JP5177379B2 - 磁気共鳴イメージング装置 - Google Patents

磁気共鳴イメージング装置 Download PDF

Info

Publication number
JP5177379B2
JP5177379B2 JP2008000398A JP2008000398A JP5177379B2 JP 5177379 B2 JP5177379 B2 JP 5177379B2 JP 2008000398 A JP2008000398 A JP 2008000398A JP 2008000398 A JP2008000398 A JP 2008000398A JP 5177379 B2 JP5177379 B2 JP 5177379B2
Authority
JP
Japan
Prior art keywords
magnetic field
phase
gradient magnetic
image
eddy current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008000398A
Other languages
English (en)
Other versions
JP2009160215A (ja
Inventor
静江 空
秀樹 熊井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2008000398A priority Critical patent/JP5177379B2/ja
Publication of JP2009160215A publication Critical patent/JP2009160215A/ja
Application granted granted Critical
Publication of JP5177379B2 publication Critical patent/JP5177379B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

本発明は、核磁気共鳴(NMR)現象を用いて被検体の断層像を得る磁気共鳴イメージング(以下「MRI」という)装置に関し、特に、傾斜磁場印加により誘起される渦電流に起因する画質の劣化を抑制する技術に関する。
MRI装置は、均一な静磁場中に置かれた被検体に高周波磁場を印加することによって、被検体の任意の領域に存在する原子核(通常プロトン)に核磁気共鳴現象を生じさせ、それによって発生するNMR信号からその領域の断層像を得るものである。この際、(1)特定の領域を選択する、(2)計測されるNMR信号へ位置情報を付与する、等のために傾斜磁場が印加される。この傾斜磁場は、領域選択や位置情報付与を正確に行うために、印加時間及び強度を正確に制御する必要がある。
しかしながら、傾斜磁場の印加によって傾斜磁場コイル周辺の様々な構造体に減衰性電流(いわゆる渦電流)が誘起されるという問題がある。渦電流は、空間的かつ時間的に変化する磁場を発生し、この磁場が、傾斜磁場とともに被検体に到達することにより、被検体内の核スピンに印加される傾斜磁場を、所望する印加時間および強度から逸脱させてしまうためである。これにより、正確な領域選択や、NMR信号への正確な位置情報付与ができなくなり、画像の歪み、信号強度の低下、ゴーストの発生などの画質の劣化を招く。
そこで、渦電流によって生じる磁場を補償するための手法として、画像を見ながら、傾斜磁場発生コイルに供給する電流波形を調整する方法が知られている。しかしながら、この方法は、渦電流によって生じる磁場の0次成分(均一な磁場成分)と1次成分(線形磁場成分)のみに対応可能であり、高次成分については補償することができない(特許文献1等)。
そこで、特許文献1では、渦電流によって誘起される磁場を測定し、これを打ち消す補償磁場をシムコイルを用いて印加することにより、渦電流に起因する画質劣化を抑制する方法が開示されている。具体的には、極性を異ならせた2つのテスト傾斜磁場を用い、各テスト傾斜磁場を印加した後に、高周波(RF)パルスおよび位相エンコード傾斜磁場をファントム内に照射して、自由誘導減衰信号(FID信号)を取得する。得られた二つのFID信号に含まれる位相情報は、渦電流による磁場、位相エンコード傾斜磁場および静磁場不均一による影響を受けている。二つのFID信号をそれぞれフーリエ変換することにより得た位相情報の差分をとることにより、位相エンコード傾斜磁場および静磁場不均一による影響を除去し、テスト傾斜磁場により発生した渦電流による磁場の影響をあらわす位相差画像を得ることができる。この位相差画像をもとに、渦電流による磁場の空間的分布および時間変化を求め、補償磁場の分布及び大きさを決定する。
特許文献2では、信号読み出し傾斜磁場を印加して計測されたNMR信号と、信号読み出し傾斜磁場を印加せずに計測されたNMR信号からそれぞれ位相マップを作成し、両位相マップの差を求めることにより、位相差マップを作成する方法が開示されている。この位相差マップに基づき演算により、傾斜磁場波形歪みの分布を求める。傾斜磁場波形歪みの分布に基づき、k空間座標を補正し、画像再構成を行うことにより、画質を向上させる。
特許文献3では、特許文献1に記載の方法において計測されるFID信号が、時間により減衰するために、時間経過ととともにS/Nが低下し、長い時定数の渦電流を精度よく計測できないという問題を解決する計測方法を開示している。すなわち、テスト傾斜磁場とスライス選択性のRF励起を含むシーケンスを短TRで繰り返し行い、定常状態となったスピンのエコー信号を所定時間繰り返し取得するという方法である。
特開平10−272120号公報 特開2003−111744号公報 WO2004/004563
特許文献1〜3に記載のように計測した信号の位相情報から渦電流により発生する磁場を求める方法はいずれも、傾斜磁場を印加した方向について発生した磁場の歪みを計測する方法である。しかしながら、渦電流により生じる磁場の歪みは、実際には、傾斜磁場の印加方向のみならず、それと直交する方向にも誘起される。すなわち、傾斜磁場が印加されると、チャネル相互間においても磁場(いわゆるクロスターム)が発生する。特に、拡散強調撮像に用いるDWEPI(Diffusion Weighted EPI)計測のように、大強度の傾斜磁場(MPG:Motion
Probing Gradient)パルスを用いる撮像方法では、クロスタームは顕著に生じる。しかしながら、特許文献1,2に記載の方法では、クロスタームは考慮されておらず、直交するチャネルの磁場歪みを計測することはできない。よって、補償磁場によって打ち消すことや、画像再構成時に補正することもできない。
本発明は、傾斜磁場により発生する渦電流によって生じる磁場歪みを、クロスタームを含めて計測することのできるMRI装置を提供する。
上記目的を達成するために、本発明によれば、以下のようなMRI装置を提供する。すなわち、静磁場を発生する静磁場発生手段と、静磁場中の撮像空間に互いに直交する第1、第2および第3の方向の傾斜磁場を印加する傾斜磁場発生手段と、撮像空間に配置された被検体に高周波磁場を照射する高周波磁場発生手段と、被検体から発生する核磁気共鳴信号を検出する検出手段と、傾斜磁場発生手段、高周波磁場発生手段および検出手段を制御して所定の撮像パルスシーケンスを実行させ、取得した核磁気共鳴信号から被検体の画像を再構成する制御手段とを有するMRI装置であって、制御手段は、傾斜磁場により生じた渦電流が発生する磁場を計測する渦電流磁場計測手段を含む。この渦電流磁場計測手段は、第1、第2および第3の方向のうち、傾斜磁場を印加した方向に発生する渦電流磁場のみならず、印加方向と直交する二つの方向に発生する渦電流磁場(いわゆるクロスターム)の少なくとも一方についても計測を行うものである。これにより、渦電流により生じる磁場歪みを、クロスタームを含めて計測することができる。
上述の渦電流磁場計測手段の計測手法としては、例えば、被検体に対して第1、第2および第3の方向のうち所定の方向にテスト傾斜磁場を印加した後、核磁気共鳴信号を取得するパルスシーケンスを行う手法を用いることができる。取得した核磁気共鳴信号に基づき、テスト傾斜磁場により被検体により生じた位相変化を示す位相画像を再構成する。位相画像上の第1、第2および第3の方向の位相変化量をそれぞれ取得することにより、渦電流磁場を計測する。
渦電流磁場計測手段が求める位相変化量は、第1、第2および第3の方向をx、yおよびz方向とし、位相変化量をΦji(ただし、i:テスト傾斜磁場の印加方向、j:渦電流磁場の方向)と表した場合、Φxx、Φyy、Φzz、Φxy、Φyx、Φyz、Φzy、Φzx、Φxzの9種類とすることができる。
上述の制御手段は、渦電流磁場計測手段が取得した9種類の位相変化量を記憶するための記憶部をさらに有する構成とすることができる。そして、制御手段は、所定の撮像パルスシーケンスを実行した後、画像再構成を行う際に、記憶部から9つの位相変化量のうちの1以上を読み出し、読み出した位相変化量に応じてk空間における核磁気共鳴信号データを補正する。補正後の核磁気共鳴信号データを用いて画像再構成を行うことにより、渦電流に起因する歪みやアーチファクトを除去した良好な画像を提供することができる。
また、制御手段は、所定の撮像パルスシーケンスを実行する前に、記憶部から9つの位相変化量のうちの1以上を読み出し、撮像パルスシーケンスで印加する所望の傾斜磁場を発生させるために傾斜磁場コイルに供給する電流波形を読み出した位相変化量に応じて補正し、補正後の電流波形により傾斜磁場を発生させてパルスシーケンスを実行する構成にすることができる。これにより、渦電流による位相変化量を補償した傾斜磁場を撮像時に印加することができるため、渦電流による歪みやアーチファクトを除去した良好な画像を提供することができる。
本発明のMRI装置では、上述のように傾斜磁場により発生する渦電流による磁場を、傾斜磁場印加方向のみならずクロスタームも含めて前もって計測することができる。MPGパルスを用いる拡散強調画像撮像等、大きな傾斜磁場を印加する撮像方法においても、この計測結果を用いて渦電流による位相変化量に見合う補正を撮像時、もしくは、画像再構成時に行うことができ、渦電流による歪みやアーチファクトを除去した良好な画像を提供することができる。
以下、本発明の一実施の形態を、図面に基づいて詳細に説明する。
まず、本実施の形態のMRI装置の全体構成を、図1のブロック図を用いて説明する。このMRI装置は、磁気共鳴現象を利用して被検体の断層像を得るためのもので、静磁場発生手段701、傾斜磁場発生手段702、送信系703、受信系704、信号処理系705、シーケンサ706、中央処理装置(CPU)707および操作部(不図示)を備えている。
静磁場発生手段701は、図示していない磁石を含み、被検体708の周りのある広がりを持った空間に被検体708の体軸方向または被検体の体軸と直交する方向に均一な静磁場を発生させる。磁石としては、永久磁石、常伝導磁石および超伝導磁石のいずれを用いることができる。
傾斜磁場発生手段702は、予め定められたX、Y、Zの3軸方向に巻かれた傾斜磁場コイル709と、これらの各々のコイルに駆動電流を供給する傾斜磁場電源710とを含む。シーケンサ706からの命令に従って、傾斜磁場電源710は、各々のコイルに所定の波形の電流を供給することによりX、Y、Zの3軸方向の傾斜磁場Gs、Gp、Gfを被検体708に印加する。この傾斜磁場の加え方により、被検体708を撮影して表示する断面が設定される。
送信系703は、高周波発振器711、変調器712、高周波増幅器713および高周波照射コイル714を含む。高周波発振器711から出力された高周波パルスを高周波増幅器713で増幅した後に、被検体708に近接して設置された高周波照射コイル714に供給し、高周波照射コイル714から高周波磁場パルス(RFパルス)を被検体708に照射する。これにより、被検体708の撮影断面の生体組織を構成する原子の原子核が励起され、核磁気共鳴(NMR)現象を生じる。
受信系704は、高周波受信コイル715、受信回路716およびアナログ/ディジタル(以下「A/D」という)変換器717とを含む。核磁気共鳴を生じた被検体708の生体組織の原子核が発生したNMR信号は、被検体708に近接して配置された高周波受信コイル715により検出され、受信回路716を介してA/D変換器717に受け渡され、ディジタル信号に変換されるとともに、シーケンサ706からの命令によるタイミングでサンプリングされる。サンプリングされた一連の信号は、収集データとして信号処理系705に送られる。
信号処理系705は、CPU707、信号処理装置718、メモリ719、磁気ディスク720・光ディスク721およびディスプレイ722を含んでいる。CPU707は、収集データに対するフーリエ変換およびシーケンサ706の制御を行う。信号処理装置718は、補正計算や収集データを断層像に再構成するために必要な処理を行う。メモリ719は、経時的な画像解析処理および指定された計測のシーケンスのプログラムや、その実行の際に用いられるパラメータ等を記憶する。また、メモリ719は、被検体に対して行った事前の計測で得た計測パラメータの記憶や、受信系704で検出したNMR信号からの収集データおよび関心領域設定に用いる画像の一時保管や、その関心領域を設定するためのパラメータ等の記憶も行う。磁気ディスク720・光ディスク721は、再構成された画像データを記憶するデータ格納部となる。ディスプレイ722は、磁気ディスク720・光ディスク721およびこれらのディスクから読み出した画像データを映像化して断層像として表示する。これらの構成により、信号処理系705は、シーケンサ706の制御の他、受信系704で検出したNMR信号を用いて画像再構成するとともに画像表示を行う。
シーケンサ706は、CPU707の制御で動作し、傾斜磁場発生手段702、送信系703および受信系704に被検体708の断層像のデータ取得に必要な種々の命令を出力する。これにより、スライスエンコード、位相エンコード、周波数エンコードのための各傾斜磁場の印加、高周波磁場パルスの照射、ならびに、NMR信号の収集等の各動作を所定のパルスシーケンスにしたがって実行させる。
操作部は、図示していないが、トラックボールまたはマウス、キーボード等を含み、信号処理系705で行う処理に必要な制御情報の入力を操作者から受け付ける。
なお、本実施の形態のMRI装置では、パルスシーケンスとして、通常の撮像シーケンスの他に、傾斜磁場に起因する渦電流を計測するための較正パルスシーケンスが含まれている。撮像シーケンスおよび較正パルスシーケンスは、プログラムとしてメモリ719内に予め格納されている。CPU707は、これらのパルスシーケンスのプログラムを読み込んでシーケンサ706に指令を出力し、パルスシーケンスを実行させる。
次に、このような構成のMRI装置が実行する渦電流の計測とそれに基づく磁場変化の特性を用いて補正を行う方法について説明する。
操作者は、静磁場中にファントムを配置し、不図示の操作部を介して、CPU707に較正パルスシーケンスの実行を指示する。操作者からの指示に従い、CPU707は、較正パルスシーケンスをメモリ719から読み込んでシーケンサ706に実行させる。この較正パルスシーケンスは、所定の印加時間と強度を有したテスト傾斜磁場を所定の軸方向(i方向)に印加した後、所定のリードアウト方向についてNMR信号を読み出すことにより、そのテスト傾斜磁場により生じた渦電流に起因して所定のj方向に発生した磁場歪みによる位相変化(Φji)を検出できるシーケンスであればどのようなシーケンスであってもよい。
ただし、本実施の形態では、従来のように、テスト傾斜磁場の印加方向(i方向)と同じリードアウト方向(j方向)に生じた磁場歪みの位相変化量(Φxx、Φyy、Φzz)のみならず、直交する方向に生じるクロスターム(Φxy、Φyx、Φyz、Φzy、Φzx、Φxz)についても計測を行う。このため、テスト傾斜磁場の印加方向およびリードアウト方向をXYZ軸のそれぞれに設定可能なシーケンスを用いる必要がある。
例えば、図2に示した較正パルスシーケンスを用いることができる。このシーケンスは、グラディエントエコー法による短TRパルスシーケンスを繰り返し行うものであり、テスト傾斜磁場1051を印加するユニット(図2のグループ1)と、テスト傾斜磁場を印加しないユニット(グループ2)から構成される。図2のグループ1およびグループ2ではいずれも、RFパルス1101を照射すると同時に、Gs方向にスライス選択傾斜磁場1102を印加して、ファントムの任意断面を励起し、Gp方向の位相エンコード傾斜磁場1103を印加して位相エンコードした後、Gf方向のリードアウト傾斜磁場1104を印加し、エコー信号1106を発生させる。これを所定の時間TRで所定回数繰り返し行う。
このとき、グループ1では、所定のi方向(図2ではi方向=Gf方向)に所定の強度および時間のテスト傾斜磁場1051〜105nをTRごとに印加する。グループ1では、発生したエコー信号1106は取得せず、グループ2では、時間1107でエコー信号1106を取得する。これにより、テスト傾斜磁場1051〜105nによって発生した渦電流1202に起因する磁場の変化をエコー信号1106によって計測することができる。位相エンコード量は、グループ1とグループ2とで同じ値とし、位相エンコード量を変化させながら、グループ1とグループ2とを繰り返し行い、グループ2の各TR時点において、それぞれ画像再構成に必要な数のエコー信号が取得されるまで継続する。つぎに、テスト傾斜磁場1051〜105nを反転させて同様に、グループ2の各TR時点において、それぞれ画像再構成に必要な数のエコー信号を取得する。
図2のグループ1では、発生したエコー信号1106は取得せず、グループ2では、時間1107でエコー信号1106を取得している。これは、上述した特許文献3にも記載されているように、グループ1において、RFパルス1101を繰り返し印加することにより、核スピンを定常歳差運動状態にし、グループ2において信号強度レベルを維持しながらエコー信号1106の繰り返し取得するためである。また、テスト傾斜磁場1051〜105nについても、短時間パルス磁場を繰り返し印加することにより、大きな磁場を長時間印加するのと同じ効果が得られ、傾斜磁場コイルの負担が小さいためである。また、図2のシーケンスの場合、傾斜磁場の立ち上がり時に発生する渦電流1201が継続している間、グループ1を継続して行うことにより、グループ2において立ち下がり時に発生する渦電流1202の変化をエコー信号1106により選択的に計測することができるという作用も得られる。逆に、立ち上がり時に発生する渦電流1201の変化を計測する場合には、グループ2においてエコー信号1106を計測せず、グループ1においてエコー信号を計測する。
本実施形態では、上述した図2のパルスシーケンスで示しているように、テスト傾斜磁場1051等の印加方向(i方向)をリードアウト(Gf)方向(j方向)に一致させて位相画像を取得する例を示す。ただし、これは一例であり、Gs、Gp、GfとX、Y、Z軸との対応関係、および、テスト傾斜磁場1051等の印加軸を変化させて位相画像を取得することもできる。
以下図3を用いて具体的な計測手順について説明する。まず、図2のシーケンスにおいてスライス方向(Gs)をZ軸、位相方向(Gp)をY軸、リードアウト方向(Gf)をX軸に設定し、X軸の正極性にテスト傾斜磁場1051等を印加してエコー信号を得る(ステップ101)。次に、テスト傾斜磁場1051等を負極性に印加して同様にエコー信号を得る(ステップ102)。次に、Gs、Gp、Gfの方向をX,Z、Y軸に変更するとともに、テスト傾斜磁場1051等の印加軸をY軸に変更して、ステップ101,102と同様にそれぞれエコー信号を得る(ステップ103、104)。さらに、Gs、Gp、Gfの方向をY、X、Z軸に変更するとともに、テスト傾斜磁場1051等の印加軸をZ軸に変更して、同様にエコー信号を得る(ステップ105、106)。
次に、スライス方向(Gs)の軸を上述した状態に保ったまま、位相方向(Gp)、リードアウト方向(Gf)の軸方向を変更して、ステップ101〜106と同じ計測を行う。つまり、ステップ101、102では、Gs、Gp、GfがZ、X、Y軸、ステップ103、104では、Gs、Gp、GfがX、Y、Z軸、ステップ105、106では、Gs、Gp、GfがY、Z、X軸となるようにする。
このようにして、図3のステップ101〜106のように各軸の正および負極性にテスト傾斜磁場を印加した画像再構成用データ6セットを、軸を変えて2回分、つまり12セットのデータセットを得る。
次に、得られたデータを図4のように処理する。図2の較正パルスシーケンスにより、ステップ101〜106において取得したデータセット(エコー信号1106)は、テスト傾斜磁場1051等により生じた渦電流に起因する磁場変化による位相情報の他に、静磁場不均一による影響や位相エンコード傾斜磁場1103やリードアウト傾斜磁場1104による渦電流による影響も受けている。よって、これらを図4のように、差分処理することにより、テスト傾斜磁場により生じた渦電流の影響のみを含んだ位相画像データセットを得る。
まず、図3のフローにおいて1回目のステップ101で得たエコー信号1106のデータセットを各時間点ごとに2次元フーリエ変換して、時間分解された2次元複素画像(実数画像および虚数画像)データを再構成する。このエコー信号は、スライス方向(Gs)をZ軸、位相方向(Gp)をY軸、リードアウト方向(Gf)をX軸に設定し、X軸方向に正極性のテスト傾斜磁場1051等を印加して得たものであるので、再構成された2次元複素画像は、XY平面のファントムの画像である。ここではファントムとして、円柱状のものを用いている。
つぎに、複素画像の各点の実部と虚部との比のアークタンジェントから位相を求め、図5(a)に示したようにXY平面の位相画像を得る(ステップ203)。同様に、負極性のテスト傾斜磁場1051等を印加して得たエコー信号1106のデータセットから、時間分解された2次元複素画像を求め、XY平面の位相画像を得る(ステップ202、204)。ステップ203で得た位相画像と、ステップ204で得た位相画像とについて、各点の位相量の差分を求め、一つの位相画像データ(図5(a))を得る(ステップ205)。
得られた位相画像データは、図5(a)のようにXY平面のファントムの画像であるが、静磁場不均一による影響や位相エンコード傾斜磁場1103やリードアウト傾斜磁場1104による渦電流による影響が除去され、テスト傾斜磁場1051等により生じた渦電流の影響のみを含んだ位相画像を示している。ステップ101,102におけるテスト傾斜磁場1051の印加方向(i方向)は、X軸である。よって、図5(a)の位相画像のX軸上の領域401における位相データおよび領域402における位相データはそれぞれ、X軸(i方向)に印加したテスト傾斜磁場1051による渦電流によりX軸方向(j方向)に生じた位相成分をそれぞれ示している。ただし、領域401および402の位置は、X軸上で所定の距離だけ離れた予め定めた位置である。よって、領域401の位相データと領域402の位相データとの差分を取ることによって、X軸方向にテスト傾斜磁場を印加したときのX軸方向の位相変化量Φxxを得ることができる。なお、以下の説明において、位相変化量(Φji)を位相差データ(Φji)とも呼ぶ。
また、図5(a)の位相画像のY軸上の領域403における位相データおよび404における位相データは、X軸(i方向)に印加したテスト傾斜磁場1051による渦電流によりY軸方向(j方向)に生じた位相成分をそれぞれ示している。よって、領域403の位相データと領域404の位相データの差分を取ることにより、Φji=Φyxを得ることができる。領域403および404の位置も予め定めた位置であり、両者は、Y軸上で所定の距離だけ離れている。同様に、この後の説明で用いる領域405〜424の位置についても、予め定めたものであり、それぞれの軸上で予め定めた距離だけ離れている。
同様に、ステップ103、104において取得したデータセットは、スライス方向がX軸、位相エンコード方向がZ軸、リードアウト方向がY軸であり、テスト傾斜磁場の印加方向はY軸であるので、図4の処理を行うことにより、図5(b)のように、YZ平面のファントムの位相画像が得られる。図5(b)の位相画像上のY軸上の領域405の位相と領域406の位相との差分を求めることによって、Y軸(i方向)に印加したテスト傾斜磁場1051による渦電流によりY軸方向(j方向)に生じた位相差データΦji=Φyyを得ることができる。また、図5(b)の位相画像上のZ軸上の領域407、408における位相データの差を求めることによって、Y軸(i方向)に印加したテスト傾斜磁場1051による渦電流によりZ軸方向(j方向)に生じた位相差データΦji=Φzyを得ることができる。
更に同様にステップ105、106は、スライスエンコード方向がY軸、位相エンコード方向がX軸、リードアウト方向がZ軸であり、テスト傾斜磁場の印加方向はZ軸であるので、図4の処理を行うことにより、図5(c)のように、ZX平面のファントムの位相画像が得られる。図5(c)の位相画像上のZ軸上の領域409、410における位相データの差を求めることによって、Z軸(i方向)に印加したテスト傾斜磁場1051による渦電流によりZ軸方向(j方向)に生じた位相差データΦji=Φzzを得ることができる。また、図5(c)の位相画像上のX軸上の領域411、412における位相データの差を求めることによって、Z軸(i方向)に印加したテスト傾斜磁場1051による渦電流によりX軸方向(j方向)に生じた位相差データΦji=Φxzを得ることができる。
つぎに、図3のフローにおいて、ステップ108で位相エンコード方向(Gp)、リードアウト方向(Gf)の軸を変更して同様に行ったステップ101〜106で得たデータセットから同様に位相画像を得る。図5(d)は、図3の軸変更後のステップ101,102によりY軸方向にテスト傾斜磁場1051を印加した位相画像であり、領域413と領域414の位相データの差からX軸方向の位相差データΦxyを、領域415と領域416の位相データの差からY軸方向の位相差データΦyyを得ることができる。
図5(e)は、軸変更後のステップ103,104によりZ軸方向にテスト傾斜磁場1051を印加した位相画像であり、領域417、418の位相データの差からY軸方向に生じた位相差データΦyzを、領域419,420の位相データの差からZ軸方向の位相差データΦzzを得ることができる。図5(f)は、軸変更後のステップ105,106によりX軸方向にテスト傾斜磁場1051を印加した位相画像であり、領域421、422の位相差データからZ軸方向の位相差データΦzxを、領域423,424の位相差データからX軸方向に生じた位相差データΦxxを得ることができる。
以上により、クロスタームを含め渦電流に起因する位相変化量(位相差データ)Φxx,Φyx,Φzx,Φxy,Φyy,Φzy,Φxz,Φyz,Φzzを得ることができる。この9つの位相差データは、時間点ごと(繰り返し時間TRの時点ごと)に求められる。なお、Φyx,Φyy,Φyzは、図3のステップ108の軸変更前後の計測で重複して得られるため、いずれか一方のみの値を用いることも可能であるし、両者の平均を求め、それをΦyx,Φyy,Φyzとして用いることも可能である。また、1回目と2回目の計測方法を変更してもよい。例えば、1回目のデータ取得が終わった後、図4のステップ201〜205を演算して位相データを得ることにより渦電流の特性を測定し、その結果を用いて、後述する図8の処理により渦電流を補償するための電流を流した状態で2回目のデータを得ることも可能である。
9つの位相変化量(Φxx,Φyx,Φzx,Φxy,Φyy,Φzy,Φxz,Φyz,Φzz)は、ディスプレイ722に表示する。それとともに、操作者の指示に従って、画像再構成時の位相補正処理、または撮像時の傾斜磁場パルス波形の補償処理のいずれを行う。9つの位相差データの表示方法は、例えば、横軸を時間軸、縦軸を位相差値として、時間点ごとの位相差値をプロットしたグラフとして表示することが可能である。また、図5(a)〜(f)の位相画像と領域401〜424を、9つの位相変化量とともに表示する構成にすることもできる。
つぎに、画像再構成時の位相補正処理について図6および図7を用いて説明する。ここでは、大強度の傾斜磁場(MPG)パルスを用いる拡散強調撮像(DWEPI)を行う場合について説明する。まず、図6のように、公知のDWEPI撮像シーケンスにより、画像再構成に必要な数のエコー信号を計測する(ステップ601)。つぎに、予め較正パルスシーケンスおよび図3、図4の処理により取得しておいた位相変化量(Φxx,Φyx,Φzx,Φxy,Φyy,Φzy,Φxz,Φyz,Φzz)を用いて、計測した信号データをk空間において補正する(ステップ602)。補正したk空間データを用いてフーリエ変換を行い、画像再構成をする。
ステップ602において、渦電流に起因する位相変化量を用いて、位相補正を行う手法としては、公知の手法を採用することができる。例えば、N.G.Papadakis et.Magn.Reson.Med.53:l103(2005)に示されている一般的な手法を用いることができる。これを図7を用いて簡単に説明する。計測データ(エコー信号データ)は、理論的には、k空間の格子上のkxとkyが交差する位置に存在するが、拡散強調撮像のように大きな強度の傾斜磁場(MPGパルス)を印加し、渦電流が発生した場合、渦電流に起因して核スピンに位相変化が生じるため、k空間上の配置が乱れる。そこで、MPGパルスの印加方向および信号取得方向に対応して、取得済みの渦電流に起因する9つの位相差データの中から補正に必要な位相変化量を選択し(ステップ301)、計測データのk空間のkx−ky座標位置を算出する(ステップ302)。その座標位置の信号データを用いてk空間の格子上のデータを補間演算により求め(ステップ303)、求めたデータをフーリエ変換する(ステップ304)。これにより、傾斜磁場の印加方向に生じた位相変化のみならず、クロスタームによる位相変化も含めて補正を行うことができる。よって、MPGパルス等により生じる渦電流に起因するアーチファクトや歪みを抑制した画像を得ることができる。
つぎに、取得した位相変化量を用いて、撮像時の傾斜磁場パルス波形の補償処理を行う方法について図8を用いて簡単に説明する。まず、予め取得したおいた上記位相差データを用いて、撮像時の傾斜磁場コイルに供給する駆動電流波形を決定する(ステップ604)。傾斜磁場コイルに供給する駆動電流波形の決定方法としては、上述の特許文献2等に記載されている公知の方法を用いることができる。一例を挙げると、複数回繰り返して得た前記渦電流特性の時間による変化から、1回の繰り返し時間TRあたりの平均変化曲線を求める。その曲線を用いて、例えばMPGパルスや、オフセット傾斜磁場を発生させる駆動電流の波形を決定する。撮像シーケンス実行中の傾斜磁場駆動電流として、上記波形の駆動電流を流すことにより、渦電流を補償する(ステップ605)。これにより、渦電流の影響を補正して、所望の傾斜磁場を印加することが可能であり、再構成画像に生じるアーチファクトや歪みを抑制することができる。なお、平均変化曲線のみでならず、高次の渦電流の影響を除去する公知の方法を採用することも可能であり、これにより渦電流に起因するアーチファクトや画像歪みのさらに少ない画像を得ることができる。
較正パルスシーケンスは、MRI装置設置時に実行し、得られた9つの位相差データをメモリ719内に格納しておき、撮像時にこれを読み出して、上記補正を行うことができる。また、必要に応じて、撮像パルスシーケンスの前に較正パルスシーケンスを実行し、位相差データを更新することも可能である。
上述してきたように、本実施の形態では、渦電流に起因する位相差データをクロスタームについても取得することができ、これを用いて、再構成画像を精度良く補正することができる。よって、操作者が装置据付時等に画像を見ながら試行錯誤で調整パラメータを決定する必要が無くなり、その労力を大幅に省力化することができ、しかも、操作者の個人差に依存することなく、安定した画像を得ることができる。
なお、図3の処理におけるXYZ軸とGs,Gp,Gf方向との対応関係および、ステップ108における軸の変更方法は、上記実施の形態に限定されるものではない。XYZ軸とGs,Gp,Gf方向との対応関係により、例えば図9(a)〜(f)のように位相画像を得ることができるため、これらを任意に選択してクロスタームを含めて9つの位相差データを取得できるように軸方向を設定することができる。
例えば、図3のフローにおいて、以下のように軸方向を設定することが可能である。まず、スライス方向(Gs)をZ軸、位相方向(Gp)をY軸、リードアウト方向(Gf)をX軸に設定し、X軸の正極性にテスト傾斜磁場1051等を印加してエコー信号を得る(ステップ101)。次に、テスト傾斜磁場1051等を負極性に印加して同様にエコー信号を得る(ステップ102)。次に、Gs、Gp、Gfの方向はZ、Y、X軸のままで、テスト傾斜磁場1051等の印加軸をY軸に変更して、ステップ101,102と同様にそれぞれエコー信号を得る(ステップ103、104)。さらに、テスト傾斜磁場1051等の印加軸をZ軸に変更して、同様にエコー信号を得る(ステップ105、106)。
次に、Gs、Gp、Gfの軸方向を変更する(ステップ107、108)。スライス方向(Gs)をX軸、位相エンコード方向(Gp)をZ軸、リードアウト方向(Gf)をY軸とし、ステップ101〜106と同じ計測を行う。
このようにして、図3のステップ101〜106のように各軸の正および負極性にテスト傾斜磁場を印加した画像再構成用データ6セットを、軸を変えて2回分、つまり12セットのデータセットを得る。得られたデータを図4のフローのように、2次元フーリエ変換し、位相画像データを得て、これを差分処理することにより、テスト傾斜磁場により生じた渦電流の影響のみを含んだ位相画像データを得る。
ステップ101、102のデータセットから得た位相画像は、図9(a)に示すように、スライス方向(Gs)をZ軸、位相方向(Gp)をY軸、リードアウト方向(Gf)をX軸に設定し、X軸方向に正極性のテスト傾斜磁場1051等を印加して得たものであるので、XY平面のファントムの画像である。図9(a)の位相画像のX軸上の予め定めた位置の領域1401と1402の位相データの差分を求めることにより、X軸(i方向)に印加したテスト傾斜磁場1051による渦電流によりX軸方向(j方向)に生じた位相差データΦji=Φxxを求めることができる。また、図9(a)の位相画像のY軸上の予め定めた領域1403と1404の位相データの差分を求めることによりΦyxを求めることができる。
同様に、ステップ103、104のデータセットから得た位相画像は、図9(b)に示したように、リードアウト方向がX軸、位相エンコード方向がY軸であり、テスト傾斜磁場の印加方向はY軸であるので、X軸上の予め定めた領域1405と領域1406における位相データの差分を求めることにより、位相差データΦxyを得ることができる。また、図9(b)の位相画像上のY軸上の領域1407と領域1408における位相データの差分を求めることによって、Φyyを得ることができる。
更に同様にステップ105、106のデータセットから得た位相画像は、図9(c)に示したように、リードアウト方向がX軸、位相エンコード方向がY軸であり、テスト傾斜磁場の印加方向はZ軸であるので、X軸上の領域1409と領域1410における位相データの差分を求めることによって、位相差データΦxzを得ることができる。また、図9(c)の位相画像上のY軸上の領域1411と1412の位相データの差分を求めることによって、Φyzを得ることができる。
つぎに、図3のステップ108における軸変更後の2回目のステップ101〜106の計測で、スライス方向(Gs)をX軸、位相エンコード方向(Gp)をZ軸、リードアウト方向(Gf)をY軸として計測を行っているので、図9(d)〜(f)のようにYZ平面のファントムの位相画像が得られる。図9(d)は、図3のステップ101,102によりX軸方向にテスト傾斜磁場1051を印加した位相画像であり、領域1413と1414の位相データの差分を求めることにより位相差データΦyxを、領域1415,1416の位相データの差分を求めることによりΦzxを得ることができる。
図9(e)は、軸変更後のステップ103,104によりY軸方向にテスト傾斜磁場1051を印加した位相画像であり、領域1417と領域1418の位相データの差分を求めることにより位相差データΦyyを、領域1419と1420の位相データの差分を求めることにより位相差データΦzyを得ることができる。図9(f)は、軸変更後のステップ105,106によりZ軸方向にテスト傾斜磁場1051を印加した位相画像であり、領域1421と領域1422の位相データの差分を求めることにより位相差データΦyzを、領域1423と領域1424の位相データの差分を求めることによりΦzzを得ることができる。
以上により、クロスタームを含め渦電流に起因する位相変化量(位相差データ)Φxx,Φyx,Φzx,Φxy,Φyy,Φzy,Φxz,Φyz,Φzzを得ることができる。この9つの位相変化量(位相差データ)は、時間点ごとに求められる。
また、上述した図2の較正パルスーケンスでは2次元画像を取得する構成について説明したが、3次元画像を取得する構成にすることも可能である。例えば、テスト傾斜磁場をX、Y、Z軸に順に印加し、それぞれ3次元画像を取得することにより、撮像時の軸方向を変更することなく図5(a)〜(f)のような位相画像を得ることができる。
また、較正パルスシーケンスは、図2に示したシーケンスに限られるものではなく、クロスタームを含む位相差データ(Φxx、Φyy、Φzz、Φxy、Φyx、Φyz、Φzy、Φzx、Φxz)を計測することができるシーケンスであればよい。例えば、テスト傾斜磁場の印加方向およびリードアウト方向をXYZ軸のそれぞれに設定可能な他のシーケンスを用いることができる。具体的には、上記特許文献1(特開平10−272120号公報)記載のように、テスト傾斜磁場を印加した後、所定のスライスについて、位相エンコードを行いながら、所定のリードアウト方向についてのFID信号を取得し、位相画像を得た後、極性を反転させたテスト傾斜磁場を印加して、FID信号を取得することにより、同様に位相画像を得るシーケンスを用いることができる。両位相画像を差分した位相画像を求めることにより、傾斜磁場により生じた渦電流に起因するリードアウト方向の位相情報を取得できる。このとき、特許文献1とは異なり、テスト傾斜磁場の印加方向とリードアウト方向をXYZのそれぞれに設定することにより、クロスタームについても計測することができる。
また、上記特許文献2(特開2003−111744号公報)に記載のように画像撮影シーケンスで傾斜磁場を印加し、読み出し傾斜磁場を印加しながら計測したエコー信号の位相マップ(位相画像)と、読み出し傾斜磁場を印加しないで計測したエコー信号の位相マップの差をとり位相差マップを取得するシーケンスを用いることができる。
なお、本発明は、上述した実施形態の構成に限定されるものではなく、さらに種々の形態に変形可能なことは勿論である。
本実施の形態のMRI装置の概略構成を示すブロック図。 本実施の形態で用いる較正パルスシーケンスの説明図。 本実施の形態において、クロスタームの位相差データを取得するために、較正パルスシーケンスを実行する手順を示すフローチャート 図3のフローチャートで取得したデータセットから位相画像データセットを求める処理を示すフローチャート。 (a)〜(f)図4のステップ205で求めた位相画像から得られる位相差データΦjiを示す説明図。 本実施の形態において取得した位相差データを用いて画像再構成時に補正処理を行う手順を示すフローチャート。 図6のステップ602の処理をさらに説明するフローチャート。 本実施の形態において取得した位相差データを用いて、撮像時の傾斜磁場コイルの駆動電流波形を制御して渦電流を補償する手順を示すフローチャート。 (a)〜(f)位相画像の他の例と、得られる位相差データΦjiを示す説明図。
符号の説明
701………静磁場発生手段
702………傾斜磁場発生手段
703………送信系
704………受信系
705………信号処理系
706………シーケンサ
707………CPU
708‥‥…被検体

Claims (5)

  1. 静磁場を発生する静磁場発生手段と、前記静磁場中の撮像空間に互いに直交する第1、第2および第3の方向の傾斜磁場を印加する傾斜磁場発生手段と、前記撮像空間に配置された被検体に高周波磁場を照射する高周波磁場発生手段と、前記被検体から発生する核磁気共鳴信号を検出する検出手段と、前記傾斜磁場発生手段、高周波磁場発生手段および検出手段を制御して所定の撮像パルスシーケンスを実行させ、取得した前記核磁気共鳴信号から前記被検体の画像を再構成する制御手段とを有し、
    前記制御手段は、前記傾斜磁場により生じた渦電流が発生する磁場を計測する渦電流磁場計測手段を含み、
    該渦電流磁場計測手段は、
    前記第1、第2および第3の方向をスライス方向、位相エンコード方向およびリードアウト方向に割り当て、そのうちの所定の一方向にテスト傾斜磁場を印加した後、位相エンコード方向に位相エンコード傾斜磁場およびリードアウト方向にリードアウト磁場傾斜を印加して、前記核磁気共鳴信号としてエコー信号を取得するパルスシーケンスを行い、前記エコー信号から前記テスト傾斜磁場により前記被検体に生じた位相変化を示す位相画像を再構成する動作を、前記第1、第2および第3の方向と前記スライス方向、位相エンコード方向およびリードアウト方向と前記テスト傾斜磁場の印加方向との組み合わせ全6種類について行うことにより、前記位相画像を前記6種類の組み合わせごとに再構成し、
    前記第1、第2および第3の方向をx、yおよびz方向とし、前記位相変化量をΦji(ただし、i:前記テスト傾斜磁場の印加方向、j:渦電流磁場の方向)と表した場合、Φxx、Φyy、Φzz、Φxy、Φyx、Φyz、Φzy、Φzx、Φxzの9種類の位相変化量を、前記6種類の位相画像上で取得することにより、前記渦電流磁場を計測する
    ことを特徴とする磁気共鳴イメージング装置。
  2. 請求項に記載の磁気共鳴イメージング装置において、前記制御手段は、前記渦電流磁場計測手段が取得した9種類の前記位相変化量を記憶するための記憶部をさらに有し、
    前記制御手段は、所定の撮像パルスシーケンスを実行したのち、画像再構成を行う際に、前記記憶部から9種類の前記位相変化量のうちの1以上を読み出し、該位相変化量に応じてk空間における前記核磁気共鳴信号データを補正することを特徴とする磁気共鳴イメージング装置。
  3. 請求項に記載の磁気共鳴イメージング装置において、前記傾斜磁場発生手段は、前記第1、第2および第3の方向の傾斜磁場を発生するコイルを含み、前記制御手段は、前記渦電流磁場計測手段が取得した9種類の前記位相変化量を記憶するための記憶部をさらに有し、
    前記制御手段は、所定の撮像パルスシーケンスを実行する前に、前記記憶部から9種類の前記位相変化量のうちの1以上を読み出し、前記撮像パルスシーケンスで印加する所望の傾斜磁場を発生させるために前記傾斜磁場コイルに供給する電流波形を前記読み出した位相変化量に応じて補正し、補正後の前記電流波形により傾斜磁場を発生させて前記パルスシーケンスを実行させることを特徴とする磁気共鳴イメージング装置。
  4. 請求項1ないし3のいずれか1項に記載の磁気共鳴イメージング装置において、前記渦電流磁場計測手段は、前記6種類の位相画像上の前記第1、第2および第3の方向についてそれぞれ所定の距離だけ離れた2領域の位相データの差分を求めることにより、前記9種類の前記位相変化量を求めることを特徴とする磁気共鳴イメージング装置。
  5. 請求項1ないし4のいずれか1項に記載の磁気共鳴イメージング装置において、前記位相画像は、前記テスト傾斜磁場を正極性で印加して得た前記エコー信号から再構成した位相画像と、前記テスト傾斜磁場を負極性で印加して得た前記エコー信号から再構成した位相画像との差分画像であることを特徴とする磁気共鳴イメージング装置。
JP2008000398A 2008-01-07 2008-01-07 磁気共鳴イメージング装置 Expired - Fee Related JP5177379B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008000398A JP5177379B2 (ja) 2008-01-07 2008-01-07 磁気共鳴イメージング装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008000398A JP5177379B2 (ja) 2008-01-07 2008-01-07 磁気共鳴イメージング装置

Publications (2)

Publication Number Publication Date
JP2009160215A JP2009160215A (ja) 2009-07-23
JP5177379B2 true JP5177379B2 (ja) 2013-04-03

Family

ID=40963519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008000398A Expired - Fee Related JP5177379B2 (ja) 2008-01-07 2008-01-07 磁気共鳴イメージング装置

Country Status (1)

Country Link
JP (1) JP5177379B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013002232A1 (ja) * 2011-06-30 2015-02-23 株式会社日立メディコ 磁気共鳴イメージング装置及びその傾斜磁場出力波形の測定方法
US20140239951A1 (en) * 2011-10-18 2014-08-28 Koninklijle Philips N.V. Mr electrical properties tomography
WO2013147281A1 (ja) * 2012-03-30 2013-10-03 国立大学法人北海道大学 発熱分布情報を生成する装置と方法、磁気共鳴画像装置及びプログラム
KR101474757B1 (ko) 2013-07-08 2014-12-19 삼성전자주식회사 자장 측정 방법 및 장치

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4885542A (en) * 1988-04-14 1989-12-05 The Regents Of The University Of California MRI compensated for spurious NMR frequency/phase shifts caused by spurious changes in magnetic fields during NMR data measurement processes
JP4388019B2 (ja) * 2006-01-10 2009-12-24 株式会社東芝 磁気共鳴イメージング装置

Also Published As

Publication number Publication date
JP2009160215A (ja) 2009-07-23

Similar Documents

Publication Publication Date Title
KR101657331B1 (ko) Mr 이미지들 내의 위상 정보를 수정하기 위한 방법 및 대응하는 자기 공명 시스템
JP5718228B2 (ja) 磁気共鳴イメージング装置及び渦電流補償方法
JP5189203B2 (ja) 磁気共鳴装置
JP4106053B2 (ja) 磁気共鳴イメージング装置及び渦電流補償導出方法
US8587310B2 (en) Magnetic resonance imaging device
KR101663365B1 (ko) 자기 공명 제어 시퀀스 결정
JP5142979B2 (ja) 緩和パラメータを空間的に分解して決定するための磁気共鳴方法
JP6038654B2 (ja) 磁気共鳴イメージング装置及び振動誤差磁場低減方法
US11585884B2 (en) Continual trajectory correction in magnetic resonance imaging
JP4343726B2 (ja) 磁気共鳴イメージング装置及び不整磁場補正方法
JP5177379B2 (ja) 磁気共鳴イメージング装置
JP5971683B2 (ja) 磁気共鳴イメージング装置
JP4388019B2 (ja) 磁気共鳴イメージング装置
JP4651315B2 (ja) 磁気共鳴イメージング装置
WO2018020905A1 (ja) 磁気共鳴イメージング装置及びその制御方法
JP5559506B2 (ja) 磁気共鳴イメージング装置及び残留磁場抑制方法
JP4319035B2 (ja) 磁気共鳴イメージング装置
JP5650044B2 (ja) 磁気共鳴イメージング装置
JP5064685B2 (ja) 磁気共鳴イメージング装置
JP2006061235A (ja) 磁気共鳴イメージング装置
Schwerter et al. Advanced software and hardware control methods for improved static and dynamic $ B_ {0} $ shimming in magnetic resonance imaging
JP2012095891A (ja) 磁気共鳴イメージング装置
JP2016131847A (ja) 磁気共鳴イメージング装置および磁気共鳴イメージング方法
JP2017000573A (ja) 磁気共鳴イメージング装置およびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5177379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees