JP5168325B2 - Fuel injection state detection device - Google Patents
Fuel injection state detection device Download PDFInfo
- Publication number
- JP5168325B2 JP5168325B2 JP2010164036A JP2010164036A JP5168325B2 JP 5168325 B2 JP5168325 B2 JP 5168325B2 JP 2010164036 A JP2010164036 A JP 2010164036A JP 2010164036 A JP2010164036 A JP 2010164036A JP 5168325 B2 JP5168325 B2 JP 5168325B2
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- injection
- waveform
- fuel
- stable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002347 injection Methods 0.000 title claims description 212
- 239000007924 injection Substances 0.000 title claims description 212
- 239000000446 fuel Substances 0.000 title claims description 107
- 238000001514 detection method Methods 0.000 title claims description 52
- 230000010349 pulsation Effects 0.000 claims description 20
- 230000007423 decrease Effects 0.000 claims description 12
- 238000002485 combustion reaction Methods 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- 230000000875 corresponding effect Effects 0.000 description 8
- 238000005086 pumping Methods 0.000 description 5
- 230000005540 biological transmission Effects 0.000 description 2
- 230000006854 communication Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 239000002828 fuel tank Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/24—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
- F02D41/2406—Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
- F02D41/2425—Particular ways of programming the data
- F02D41/2429—Methods of calibrating or learning
- F02D41/2451—Methods of calibrating or learning characterised by what is learned or calibrated
- F02D41/2464—Characteristics of actuators
- F02D41/2467—Characteristics of actuators for injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0602—Fuel pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0614—Actual fuel mass or fuel injection amount
- F02D2200/0616—Actual fuel mass or fuel injection amount determined by estimation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0618—Actual fuel injection timing or delay, e.g. determined from fuel pressure drop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/22—Safety or indicating devices for abnormal conditions
- F02D41/221—Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
- Fuel-Injection Apparatus (AREA)
Description
本発明は、内燃機関の燃料噴射弁から燃料を噴射させることに伴い生じる燃料圧力の変化を燃圧センサで検出し、検出した圧力波形に基づき噴射率波形を演算する燃料噴射状態検出装置に関する。 The present invention relates to a fuel injection state detection device that detects a change in fuel pressure caused by injecting fuel from a fuel injection valve of an internal combustion engine with a fuel pressure sensor and calculates an injection rate waveform based on the detected pressure waveform.
内燃機関の出力トルク及びエミッション状態を精度良く制御するには、燃料噴射弁から噴射される燃料の噴射量及び噴射開始時期等、その噴射状態を精度良く制御することが重要である。そこで特許文献1,2等には、燃料噴射弁の噴孔に至るまでの燃料供給経路内で噴射に伴い生じる燃料圧力の変化を燃圧センサで検出している。燃圧センサにより検出される圧力波形は、噴射率の変化を表す噴射率波形と相関が高いため、検出した圧力波形に基づき噴射率波形を演算することで、噴射開始時期や噴射量等の噴射状態の検出を図っている。このように実際の噴射状態を検出できれば、その検出値に基づき噴射状態を精度良く制御できる。
In order to accurately control the output torque and the emission state of the internal combustion engine, it is important to accurately control the injection state such as the injection amount of fuel injected from the fuel injection valve and the injection start timing. Therefore, in
次に、圧力波形から噴射率波形を演算する手法の一例を以下に説明する。先ず、圧力波形中に現れる各種変化点(例えば図2(c)中のP1,P2,P3,P5等)を検出する。次に、燃料噴射弁の開弁作動開始に伴い圧力が下降する部分(P1〜P2の部分)の波形、及び閉弁作動開始に伴い圧力が上昇する部分(P3〜P5の部分)の波形を直線に近似して、これらの近似直線の傾きPα,Pβを算出する。また、変化点P1からP2までの圧力降下量P1−P2を算出する。そして、圧力波形の変化点P1が出現する時期、圧力降下量P1−P2、及び傾きPα,Pβの各々を、噴射率波形の生成に必要な噴射開始時期t(R1)、最大噴射率Rh、及び傾きRα,Rβに変換する。これにより、噴射率波形を生成でき、実際の噴射状態を推定できる。 Next, an example of a method for calculating the injection rate waveform from the pressure waveform will be described below. First, various change points appearing in the pressure waveform (for example, P1, P2, P3, P5, etc. in FIG. 2C) are detected. Next, the waveform of the portion where the pressure decreases (P1 to P2 portion) with the start of the valve opening operation of the fuel injection valve and the waveform of the portion (P3 to P5 portion) where the pressure increases with the start of the valve closing operation are shown. Approximating straight lines, the inclinations Pα and Pβ of these approximate straight lines are calculated. Further, the pressure drop amount P1-P2 from the change point P1 to P2 is calculated. The timing at which the pressure waveform change point P1 appears, the pressure drop amount P1-P2, and the slopes Pα and Pβ are respectively set to the injection start timing t (R1), the maximum injection rate Rh, And the slopes Rα and Rβ. Thereby, an injection rate waveform can be generated and an actual injection state can be estimated.
ここで、圧力下降を開始する前の圧力(基準圧Pbase)が異なれば、圧力波形と噴射率波形との相関が異なってくる。すなわち、圧力波形の傾きPα,Pβが同じであっても、基準圧Pbaseが異なれば噴射率波形の傾きRα,Rβは異なってくる。また、各種変化点P1,P2,P3,P5の出現時期が同じであっても、基準圧Pbaseが異なれば噴射開始時期t(R1)等は異なってくる。そこで本発明者は、圧力波形を噴射率波形に変換する変換値を、基準圧Pbaseに応じて可変設定することを検討した。 Here, if the pressure (reference pressure Pbase) before starting the pressure drop is different, the correlation between the pressure waveform and the injection rate waveform is different. That is, even if the pressure waveforms have the same slopes Pα and Pβ, the slopes Rα and Rβ of the injection rate waveform differ if the reference pressure Pbase is different. Even if the various change points P1, P2, P3, and P5 appear at the same time, the injection start time t (R1) and the like differ if the reference pressure Pbase is different. Therefore, the present inventor has studied to variably set the conversion value for converting the pressure waveform into the injection rate waveform according to the reference pressure Pbase.
しかし、圧力波形のうちP1時点前の下降開始前波形に基づき基準圧Pbaseを設定するにあたり、下降開始前波形Wa(図3(b)中の一点鎖線参照)は以下に例示する原因で脈動している場合があり、この場合には基準圧Pbaseが不安定となり圧力波形から噴射率波形への変換精度が悪化する。前記脈動の原因には、他気筒のポスト噴射により生じた圧力変化がコモンレールを通じて伝播して下降開始前波形Waに重畳することや、プランジャポンプによる燃料圧送のタイミングに同期して生じた圧力上昇が下降開始前波形Waに重畳すること等が挙げられる。 However, when setting the reference pressure Pbase based on the waveform before the start of descent before the time point P1 in the pressure waveform, the waveform Wa before descent (see the one-dot chain line in FIG. 3B) pulsates due to the reasons exemplified below. In this case, the reference pressure Pbase becomes unstable, and the conversion accuracy from the pressure waveform to the injection rate waveform deteriorates. The cause of the pulsation is that a pressure change caused by post-injection of other cylinders propagates through the common rail and is superimposed on the waveform Wa before starting descent, or a pressure rise caused in synchronization with the fuel pumping timing by the plunger pump. For example, it may be superimposed on the waveform Wa before starting descent.
本発明は、上記課題を解決するためになされたものであり、その目的は、基準圧の算出精度を向上させて噴射率波形の演算精度を向上させる燃料噴射状態検出装置を提供することにある。 The present invention has been made to solve the above problems, and an object of the present invention is to provide a fuel injection state detection device that improves the calculation accuracy of the injection rate waveform by improving the calculation accuracy of the reference pressure. .
以下、上記課題を解決するための手段、及びその作用効果について記載する。 Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.
第1の発明では、内燃機関で燃焼させる燃料を噴孔から噴射する燃料噴射弁と、前記噴孔から燃料を噴射させることに伴い前記噴孔に至るまでの燃料供給経路内で生じる燃料圧力の変化を検出する燃圧センサと、を備えた燃料噴射システムに適用されることを前提とする。 In the first invention, a fuel injection valve that injects fuel to be combusted in an internal combustion engine from an injection hole, and a fuel pressure generated in a fuel supply path up to the injection hole as fuel is injected from the injection hole. It is assumed that the present invention is applied to a fuel injection system including a fuel pressure sensor that detects a change.
そして、前記燃圧センサの検出値の変化を表した圧力波形を取得する圧力波形取得手段と、前記圧力波形のうち、噴射開始に伴い圧力下降を開始する前の下降開始前波形に基づき基準圧を算出する基準圧算出手段と、燃料噴射率の変化を表した噴射率波形を、前記圧力波形及び前記基準圧に基づき演算する噴射率波形演算手段と、を備え、前記基準圧算出手段は、前記下降開始前波形のうち圧力変動が所定範囲内となっている安定部分を探索する探索手段と、前記安定部分の圧力に基づき前記基準圧を算出する算出手段と、を有することを特徴とする。 And a pressure waveform acquisition means for acquiring a pressure waveform representing a change in a detection value of the fuel pressure sensor, and a reference pressure based on a waveform before the start of lowering before the pressure starts to decrease with the start of injection among the pressure waveforms. A reference pressure calculating means for calculating, and an injection rate waveform calculating means for calculating an injection rate waveform representing a change in fuel injection rate based on the pressure waveform and the reference pressure, wherein the reference pressure calculating means includes the Searching means for searching for a stable portion where the pressure fluctuation is within a predetermined range in the waveform before starting descent, and calculating means for calculating the reference pressure based on the pressure of the stable portion.
ここで、圧力波形と噴射率波形との相関(先述の変換値)は、噴射開始に伴い圧力下降を開始する前の圧力に応じて変化する。したがって、下降開始前波形に基づき算出された基準圧及び圧力波形に基づき噴射率波形を演算する上記発明によれば、噴射率波形を高精度で演算できる。 Here, the correlation (the aforementioned conversion value) between the pressure waveform and the injection rate waveform changes in accordance with the pressure before the pressure drop starts with the start of injection. Therefore, according to the said invention which calculates an injection rate waveform based on the reference pressure and pressure waveform calculated based on the waveform before a fall start, an injection rate waveform can be calculated with high precision.
さらに上記発明では、噴射率波形の演算に用いる基準圧を、下降開始前波形Wa(図3(b)中の一点鎖線参照)のうち圧力変動が所定範囲内となっている安定部分の圧力Wb(図3(b)中の点線参照)に基づき算出する。そのため、例えば、他気筒のポスト噴射により生じた圧力変化の影響を受けたり、プランジャポンプによる燃料圧送により生じた圧力変化の影響を受けたりして下降開始前波形が脈動して不安定になったとしても、そのような不安定部分の影響を受けることなく基準圧は算出されるので、基準圧を安定して算出できる。よって、噴射率波形の演算精度を向上できる。 Further, in the above invention, the reference pressure used for the calculation of the injection rate waveform is the pressure Wb of the stable portion where the pressure fluctuation is within the predetermined range of the waveform Wa before starting to descend (see the one-dot chain line in FIG. 3B). Calculate based on (see dotted line in FIG. 3B). For this reason, for example, the waveform before the start of pulsation became unstable due to the influence of the pressure change caused by the post injection of the other cylinders or the influence of the pressure change caused by the fuel pumping by the plunger pump. However, since the reference pressure is calculated without being affected by such an unstable portion, the reference pressure can be calculated stably. Therefore, the calculation accuracy of the injection rate waveform can be improved.
第2の発明では、前記探索手段は、前記下降開始前波形のうち噴射開始に伴い圧力下降を開始した時点から所定時間前までに相当する部分を含んでいることを、前記安定部分であることの条件として探索することを特徴とする。 According to a second aspect of the present invention, the search means is the stable portion that includes a portion corresponding to a predetermined time before the start of pressure drop with the start of injection in the waveform before starting to descend. It is characterized by searching as a condition.
ところで、下降開始前波形は、例えば電気的ノイズやプランジャポンプの圧力制御性等により変動するので、基準圧を安定して算出するためには、なるべく長期間の波形を平均化することが望ましい。一方で、基準圧を演算中に、例えば他気筒で燃料が噴射(例えばポスト噴射)されると、コモンレールの圧力平均値が変動するため、基準圧を正確に算出することができない。そのため、他気筒の噴射によるレール圧平均値の変化の影響を受けないよう、噴射開始の直前の情報から基準圧を演算することが望ましい。この点を鑑みた上記発明では、前記所定時間前までに相当する部分を少なくとも含んでいることを安定部分であることの条件とするので、噴射開始直前の安定部分で基準圧を算出できる。よって、噴射率波形の演算精度を向上できる。 By the way, since the waveform before descent begins to fluctuate due to, for example, electrical noise or the pressure controllability of the plunger pump, it is desirable to average the long-term waveform as much as possible in order to stably calculate the reference pressure. On the other hand, if fuel is injected (for example, post-injection), for example, in another cylinder during calculation of the reference pressure, the average pressure of the common rail fluctuates, so that the reference pressure cannot be accurately calculated. Therefore, it is desirable to calculate the reference pressure from the information immediately before the start of injection so as not to be affected by the change in the rail pressure average value due to the injection of the other cylinders. In the above invention in view of this point, since it is a condition that the stable portion includes at least a portion corresponding to the predetermined time before, the reference pressure can be calculated in the stable portion immediately before the start of injection. Therefore, the calculation accuracy of the injection rate waveform can be improved.
第3の発明では、前記探索手段は、圧力が上限値及び下限値を超えていないことを、前記安定部分であることの条件として探索することを特徴とする。 In a third aspect of the invention, the searching means searches that the pressure does not exceed the upper limit value and the lower limit value as a condition for the stable portion.
上記発明に反し、例えば下降開始前波形の微分値が上限値を超えていないことを「圧力変動が所定範囲内となっている安定部分」であるとして探索しようとすると、下降開始前波形中の都度の圧力値を微分演算することが必要となるため、演算処理負荷が大きい。これに対し上記発明では、圧力が上限値及び下限値を超えない範囲で安定していることを「圧力変動が所定範囲内となっている安定部分」であるとして探索するので、演算処理負荷を軽減できる。 Contrary to the above-mentioned invention, for example, if an attempt is made to search for the fact that the differential value of the waveform before the descent start does not exceed the upper limit value as a “stable portion where the pressure fluctuation is within a predetermined range”, Since it is necessary to perform a differential operation for each pressure value, the processing load is heavy. On the other hand, in the above invention, since the pressure is stable in a range that does not exceed the upper limit value and the lower limit value, it is searched as “a stable portion in which the pressure fluctuation is within a predetermined range”, so the calculation processing load is reduced. Can be reduced.
第4の発明では、前記探索手段は、圧力微分値が上限値及び下限値を超えていないことを、前記安定部分であることの条件として探索することを特徴とする。 In a fourth aspect of the invention, the searching means searches that the pressure differential value does not exceed the upper limit value and the lower limit value as a condition for the stable portion.
上記発明に反し、例えば下降開始前圧力波形が上限値を超えていないことを「圧力変動が所定範囲内となっている安定部分」であるとして探索しようとすると、ある中央の圧力に対して上限値と下限値の設定をしなければならず、その中央圧力を規定しなければならない。これに対し上記発明では、微分値を用いることで、ゼロを基準にすることができるので、中央圧力を規定することを不要にできる。 Contrary to the above-mentioned invention, for example, if an attempt is made to search that the pressure waveform before starting descent does not exceed the upper limit value as a “stable portion where the pressure fluctuation is within a predetermined range”, the upper limit is set for a certain central pressure The value and lower limit must be set, and the central pressure must be specified. On the other hand, in the said invention, since zero can be made into a reference | standard by using a differential value, it can make unnecessary to prescribe | regulate a center pressure.
第5の発明では、前記算出手段は、前記安定部分での圧力の平均値を前記基準圧として算出することを特徴とするので、例えば安定部分中の1点の圧力値を基準圧とする場合に比べて、圧力波形に重畳しているノイズ等の影響が緩和された安定した基準圧を算出できる。よって、噴射率波形の演算精度を向上できる。 In the fifth invention, the calculating means calculates an average value of the pressure in the stable portion as the reference pressure. For example, when the pressure value at one point in the stable portion is used as the reference pressure As compared with the above, it is possible to calculate a stable reference pressure in which the influence of noise or the like superimposed on the pressure waveform is reduced. Therefore, the calculation accuracy of the injection rate waveform can be improved.
第6の発明では、前記探索手段は、前記下降開始前波形に含まれる脈動の1周期長さ以上に設定された所定期間で圧力変動が所定範囲内となっていることを、前記安定部分であることの条件として探索することを特徴とする。 In a sixth aspect of the present invention, the search means determines that the pressure fluctuation is within a predetermined range for a predetermined period set to be equal to or longer than one cycle length of the pulsation included in the waveform before starting descent. It is characterized by searching as a condition of being.
例えば、他気筒のポスト噴射により生じた圧力の脈動や、プランジャポンプによる燃料圧送により生じた圧力の脈動が下降開始前波形に重畳している場合において、下降開始前波形のうち前記脈動が重畳していない部分の圧力に基づき基準圧を算出することが、安定した基準圧を算出する上で望ましい。しかし、前記脈動が重畳している部分のうち、前記脈動のピーク値を含まない範囲の部分(例えば図3(d)中の符号Mb’に示す部分)を安定部分とみなしてしまうことが懸念される。この点を鑑みた上記発明では、前記脈動の1周期Mc(図3(d)参照)長さ以上に設定された所定期間で圧力変化が安定していることを安定部分であることの条件とするので、下降開始前波形のうち脈動が重畳している部分の圧力に基づき基準圧を算出してしまうことを回避できる。よって、安定した基準圧を算出することを促進できる。 For example, when the pressure pulsation caused by post-injection of other cylinders or the pressure pulsation caused by the fuel pumping by the plunger pump is superimposed on the waveform before descent start, the pulsation is superimposed on the waveform before descent start. In order to calculate a stable reference pressure, it is desirable to calculate the reference pressure based on the pressure of the portion that is not. However, there is a concern that, in the portion where the pulsation is superimposed, a portion in a range not including the peak value of the pulsation (for example, a portion indicated by a symbol Mb ′ in FIG. 3D) is regarded as a stable portion. Is done. In the above-mentioned invention in view of this point, the condition that the pressure change is stable in a predetermined period set longer than the length of one cycle Mc (see FIG. 3D) of the pulsation is a stable part. Therefore, it is possible to avoid calculating the reference pressure based on the pressure of the portion where the pulsation is superimposed in the waveform before starting to descend. Therefore, it is possible to promote the calculation of a stable reference pressure.
以下、本発明に係る燃料噴射状態検出装置を具体化した一実施形態を図面に基づいて説明する。本実施形態の燃料噴射状態検出装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。
Hereinafter, an embodiment embodying a fuel injection state detection device according to the present invention will be described with reference to the drawings. The fuel injection state detection device according to the present embodiment is mounted on a vehicle engine (internal combustion engine), and compression auto-ignition is performed by injecting high-pressure fuel into a plurality of
図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。
FIG. 1 is a schematic diagram showing a
先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、高圧ポンプ41(燃料ポンプ)によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。なお、高圧ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して間欠的に燃料は圧送される。
First, an engine fuel injection system including the
燃料噴射弁10は、以下に説明するボデー11、ニードル形状の弁体12及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。弁体12は、ボデー11内に収容されて噴孔11bを開閉する。
The
ボデー11内には弁体12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は制御弁14により切り替えられており、電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cは低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、弁体12へ付与される背圧力が低下して弁体12は開弁作動する。一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cは高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、弁体12へ付与される背圧力が上昇して弁体12は閉弁作動する。 A back pressure chamber 11c for applying a back pressure to the valve body 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14, and the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized to push the control valve 14 downward in FIG. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. As a result, the back pressure applied to the valve body 12 decreases and the valve body 12 opens. On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the valve body 12 rises and the valve body 12 is closed.
したがって、ECU30がアクチュエータ13への通電を制御することで、弁体12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、弁体12の開閉作動に応じて噴孔11bから噴射される。例えばECU30は、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の目標噴射状態を算出し、算出した目標噴射状態となるようアクチュエータ13へ噴射指令信号を出力して、燃料噴射弁10の作動を制御する。
Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the valve body 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the valve body 12. For example, the ECU 30 calculates a target injection state such as an injection start timing, an injection end timing, and an injection amount based on the rotation speed of the engine output shaft, the engine load, and the like, and sends an injection command signal to the actuator 13 so that the calculated target injection state is obtained. Is output to control the operation of the
ECU30は、アクセル操作量等から算出されるエンジン負荷やエンジン回転速度に基づき目標噴射状態を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態(噴射段数、噴射開始時期、噴射終了時期、噴射量等)を噴射状態マップにして記憶させておく。そして、現時点でのエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。そして、算出した目標噴射状態に基づき噴射指令信号t1、t2、Tqを設定する。例えば、目標噴射状態に対応する噴射指令信号を指令マップにして記憶させておき、算出した目標噴射状態に基づき、指令マップを参照して噴射指令信号を設定する。以上により、エンジン負荷及びエンジン回転速度に応じた噴射指令信号が設定され、ECU30から燃料噴射弁10へ出力される。
The ECU 30 calculates the target injection state based on the engine load and engine speed calculated from the accelerator operation amount and the like. For example, the optimal injection state (the number of injection stages, the injection start time, the injection end time, the injection amount, etc.) corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Then, injection command signals t1, t2, and Tq are set based on the calculated target injection state. For example, an injection command signal corresponding to the target injection state is stored as a command map, and the injection command signal is set with reference to the command map based on the calculated target injection state. Thus, the injection command signal corresponding to the engine load and the engine rotation speed is set and output from the ECU 30 to the
ここで、噴孔11bの磨耗等、燃料噴射弁10の経年劣化に起因して、噴射指令信号に対する実際の噴射状態は変化していく。そこで、後に詳述するように燃圧センサ20により検出された圧力波形に基づき燃料の噴射率波形を演算して噴射状態を検出し、検出した噴射状態と噴射指令信号(パルスオン時期t1、パルスオフ時期t2及びパルスオン期間Tq)との相関関係を学習し、その学習結果に基づき、指令マップに記憶された噴射指令信号を補正する。これにより、実噴射状態が目標噴射状態に一致するよう、燃料噴射状態を高精度で制御できる。
Here, the actual injection state with respect to the injection command signal changes due to deterioration of the
次に、燃圧センサ20のハード構成について説明する。燃圧センサ20は、以下に説明するステム21(起歪体)、圧力センサ素子22及びモールドIC23等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号を出力する。
Next, the hardware configuration of the
モールドIC23は、圧力センサ素子22から出力された圧力検出信号を増幅する増幅回路や、圧力検出信号を送信する送信回路等の電子部品を樹脂モールドして形成されており、ステム21とともに燃料噴射弁10に搭載されている。ボデー11上部にはコネクタ15が設けられており、コネクタ15に接続されたハーネス16により、モールドIC23及びアクチュエータ13とECU30とはそれぞれ電気接続される。そして、増幅された圧力検出信号はECU30に送信されて、ECU30が有する受信回路により受信される。この送受信にかかる通信処理は、各気筒の燃圧センサ20毎に実施される。
The
ここで、噴孔11bから燃料の噴射を開始することに伴い高圧通路11a内の燃料の圧力(燃圧)は低下し、噴射を終了することに伴い燃圧は上昇する。つまり、燃圧の変化と噴射率(単位時間当たりに噴射される噴射量)の変化とは相関があり、燃圧変化から噴射率変化(実噴射状態)を検出できると言える。そして、検出した実噴射状態が目標噴射状態となるよう先述した噴射指令信号を補正する。これにより、噴射状態を精度良く制御できる。 Here, the fuel pressure (fuel pressure) in the high-pressure passage 11a decreases with the start of fuel injection from the nozzle hole 11b, and the fuel pressure increases with the end of injection. That is, it can be said that the change in the fuel pressure and the change in the injection rate (injection amount injected per unit time) are correlated, and the change in the injection rate (actual injection state) can be detected from the change in the fuel pressure. Then, the above-described injection command signal is corrected so that the detected actual injection state becomes the target injection state. Thereby, the injection state can be controlled with high accuracy.
次に、燃料噴射中の燃料噴射弁10に搭載された燃圧センサ20により検出された圧力の波形(圧力波形)と、その燃料噴射弁10にかかる燃料噴射率の変化を表した噴射率波形との相関について、図2を用いて説明する。
Next, a pressure waveform (pressure waveform) detected by the
図2(a)は、燃料噴射弁10のアクチュエータ13へECU30から出力される噴射指令信号を示しており、この指令信号のパルスオンによりアクチュエータ13が通電作動して噴孔11bが開弁する。つまり、噴射指令信号のパルスオン時期t1により噴射開始が指令され、パルスオフ時期t2により噴射終了が指令される。よって、指令信号のパルスオン期間(噴射指令期間Tq)により噴孔11bの開弁時間を制御することで、噴射量Qを制御している。
FIG. 2A shows an injection command signal output from the ECU 30 to the actuator 13 of the
図2(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(噴射率波形)を示し、図2(c)は、燃料噴射中の燃料噴射弁10に設けられた燃圧センサ20により検出された、噴射率の変化に伴い生じる検出圧力の変化を示す。
FIG. 2 (b) shows a change in fuel injection rate (injection rate waveform) from the nozzle hole 11b caused by the injection command, and FIG. 2 (c) is provided in the
圧力波形と噴射率波形とは以下に説明する相関があるため、検出された圧力波形から噴射率波形を推定(検出)することができる。すなわち、先ず、図2(a)に示すように噴射開始指令がなされたt1時点の後、噴射率がR1の時点で上昇を開始して噴射が開始される。一方、検出圧力は、R1の時点で噴射率が上昇を開始してから遅れ時間C1が経過した時点で、変化点P1にて下降を開始する。その後、R2の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P2にて停止する。次に、R3の時点で噴射率が下降を開始してから遅れ時間C3が経過した時点で、検出圧力は変化点P3にて上昇を開始する。その後、R4の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P5にて停止する。 Since the pressure waveform and the injection rate waveform have a correlation described below, the injection rate waveform can be estimated (detected) from the detected pressure waveform. That is, first, as shown in FIG. 2 (a), after the time t1 when the injection start command is given, the injection rate starts to rise and the injection is started when the injection rate is R1. On the other hand, the detected pressure starts decreasing at the change point P1 when the delay time C1 elapses after the injection rate starts increasing at the time R1. Thereafter, as the injection rate reaches the maximum injection rate at the time of R2, the decrease in the detected pressure stops at the change point P2. Next, when the delay time C3 elapses after the injection rate starts decreasing at the time point R3, the detected pressure starts increasing at the change point P3. Thereafter, as the injection rate becomes zero at the time point R4 and the actual injection ends, the increase in the detected pressure stops at the change point P5.
以上説明したように、圧力波形と噴射率波形とは相関が高い。そして、噴射率波形には、噴射開始時期(R1出現時期)や、噴射終了時期(R4出現時期)、噴射量(図2(b)中の網点部分の面積)が表されているので、圧力波形から噴射率波形を推定することで噴射状態を検出できる。 As explained above, the correlation between the pressure waveform and the injection rate waveform is high. The injection rate waveform shows the injection start time (R1 appearance time), the injection end time (R4 appearance time), and the injection amount (area of the halftone dot portion in FIG. 2B). The injection state can be detected by estimating the injection rate waveform from the pressure waveform.
次に、圧力波形から噴射率波形を推定する手順の一例を説明する。 Next, an example of a procedure for estimating the injection rate waveform from the pressure waveform will be described.
先ず、圧力波形中に現れる各種変化点(例えば図2(c)中のP1,P2,P3,P5等)を検出する。次に、燃料噴射弁の開弁作動開始に伴い圧力が下降する部分(P1〜P2の部分)の波形、及び閉弁作動開始に伴い圧力が上昇する部分(P3〜P5の部分)の波形を直線に近似して、これらの近似直線の傾きPα,Pβを算出する。また、変化点P1からP2までの圧力降下量P1−P2を算出する。そして、圧力波形の変化点P1,P3が出現する時期、圧力降下量P1−P2、及び傾きPα,Pβの各々を、噴射率波形の生成に必要な噴射開始時期t(R1)、噴射率低下開始時期t(R3)、最大噴射率Rh、及び傾きRα,Rβに変換する。これにより、噴射率波形を生成でき、実際の噴射状態を推定できる。 First, various change points appearing in the pressure waveform (for example, P1, P2, P3, P5, etc. in FIG. 2C) are detected. Next, the waveform of the portion where the pressure decreases (P1 to P2 portion) with the start of the valve opening operation of the fuel injection valve and the waveform of the portion (P3 to P5 portion) where the pressure increases with the start of the valve closing operation are shown. Approximating straight lines, the inclinations Pα and Pβ of these approximate straight lines are calculated. Further, the pressure drop amount P1-P2 from the change point P1 to P2 is calculated. Then, the timing at which the pressure waveform change points P1, P3 appear, the pressure drop amount P1-P2, and the slopes Pα, Pβ are respectively set to the injection start timing t (R1) necessary for generating the injection rate waveform, and the injection rate decrease. Conversion is made to the start timing t (R3), the maximum injection rate Rh, and the gradients Rα and Rβ. Thereby, an injection rate waveform can be generated and an actual injection state can be estimated.
そして、前記変換に用いる変換係数や遅れ時間C1,C3は、圧力波形のうち変化点P1が現れる直前の圧力(図2(c)に示す基準圧Pbase)に応じて異なる値になることが、本発明者が実施した試験により明らかとなった。そこで本実施形態では、基準圧Pbaseに応じて変換係数や遅れ時間C1,C3を可変設定して、ECU30(噴射率波形演算手段)は噴射率波形を演算している。 The conversion coefficients and delay times C1 and C3 used for the conversion are different values depending on the pressure immediately before the change point P1 appears in the pressure waveform (reference pressure Pbase shown in FIG. 2C). It became clear by the test which this inventor conducted. Therefore, in the present embodiment, the conversion coefficient and the delay times C1 and C3 are variably set according to the reference pressure Pbase, and the ECU 30 (injection rate waveform calculating means) calculates the injection rate waveform.
図2(c)に例示する圧力波形のうち、変化点P1が現れる直前の波形(下降開始前波形)は、圧力が一定となる波形である。このような場合であれば、圧力波形のうちP1以前の任意の点の圧力を基準圧Pbaseに設定しても問題ないが、実際には図3(b)中の一点鎖線に示すように、圧力波形中の下降開始前波形Waは脈動している場合がある。この脈動の原因には、他気筒のポスト噴射により生じた圧力変化がコモンレール42を通じて伝播して下降開始前波形Waに重畳することや、高圧ポンプ41による燃料圧送のタイミングに同期して生じた圧力上昇が下降開始前波形Waに重畳すること等が挙げられる。 Of the pressure waveforms illustrated in FIG. 2C, the waveform immediately before the change point P1 appears (the waveform before the descent start) is a waveform in which the pressure is constant. In such a case, there is no problem even if the pressure at an arbitrary point before P1 in the pressure waveform is set as the reference pressure Pbase, but actually, as shown by the one-dot chain line in FIG. The waveform Wa before starting to descend in the pressure waveform may be pulsating. The cause of this pulsation is that a pressure change caused by post-injection of other cylinders propagates through the common rail 42 and is superimposed on the waveform Wa before starting descent, or pressure generated in synchronization with the timing of fuel pumping by the high-pressure pump 41. For example, the increase is superimposed on the waveform Wa before starting the decrease.
そこで本実施形態では、下降開始前波形Waのうち、圧力変動が小さく安定した部分の波形Wbの平均値を基準圧PbaseとしてECU30(基準圧算出手段)が算出することで、安定した基準圧Pbaseの算出を図っている。図4は、上述の如く基準圧Pbaseを算出する手順を示すフローチャートであり、ECU30が有するマイクロコンピュータにより、図2(c)及び図3(b)に示す如く噴射1回分の圧力波形が取得される毎に実行を開始して、所定周期で繰り返し実行される処理である。 Therefore, in the present embodiment, the ECU 30 (reference pressure calculation means) calculates the average value of the waveform Wb of the portion where the pressure fluctuation is small and stable in the waveform Wa before starting descent as the reference pressure Pbase, so that the stable reference pressure Pbase is obtained. Is calculated. FIG. 4 is a flowchart showing a procedure for calculating the reference pressure Pbase as described above, and a pressure waveform for one injection is acquired by the microcomputer of the ECU 30 as shown in FIGS. 2 (c) and 3 (b). This is a process that starts execution every time it is executed and is repeatedly executed at a predetermined cycle.
先ず、図4に示すステップS10(圧力波形取得手段)において、噴射期間における燃圧センサ20の検出値(サンプル)を所定のサンプリング周期で取得する。前記噴射期間とは、噴射指令信号のパルスオン時期t1から所定時間が経過するまでの期間t1〜t3(図3参照)のことであり、その期間t1〜t3は、変化点P5が現れるに要する十分な長さに設定されている。
First, in step S10 (pressure waveform acquisition means) shown in FIG. 4, the detection value (sample) of the
続くステップS11では、図3(d)に示す演算終了時刻t4を算出する。図3(d)は、図3(b)に示す圧力波形のうち下降開始前波形Waの部分を示す拡大図である。演算終了時刻t4は、変化点P1が現れた時刻に設定してもよい。或いは、演算終了時刻t4が変化点P1より後になることを確実に回避させるために、P1が現れた時刻よりも予め設定された所定時間だけ遡った時刻となるように演算終了時刻t4を設定してもよい。 In the subsequent step S11, the calculation end time t4 shown in FIG. 3D is calculated. FIG.3 (d) is an enlarged view which shows the part of the waveform Wa before a fall start among the pressure waveforms shown in FIG.3 (b). The calculation end time t4 may be set to the time when the change point P1 appears. Alternatively, in order to surely avoid the calculation end time t4 being later than the change point P1, the calculation end time t4 is set to be a time that is a predetermined time earlier than the time P1 appears. May be.
続くステップS20,S21では、ステップS10で取得した複数の検出値のうち、ステップS11で算出した演算終了時刻t4以前、かつ、最も演算終了時刻t4に近い検出値S1(図5(b)参照)を対象として、当該検出値S1が、圧力変動が所定範囲内となっている安定部分であるか否かを判定する。 In subsequent steps S20 and S21, among the plurality of detection values acquired in step S10, the detection value S1 before the calculation end time t4 calculated in step S11 and closest to the calculation end time t4 (see FIG. 5B). As a target, it is determined whether or not the detected value S1 is a stable portion where the pressure fluctuation is within a predetermined range.
具体的には、先ずステップS20(探索手段)において、検出値S1が上限値Pg1及び下限値Pg2の範囲内であるか否かを判定する。なお、これら上限値Pg1及び下限値Pg2は、検出値S1よりも後の検出値S0(図5(b)参照)に基づき設定すればよい。例えば、検出値S0に対して所定量だけ加算及び減算して上限値Pg1及び下限値Pg2を設定してもよいし、検出値S0に対して所定の係数を乗算して上限値Pg1及び下限値Pg2を設定してもよい。或いは、検出値S0に基づき設定することに替え、予め設定しておいた固定値を上限値Pg1及び下限値Pg2として用いてもよい。 Specifically, first, in step S20 (search means), it is determined whether or not the detection value S1 is within the range between the upper limit value Pg1 and the lower limit value Pg2. The upper limit value Pg1 and the lower limit value Pg2 may be set based on a detection value S0 (see FIG. 5B) after the detection value S1. For example, the upper limit value Pg1 and the lower limit value Pg2 may be set by adding and subtracting a predetermined amount with respect to the detection value S0, or the upper limit value Pg1 and the lower limit value may be set by multiplying the detection value S0 by a predetermined coefficient. Pg2 may be set. Alternatively, instead of setting based on the detection value S0, preset fixed values may be used as the upper limit value Pg1 and the lower limit value Pg2.
また、次のステップS21(探索手段)では、検出値S1の微分値(傾き)が上限値及び下限値の範囲内であるか否かを判定する。前記微分値は、検出値S1と、その前後いずれかの検出値S2,S0との差分に基づき算出すればよい。また、当該ステップS21で用いる上限値及び下限値も、ステップS20の上限値Pg1及び下限値Pg2と同様にして、検出値S1よりも後の検出値S0に基づき設定してもよいし、予め設定しておいた固定値を用いてもよい。 In the next step S21 (search means), it is determined whether or not the differential value (slope) of the detected value S1 is within the range between the upper limit value and the lower limit value. The differential value may be calculated based on the difference between the detected value S1 and the detected values S2 and S0 before and after that. In addition, the upper limit value and the lower limit value used in step S21 may be set based on the detection value S0 after the detection value S1 in the same manner as the upper limit value Pg1 and the lower limit value Pg2 in step S20, or may be set in advance. A fixed value may be used.
両ステップS20,S21で肯定判定された場合には、判定対象となっている検出値S1が、圧力変動が所定範囲内となっている安定部分であるとみなされ、次のステップS22(探索手段)において、当該検出値S1の出現時刻が演算開始時刻t1以前であるか(t1に達したか)否かを判定する。演算開始時刻t1(図5(a)参照)は、噴射指令信号のパルスオン時期t1と同時刻に設定されている。 When affirmative determination is made in both steps S20 and S21, the detection value S1 that is the determination target is regarded as a stable portion in which the pressure fluctuation is within a predetermined range, and the next step S22 (search means) ), It is determined whether or not the appearance time of the detection value S1 is before the calculation start time t1 (has reached t1). The calculation start time t1 (see FIG. 5A) is set at the same time as the pulse-on timing t1 of the injection command signal.
判定対象となっている検出値S1の出現時刻が演算開始時刻t1の後である(t1に達していない)と判定された場合(S22:NO)には、ステップS23(探索手段)に進み、判定対象となっている検出値S1を、一つ前の時刻の検出値S2(図5(c)参照)に変更してステップS20に戻る。そして、次のステップS20,S21では、変更後の検出値S2が安定部分であるか否かを判定する。 When it is determined that the appearance time of the detection value S1 as the determination target is after the calculation start time t1 (not reached t1) (S22: NO), the process proceeds to step S23 (search means), The detection value S1 to be determined is changed to the detection value S2 of the previous time (see FIG. 5C), and the process returns to step S20. In the next steps S20 and S21, it is determined whether or not the changed detection value S2 is a stable portion.
したがって、ステップS23の処理に伴い演算終了時刻t4から判定対象となる検出値を一つずつ戻して行き、演算開始時刻t1の検出値S3(図5(d)参照)まで全て安定部分であると判定されれば、ステップS22で肯定判定されることとなる。この場合には、次のステップS30(算出手段)において、演算開始時刻t1から演算終了時刻t4までの検出値に基づき基準圧Pbaseを算出する。具体的には、演算開始時刻t1から演算終了時刻t4までの全ての検出値の平均を算出し、その平均値を基準圧Pbaseとする。 Accordingly, the detection values to be determined are returned one by one from the calculation end time t4 in accordance with the processing of step S23, and all the detection values S3 at the calculation start time t1 (see FIG. 5D) are all stable portions. If determined, an affirmative determination is made in step S22. In this case, in the next step S30 (calculation means), the reference pressure Pbase is calculated based on the detected values from the calculation start time t1 to the calculation end time t4. Specifically, the average of all detected values from the calculation start time t1 to the calculation end time t4 is calculated, and the average value is used as the reference pressure Pbase.
一方、ステップS20及びS21のいずれか一方で否定判定された場合には、判定対象となっている検出値が所定範囲を超えて大きく変動しているとみなして、その判定対象検出値は安定部分でないと判定する。そして、次のステップS24において、判定対象検出値の出現時刻が、以下に説明するガード時刻tg以前であるか否かを判定する。ガード時刻tgは、演算終了時刻t4よりも所定時間(図3(d)に示す安定範囲Mb)だけ前の時刻に設定されている。この安定範囲Mbの長さは、下降開始前波形Waに含まれる脈動の1周期長さMcよりも長くなるよう設定されている。前記脈動の1周期長Mcは予め試験して取得しておけばよく、取得した1周期長Mcに基づき安定範囲Mbの長さを予め設定しておけばよい。 On the other hand, if a negative determination is made in one of steps S20 and S21, it is considered that the detection value that is the determination target has greatly fluctuated beyond a predetermined range, and the determination target detection value is a stable portion. It is determined that it is not. Then, in the next step S24, it is determined whether or not the appearance time of the determination target detection value is before the guard time tg described below. The guard time tg is set to a time before the calculation end time t4 by a predetermined time (stable range Mb shown in FIG. 3D). The length of the stable range Mb is set to be longer than one cycle length Mc of the pulsation included in the waveform Wa before starting descent. The one cycle length Mc of the pulsation may be acquired by testing in advance, and the length of the stable range Mb may be set in advance based on the acquired one cycle length Mc.
したがって、ステップS23の処理に伴い演算終了時刻t4から判定対象となる検出値を一つずつ戻して行き、ガード時刻tgを超えた時刻の検出値S4(図5(d)参照)が安定部分でないと判定されれば、ステップS24で肯定判定されることとなる。この場合には、次のステップS31(算出手段)において、安定部分でないと判定された検出値S4の1つ後の時刻の検出値から演算終了時刻t4までの全ての検出値、つまり安定部分であると判定された安定範囲Mb内の全ての検出値の平均を算出し、その平均値を基準圧Pbaseとする。或いは、ガード時刻tgでの検出値から演算終了時刻t4までの全ての検出値の平均を算出し、その平均値を基準圧Pbaseとしてもよい。 Accordingly, the detection value to be determined is returned one by one from the calculation end time t4 in accordance with the processing of step S23, and the detection value S4 at the time exceeding the guard time tg (see FIG. 5D) is not a stable portion. If it is determined, an affirmative determination is made in step S24. In this case, in the next step S31 (calculation means), all detection values from the detection value at the time immediately after the detection value S4 determined not to be a stable portion to the calculation end time t4, that is, the stable portion. An average of all detected values within the stable range Mb determined to be present is calculated, and the average value is set as a reference pressure Pbase. Alternatively, an average of all detection values from the detection value at the guard time tg to the calculation end time t4 may be calculated, and the average value may be used as the reference pressure Pbase.
また、ステップS23の処理に伴い演算終了時刻t4から判定対象となる検出値を一つずつ戻して行き、ガード時刻tgに達していない時刻の検出値S5(図5(d)参照)が安定部分でないと判定されれば、ステップS24で否定判定されることとなる。この場合には、次のステップS32において基準圧Pbaseの算出を中止する。なお、基準圧Pbaseの算出を中止した場合には、その噴射にかかる噴射率波形の演算を中止するとともに、その噴射については、噴射状態と噴射指令信号との相関関係の学習を中止する。 Further, the detection value to be determined is returned one by one from the calculation end time t4 along with the processing of step S23, and the detection value S5 (see FIG. 5D) at the time when the guard time tg has not been reached is a stable portion. If it is determined that it is not, a negative determination is made in step S24. In this case, the calculation of the reference pressure Pbase is stopped in the next step S32. When the calculation of the reference pressure Pbase is stopped, the calculation of the injection rate waveform related to the injection is stopped, and the learning of the correlation between the injection state and the injection command signal is stopped for the injection.
要するに、図4の処理では、演算開始時刻t1から演算終了時刻t4までを探索範囲Ma(図3参照)として設定し、探索範囲Maの検出値の各々について、圧力変動が所定範囲内となっている安定部分であるか否かを、演算終了時刻t4の検出値から順に判定していく。そして、安定していないと判定された検出値までを安定範囲Mbとして設定し、安定範囲Mbの検出値の平均値を基準圧Pbaseとして算出する。但し、安定範囲Mbがガード時刻tgを含んでいなければ、基準圧Pbaseの算出を中止する。 In short, in the process of FIG. 4, the calculation start time t1 to the calculation end time t4 are set as the search range Ma (see FIG. 3), and the pressure fluctuation is within a predetermined range for each of the detection values of the search range Ma. It is determined in order from the detection value at the calculation end time t4 whether or not it is a stable portion. Then, the detected value determined as not stable is set as the stable range Mb, and the average value of the detected values in the stable range Mb is calculated as the reference pressure Pbase. However, if the stable range Mb does not include the guard time tg, the calculation of the reference pressure Pbase is stopped.
なお、圧力波形のうち探索範囲Maに該当する部分の波形が「下降開始前波形Wa」に相当する。また、安定範囲Mbの期間に該当する部分の波形が「下降開始前波形Waのうち噴射開始に伴い圧力下降を開始した時点から所定時間前までに相当する部分」に相当する。また、安定範囲Mbの期間が「下降開始前波形Waに含まれる脈動の1周期長さ以上に設定された所定期間」に相当する。 Note that the portion of the pressure waveform corresponding to the search range Ma corresponds to the “waveform Wa before starting descent”. Further, the waveform of the portion corresponding to the period of the stable range Mb corresponds to “a portion corresponding to a predetermined time before the start of the pressure drop with the start of injection in the waveform Wa before starting to descend”. Further, the period of the stable range Mb corresponds to “a predetermined period set to be equal to or longer than one cycle length of the pulsation included in the waveform Wa before starting descent”.
そして、算出した基準圧Pbaseに基づき、圧力波形から噴射率波形への変換に用いる変換係数や遅れ時間C1,C3を設定し、これらの変換係数等を用いて圧力波形から噴射率波形を演算する。そして、演算した噴射率波形から明らかとなる実噴射開始時期R1、実噴射終了時期R4、噴射量等の噴射状態と、噴射指令信号との相関関係を学習する。 Then, based on the calculated reference pressure Pbase, conversion coefficients used for conversion from the pressure waveform to the injection rate waveform and delay times C1 and C3 are set, and the injection rate waveform is calculated from the pressure waveform using these conversion coefficients and the like. . Then, the correlation between the injection command signal and the injection state such as the actual injection start timing R1, the actual injection end timing R4, and the injection amount, which is apparent from the calculated injection rate waveform, is learned.
以上により、本実施形態によれば、圧力波形のうち変化点P1以前の下降開始前波形Waに基づき基準圧Pbaseを算出し、その基準圧Pbaseを用いて変換係数等を可変設定するので、噴射率波形を高精度で演算できる。 As described above, according to this embodiment, the reference pressure Pbase is calculated based on the waveform Wa before descent before the change point P1 in the pressure waveform, and the conversion coefficient and the like are variably set using the reference pressure Pbase. The rate waveform can be calculated with high accuracy.
さらに本実施形態によれば、噴射率波形の演算に用いる基準圧Pbaseを、下降開始前波形Waのうち圧力変動が安定している部分Wbの圧力検出値に基づき算出するので、他気筒のポスト噴射や燃料圧送の影響を受けて下降開始前波形Waに脈動が重畳したとしても、そのような脈動が重畳していない安定した部分Wbの圧力検出値に基づき基準圧Pbaseを算出するので、前記脈動の影響に左右されない安定した基準圧Pbaseを算出できる。よって、変換係数や遅れ時間C1,C3の値を高精度に設定でき、ひいては噴射率波形の演算精度を向上できる。 Furthermore, according to the present embodiment, the reference pressure Pbase used for the calculation of the injection rate waveform is calculated based on the detected pressure value of the portion Wb in which the pressure fluctuation is stable in the waveform Wa before starting descent. Even if pulsation is superimposed on the waveform Wa before starting descent due to the influence of injection or fuel pumping, the reference pressure Pbase is calculated based on the pressure detection value of the stable portion Wb where such pulsation is not superimposed. A stable reference pressure Pbase that is not influenced by the influence of pulsation can be calculated. Therefore, the conversion coefficient and the values of the delay times C1 and C3 can be set with high accuracy, and the calculation accuracy of the injection rate waveform can be improved.
また、変化点P1の前の直近の圧力を用いて算出した基準圧Pbaseであるほど、変換係数や遅れ時間C1,C3の値を高精度に設定できる点に着目し、ステップS20,S21による安定判定を、演算終了時刻t4から順に遡って判定するので、変化点P1の直前部分が安定範囲Mbに含まれることとなる。よって、変換係数や遅れ時間C1,C3の値を高精度に設定でき、ひいては噴射率波形の演算精度を向上できる。 In addition, paying attention to the fact that the conversion coefficient and the values of the delay times C1 and C3 can be set with higher precision as the reference pressure Pbase calculated using the pressure immediately before the change point P1 is stabilized by steps S20 and S21. Since the determination is performed retroactively from the calculation end time t4, the portion immediately before the change point P1 is included in the stable range Mb. Therefore, the conversion coefficient and the values of the delay times C1 and C3 can be set with high accuracy, and the calculation accuracy of the injection rate waveform can be improved.
また、安定範囲Mbが所定長さより長い(ガード時刻tgに達している)ことを条件として、安定範囲Mbの平均を基準圧Pbaseとして算出するので、平均値を算出するサンプル数を十分に確保して、基準圧Pbaseの精度を一定以上に担保できる。しかも、安定範囲Mbの長さは、下降開始前波形Waに含まれる脈動の1周期長さMcよりも長くなるよう設定されているので、下降開始前波形Waのうち脈動が重畳している部分を安定範囲Mbとして設定してしまうとの懸念を解消できる。 Also, on the condition that the stable range Mb is longer than the predetermined length (has reached the guard time tg), the average of the stable range Mb is calculated as the reference pressure Pbase, so that a sufficient number of samples for calculating the average value is secured. Thus, the accuracy of the reference pressure Pbase can be secured to a certain level. In addition, since the length of the stable range Mb is set to be longer than one cycle length Mc of the pulsation included in the waveform Wa before starting descent, the portion where the pulsation is superimposed on the waveform Wa before descent starts. Can be set as the stable range Mb.
(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.
・図4に示す処理では、下降開始前波形Waの中から安定部分を探索するにあたり、下降開始前波形Waを構成する検出値が上限値Pg1及び下限値Pg2の範囲内であるか否かの判定(S20)と、前記検出値の微分値が上限値及び下限値の範囲内であるか否かを判定(S21)との両判定を実施しているが、これらの判定処理S20,S21のいずれか一方を廃止してもよい。 In the process shown in FIG. 4, when searching for a stable portion from the waveform Wa before starting descent, whether or not the detection value constituting the waveform Wa before starting descent is within the range of the upper limit value Pg1 and the lower limit value Pg2. Both the determination (S20) and the determination (S21) whether or not the differential value of the detected value is within the range of the upper limit value and the lower limit value are carried out. Of these determination processes S20 and S21, Either one may be abolished.
・上記実施形態では、演算終了時刻t4から順に遡ってステップS20,S21にかかる安定判定を実施することにより、演算終了時刻t4から所定時間前まで(ガード時刻tgまで)を安定範囲Mb(安定部分)が含んでいることを条件として、基準圧Pbaseを算出している。これに対し、前記条件を廃止して、例えば、演算開始時刻t1から演算終了時刻t4までの中間位置にのみ安定部分が探索された場合には、その中間位置での安定部分に基づき基準圧Pbaseを算出するようにしてもよい。 In the above embodiment, by performing the stability determination in steps S20 and S21 in order from the calculation end time t4, the stable range Mb (stable portion) from the calculation end time t4 to a predetermined time (until the guard time tg). ) Is included, the reference pressure Pbase is calculated. On the other hand, when the above condition is abolished and, for example, a stable portion is searched only at the intermediate position from the calculation start time t1 to the calculation end time t4, the reference pressure Pbase is based on the stable portion at the intermediate position. May be calculated.
・図4のステップS20の判定で用いる上限値Pg1及び下限値Pg2を、燃料温度に応じて可変設定してもよい。 The upper limit value Pg1 and the lower limit value Pg2 used in the determination in step S20 of FIG. 4 may be variably set according to the fuel temperature.
・図1に示す上記実施形態では、燃圧センサ20を燃料噴射弁10に搭載しているが、本発明にかかる燃圧センサはコモンレール42の吐出口42aから噴孔11bに至るまでの燃料供給経路内の燃圧を検出するよう配置された燃圧センサであればよい。よって、例えばコモンレール42と燃料噴射弁10とを接続する高圧配管42bに燃圧センサを搭載してもよい。つまり、コモンレール42及び燃料噴射弁10を接続する高圧配管42bと、ボデー11内の高圧通路11aとが「燃料供給経路」に相当する。
In the above embodiment shown in FIG. 1, the
10…燃料噴射弁、20…燃圧センサ、30…ECU(基準圧算出手段、噴射率波形演算手段)、Pbase…基準圧、S10…圧力波形取得手段、S20〜S23…探索手段、S30,S31…算出手段。
DESCRIPTION OF
Claims (5)
前記燃圧センサの検出値の変化を表した圧力波形を取得する圧力波形取得手段と、
前記圧力波形のうち、噴射開始に伴い圧力下降を開始する前の下降開始前波形に基づき基準圧を算出する基準圧算出手段と、
燃料噴射率の変化を表した噴射率波形を、前記圧力波形及び前記基準圧に基づき演算する噴射率波形演算手段と、
を備え、
前記基準圧算出手段は、
前記下降開始前波形のうち、前記下降開始前波形に含まれる脈動の1周期長さ以上に設定された所定期間にわたって圧力変動が所定範囲内となっている安定部分を探索する探索手段と、
前記探索手段により探索された前記安定部分の圧力に基づき前記基準圧を算出する算出手段と、
を有することを特徴とする燃料噴射状態検出装置。 A fuel injection valve that injects fuel to be burned in an internal combustion engine from an injection hole, and a fuel pressure sensor that detects a change in fuel pressure that occurs in the fuel supply path up to the injection hole as fuel is injected from the injection hole And applied to a fuel injection system comprising
Pressure waveform acquisition means for acquiring a pressure waveform representing a change in the detected value of the fuel pressure sensor;
Among the pressure waveforms, a reference pressure calculating means for calculating a reference pressure based on a waveform before starting a decrease before starting a pressure decrease with the start of injection;
An injection rate waveform calculating means for calculating an injection rate waveform representing a change in the fuel injection rate based on the pressure waveform and the reference pressure;
With
The reference pressure calculating means includes
Search means for searching for a stable portion in which the pressure fluctuation is within a predetermined range over a predetermined period of time set to be equal to or longer than one cycle length of the pulsation included in the waveform before the start of lowering ,
Calculating means for calculating the reference pressure based on the pressure of the stable portion searched by the searching means ;
A fuel injection state detection device comprising:
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010164036A JP5168325B2 (en) | 2010-07-21 | 2010-07-21 | Fuel injection state detection device |
DE102011051640.9A DE102011051640B4 (en) | 2010-07-21 | 2011-07-07 | Detector for the state of a fuel injection |
CN201110205380.9A CN102345523B (en) | 2010-07-21 | 2011-07-18 | Detector for fuel injecting state |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010164036A JP5168325B2 (en) | 2010-07-21 | 2010-07-21 | Fuel injection state detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012026323A JP2012026323A (en) | 2012-02-09 |
JP5168325B2 true JP5168325B2 (en) | 2013-03-21 |
Family
ID=45443664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010164036A Active JP5168325B2 (en) | 2010-07-21 | 2010-07-21 | Fuel injection state detection device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5168325B2 (en) |
CN (1) | CN102345523B (en) |
DE (1) | DE102011051640B4 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102012021076B4 (en) * | 2012-10-19 | 2023-03-30 | Rolls-Royce Solutions GmbH | Method for determining at least one actual injection parameter of at least one injector in an internal combustion engine and engine control unit |
CN110082253B (en) * | 2019-04-24 | 2021-10-01 | 北京工业大学 | Method for identifying fuel density on line according to pressure wave period |
CN114033570B (en) * | 2021-11-26 | 2024-04-09 | 重庆红江机械有限责任公司 | Rail pressure control method and system for common rail diesel engine, common rail diesel engine and storage medium |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11101149A (en) * | 1997-09-26 | 1999-04-13 | Isuzu Motors Ltd | Fuel injection method and device thereof for engine |
JP3855471B2 (en) * | 1998-07-01 | 2006-12-13 | いすゞ自動車株式会社 | Common rail fuel injection system |
JP3849367B2 (en) * | 1999-09-20 | 2006-11-22 | いすゞ自動車株式会社 | Common rail fuel injection system |
JP4424395B2 (en) * | 2007-08-31 | 2010-03-03 | 株式会社デンソー | Fuel injection control device for internal combustion engine |
JP4428427B2 (en) * | 2007-08-31 | 2010-03-10 | 株式会社デンソー | Fuel injection characteristic detecting device and fuel injection command correcting device |
JP4678397B2 (en) * | 2007-10-15 | 2011-04-27 | 株式会社デンソー | Fuel injection state detection device |
JP4631937B2 (en) * | 2008-06-18 | 2011-02-16 | 株式会社デンソー | Learning device and fuel injection system |
JP4996580B2 (en) * | 2008-10-30 | 2012-08-08 | 本田技研工業株式会社 | Fuel injection device |
-
2010
- 2010-07-21 JP JP2010164036A patent/JP5168325B2/en active Active
-
2011
- 2011-07-07 DE DE102011051640.9A patent/DE102011051640B4/en active Active
- 2011-07-18 CN CN201110205380.9A patent/CN102345523B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN102345523A (en) | 2012-02-08 |
CN102345523B (en) | 2014-07-09 |
DE102011051640A1 (en) | 2012-01-26 |
JP2012026323A (en) | 2012-02-09 |
DE102011051640B4 (en) | 2017-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5195842B2 (en) | Pressure reducing valve controller | |
JP5394432B2 (en) | Fuel state estimation device | |
JP5278398B2 (en) | Fuel injection state detection device | |
JP5003796B2 (en) | Fuel injection state detection device | |
JP2008144749A (en) | Fuel injection system and its adjusting method | |
JP5723244B2 (en) | Fuel injection control device | |
JP5287915B2 (en) | Fuel injection state estimation device | |
JP5263280B2 (en) | Fuel injection control device | |
JP2013007341A (en) | Fuel-injection-condition estimating apparatus | |
JP6040877B2 (en) | Fuel injection state estimation device | |
JP5168325B2 (en) | Fuel injection state detection device | |
JP5067461B2 (en) | Fuel injection state detection device | |
JP5024429B2 (en) | Fuel injection state detection device | |
JP5293765B2 (en) | Fuel injection state estimation device | |
JP5024430B2 (en) | Fuel injection control device | |
JP5126296B2 (en) | Fuel injection state detection device | |
JP5182337B2 (en) | Detection deviation judgment device of fuel pressure sensor | |
JP5565435B2 (en) | Fuel injection control device | |
JP6028603B2 (en) | Fuel injection state estimation device | |
JP5392277B2 (en) | Fuel injection control device | |
JP6451539B2 (en) | Fuel injection valve | |
JP6308080B2 (en) | Fuel injection state detection device | |
JP2019100299A (en) | Fuel injection control device | |
JP6398631B2 (en) | Fuel injection status acquisition device | |
JP5910522B2 (en) | Fuel injection control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111111 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120724 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120904 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121127 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121210 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5168325 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160111 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |