトルの波数積分値、nは溶媒の屈折率を示し、refは参照色素(リファレンス)を示す)
蛍光性化合物の蛍光量子収率Φは、異なる濃度の溶液を準備し、縦軸を蛍光強度面積の積分値F(励起光:690nm)、横軸を吸光度Aとしたグラフを作成し、その傾きGrad(=F/A)を算出し、さらに各溶媒の屈折n = 1.496 (トルエン), 1.445 (CHCl3), 1.407 (THF), 1.344(MeCN), 1.329 (MeOH)を代入しそれぞれの値を次の式に代入することで求めた。このとき、参照化合物1(下記)(Φref = 0.36、 CHCl3中)をリファレンスとした。
Φ = Φref×(Grad×n2)/ (Gradref×nref 2)
(ただし、Gradは縦軸に蛍光スペクトルの波数積分値、横軸に吸光度としたグラフの傾き、nは溶媒の屈折率を示し、refは参照色素(リファレンス)を示す)
蛍光性化合物の蛍光極大波長はクロロホルム中で683 nm、688 nmとなり、ボロンジピロメテン (R1 = R3 = R5 = R7 = Me)に比べて約170 nmほど、蛍光性化合物に比べ約90 nmシフトした。このことから、特定の部位に電子供与基を導入することで長波長化することが確かめられた。また、蛍光性化合物は、それぞれ半値幅が非常に小さく、鋭い蛍光スペクトルを示している。このことから、ボロンジピロメテン骨格と同様の骨格の堅さを維持したまま長波長シフトしたことがわかる。さらに、蛍光性化合物およびを比較すると、導入した基の電子供与性が高いほど蛍光が長波長化することが確かめられた。
Figure 0005177427
参照化合物1
蛍光性化合物の蛍光極大波長はクロロホルム中で737 nmとなり、蛍光性化合物に比べ約54 nmシフトした。このことから、特定の部位に電子吸引基を導入することでさらなる長波長シフトが達成できることがわかる。また、また、蛍光性化合物は、半値幅が31 nm程度と非常に小さく、鋭い蛍光スペクトルを示している。このことから、ボロンジピロメテン骨格と同様の骨格の堅さを維持したまま長波長シフトしたことがわかる。
蛍光性化合物と、Cy7(商品名、1-[3-(4-モノメトキシトリチロキシ)プロピル]-1'-[3-[(2-シアノエチル)-(N,N-ジイソプロピル)フォスフォロアミジチル]プロピル]-3,3,3',3'-テトラメチルインドトリカルボシアニンクロリド)の光に対する耐久性を確かめる実験を行った。
蛍光性化合物とCy7(商品名)を、それぞれアセトニトリル中に溶解し、吸光度が0.1になる濃度に調整し、遮光せず同条件下(具体的には日常生活光の下)で放置し、1日(ないしは2日おき)に吸光度を測定した。そして縦軸に相対吸光度(放置前の吸光度を100%とする)を、横軸に日数をとり、経時変化をグラフに示した。
結果を図1に示す。蛍光性化合物は、一週間後でも吸光度は95%以上保持されている一方、Cy7(商品名)は吸光度が10%以下まで減少した。この結果より、Cy7(商品名)の光に対する耐久性は著しく乏しいが、蛍光性化合物は光に対する耐久性が極めて高いことがわかった。この結果より、従来の色素では不可能であった、長時間の分析試薬、または高耐久性の新規表示色素材料、光学材料としての応用が可能となると考えられる。
Cy7に代表されるシアニン系色素は、0010段落でも述べたように、化学的に柔軟な結合であるオレフィン(ポリメチン)鎖が長く、この部位が光異性化などを起こし、そのため耐久性の低下を招いたと考えられる。また、この現象はCy7のみならず、一般的にオレフィン(ポリメチン)構造を有する色素においては起こりうることであり、オレフィン(ポリメチン)鎖が長くなるほど、耐久性が低下すると考えられる。もっとも、この現象は非特許文献3をはじめ、多くの文献で報告されている事実である。
一方、蛍光性化合物は、化学的に堅牢な分子構造であるため、飛躍的に光耐久性が向上したと考えられる。したがって、蛍光性化合物は、柔軟なオレフィン構造を有する色素、特にCy7に代表されるようなシアニン系色素に対して、光耐久性の面でも有意な利点を見出せる。もっとも、この事象は蛍光性化合物に限定されず、本発明による蛍光性化合物全般に共通する特性である。

Claims (9)

  1. 下記一般式[I]
    Figure 0005177427
    (ただし、式中、
    R1とR2は互いに協働して、イオウ、酸素、窒素及びリンから成る群より選ばれる少なくとも1個のヘテロ原子を含む5員若しくは6員のヘテロ環を形成するか又は該ヘテロ環を形成しない場合には互いに独立に水素原子若しくは前記化合物の蛍光を阻害しない任意の基を表し、
    R6とR7は互いに協働して、イオウ、酸素、窒素及びリンから成る群より選ばれる少なくとも1個のヘテロ原子を含む5員若しくは6員のヘテロ環を形成するか又は該ヘテロ環を形成しない場合には互いに独立に水素原子若しくは前記化合物の蛍光を阻害しない任意の基を表し、
    (1)R1とR2、及び、(2)R6とR7、の少なくともいずれか一方は上記ヘテロ環を形成し、
    Qは炭素原子又は窒素原子を表し、
    R3、R4及びR5は互いに独立に水素原子又は前記化合物の蛍光を阻害しない任意の基を表し(ただし、Qが窒素原子の場合にはR4は存在しない)、
    R8及びR9は互いに独立にハロゲン原子、アルキル基、アルケニル基、アルキニル基、アルコキシ基、アリール基又はヘテロアリール基を示し、
    前記R 1 とR 2 、及び/又はR 6 とR 7 により形成される前記ヘテロ環が、互いに独立に、下記式
    Figure 0005177427
    (ただし、これらの式中、X、Y及びZは、互いに独立にイオウ、酸素、窒素又はリン原子を示し、R 10 ないしR 17 は互いに独立に水素原子又は前記化合物の蛍光を阻害しない任意の基を表す)
    で表されるいずれかの構造を有する
    で示される構造を有する蛍光性化合物。
  2. 前記ヘテロ環が、
    Figure 0005177427
    (ただし、これらの式中、X、Y及びZは、互いに独立にイオウ、酸素、窒素又はリン原子を示し、R10ないしR13は互いに独立に水素原子又は前記化合物の蛍光を阻害しない任意の基を表す)
    で表されるいずれかの構造を有する請求項記載の化合物。
  3. 前記R10ないしR17が互いに独立に水素原子又は電子供与性基である請求項又は記載の化合物。
  4. 前記電子供与性基がアルキル基、フェニル基、p-アルコキシフェニル基、p-ジアルキルアミノフェニル基、2-チエニル基、2-フリル基又はジアルコキシフェニル基である請求項記載の化合物。
  5. 前記電子供与性基が炭素数1〜10のアルキル基、アルキル部分の炭素数が1〜10のアルコキシフェニル基若しくはアルキル部分の炭素数がそれぞれ1〜10のジアルコキシフェニル基である請求項記載の化合物。
  6. 前記一般式[I]中、R8及びR9が互いに独立にハロゲン原子である請求項1ないしのいずれか1項に記載の化合物。
  7. 前記一般式[I]中、R8及びR9がフッ素原子である請求項記載の化合物。
  8. 請求項1ないしのいずれか1項に記載の化合物から成る標識剤。
  9. 請求項記載の標識剤で標識した物質を反応に供し、反応後、該標識剤を発光させて該物質を測定することを含む標識物質の測定方法。
JP2008513292A 2006-04-28 2007-04-27 蛍光性化合物及びそれから成る標識剤 Active JP5177427B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008513292A JP5177427B2 (ja) 2006-04-28 2007-04-27 蛍光性化合物及びそれから成る標識剤

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006126208 2006-04-28
JP2006126208 2006-04-28
PCT/JP2007/059168 WO2007126052A1 (ja) 2006-04-28 2007-04-27 蛍光性化合物及びそれから成る標識剤
JP2008513292A JP5177427B2 (ja) 2006-04-28 2007-04-27 蛍光性化合物及びそれから成る標識剤

Publications (2)

Publication Number Publication Date
JPWO2007126052A1 JPWO2007126052A1 (ja) 2009-09-10
JP5177427B2 true JP5177427B2 (ja) 2013-04-03

Family

ID=38655573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008513292A Active JP5177427B2 (ja) 2006-04-28 2007-04-27 蛍光性化合物及びそれから成る標識剤

Country Status (4)

Country Link
US (1) US8193350B2 (ja)
EP (1) EP2022794B1 (ja)
JP (1) JP5177427B2 (ja)
WO (1) WO2007126052A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022977A1 (ja) 2013-08-13 2015-02-19 Dic株式会社 樹脂組成物及び成形体
WO2015056779A1 (ja) 2013-10-17 2015-04-23 Dic株式会社 樹脂組成物及び成形体
JP2021533240A (ja) * 2018-08-07 2021-12-02 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company ペンダント狭発光アクセプタを有するポリマータンデム色素
JP7307169B2 (ja) 2018-11-26 2023-07-11 ルーカス ヒュードラウリク ゲーエムベーハー 携帯用可搬工具

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2699494A1 (en) * 2007-09-13 2009-03-19 Cyalume Technologies, Inc. Infra-red lighting system and device
US20100231125A1 (en) * 2009-03-12 2010-09-16 Sheng Li Organic light emitting device to emit in near infrared
EP2399962B1 (en) 2010-06-28 2013-02-13 Kemira Germany GmbH Fluorescent dyes for paper dyeing
WO2014055505A1 (en) * 2012-10-01 2014-04-10 The General Hospital Corporation Bodipy dyes for biological imaging
CN102993763B (zh) * 2012-12-09 2014-08-27 大连理工大学 一类单电荷氟化硼络合二吡咯甲川荧光染料及其应用
EP2958891B1 (en) 2013-02-21 2020-06-17 The Johns Hopkins University Red fluorescent aldehyde dehydrogenase (aldh) substrate
DE102013106639A1 (de) * 2013-06-25 2015-01-08 Heliatek Gmbh Organisches, halbleitendes Bauelement
WO2016073385A1 (en) * 2014-11-03 2016-05-12 Agency For Science, Technology And Research Compounds for the diagnosis or treatment of disorders associated with protein or peptide oligomers
WO2016132597A1 (ja) * 2015-02-18 2016-08-25 Dic株式会社 樹脂組成物及び成形体
JP2021519841A (ja) 2018-03-30 2021-08-12 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company ペンダントクロモフォアを有する水溶性ポリマー色素
EP3617214B1 (de) 2018-08-30 2023-05-10 Heliatek GmbH Organisches halbleitendes material und dessen synthese und organisches halbleitendes bauelement mit dem material
WO2020120636A1 (en) * 2018-12-14 2020-06-18 Rheinisch-Westfälische Technische Hochschule (Rwth) Aachen Fluorescence dye
DE102019118872A1 (de) 2019-07-11 2021-01-14 Heliatek Gmbh Organische Verbindung, und optoelektronisches Bauelement mit einer solchen organischen Verbindung
JP2023540942A (ja) 2020-08-31 2023-09-27 ヘリアテク ゲゼルシャフト ミット ベシュレンクテル ハフツング 化合物、オプトエレクトロニクス部品における少なくとも1種のそのような化合物の使用、及び少なくとも1種のそのような化合物を含むオプトエレクトロニクス部品
US20240034927A1 (en) 2020-09-17 2024-02-01 Dic Corporation Resin composition and molded object
JPWO2023127507A1 (ja) * 2021-12-27 2023-07-06
DE102022116403A1 (de) 2022-06-30 2024-01-04 Heliatek Gmbh Optoelektronisches Bauelement mit einer als planar Heterojunction ausgebildeten photoaktiven Schicht
DE102022116410A1 (de) 2022-06-30 2024-01-04 Heliatek Gmbh Organisches elektronisches Bauelement mit einer Akzeptorschicht und einer daran angeordneten Kaskade aus mindestens zwei in direktem Kontakt aufeinanderfolgenden Donorschichten
DE102022125417A1 (de) 2022-09-30 2024-04-04 Heliatek Gmbh Chemische Verbindung, optoelektronisches Bauelement mit mindestens einer solchen chemischen Verbindung, und Verwendung mindestens einer solchen chemischen Verbindung in einem optoelektronischen Bauelement

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509471A (ja) * 1993-02-19 1996-10-08 ボー−デック ヴェンチャーズ、リミテッド 光力学療法およびレーザー光の発生に有用な化合物
US6005113A (en) * 1996-05-15 1999-12-21 Molecular Probes, Inc. Long wavelength dyes for infrared tracing
JP2002169275A (ja) * 2000-12-04 2002-06-14 Mitsui Chemicals Inc 光酸発生剤及びそれを用いた可視光感光性樹脂組成物
JP2005022985A (ja) * 2003-06-30 2005-01-27 Tetsuo Nagano 亜鉛蛍光プローブ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433896A (en) 1994-05-20 1995-07-18 Molecular Probes, Inc. Dibenzopyrrometheneboron difluoride dyes
US5248782A (en) * 1990-12-18 1993-09-28 Molecular Probes, Inc. Long wavelength heteroaryl-substituted dipyrrometheneboron difluoride dyes
JP4524901B2 (ja) 2000-10-20 2010-08-18 東レ株式会社 発光素子
WO2007044866A2 (en) * 2005-10-11 2007-04-19 The Regents Of The University Of California Water-soluble, fluorescent compounds for detection of potassium ions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08509471A (ja) * 1993-02-19 1996-10-08 ボー−デック ヴェンチャーズ、リミテッド 光力学療法およびレーザー光の発生に有用な化合物
US6005113A (en) * 1996-05-15 1999-12-21 Molecular Probes, Inc. Long wavelength dyes for infrared tracing
JP2002169275A (ja) * 2000-12-04 2002-06-14 Mitsui Chemicals Inc 光酸発生剤及びそれを用いた可視光感光性樹脂組成物
JP2005022985A (ja) * 2003-06-30 2005-01-27 Tetsuo Nagano 亜鉛蛍光プローブ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN7012003618; CHEN,J. et al.: '4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY) dyes modified for extended conjugation and restr' Journal of Organic Chemistry Vol.65, No.10, 2000, p.2900-2906 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022977A1 (ja) 2013-08-13 2015-02-19 Dic株式会社 樹脂組成物及び成形体
WO2015056779A1 (ja) 2013-10-17 2015-04-23 Dic株式会社 樹脂組成物及び成形体
JP2021533240A (ja) * 2018-08-07 2021-12-02 ベクトン・ディキンソン・アンド・カンパニーBecton, Dickinson And Company ペンダント狭発光アクセプタを有するポリマータンデム色素
JP7307169B2 (ja) 2018-11-26 2023-07-11 ルーカス ヒュードラウリク ゲーエムベーハー 携帯用可搬工具

Also Published As

Publication number Publication date
EP2022794A4 (en) 2011-05-25
EP2022794A1 (en) 2009-02-11
EP2022794B1 (en) 2017-08-23
US8193350B2 (en) 2012-06-05
WO2007126052A1 (ja) 2007-11-08
JPWO2007126052A1 (ja) 2009-09-10
US20090176313A1 (en) 2009-07-09

Similar Documents

Publication Publication Date Title
JP5177427B2 (ja) 蛍光性化合物及びそれから成る標識剤
EP3489324A1 (en) Fluorescent probe and preparation method and use thereof
KR101427354B1 (ko) 생체분자용 표지색소 및 표지키트와 생체분자의 검출방법
US8735601B2 (en) Pentamethine cyanine fluorescent dye with N-substituting at β-position of conjugated chain
CA2514131A1 (en) Hydrophilic, thiol-reactive cyanine dyes and conjugates thereof with biomolecules for fluorescence diagnosis
Zhang et al. Rational design of NIR fluorescence probes for sensitive detection of viscosity in living cells
CN114040962A (zh) 用于细胞器成像的发射红色荧光的化合物
JP5881624B2 (ja) 蛍光色素
Rappitsch et al. Bright far-red emitting BODIPYs via extension with conjugated fluorene and carbazole motifs
WO2007105529A1 (ja) 化学発光性化合物及びそれから成る標識剤
JP2010037511A (ja) 蛍光色素
US8889887B2 (en) Pentamethine cyanine fluorescent dyes, preparation methods and uses thereof
JP4860352B2 (ja) 診断薬及びそれを用いた測定方法
JP2008156556A (ja) 蛍光色素及びその製造方法
US7351829B2 (en) Compounds on the basis of 2- and 4-chromenylidene-merocyanines respectively, and their use
CN107090190B (zh) 一类吖啶盐染料及其制备方法和应用
JP6709734B2 (ja) アルコキシシリル基含有有機el色素およびその製造方法
CN102964863B (zh) 吲哚类半菁染料的合成与应用
CN113563298B (zh) 一类含水溶性取代基罗丹明荧光染料其制备方法和应用
Hernandez-Fernandez et al. Synthesis and characterization of benzotriazolyl acrylonitrile analogs-based donor-acceptor molecules: Optical properties, in vitro cytotoxicity, and cellular imaging
JPWO2009016718A1 (ja) 診断薬及びそれを用いた診断方法
CN110669350B (zh) 一种哌啶基bodipy类红光荧光染料及其制备方法和应用
JP2006234772A (ja) タンパク質の検出方法及びそれに用いる蛍光色素
Efimova et al. Synthesis and optical characteristics of 4-styrylpyridinium dyes and their conjugates with antibody
Lau et al. Synthesis, structure, and optical properties of the platinum (II) complexes of indaphyrin and thiaindaphyrin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5177427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250