JP5278398B2 - Fuel injection state detection device - Google Patents

Fuel injection state detection device Download PDF

Info

Publication number
JP5278398B2
JP5278398B2 JP2010222336A JP2010222336A JP5278398B2 JP 5278398 B2 JP5278398 B2 JP 5278398B2 JP 2010222336 A JP2010222336 A JP 2010222336A JP 2010222336 A JP2010222336 A JP 2010222336A JP 5278398 B2 JP5278398 B2 JP 5278398B2
Authority
JP
Japan
Prior art keywords
waveform
injection
fuel
pressure
pulsation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010222336A
Other languages
Japanese (ja)
Other versions
JP2012077653A (en
Inventor
直幸 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010222336A priority Critical patent/JP5278398B2/en
Priority to DE102011053839.9A priority patent/DE102011053839B4/en
Publication of JP2012077653A publication Critical patent/JP2012077653A/en
Application granted granted Critical
Publication of JP5278398B2 publication Critical patent/JP5278398B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0618Actual fuel injection timing or delay, e.g. determined from fuel pressure drop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/247Pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、燃料噴射に伴い生じる燃料圧力の変化を表したセンサ波形を燃圧センサで検出し、検出したセンサ波形に基づき燃料噴射状態を推定する燃料噴射状態検出装置に関する。   The present invention relates to a fuel injection state detection device that detects a sensor waveform representing a change in fuel pressure caused by fuel injection with a fuel pressure sensor and estimates a fuel injection state based on the detected sensor waveform.

内燃機関の出力トルク及びエミッション状態を精度良く制御するには、燃料噴射弁の噴孔から噴射される燃料の噴射開始時期や噴射終了時期等、その噴射状態を精度良く制御することが重要である。そこで従来では、コモンレール(蓄圧容器)及び燃料噴射弁を接続する燃料配管、又は燃料噴射弁に燃圧センサを搭載し、燃料噴射に伴い生じる燃圧変化(センサ波形)を検出している。そして、検出したセンサ波形に基づいて、実際の噴射状態(噴射開始時期や噴射終了時期等)を推定している(特許文献1,2参照)。例えば、燃圧センサにより検出したセンサ波形中に現れる変化点P1,P2,P3(図2(c)参照)を算出し、これらの変化点P1,P2,P3の出現時期及び圧力値に基づき、実際の噴射状態(噴射開始時期R1、噴射終了時期R4、噴射量Q等)を算出する。   In order to accurately control the output torque and emission state of an internal combustion engine, it is important to accurately control the injection state, such as the injection start timing and injection end timing of fuel injected from the injection hole of the fuel injection valve. . Therefore, conventionally, a fuel pressure sensor is mounted on a fuel pipe connecting the common rail (pressure accumulating vessel) and the fuel injection valve or the fuel injection valve, and a change in fuel pressure (sensor waveform) caused by fuel injection is detected. Based on the detected sensor waveform, the actual injection state (injection start timing, injection end timing, etc.) is estimated (see Patent Documents 1 and 2). For example, change points P1, P2, P3 (see FIG. 2C) appearing in the sensor waveform detected by the fuel pressure sensor are calculated, and based on the appearance times and pressure values of these change points P1, P2, P3, the actual values are calculated. The injection state (injection start timing R1, injection end timing R4, injection amount Q, etc.) is calculated.

特開2010−3004号公報JP 2010-3004 A 特開2009−57924号公報JP 2009-57924 A

しかしながら、燃圧センサにより検出されたセンサ波形は噴射状態をそのまま反映している訳ではなく、以下に説明する供給脈動の波形がセンサ波形に重畳していることが、本発明者らが実施した各種試験により明らかとなった。   However, the sensor waveform detected by the fuel pressure sensor does not reflect the injection state as it is, and the waveform of the supply pulsation described below is superimposed on the sensor waveform. Trials revealed.

すなわち、図3に例示するように、噴射開始に伴い噴孔近傍で生じた燃圧低下の脈動(噴射脈動Ma)が、燃料噴射弁10の内部通路を伝播して燃圧センサ20に達した時点で、センサ波形は降下を開始する(図3(a)〜(c)参照)。その後、噴射脈動Maがさらに伝播して燃料配管42bを通じてコモンレール42に達した時点で、コモンレール42から燃料配管42bへ燃料供給が開始される(図3(d)(e)参照)。この燃料供給開始に伴い燃料配管の流入口近傍で生じた燃圧上昇の脈動(供給脈動Mb)が、燃料配管42b及び燃料噴射弁10の内部通路を伝播して燃圧センサ20に達した時点で、圧力上昇する供給脈動Mbの波形成分がセンサ波形に重畳する。したがって、このような供給脈動Mbが重畳したセンサ波形から噴射状態を推定しようとすると、供給脈動Mbの影響により推定誤差が生じる。   That is, as illustrated in FIG. 3, when the fuel pressure drop pulsation (injection pulsation Ma) that occurs in the vicinity of the nozzle hole at the start of injection propagates through the internal passage of the fuel injection valve 10 and reaches the fuel pressure sensor 20. The sensor waveform starts to fall (see FIGS. 3A to 3C). Thereafter, when the injection pulsation Ma further propagates and reaches the common rail 42 through the fuel pipe 42b, fuel supply from the common rail 42 to the fuel pipe 42b is started (see FIGS. 3D and 3E). When the pulsation of the fuel pressure rise (supply pulsation Mb) generated near the inlet of the fuel pipe along with the start of fuel supply propagates through the fuel pipe 42b and the internal passage of the fuel injection valve 10 and reaches the fuel pressure sensor 20, The waveform component of the supply pulsation Mb that increases in pressure is superimposed on the sensor waveform. Therefore, if it is attempted to estimate the injection state from the sensor waveform on which such supply pulsation Mb is superimposed, an estimation error occurs due to the influence of the supply pulsation Mb.

特に、噴射開始の後、最大噴射率に達する前に閉弁作動を開始させる微小噴射の場合には、センサ波形のうち噴射率低下に伴い生じる上昇波形の部分に、上述した供給脈動の波形が重畳することとなる。そのため、センサ波形のうちの上昇波形部分に基づき噴射終了時期や噴射率低下の傾き等の噴射状態を推定する場合には、その推定精度が著しく悪化する。   In particular, in the case of micro-injection that starts the valve closing operation after the start of injection and before the maximum injection rate is reached, the above-described supply pulsation waveform is present in the portion of the sensor waveform that rises as the injection rate decreases. It will be superimposed. Therefore, when estimating the injection state such as the injection end timing or the gradient of the decrease in the injection rate based on the rising waveform portion of the sensor waveform, the estimation accuracy is significantly deteriorated.

本発明は、上記課題を解決するためになされたものであり、その目的は、実際の噴射状態を高精度で検出可能な燃料噴射状態検出装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel injection state detection device capable of detecting an actual injection state with high accuracy.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、燃料ポンプから供給される燃料を蓄圧する蓄圧容器と、前記蓄圧容器の吐出口に接続される燃料配管と、前記燃料配管を通じて前記蓄圧容器から供給される燃料を噴射させる噴孔、及び前記噴孔を開閉する弁体を有する燃料噴射弁と、前記吐出口から前記噴孔に至るまでの燃料供給経路に設けられて燃料圧力を検出し、燃料噴射に伴い生じる燃料圧力の変化を表したセンサ波形を出力する燃圧センサと、を備えた燃料噴射システムに適用されることを前提とする。   According to the first aspect of the present invention, the pressure accumulating container for accumulating the fuel supplied from the fuel pump, the fuel pipe connected to the discharge port of the pressure accumulating container, and the fuel supplied from the pressure accumulating container through the fuel pipe are injected. And a fuel injection valve having a valve body that opens and closes the nozzle hole, and a fuel that is provided in a fuel supply path from the discharge port to the nozzle hole, detects fuel pressure, and generates fuel accompanying fuel injection It is assumed that the present invention is applied to a fuel injection system including a fuel pressure sensor that outputs a sensor waveform representing a change in pressure.

そして、今回の燃料噴射に伴って、前記吐出口から前記燃料配管を通じて前記燃料噴射弁へ流れ込む燃料の流れによってその噴射期間中に発生する供給脈動を、今回の燃料噴射における前記センサ波形から推定する脈動推定手段と、前記脈動推定手段により推定された供給脈動の波形を今回の燃料噴射における前記センサ波形から除去するよう前記センサ波形を補正する脈動除去手段と、前記脈動除去手段により除去補正されたセンサ波形に基づき前記噴孔からの燃料噴射状態を推定する噴射状態推定手段と、を備えることを特徴とする。 Then, with the current fuel injection, the supply pulsation generated during the injection period by the flow of fuel flowing into the fuel injection valve through the fuel pipe from the discharge port, it is estimated from the sensor waveform in the current fuel injection The pulsation estimating means, the pulsation removing means for correcting the sensor waveform so as to remove the waveform of the supply pulsation estimated by the pulsation estimating means from the sensor waveform in the current fuel injection, and the correction corrected by the pulsation removing means Injection state estimating means for estimating a fuel injection state from the nozzle hole based on a sensor waveform.

これによれば、今回の燃料噴射に伴って吐出口から燃料配管を通じて燃料噴射弁へ流れ込む燃料の流れによってその噴射期間中に発生する供給脈動の波形を、今回の燃料噴射におけるセンサ波形から推定し、推定した供給脈動の波形を今回の燃料噴射におけるセンサ波形から除去した上で燃料噴射状態を推定するので、供給脈動の影響により噴射状態の推定誤差が生じることを回避できる。よって、噴射状態を高精度で検出できる。 According to this, the waveform of the supply pulsation generated during the injection period due to the flow of fuel flowing from the discharge port to the fuel injection valve through the fuel pipe with the current fuel injection is estimated from the sensor waveform in the current fuel injection. Since the fuel injection state is estimated after removing the estimated supply pulsation waveform from the sensor waveform in the current fuel injection, it is possible to avoid the occurrence of an injection state estimation error due to the influence of the supply pulsation. Therefore, the injection state can be detected with high accuracy.

特に、噴射開始の後、最大噴射率に達する前に閉弁作動を開始させる微小噴射の場合であっても、センサ波形のうち噴射率低下に伴い生じる上昇波形の部分に供給脈動の波形が重畳することを回避できるので、センサ波形のうちの上昇波形部分に基づき噴射終了時期や噴射率低下の傾き等の噴射状態を推定する場合において、供給脈動の影響により推定精度が著しく悪化することを回避できる。   In particular, even in the case of micro-injection that starts the valve closing operation after the start of injection and before reaching the maximum injection rate, the waveform of the supply pulsation is superimposed on the portion of the sensor waveform that rises as the injection rate decreases. Therefore, when estimating the injection state such as the injection end timing or the gradient of the decrease in the injection rate based on the rising waveform part of the sensor waveform, avoid the deterioration of the estimation accuracy due to the influence of the supply pulsation. it can.

請求項2記載の発明では、前記脈動推定手段は、前記センサ波形のうち噴射開始に伴い燃圧降下していく部分の降下波形に基づき、前記供給脈動の波形を推定することを特徴とする。   The invention according to claim 2 is characterized in that the pulsation estimating means estimates a waveform of the supply pulsation based on a descending waveform of a portion of the sensor waveform where the fuel pressure is lowered with the start of injection.

本発明者が実施した各種試験によれば、センサ波形のうち噴射開始に伴い燃圧降下していく部分の降下波形と、供給脈動の波形とは相関があることが分かった。このことは、次の理由によると考察される。   According to various tests conducted by the present inventor, it has been found that there is a correlation between the waveform of the sensor pulsation where the fuel pressure drops as the injection starts and the waveform of the supply pulsation. This is considered for the following reason.

すなわち、先述した供給脈動(燃料供給開始に伴い燃料配管の流入口近傍で生じた燃圧上昇の脈動)は、噴射脈動(噴射開始に伴い噴孔近傍で生じた燃圧低下の脈動)の発生に起因して生じるものであり、供給脈動の状態に応じて噴射脈動の状態も変化する。つまり、供給脈動の状態と噴射脈動の状態とは相関が高い。また、噴射脈動が伝播して燃圧センサに到達した後に、供給脈動が燃圧センサまで遅れて伝播されてくる。そのため、降下波形の降下開始時期や波形形状は、噴射脈動の影響を受けるものの、供給脈動の影響は殆ど受けていない。以上の考察をまとめると、供給脈動の状態は噴射脈動の状態と相関が高く、その噴射脈動は降下波形と相関が高いので、供給脈動の波形は降下波形と相関が高いと言える。   That is, the above-described supply pulsation (the pulsation of the fuel pressure increase generated near the inlet of the fuel pipe as the fuel supply starts) is caused by the occurrence of the injection pulsation (the pulsation of the fuel pressure decrease generated near the nozzle hole as the injection starts). Therefore, the state of the injection pulsation changes depending on the state of the supply pulsation. That is, the supply pulsation state and the injection pulsation state are highly correlated. Further, after the injection pulsation propagates and reaches the fuel pressure sensor, the supply pulsation is propagated with a delay to the fuel pressure sensor. For this reason, the descent start timing and waveform shape of the descending waveform are affected by the injection pulsation, but are hardly affected by the supply pulsation. In summary, the supply pulsation state has a high correlation with the injection pulsation state, and the injection pulsation has a high correlation with the descending waveform. Therefore, it can be said that the supply pulsation waveform has a high correlation with the descending waveform.

この点を鑑みた上記発明では、センサ波形のうち噴射開始に伴い燃圧降下していく部分の降下波形に基づき供給脈動の波形を推定するので、その推定精度を向上できる。   In the above-mentioned invention in view of this point, since the supply pulsation waveform is estimated based on the descending waveform of the portion of the sensor waveform where the fuel pressure is lowered as the injection starts, the estimation accuracy can be improved.

請求項3記載の発明では、前記脈動推定手段は、前記降下波形の降下の傾きに基づき、前記供給脈動の波形の上昇の傾きを推定することを特徴とする。   The invention according to claim 3 is characterized in that the pulsation estimating means estimates the rising slope of the supply pulsation waveform based on the falling slope of the falling waveform.

本発明者が実施した各種試験によれば、降下波形の降下速度(傾き)と供給脈動の波形の上昇速度(傾き)とは相関性が高いことが分かった。図6(a)は、本発明者が実施した試験結果であり、降下波形の降下の傾きPαの計測値を横軸で表し、供給脈動の波形の上昇の傾きPγの計測値を縦軸で表したグラフである。この試験結果は、両傾きPα,Pγが比例関係にあり、降下波形の降下速度が速いほど供給脈動の波形の上昇速度は速くなることを表している。   According to various tests conducted by the present inventors, it has been found that the descending speed (slope) of the descending waveform and the ascending speed (slope) of the waveform of the supply pulsation are highly correlated. FIG. 6A shows the test results conducted by the present inventor, in which the measured value of the descending slope Pα of the descending waveform is represented on the horizontal axis, and the measured value of the ascent slope Pγ of the supply pulsating waveform is represented on the vertical axis. It is the represented graph. This test result shows that both slopes Pα and Pγ are in a proportional relationship, and that the rising speed of the supply pulsation waveform increases as the descending speed of the descending waveform increases.

この点を鑑みた上記発明では、降下波形の傾きPαに基づき供給脈動波形の傾きPγを推定するので、例えば降下波形の傾きPαを検出し、その傾きPαを図6(a)に示す相関式に代入すれば、供給脈動波形の傾きPγを精度良く算出できる。或いは、降下波形の傾きPαに応じた供給脈動波形の傾きPγのモデルを複数記憶させておき、検出した降下波形の傾きPαに基づき、供給脈動波形の傾きPγの最適モデルを選択することができる。以上により、上記発明によれば供給脈動波形の傾きPγを高精度で推定できる。   In the above-mentioned invention in view of this point, since the slope Pγ of the supply pulsation waveform is estimated based on the slope Pα of the descending waveform, for example, the slope Pα of the descending waveform is detected, and the slope Pα is represented by the correlation equation shown in FIG. By substituting into, the slope Pγ of the supply pulsation waveform can be calculated with high accuracy. Alternatively, a plurality of models of the supply pulsation waveform slope Pγ corresponding to the drop waveform slope Pα can be stored, and the optimum model of the supply pulsation waveform slope Pγ can be selected based on the detected drop waveform slope Pα. . As described above, according to the present invention, the slope Pγ of the supply pulsation waveform can be estimated with high accuracy.

請求項4記載の発明では、前記脈動推定手段は、前記降下波形の降下開始時期、又は前記燃料噴射弁へ噴射開始を指令した時期に基づき、前記供給脈動の波形が前記センサ波形に重畳開始する時期を推定することを特徴とする。   According to a fourth aspect of the present invention, the pulsation estimating means starts superimposing the supply pulsation waveform on the sensor waveform based on a descent start timing of the descent waveform or a timing when the fuel injection valve is instructed to start injection. It is characterized by estimating the time.

ところで、脈動除去手段により供給脈動波形をセンサ波形から除去するにあたり、供給脈動波形の形状を推定しただけでは、その推定した波形をセンサ波形のどの位置に合わせて除去すべきかを特定できない。よって、供給脈動波形がセンサ波形に重畳を開始する時期を推定できれば、供給脈動波形をセンサ波形から高精度で除去できる。   By the way, when removing the supply pulsation waveform from the sensor waveform by the pulsation removing means, it is not possible to specify in which position of the sensor waveform the estimated waveform should be removed only by estimating the shape of the supply pulsation waveform. Therefore, if it is possible to estimate when the supply pulsation waveform starts to be superimposed on the sensor waveform, the supply pulsation waveform can be removed from the sensor waveform with high accuracy.

そして、供給脈動波形の重畳開始時期は、燃料噴射弁へ噴射開始を指令した時期又は降下波形の降下開始時期と相関が高い。例えば、噴射開始指令時期や降下開始時期が早いほど、供給脈動波形の重畳開始時期も早くなる。   The superimposition start timing of the supply pulsation waveform has a high correlation with the timing when the fuel injection valve is instructed to start injection or the descent start timing of the descending waveform. For example, the earlier the injection start command timing and the descent start timing, the earlier the supply pulsation waveform superposition start timing.

この点を鑑みた上記発明では、降下波形の降下開始時期又は噴射開始指令時期に基づき供給脈動波形の重畳開始時期を推定するので、例えば降下波形の降下開始時期を検出し、検出した降下開始時期を算出式(図7中の(式1)参照)に代入すれば、供給脈動波形の重畳開始時期を精度良く算出できる。或いは、噴射開始指令時期又はその指令時期から推定される降下開始時期を算出式に代入すれば、供給脈動波形の重畳開始時期を精度良く算出できる。よって、脈動除去手段により供給脈動波形をセンサ波形から除去することを高精度で実現できる。   In the above invention in view of this point, since the superposition start time of the supply pulsation waveform is estimated based on the descent start time of the descent waveform or the injection start command time, for example, the descent start time of the descent waveform is detected, and the detected descent start time Is substituted into the calculation formula (see (Formula 1) in FIG. 7), the superposition start time of the supply pulsation waveform can be accurately calculated. Alternatively, if the injection start command time or the descent start time estimated from the command time is substituted into the calculation formula, the superposition start time of the supply pulsation waveform can be accurately calculated. Therefore, the supply pulsation waveform can be removed from the sensor waveform with high accuracy by the pulsation removal means.

請求項5記載の発明では、前記脈動推定手段は、前記降下波形の降下開始時期における燃料圧力に応じて、前記供給脈動の波形が前記センサ波形に重畳開始する時期を推定することを特徴とする。   The invention according to claim 5 is characterized in that the pulsation estimating means estimates a timing at which the waveform of the supply pulsation starts to be superimposed on the sensor waveform in accordance with a fuel pressure at a timing at which the descending waveform starts to descend. .

噴射開始指令時期や降下開始時期が同じであっても、その時の燃料圧力が高ければ、供給脈動の伝播速度が速くなることに起因して供給脈動波形の重畳開始時期は早くなる。この点を鑑みた上記発明では、降下波形の降下開始時期における燃料圧力に応じて供給脈動波形の重畳開始時期を推定するので、降下波形の降下開始時期等に基づき上述の如く推定した重畳開始時期を、燃料圧力に基づき補正することができる。よって、重畳開始時期の推定精度を向上できる。   Even if the injection start command timing and the descent start timing are the same, if the fuel pressure at that time is high, the supply pulsation waveform superposition start timing is advanced due to an increase in the supply pulsation propagation speed. In the above-mentioned invention in view of this point, since the superposition start time of the supply pulsation waveform is estimated according to the fuel pressure at the start time of the descent waveform, the superposition start time estimated as described above based on the descent start time of the down waveform, etc. Can be corrected based on the fuel pressure. Therefore, the estimation accuracy of the superposition start time can be improved.

請求項6記載の発明では、前記脈動推定手段は、前記降下波形のうち降下開始時点での圧力及び降下終了時点での圧力に基づき、前記供給脈動による圧力上昇量を推定することを特徴とする。   The invention according to claim 6 is characterized in that the pulsation estimating means estimates the amount of pressure increase due to the supply pulsation based on the pressure at the start of descent and the pressure at the end of descent in the descent waveform. .

ここで、燃料供給経路のうち燃圧センサが設けられた位置(センサ位置)での燃料圧力の変化がセンサ波形に相当するが、蓄圧容器からセンサ位置へ供給されてくる燃料の流量(供給流量)と、センサ位置から噴孔へ向けて流出していく燃料の流量(噴射流量)とがバランスすると、センサ波形は一定の値(平衡圧)になる。そして、平衡圧に達した時点は、供給脈動による圧力上昇が終了した時点とほぼ一致することを本発明者は見出した。そして、供給脈動による圧力上昇量は、降下波形のうち降下開始時点での圧力Pa及び降下終了時点での圧力Pbと相関がある。例えば、図7中の式4に例示する算出式に圧力Pa,Pbを代入すれば、圧力上昇量ΔPを算出できる。   Here, the change in fuel pressure at the position (sensor position) where the fuel pressure sensor is provided in the fuel supply path corresponds to the sensor waveform, but the flow rate of fuel supplied from the pressure accumulator to the sensor position (supply flow rate) When the flow rate of fuel flowing out from the sensor position toward the nozzle hole (injection flow rate) balances, the sensor waveform becomes a constant value (equilibrium pressure). The inventor found that the time when the equilibrium pressure was reached substantially coincided with the time when the pressure increase due to the supply pulsation was completed. The amount of pressure increase due to supply pulsation is correlated with the pressure Pa at the start of the drop and the pressure Pb at the end of the drop in the drop waveform. For example, the pressure increase amount ΔP can be calculated by substituting the pressures Pa and Pb into the calculation formula exemplified in Formula 4 in FIG.

これらの点を鑑みた上記発明によれば、上記両圧力Pa,Pbに基づき圧力上昇量ΔPを算出するので、平衡圧に達して圧力上昇が終了した時点を特定することができる。よって、供給脈動波形の圧力上昇量ΔPに基づき圧力上昇終了時点を精度良く推定できるので、脈動除去手段により供給脈動波形をセンサ波形から除去することを高精度で実現できる。   According to the above-mentioned invention in view of these points, the pressure increase amount ΔP is calculated based on the both pressures Pa and Pb, so that it is possible to specify the point in time when the pressure increase is reached after reaching the equilibrium pressure. Therefore, since the end point of the pressure increase can be accurately estimated based on the pressure increase amount ΔP of the supply pulsation waveform, the supply pulsation waveform can be removed from the sensor waveform with high accuracy by the pulsation removal unit.

請求項7記載の発明では、最大噴射率に達する前に噴射率を低下させていく小噴射を実施する場合において、前記噴射状態推定手段は、前記脈動除去手段により除去補正されたセンサ波形のうち噴射終了に伴い燃圧上昇していく部分の上昇波形に基づき、噴射終了時期を算出することを特徴とする。   In the seventh aspect of the present invention, in the case of performing small injection in which the injection rate is reduced before reaching the maximum injection rate, the injection state estimating means includes the sensor waveform that is removed and corrected by the pulsation removing means. The injection end timing is calculated based on the rising waveform of the portion where the fuel pressure increases as the injection ends.

例えば上昇波形を直線にモデル化し、その直線モデルが基準圧力になる時期と噴射終了時期とは相関が高いことが、本発明者により明らかとなった。但し、最大噴射率に達する前に噴射率を低下させていくような小噴射の場合には、センサ波形のうちの上昇波形に供給脈動波形が重畳してしまう。そして、重畳する供給脈動波形の影響を受けた直線モデルでは、噴射終了時期との相関が低くなってしまい、噴射終了時期を高精度で推定できなくなる。つまり、このように噴射終了時期を推定する場合においては、上述した脈動除去手段による供給脈動波形の除去を実施しなければ、噴射終了時期(燃量噴射状態)を高精度で推定できなくなるといった問題が特に顕著に生じる。   For example, the inventor has revealed that the rising waveform is modeled as a straight line, and the time when the straight line model reaches the reference pressure and the injection end time are highly correlated. However, in the case of small injection in which the injection rate is decreased before reaching the maximum injection rate, the supply pulsation waveform is superimposed on the rising waveform of the sensor waveform. In the linear model affected by the superimposed supply pulsation waveform, the correlation with the injection end time becomes low, and the injection end time cannot be estimated with high accuracy. In other words, in the case of estimating the injection end timing in this way, the injection end timing (fuel injection state) cannot be estimated with high accuracy unless the supply pulsation waveform is removed by the pulsation removing means described above. Is particularly noticeable.

この点を鑑みた上記発明では、小噴射の場合においてセンサ波形に含まれる上昇波形に基づき噴射終了時期を算出する場合に、脈動除去手段による供給脈動波形の除去を適用させているので、噴射終了時期(燃量噴射状態)を高精度で推定できなくなるといった問題を効果的に解消できる。   In the above-mentioned invention in view of this point, when the injection end timing is calculated based on the rising waveform included in the sensor waveform in the case of small injection, the removal of the supply pulsation waveform by the pulsation removing means is applied. The problem that the timing (fuel injection state) cannot be estimated with high accuracy can be effectively solved.

なお、上昇波形に基づき噴射終了時期を算出するための構成例を以下に示す。すなわち、前記噴射状態推定手段は、センサ波形に含まれる上昇波形をモデル化する上昇波形モデル化手段と、噴射開始時期における燃料圧力を基準圧力として算出する基準圧力算出手段と、を有するとともに、前記上昇波形モデル化手段によりモデル化された上昇波形が前記基準圧力になる時期を、噴射終了時期として算出することを特徴とする。   A configuration example for calculating the injection end timing based on the rising waveform is shown below. That is, the injection state estimating means includes an ascending waveform modeling means for modeling an ascending waveform included in the sensor waveform, and a reference pressure calculating means for calculating the fuel pressure at the injection start timing as a reference pressure, and The time when the rising waveform modeled by the rising waveform modeling means becomes the reference pressure is calculated as the injection end time.

本発明の一実施形態にかかる燃料噴射状態検出装置が適用される、燃料噴射システムの概略を示す図。The figure which shows the outline of the fuel-injection system with which the fuel-injection state detection apparatus concerning one Embodiment of this invention is applied. (a)は図1に示す燃料噴射弁への噴射指令信号、(b)は噴射指令信号に伴い生じる燃料噴射率の変化を表す噴射率波形、(c)は図1に示す燃圧センサにより検出された検出圧力の変化を表すセンサ波形を示すタイムチャート。(A) is an injection command signal to the fuel injection valve shown in FIG. 1, (b) is an injection rate waveform representing a change in fuel injection rate caused by the injection command signal, and (c) is detected by a fuel pressure sensor shown in FIG. The time chart which shows the sensor waveform showing the change of the detected detection pressure. 噴射脈動及び供給脈動の発生メカニズムを説明する図。The figure explaining the generation | occurrence | production mechanism of an injection pulsation and a supply pulsation. センサ波形の補正手順及び噴射率波形の推定手順を示すフローチャート。The flowchart which shows the correction | amendment procedure of a sensor waveform, and the estimation procedure of an injection rate waveform. (a)はセンサ波形W及び供給脈動波形Waを示し、(b)は供給脈動波形のモデルWmを示し、(c)はセンサ波形WからモデルWmを差し引いた補正後のセンサ波形W’を示す図。(A) shows sensor waveform W and supply pulsation waveform Wa, (b) shows model Wm of supply pulsation waveform, and (c) shows sensor waveform W ′ after correction obtained by subtracting model Wm from sensor waveform W. Figure. 本発明者が実施した試験結果を示す図。The figure which shows the test result which this inventor implemented. モデルWmの推定に用いる算出式1〜4を示す図。The figure which shows the calculation formulas 1-4 used for estimation of the model Wm. モデルWmを推定する手順を示すフローチャート。The flowchart which shows the procedure which estimates model Wm.

以下、本発明に係る燃料噴射状態検出装置を具体化した一実施形態を図面に基づいて説明する。本実施形態の燃料噴射状態検出装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, an embodiment embodying a fuel injection state detection device according to the present invention will be described with reference to the drawings. The fuel injection state detection device according to the present embodiment is mounted on a vehicle engine (internal combustion engine), and compression auto-ignition is performed by injecting high-pressure fuel into a plurality of cylinders # 1 to # 4. It assumes a diesel engine that burns.

図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。   FIG. 1 is a schematic diagram showing a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on each fuel injection valve 10, an ECU 30 that is an electronic control device mounted on a vehicle, and the like. is there.

先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、高圧ポンプ41(燃料ポンプ)によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。なお、高圧ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して間欠的に燃料は圧送される。   First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulator) by a high pressure pump 41 (fuel pump), and is distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order. Since the plunger pump is used as the high-pressure pump 41, the fuel is intermittently pumped in synchronism with the reciprocating movement of the plunger.

燃料噴射弁10は、以下に説明するボデー11、ニードル形状の弁体12及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。弁体12は、ボデー11内に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle-shaped valve body 12, an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The valve body 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b.

ボデー11内には弁体12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は制御弁14により切り替えられており、電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cは低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、弁体12へ付与される背圧力が低下して弁体12は開弁作動する。一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cは高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、弁体12へ付与される背圧力が上昇して弁体12は閉弁作動する。   A back pressure chamber 11c for applying a back pressure to the valve body 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14, and the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized to push the control valve 14 downward in FIG. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. As a result, the back pressure applied to the valve body 12 decreases and the valve body 12 opens. On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the valve body 12 rises and the valve body 12 is closed.

したがって、ECU30がアクチュエータ13への通電を制御することで、弁体12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、弁体12の開閉作動に応じて噴孔11bから噴射される。例えばECU30は、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の目標噴射状態を算出し、算出した目標噴射状態となるようアクチュエータ13へ噴射指令信号を出力して、燃料噴射弁10の作動を制御する。   Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the valve body 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the valve body 12. For example, the ECU 30 calculates a target injection state such as an injection start timing, an injection end timing, and an injection amount based on the rotation speed of the engine output shaft, the engine load, and the like, and sends an injection command signal to the actuator 13 so that the calculated target injection state is obtained. Is output to control the operation of the fuel injection valve 10.

ECU30は、アクセル操作量等から算出されるエンジン負荷やエンジン回転速度に基づき目標噴射状態を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態(噴射段数、噴射開始時期、噴射終了時期、噴射量等)を噴射状態マップにして記憶させておく。そして、現時点でのエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。そして、算出した目標噴射状態に基づき噴射指令信号t1、t2、Tq(図2(a)参照)を設定する。例えば、目標噴射状態に対応する噴射指令信号を指令マップにして記憶させておき、算出した目標噴射状態に基づき、指令マップを参照して噴射指令信号を設定する。以上により、エンジン負荷及びエンジン回転速度に応じた噴射指令信号が設定され、ECU30から燃料噴射弁10へ出力される。   The ECU 30 calculates the target injection state based on the engine load and engine speed calculated from the accelerator operation amount and the like. For example, the optimal injection state (the number of injection stages, the injection start time, the injection end time, the injection amount, etc.) corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Then, the injection command signals t1, t2, and Tq (see FIG. 2A) are set based on the calculated target injection state. For example, an injection command signal corresponding to the target injection state is stored as a command map, and the injection command signal is set with reference to the command map based on the calculated target injection state. Thus, the injection command signal corresponding to the engine load and the engine rotation speed is set and output from the ECU 30 to the fuel injection valve 10.

ここで、噴孔11bの磨耗等、燃料噴射弁10の経年劣化に起因して、噴射指令信号に対する実際の噴射状態は変化していく。そこで、後に詳述するように燃圧センサ20により検出された圧力の波形(センサ波形)に基づき燃料の噴射率波形を演算して噴射状態を検出し、検出した噴射状態と噴射指令信号(パルスオン時期t1、パルスオフ時期t2及びパルスオン期間Tq)との相関関係を学習し、その学習結果に基づき、指令マップに記憶された噴射指令信号を補正する。これにより、実噴射状態が目標噴射状態に一致するよう、燃料噴射状態を高精度で制御できる。   Here, the actual injection state with respect to the injection command signal changes due to deterioration of the fuel injection valve 10 such as wear of the injection hole 11b. Therefore, as described in detail later, the fuel injection rate waveform is calculated based on the pressure waveform (sensor waveform) detected by the fuel pressure sensor 20 to detect the injection state, and the detected injection state and the injection command signal (pulse-on timing) The correlation with t1, the pulse-off timing t2, and the pulse-on period Tq) is learned, and the injection command signal stored in the command map is corrected based on the learning result. Thus, the fuel injection state can be controlled with high accuracy so that the actual injection state matches the target injection state.

次に、燃圧センサ20のハード構成について説明する。燃圧センサ20は、以下に説明するステム21(起歪体)、圧力センサ素子22及びモールドIC23等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号を出力する。   Next, the hardware configuration of the fuel pressure sensor 20 will be described. The fuel pressure sensor 20 includes a stem 21 (distortion body), a pressure sensor element 22, a mold IC 23, and the like described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. The pressure sensor element 22 is attached to the diaphragm portion 21a, and outputs a pressure detection signal in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

モールドIC23は、圧力センサ素子22から出力された圧力検出信号を増幅する増幅回路等の電子部品を樹脂モールドして形成されており、ステム21とともに燃料噴射弁10に搭載されている。ボデー11上部にはコネクタ15が設けられており、コネクタ15に接続されたハーネス16により、モールドIC23及びアクチュエータ13とECU30とはそれぞれ電気接続される。   The mold IC 23 is formed by resin molding an electronic component such as an amplifier circuit that amplifies the pressure detection signal output from the pressure sensor element 22, and is mounted on the fuel injection valve 10 together with the stem 21. A connector 15 is provided on the upper portion of the body 11, and the mold IC 23, the actuator 13, and the ECU 30 are electrically connected by a harness 16 connected to the connector 15.

ここで、噴孔11bから燃料の噴射を開始することに伴い高圧通路11a内の燃料の圧力(燃圧)は低下し、噴射を終了することに伴い燃圧は上昇する。つまり、燃圧の変化と噴射率(単位時間当たりに噴射される噴射量)の変化とは相関があり、燃圧変化から噴射率変化(実噴射状態)を検出できると言える。そして、検出した実噴射状態が目標噴射状態となるよう先述した噴射指令信号を補正する。これにより、噴射状態を精度良く制御できる。   Here, the fuel pressure (fuel pressure) in the high-pressure passage 11a decreases with the start of fuel injection from the nozzle hole 11b, and the fuel pressure increases with the end of injection. That is, it can be said that the change in the fuel pressure and the change in the injection rate (injection amount injected per unit time) are correlated, and the change in the injection rate (actual injection state) can be detected from the change in the fuel pressure. Then, the above-described injection command signal is corrected so that the detected actual injection state becomes the target injection state. Thereby, the injection state can be controlled with high accuracy.

次に、燃料噴射中の燃料噴射弁10に搭載された燃圧センサ20により検出されたセンサ波形(図2(c)参照)と、その燃料噴射弁10にかかる燃料噴射率の変化を表した噴射率波形(図2(b)参照)との相関について説明する。   Next, a sensor waveform (see FIG. 2C) detected by the fuel pressure sensor 20 mounted on the fuel injection valve 10 during fuel injection, and an injection representing a change in the fuel injection rate applied to the fuel injection valve 10 The correlation with the rate waveform (see FIG. 2B) will be described.

図2(a)は、燃料噴射弁10のアクチュエータ13へECU30から出力される噴射指令信号を示しており、この指令信号のパルスオンによりアクチュエータ13が通電作動して噴孔11bが開弁する。つまり、噴射指令信号のパルスオン時期t1により噴射開始が指令され、パルスオフ時期t2により噴射終了が指令される。よって、指令信号のパルスオン期間(噴射指令期間Tq)により噴孔11bの開弁時間を制御することで、噴射量Qを制御している。   FIG. 2A shows an injection command signal output from the ECU 30 to the actuator 13 of the fuel injection valve 10. When the command signal is turned on, the actuator 13 is energized to open the nozzle hole 11b. That is, the injection start is commanded by the pulse-on timing t1 of the injection command signal, and the injection end is commanded by the pulse-off timing t2. Therefore, the injection amount Q is controlled by controlling the valve opening time of the nozzle hole 11b according to the pulse-on period (injection command period Tq) of the command signal.

図2(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(噴射率波形)を示し、図2(c)は、燃料噴射中の燃料噴射弁10に設けられた燃圧センサ20により検出された、噴射率の変化に伴い生じる検出圧力の変化(噴射時圧力波形)を示す。   FIG. 2 (b) shows a change in fuel injection rate (injection rate waveform) from the nozzle hole 11b caused by the injection command, and FIG. 2 (c) is provided in the fuel injection valve 10 during fuel injection. The change of the detection pressure (pressure waveform at the time of injection) which arises with the change of the injection rate detected by the fuel pressure sensor 20 is shown.

圧力波形と噴射率波形とは以下に説明する相関があるため、検出された圧力波形から噴射率波形を推定(検出)することができる。すなわち、先ず、図2(a)に示すように噴射開始指令がなされたt1時点の後、噴射率がR1の時点で上昇を開始して噴射が開始される。一方、検出圧力は、R1の時点で噴射率が上昇を開始してから遅れ時間C1が経過した時点で、変化点P1にて下降を開始する。その後、R2の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P2にて停止する。次に、R3の時点で噴射率が下降を開始してから遅れ時間が経過した時点で、検出圧力は変化点P3にて上昇を開始する。その後、R4の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P5にて停止する。   Since the pressure waveform and the injection rate waveform have a correlation described below, the injection rate waveform can be estimated (detected) from the detected pressure waveform. That is, first, as shown in FIG. 2 (a), after the time t1 when the injection start command is given, the injection rate starts to rise and the injection is started when the injection rate is R1. On the other hand, the detected pressure starts decreasing at the change point P1 when the delay time C1 elapses after the injection rate starts increasing at the time R1. Thereafter, as the injection rate reaches the maximum injection rate at the time of R2, the decrease in the detected pressure stops at the change point P2. Next, when the delay time has elapsed since the injection rate started decreasing at the time point R3, the detected pressure starts increasing at the change point P3. Thereafter, as the injection rate becomes zero at the time point R4 and the actual injection ends, the increase in the detected pressure stops at the change point P5.

以上説明したように、圧力波形と噴射率波形とは相関が高い。そして、噴射率波形には、噴射開始時期(R1出現時期)や、噴射終了時期(R4出現時期)、噴射量(図2(b)中の網点部分の面積)が表されているので、圧力波形から噴射率波形を推定することで噴射状態を検出できる。   As explained above, the correlation between the pressure waveform and the injection rate waveform is high. The injection rate waveform shows the injection start time (R1 appearance time), the injection end time (R4 appearance time), and the injection amount (area of the halftone dot portion in FIG. 2B). The injection state can be detected by estimating the injection rate waveform from the pressure waveform.

但し、燃圧センサ20により検出されたセンサ波形は噴射状態をそのまま反映している訳ではなく、以下に説明する供給脈動の波形がセンサ波形に重畳しているため、この供給脈動の波形成分をセンサ波形から除去する補正を実施して、その補正後のセンサ波形に基づき噴射状態を推定することが要求される。   However, the sensor waveform detected by the fuel pressure sensor 20 does not reflect the injection state as it is, and the waveform of the supply pulsation described below is superimposed on the sensor waveform. It is required to perform correction to be removed from the waveform and to estimate the injection state based on the corrected sensor waveform.

図3は、コモンレール42の吐出口42aから高圧配管42b(燃料配管)を通じて燃料噴射弁10の噴孔11bに至るまでの、燃料供給経路を模式化した図であり、以下、「噴射脈動」及び「供給脈動」の発生メカニズム等について図3を用いて説明する。   FIG. 3 is a schematic view of a fuel supply path from the discharge port 42a of the common rail 42 to the injection hole 11b of the fuel injection valve 10 through the high-pressure pipe 42b (fuel pipe). The generation mechanism of “supply pulsation” and the like will be described with reference to FIG.

先ず、噴孔11bから燃料が噴射を開始すると、高圧通路11aのうち噴孔11bの近傍部分では、燃圧低下の脈動(噴射脈動Ma)が発生する(図3(a)参照)。その後、発生した噴射脈動Maは、高圧通路11a内をコモンレール42へ向けて伝播していく(図3(b)参照)。そして、燃圧センサ20のダイヤフラム部21aに噴射脈動Maが到達した図3(c)の時点で、センサ波形は圧力降下を開始する(つまり変化点P1が現れる)。   First, when the fuel starts to be injected from the injection hole 11b, a pulsation (injection pulsation Ma) in which the fuel pressure decreases is generated in the vicinity of the injection hole 11b in the high-pressure passage 11a (see FIG. 3A). Thereafter, the generated injection pulsation Ma propagates in the high-pressure passage 11a toward the common rail 42 (see FIG. 3B). Then, when the injection pulsation Ma reaches the diaphragm portion 21a of the fuel pressure sensor 20, the sensor waveform starts a pressure drop (that is, the change point P1 appears).

その後、コモンレール42の吐出口42aに噴射脈動Maが到達した図3(d)の時点で、コモンレール42の高圧燃料が吐出口42aから高圧配管42bへ供給されることとなる。このように燃料供給が開始されると、高圧配管42b内のうち吐出口42aの近傍部分では、燃圧上昇の脈動(供給脈動Mb)が発生する(図3(e)参照)。その後、発生した供給脈動Mbは、高圧通路11a内を噴孔11bへ向けて伝播していく(図3(f)参照)。そして、燃圧センサ20のダイヤフラム部21aに供給脈動Mbが到達した図3(g)の時点で、センサ波形は圧力上昇を開始する(つまり変化点P2が現れる)。   Thereafter, when the injection pulsation Ma reaches the discharge port 42a of the common rail 42, the high-pressure fuel in the common rail 42 is supplied from the discharge port 42a to the high-pressure pipe 42b. When fuel supply is started in this manner, fuel pressure rise pulsation (supply pulsation Mb) occurs in the vicinity of the discharge port 42a in the high-pressure pipe 42b (see FIG. 3E). Thereafter, the generated supply pulsation Mb propagates in the high-pressure passage 11a toward the injection hole 11b (see FIG. 3 (f)). Then, when the supply pulsation Mb reaches the diaphragm portion 21a of the fuel pressure sensor 20, the sensor waveform starts to increase in pressure (that is, the change point P2 appears).

その後、高圧通路11a内のうち燃圧センサ20近傍部分において、コモンレール42から供給される燃料の流量と、噴孔11bから噴射される燃料の流量とが釣り合った時点(図2(c)に示すP2a時点)で、センサ波形の圧力上昇は停止して一定の値(平衡圧)になる。   After that, in the vicinity of the fuel pressure sensor 20 in the high pressure passage 11a, the flow rate of the fuel supplied from the common rail 42 and the flow rate of the fuel injected from the injection hole 11b are balanced (P2a shown in FIG. 2 (c)). At the time), the pressure increase of the sensor waveform stops and becomes a constant value (equilibrium pressure).

要するに、センサ波形には噴射脈動Maによる波形成分に、供給脈動Mbによる波形成分(図2(c)中のP2〜P2aの部分)が重畳していると言える。但し、センサ波形のうちP2時点までの部分は、供給脈動Mbが未だ燃圧センサ20に伝播していないため、噴射脈動Maを表した波形であって供給脈動Mbが重畳していないと言える。   In short, it can be said that the waveform component due to the supply pulsation Mb (the portion of P2 to P2a in FIG. 2C) is superimposed on the waveform component due to the injection pulsation Ma in the sensor waveform. However, since the supply pulsation Mb has not yet propagated to the fuel pressure sensor 20 in the portion of the sensor waveform up to the point P2, it can be said that the waveform represents the injection pulsation Ma and the supply pulsation Mb is not superimposed.

ところで、図2(a)(b)(c)では、噴射指令期間Tqが十分に長く、最大噴射率に達した後に閉弁作動を開始させている噴射(台形噴射)の例であり、噴射率波形が台形となっている。これに対し、図2(a)(b)中の一点鎖線に示す如く噴射指令期間Tqが短くして、最大噴射率到達と同時期に噴射率低下が開始するよう微小噴射(三角形噴射)させると、噴射率波形は三角形となる。そして、三角形噴射の場合には、センサ波形のうち噴射率低下に伴い生じる上昇波形の部分(図2(c)P3〜P5の部分)に、噴射脈動波形P2〜P2aが重畳することとなり、センサ波形は図2(d)に示す波形となる。   2A, 2B, and 2C are examples of injection (trapezoidal injection) in which the injection command period Tq is sufficiently long and the valve closing operation is started after reaching the maximum injection rate. The rate waveform is trapezoidal. In contrast, the injection command period Tq is shortened as shown by the one-dot chain line in FIGS. 2A and 2B, and minute injection (triangular injection) is performed so that the injection rate starts to decrease at the same time as the maximum injection rate is reached. The injection rate waveform is a triangle. In the case of triangular injection, the injection pulsation waveforms P2 to P2a are superimposed on the portion of the rising waveform that occurs as the injection rate decreases (portion P3 to P5 in FIG. 2C) of the sensor waveform. The waveform is as shown in FIG.

すると、台形噴射では噴射脈動波形P2〜P2aが重畳していない部分の上昇波形(図2(c)P3〜P5)に基づき近似直線Lbを算出していたのに対し、三角形噴射では噴射脈動波形P2〜P2aが重畳した部分の上昇波形(図2(d)P3〜P5)に基づき近似直線Lbを算出することが懸念されるようになる。そのため、噴射終了時期と相関の高い近似直線Lbを算出することが困難となり、図2(d)中の符号Lb’に示すように最適な近似直線Lbからずれた近似直線Lb’を算出することが懸念され、ひいては噴射終了時期等の噴射状態を高精度で推定できなくなることが懸念される。   Then, in the trapezoidal injection, the approximate straight line Lb is calculated based on the rising waveform (FIG. 2 (c) P3 to P5) where the injection pulsation waveforms P2 to P2a are not superimposed, whereas in the triangular injection, the injection pulsation waveform It is feared that the approximate straight line Lb is calculated based on the rising waveform (FIG. 2 (d) P3 to P5) where P2 to P2a overlap. Therefore, it is difficult to calculate the approximate straight line Lb having a high correlation with the injection end timing, and the approximate straight line Lb ′ deviating from the optimum approximate straight line Lb is calculated as indicated by a symbol Lb ′ in FIG. There is a concern that the injection state such as the injection end timing cannot be estimated with high accuracy.

そこで本実施形態では、供給脈動Mbの波形成分のモデルWm(図5(b)参照)を演算し、演算したモデル波形Wmをセンサ波形Wから差し引いて除去する補正を実施し、その補正後のセンサ波形W’に基づき噴射状態を推定している。   Therefore, in the present embodiment, the model Wm (see FIG. 5B) of the waveform component of the supply pulsation Mb is calculated, and the correction is performed by subtracting the calculated model waveform Wm from the sensor waveform W and removing it. The injection state is estimated based on the sensor waveform W ′.

次に、上記補正の手順、及び補正後のセンサ波形W’から噴射率波形を推定する手順の一例を、図4のフローチャートを用いて説明する。なお、図4に示す処理は、ECU30が有するマイクロコンピュータにより、燃料の噴射を1回実施する毎に実行される処理である。   Next, an example of the above correction procedure and a procedure for estimating the injection rate waveform from the corrected sensor waveform W ′ will be described with reference to the flowchart of FIG. 4. Note that the process shown in FIG. 4 is a process that is executed each time fuel is injected by the microcomputer of the ECU 30.

先ず、図4に示すステップS10において、1回の燃料噴射期間中に噴射気筒の燃圧センサ20から所定のサンプリング周期で出力された複数の検出値(センサ波形W)を取得する。なお、図5(a)中の実線はセンサ波形Wを示し、点線は供給脈動波形Waを示す。続くステップS20(脈動推定手段)では、供給脈動波形のモデルWm(図5(b)参照)を演算する。この演算手法については後に詳述する。続くステップS30(脈動除去手段)では、演算したモデルWmをセンサ波形Wから差し引いて、供給脈動波形Waが除去されたセンサ波形W’を演算する(W’=W−Wm)。図5(c)中の点線は、補正前のセンサ波形Wを示し、実線は、補正後のセンサ波形W’を示す。   First, in step S10 shown in FIG. 4, a plurality of detection values (sensor waveform W) output at a predetermined sampling period from the fuel pressure sensor 20 of the injection cylinder during one fuel injection period are acquired. The solid line in FIG. 5A indicates the sensor waveform W, and the dotted line indicates the supply pulsation waveform Wa. In a subsequent step S20 (pulsation estimating means), a supply pulsation waveform model Wm (see FIG. 5B) is calculated. This calculation method will be described in detail later. In the subsequent step S30 (pulsation removing means), the calculated model Wm is subtracted from the sensor waveform W to calculate the sensor waveform W ′ from which the supply pulsation waveform Wa has been removed (W ′ = W−Wm). The dotted line in FIG. 5C shows the sensor waveform W before correction, and the solid line shows the sensor waveform W ′ after correction.

続くステップS40では、補正後のセンサ波形W’のうち、弁体12の開弁作動開始に伴い圧力降下していく部分である降下波形W(P1-P2)(P1〜P2の部分の波形)の近似直線Laを演算する。次のステップS50(上昇波形モデル化手段)では、補正後のセンサ波形W’のうち、弁体12の閉弁作動開始に伴い圧力上昇していく部分である上昇波形W(P3-P5)(P3〜P5の部分の波形)の近似直線Lb(モデル化した上昇波形)を演算する。これらの近似直線La,Lbは、例えば降下波形W(P1-P2)又は上昇波形W(P3-P5)を構成する複数の検出値を最小二乗法により直線近似して算出してもよいし、降下波形W(P1-P2)のうち微分最小となる点での接線を直線モデルとして算出してもよいし、上昇波形W(P3-P5)のうち微分最大となる点での接線を直線モデルとして算出してもよい。   In the subsequent step S40, a lowered waveform W (P1-P2) (a waveform of the portion of P1 to P2), which is a portion of the corrected sensor waveform W ′ where the pressure drops as the valve body 12 starts to open. The approximate straight line La is calculated. In the next step S50 (rising waveform modeling means), the rising waveform W (P3-P5) (the portion of the corrected sensor waveform W ′ where the pressure increases as the valve body 12 starts to close the valve) An approximate straight line Lb (modeled ascending waveform) of the portion of P3 to P5) is calculated. These approximate straight lines La and Lb may be calculated, for example, by linearly approximating a plurality of detected values constituting the descending waveform W (P1-P2) or the ascending waveform W (P3-P5) by the least square method, The tangent line at the point where the derivative is the minimum in the falling waveform W (P1-P2) may be calculated as a linear model, or the tangent line at the point where the derivative is the maximum in the rising waveform W (P3-P5). May be calculated as

次に、ステップS60(基準圧力算出手段)において、補正後のセンサ波形W’のうち圧力降下を開始する直前(変化点P1の直前)の圧力(基準圧Pbase)を算出し、当該基準圧Pbaseに基づき、以降の処理で用いる基準直線Lc,Ld(図2(c)参照)を算出する。なお、噴射指令信号t1を出力してからP1変化点が現れるまでの期間における圧力の平均値を、前記基準圧Pbaseとして算出すればよく、例えば、噴射指令信号t1を出力してから所定時間が経過するまでの圧力平均値を基準圧Pbaseとして算出すればよい。基準直線Lcには基準圧Pbaseと同じ値が採用されている。基準直線Ldには、基準圧Pbaseよりも所定量だけ圧力低下させた値が採用されている。前記所定量は、P1圧力からP2圧力への圧力落込量ΔP(P1-P2)が大きいほど、或いは噴射指令期間Tqが長いほど大きい値に設定される。   Next, in step S60 (reference pressure calculation means), the pressure (reference pressure Pbase) immediately before starting the pressure drop (immediately before the change point P1) in the corrected sensor waveform W ′ is calculated, and the reference pressure Pbase is calculated. Based on the above, reference straight lines Lc and Ld (see FIG. 2C) used in the subsequent processing are calculated. Note that an average value of pressure in a period from when the injection command signal t1 is output to when the P1 change point appears may be calculated as the reference pressure Pbase. For example, a predetermined time after the injection command signal t1 is output. What is necessary is just to calculate the pressure average value until it passes as the reference pressure Pbase. The same value as the reference pressure Pbase is adopted for the reference straight line Lc. A value obtained by lowering the pressure by a predetermined amount from the reference pressure Pbase is adopted for the reference straight line Ld. The predetermined amount is set to a larger value as the pressure drop amount ΔP (P1-P2) from the P1 pressure to the P2 pressure is larger or as the injection command period Tq is longer.

続くステップS70では、基準直線Lcと近似直線Laとの交点を算出する。この交点が示す時期は変化点P1の出現時期と殆ど一致する。したがって、基準直線Lcと近似直線Laとの交点が示す時期は噴射開始時期R1との相関が高いため、前記交点に基づき噴射開始時期R1を算出する。続くステップS80では、基準直線Ldと近似直線Lbとの交点を算出する。この交点が示す時期は噴射終了時期R4との相関が高いため、前記交点に基づき噴射終了時期R4を算出する。   In the subsequent step S70, the intersection of the reference straight line Lc and the approximate straight line La is calculated. The time indicated by this intersection almost coincides with the appearance time of the change point P1. Therefore, since the timing indicated by the intersection of the reference straight line Lc and the approximate straight line La has a high correlation with the injection start timing R1, the injection start timing R1 is calculated based on the intersection. In the subsequent step S80, the intersection of the reference straight line Ld and the approximate straight line Lb is calculated. Since the timing indicated by this intersection has a high correlation with the injection end timing R4, the injection end timing R4 is calculated based on the intersection.

続くステップS90では、噴射率が上昇する傾きRα(図2(b)参照)と近似直線Laの傾きとは相関性が高いことに着目し、近似直線Laの傾きに基づき噴射率上昇の傾きRαを算出する。また、噴射率が降下する傾きRβ(図2(b)参照)と近似直線Lbの傾きとは相関性が高いことに着目し、近似直線Lbの傾きに基づき噴射率降下の傾きRβを算出する。続くステップS100では、P1圧力からP2圧力への圧力落込量ΔP(P1-P2)と最大噴射率Rh(図2(b)参照)とは相関性が高いことに着目し、圧力落込量ΔP(P1-P2)に基づき最大噴射率Rhを算出する。   In the subsequent step S90, focusing on the fact that the slope Rα (see FIG. 2B) at which the injection rate increases and the slope of the approximate line La are highly correlated, the slope Rα of the increase in injection rate based on the slope of the approximate line La. Is calculated. Further, paying attention to the fact that the slope Rβ (see FIG. 2B) at which the injection rate falls and the slope of the approximate line Lb are highly correlated, the slope Rβ of the injection rate drop is calculated based on the slope of the approximate line Lb. . In the following step S100, paying attention to the fact that the pressure drop amount ΔP (P1-P2) from the P1 pressure to the P2 pressure and the maximum injection rate Rh (see FIG. 2B) are highly correlated, the pressure drop amount ΔP ( The maximum injection rate Rh is calculated based on P1-P2).

以上による図4の処理によれば、ステップS70〜S100(噴射状態推定手段)において、噴射開始時期R1、噴射終了時期R4、噴射率上昇の傾きRα、噴射率降下の傾きRβ、及び最大噴射率Rhが算出される。よって、図2(b)に例示される噴射率波形を推定できる。   According to the processing of FIG. 4 as described above, in steps S70 to S100 (injection state estimation means), the injection start timing R1, the injection end timing R4, the injection rate increase gradient Rα, the injection rate decrease gradient Rβ, and the maximum injection rate. Rh is calculated. Therefore, the injection rate waveform illustrated in FIG. 2B can be estimated.

次に、上記ステップS20において、推定供給脈動波形のモデルWm(図5(b)参照)を演算する手法を説明する。   Next, a method of calculating the estimated supply pulsation waveform model Wm (see FIG. 5B) in step S20 will be described.

図5(a)に示すように、実際の供給脈動波形Waは、ta時点までは圧力ゼロであり、重畳を開始するta時点から徐々に圧力上昇し、tb時点でその圧力上昇が停止して一定の圧力になる。したがって、重畳開始するta時点、ta時点からtb時点までの圧力上昇の傾きPγ、及び圧力上昇量ΔPが推定できれば、供給脈動波形WaのモデルWm(図5(b)参照)を推定できると言える。本実施形態では、これらの重畳開始時期ta、傾きPγ、上昇量ΔPを以下の手法により演算することで、モデルWmを推定している。   As shown in FIG. 5A, the actual supply pulsation waveform Wa is zero pressure until the time point ta, the pressure gradually increases from the time point ta at which the superposition is started, and the pressure increase stops at the time point tb. It becomes a constant pressure. Therefore, it can be said that the model Wm (see FIG. 5B) of the supply pulsation waveform Wa can be estimated if the ta point at which superposition starts, the slope Pγ of the pressure increase from the ta point to the tb point, and the pressure increase amount ΔP can be estimated. . In the present embodiment, the model Wm is estimated by calculating the superposition start timing ta, the slope Pγ, and the increase amount ΔP by the following method.

図6(a)は、供給脈動波形Waの傾きPγ(上昇速度)が、降下波形W(P1-P2)の傾きPα(降下速度)と相関があることを示す試験結果である。この試験結果によれば、両傾きPγ,Pαは比例関係にあり、降下波形W(P1-P2)の降下速度が速いほど、供給脈動波形Waの上昇速度が速くなることを示す。なお、図中に示す複数の検出値は、燃料温度を−20℃、40℃、80℃に変えて試験した各々の結果を示す。この試験結果を鑑みた本実施形態では、前記比例関係の式を予め試験して取得しておき、検出したセンサ波形Wから降下波形W(P1-P2)の傾きPαを演算し、演算した傾きPαを比例関係の式に代入して供給脈動波形Waの傾きPγを算出する。なお、降下波形W(P1-P2)の傾きPαは、先述した近似直線La(図2(c)参照)の傾きをそのまま用いればよい。   FIG. 6A is a test result showing that the slope Pγ (rising speed) of the supply pulsation waveform Wa has a correlation with the slope Pα (falling speed) of the descending waveform W (P1-P2). According to this test result, both slopes Pγ and Pα are in a proportional relationship, and the higher the descending speed of the descending waveform W (P1-P2), the faster the ascending speed of the supply pulsation waveform Wa. In addition, the several detected value shown in a figure shows each result of having tested by changing fuel temperature into -20 degreeC, 40 degreeC, and 80 degreeC. In the present embodiment in view of the test results, the proportional relationship formula is obtained by testing in advance, the slope Pα of the fall waveform W (P1-P2) is calculated from the detected sensor waveform W, and the calculated slope is calculated. The slope Pγ of the supply pulsation waveform Wa is calculated by substituting Pα into the proportional relationship equation. The slope Pα of the descending waveform W (P1-P2) may be the same as the slope of the approximate straight line La (see FIG. 2C).

次に、重畳開始時期taの算出手法を説明する。先ず、降下開始時期Tstaから重畳開始時期taまでに要する時間(供給脈動伝播時間Ta)を、図7の(式1)に基づき演算する。式1中のLは、図7の模式図に示すように、燃料供給経路のうち燃圧センサ20の位置(正確にはダイヤフラム部21aの位置)から吐出口42aまでの経路長である。式1中のaは、噴射脈動Ma及び供給脈動Mbの伝播速度(音速)である。伝播速度aは、その時の燃料圧力に応じて変化するため、例えば先述した基準圧Pbaseに基づき伝播速度aを算出すればよい。   Next, a method for calculating the superposition start time ta will be described. First, the time (supply pulsation propagation time Ta) required from the descent start time Tsta to the superposition start time ta is calculated based on (Equation 1) in FIG. As shown in the schematic diagram of FIG. 7, L in Formula 1 is a path length from the position of the fuel pressure sensor 20 (more precisely, the position of the diaphragm portion 21a) to the discharge port 42a in the fuel supply path. In Equation 1, a is the propagation speed (sound speed) of the injection pulsation Ma and the supply pulsation Mb. Since the propagation speed a changes according to the fuel pressure at that time, the propagation speed a may be calculated based on the reference pressure Pbase described above, for example.

Lは設計値、aは基準圧Pbaseに基づき算出可能、Tstaはセンサ波形Wから算出可能であるため、式1にこれらの値を代入すれば、供給脈動伝播時間Taを演算できる。そして、このように演算した重畳開始時期taを降下開始時期Tstaに加算すれば、重畳開始時期taを算出できる。図6(b)は、燃料圧力(基準圧Pbase)に応じて変化する供給脈動伝播時間Taを試験した検出値と、上記式1により演算した供給脈動伝播時間Taの理論値とを示す図であり、理論値は検出値とほぼ一致することが試験により確認された。   L can be calculated based on the design value, a can be calculated based on the reference pressure Pbase, and Tsta can be calculated from the sensor waveform W. Therefore, if these values are substituted into Equation 1, the supply pulsation propagation time Ta can be calculated. Then, the superposition start time ta can be calculated by adding the superposition start time ta calculated in this way to the descent start time Tsta. FIG. 6B is a diagram showing a detected value obtained by testing the supply pulsation propagation time Ta that changes according to the fuel pressure (reference pressure Pbase), and a theoretical value of the supply pulsation propagation time Ta calculated by the above equation 1. Yes, it was confirmed by tests that the theoretical value almost coincided with the detected value.

次に、圧力上昇量ΔPの算出手法を説明する。上昇量ΔPは、図7の(式2)(式3)から導かれる(式4)に基づき演算可能である。(式2)中のμ2A2V2の項は、供給脈動Mbにより高圧通路11aへ流入してくる燃料の流量(供給流量)を表し、(式2)中のμ0A0V0の項は、噴射脈動Maにより噴孔11bから流出していく燃料の流量(噴射流量)を表す。なお、式中の符号aは音速、μは流量係数、Vは流速、Aは断面積を示す。また、これらの符号の添字0,1,2は、それぞれ噴孔11b、高圧通路11a、高圧配管42bでの値であることを示す。   Next, a method for calculating the pressure increase amount ΔP will be described. The increase amount ΔP can be calculated based on (Expression 4) derived from (Expression 2) and (Expression 3) in FIG. The term of μ2A2V2 in (Expression 2) represents the flow rate (supply flow rate) of the fuel flowing into the high-pressure passage 11a by the supply pulsation Mb, and the term of μ0A0V0 in (Expression 2) represents the nozzle hole due to the injection pulsation Ma. This represents the flow rate of fuel flowing out from 11b (injection flow rate). In the equation, symbol a represents the speed of sound, μ represents a flow coefficient, V represents a flow velocity, and A represents a cross-sectional area. The subscripts 0, 1, and 2 of these symbols indicate values at the nozzle hole 11b, the high-pressure passage 11a, and the high-pressure pipe 42b, respectively.

上述した微小噴射(三角形噴射)ではなく台形噴射を実施した場合において、最大噴射率に到達後に前記供給流量と噴射流量とがバランスすると、センサ波形は一定の値(平衡圧Peq)になる。そして、センサ波形のうち平衡圧Peqになった時点が供給脈動波形の重畳が終了した時期であると言え、変化点P2時点での圧力から平衡圧Peqを減算した値が上昇量ΔPであると言える。この点を鑑み、三角形噴射の場合においても、台形噴射を実施したと仮定して平衡圧Peqを算出し、変化点P3時点での圧力から平衡圧Peq減算すれば上昇量ΔPを算出できる。   When trapezoidal injection is performed instead of the above-described micro injection (triangular injection), if the supply flow rate and the injection flow rate balance after reaching the maximum injection rate, the sensor waveform becomes a constant value (equilibrium pressure Peq). Then, it can be said that the time when the equilibrium pressure Peq is reached in the sensor waveform is the time when the superposition of the supply pulsation waveform is finished, and the value obtained by subtracting the equilibrium pressure Peq from the pressure at the time point P2 is the increase amount ΔP. I can say that. In view of this point, even in the case of triangular injection, the amount of increase ΔP can be calculated by calculating the equilibrium pressure Peq on the assumption that trapezoidal injection has been performed and subtracting the equilibrium pressure Peq from the pressure at the point of change P3.

そして、燃圧センサ20のダイヤフラム部21aへの流入量(μ2A2V2)から流出量(μ0A0V0)を減算した値が、ダイヤフラム部21aの燃料圧縮に寄与する流入量(流入収支)を表すこととなり、この流入収支にK/aA1を乗算すれば上昇量ΔPを演算できる(図7の(式2)参照)。   The value obtained by subtracting the outflow amount (μ0A0V0) from the inflow amount (μ2A2V2) into the diaphragm portion 21a of the fuel pressure sensor 20 represents the inflow amount (inflow balance) contributing to the fuel compression of the diaphragm portion 21a. The amount of increase ΔP can be calculated by multiplying the balance by K / aA1 (see (Equation 2) in FIG. 7).

また、図5中の降下開始時期Tstaから重畳開始時期taまでの期間においては、供給脈動Mbが未だ伝播していないので、高圧通路11a内の燃料の膨張量は噴孔11bからの噴射量と一致する。したがって、図7の(式3)に示す方程式が成立する。なお、式中のaA1dtは、高圧通路11a内の燃料の体積であって膨張前の元々の体積を表し、Δv/vは膨張比率を表す。そして、式3の左辺を式2に代入すれば、式4が得られる。式4中のP1は、降下開始時期Tstaでの圧力(つまりコモンレール42内の圧力)を示し、P2は、重畳開始時期taでの圧力を示す。   Further, since the supply pulsation Mb has not yet propagated during the period from the descent start timing Tsta to the superposition start timing ta in FIG. 5, the amount of fuel expansion in the high-pressure passage 11a is the same as the injection amount from the nozzle hole 11b. Match. Therefore, the equation shown in (Expression 3) in FIG. 7 is established. In the equation, aA1dt is the volume of fuel in the high-pressure passage 11a and represents the original volume before expansion, and Δv / v represents the expansion ratio. Then, if the left side of Equation 3 is substituted into Equation 2, Equation 4 is obtained. P1 in Equation 4 indicates the pressure at the descent start time Tsta (that is, the pressure in the common rail 42), and P2 indicates the pressure at the overlap start time ta.

以上により、降下開始時期Tstaでの圧力P1及び重畳開始時期taでの圧力P2をセンサ波形Wから検出し、検出した圧力を式4に代入すれば、Δ圧力上昇量Pを演算できる。図6(c)は、圧力上昇量を試験により検出した値と、上記式4により演算した圧力上昇量ΔPの理論値とを示す図であり、理論値は検出値とほぼ一致することが試験により確認された。   As described above, if the pressure P1 at the descent start timing Tsta and the pressure P2 at the overlap start timing ta are detected from the sensor waveform W and the detected pressure is substituted into the equation 4, the Δ pressure increase amount P can be calculated. FIG. 6C is a diagram showing a value obtained by testing the pressure rise amount and a theoretical value of the pressure rise amount ΔP calculated by the above equation 4. The test shows that the theoretical value substantially matches the detected value. Confirmed by

図8は、上述の如く供給脈動波形WaのモデルWmを推定する手順の一例を示すフローチャートであり、図4中のステップS20のサブルーチン処理である。   FIG. 8 is a flowchart showing an example of a procedure for estimating the model Wm of the supply pulsation waveform Wa as described above, and is a subroutine process of step S20 in FIG.

先ず、降下波形W(P1-P2)の傾きPαと供給脈動波形の傾きPγとの相関を示す相関式(図6(a)中に示す相関式)、基準圧Pbaseと供給脈動伝播時間Taとの関係を示すマップ(図6(b)参照)、及び図7に示す式4を予めメモリに記憶させておく。そして、図8のステップS21において、降下波形のW(P1-P2)の傾きPαをセンサ波形Wから検出し、メモリに記憶された相関式に、検出した傾きPαを代入して、供給脈動波形Waの上昇の傾きPγを演算する。なお、図6(a)中に示す相関式のyは傾きPα、xは傾きPγを示す変数である。   First, a correlation equation (correlation equation shown in FIG. 6A) showing the correlation between the slope Pα of the descending waveform W (P1-P2) and the slope Pγ of the supply pulsation waveform, the reference pressure Pbase, the supply pulsation propagation time Ta, A map showing the relationship (see FIG. 6B) and Equation 4 shown in FIG. 7 are stored in the memory in advance. In step S21 in FIG. 8, the slope Pα of the descending waveform W (P1-P2) is detected from the sensor waveform W, and the detected slope Pα is substituted into the correlation equation stored in the memory to supply the supply pulsation waveform. The slope of increase of Wa Pγ is calculated. In the correlation equation shown in FIG. 6A, y is a variable indicating the inclination Pα, and x is a variable indicating the inclination Pγ.

続くステップS22では、基準圧Pbaseに基づき、供給脈動伝播時間Taとの関係を示すマップを参照して供給脈動伝播時間Taを算出する。続くステップS23では、センサ波形Wから検出した降下開始時期Tstaに、ステップS22で算出した供給脈動伝播時間Taを加算することで、重畳開始時期taを算出する。   In the subsequent step S22, the supply pulsation propagation time Ta is calculated based on the reference pressure Pbase with reference to a map showing the relationship with the supply pulsation propagation time Ta. In the subsequent step S23, the superposition start time ta is calculated by adding the supply pulsation propagation time Ta calculated in step S22 to the descent start time Tsta detected from the sensor waveform W.

続くステップS24では、センサ波形Wから検出される降下開始時期Tstaでの圧力P1及び重畳開始時期taでの圧力P2の値を、メモリに記憶された図7の式4に代入して、供給脈動波形の圧力上昇量ΔPを算出する。続くステップS25では、ステップS21,S23,S24で算出した傾きPγ、重畳開始時期ta及び上昇量ΔPに基づき、図5(b)に例示される供給脈動波形WaのモデルWmを演算する。   In the subsequent step S24, the values of the pressure P1 at the descent start timing Tsta and the pressure P2 at the overlap start timing ta detected from the sensor waveform W are substituted into the equation 4 in FIG. The pressure increase amount ΔP of the waveform is calculated. In the subsequent step S25, a model Wm of the supply pulsation waveform Wa illustrated in FIG. 5B is calculated based on the slope Pγ calculated in steps S21, S23, and S24, the superposition start timing ta, and the increase amount ΔP.

以上により、本実施形態によれば、図8の処理により供給脈動波形WaのモデルWmを演算し、演算したモデルWmをセンサ波形Wから差し引いて供給脈動波形Waを除去する。そのため、センサ波形に含まれる上昇波形W(P3-P5)を近似した直線Lbを用いて、噴射終了時期R4や噴射率降下の傾きRβを算出するにあたり、供給脈動波形Waを除去した後のセンサ波形W’から算出した上昇波形の近似直線Lbを用いて、噴射終了時期R4や噴射率降下の傾きRβを算出する。よって、噴射終了時期R4や噴射率降下の傾きRβの算出精度を向上できる。   As described above, according to the present embodiment, the model Wm of the supply pulsation waveform Wa is calculated by the process of FIG. 8, and the calculated model Wm is subtracted from the sensor waveform W to remove the supply pulsation waveform Wa. Therefore, the sensor after removing the supply pulsation waveform Wa is used to calculate the injection end timing R4 and the gradient Rβ of the injection rate drop using the straight line Lb approximating the rising waveform W (P3-P5) included in the sensor waveform. Using the approximate straight line Lb of the rising waveform calculated from the waveform W ′, the injection end timing R4 and the gradient Rβ of the injection rate drop are calculated. Therefore, the calculation accuracy of the injection end timing R4 and the gradient Rβ of the injection rate drop can be improved.

特に、降下波形W(P1-P2)の傾きPαと供給脈動波形の傾きPγとは相関があることに着目し、降下波形W(P1-P2)の傾きPαから供給脈動波形の傾きPγを算出するので、供給脈動波形WaのモデルWmの算出精度を向上できる。   In particular, paying attention to the fact that the slope Pα of the fall waveform W (P1-P2) and the slope Pγ of the supply pulsation waveform are correlated, the slope Pγ of the supply pulsation waveform is calculated from the slope Pα of the fall waveform W (P1-P2). Therefore, the calculation accuracy of the model Wm of the supply pulsation waveform Wa can be improved.

また、基準圧Pbaseに応じて供給脈動伝播時間Taが変化することに着目し、基準圧Pbaseに基づき算出した供給脈動伝播時間Taを用いて重畳開始時期taを算出するので、供給脈動波形WaのモデルWmの算出精度を向上できる。   Further, paying attention to the fact that the supply pulsation propagation time Ta changes according to the reference pressure Pbase, the superposition start time ta is calculated using the supply pulsation propagation time Ta calculated based on the reference pressure Pbase. The calculation accuracy of the model Wm can be improved.

また、降下開始時期Tstaでの圧力P1及び重畳開始時期taでの圧力P2の値に基づけば、式4にしたがって供給脈動波形の圧力上昇量ΔPを算出できることに着目し、両圧力P1,P2に基づき圧力上昇量ΔPを算出するので、供給脈動波形WaのモデルWmの算出精度を向上できる。   Further, based on the values of the pressure P1 at the descent start timing Tsta and the pressure P2 at the overlap start timing ta, it is noted that the pressure increase amount ΔP of the supply pulsation waveform can be calculated according to Equation 4, and the pressures P1 and P2 are Since the pressure increase amount ΔP is calculated based on this, the calculation accuracy of the model Wm of the supply pulsation waveform Wa can be improved.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記実施形態にかかる脈動推定手段では、供給脈動波形Waの重畳開始時期ta、傾きPγ、上昇量ΔPを演算して、供給脈動の波形としてのモデルWmを推定しているが、重畳開始時期ta及び上昇量ΔPの演算を廃止して傾きPγのみを演算し、その傾きPγを供給脈動の波形として推定するようにしてもよい。この場合、補正前のセンサ波形Wに対して算出した近似直線Lbを、傾きPγに応じて補正し、補正した近似直線Lbを用いて、図4のステップS80,S90にて噴射終了時期R4及び噴射率降下速度Rβを算出すればよい。   In the pulsation estimation unit according to the above embodiment, the superposition start time ta, the slope Pγ, and the increase amount ΔP of the supply pulsation waveform Wa are calculated to estimate the model Wm as the supply pulsation waveform. The calculation of ta and the amount of increase ΔP may be abolished and only the slope Pγ may be calculated, and the slope Pγ may be estimated as the supply pulsation waveform. In this case, the approximate straight line Lb calculated with respect to the sensor waveform W before correction is corrected according to the slope Pγ, and the injection end timing R4 and the injection end timing R4 in steps S80 and S90 in FIG. The injection rate lowering speed Rβ may be calculated.

・上記実施形態では、最大噴射率到達と同時期またはその到達よりも前に噴射率低下が開始するよう微小噴射(三角形噴射)した場合に、モデルWmを推定してセンサ波形Wを補正することを想定しているが、最大噴射率到達の後に噴射率低下が開始する台形噴射の場合であっても、モデルWmを用いてセンサ波形Wを補正することを実施してもよい。   In the above embodiment, the sensor waveform W is corrected by estimating the model Wm when micro injection (triangular injection) is performed so that the injection rate starts to decrease at the same time as or before the maximum injection rate is reached. However, the sensor waveform W may be corrected using the model Wm even in the case of trapezoidal injection in which the reduction in the injection rate starts after the maximum injection rate is reached.

・上記実施形態では、供給脈動波形Waの重畳開始時期ta、傾きPγ、上昇量ΔPを演算してモデルWmを推定しているが、予め複数のパターンのモデルを記憶させておき、降下波形W(P1-P2)(例えば降下開始時期Tstaや傾きPα等)に基づき複数パターンのモデルから最適モデルを選択するようにしてもよい。   In the above embodiment, the model Wm is estimated by calculating the superposition start timing ta, the slope Pγ, and the increase amount ΔP of the supply pulsation waveform Wa. However, a plurality of patterns of models are stored in advance, and the drop waveform W The optimum model may be selected from a plurality of patterns based on (P1-P2) (for example, descent start timing Tsta, inclination Pα, etc.).

・上記実施形態では、供給脈動波形Waがセンサ波形Wに重畳を開始するta時点を算出するにあたり、降下波形W(P1-P2)の降下開始時期Tstaと重畳開始時期taが相関を有することに鑑みて、降下開始時期Tstaに基づき重畳開始時期taを算出している。これに対し、図2(a)に示す噴射指令信号を出力した時期(パルスオン時期t1)と重畳開始時期taが相関を有することに鑑みて、噴射開始を指令した時期t1に基づき重畳開始時期taを算出するようにしてもよい。   In the above embodiment, when calculating the ta point at which the supply pulsation waveform Wa starts to be superimposed on the sensor waveform W, the descent start time Tsta of the descent waveform W (P1-P2) and the overlap start time ta have a correlation. In view of this, the superposition start time ta is calculated based on the descent start time Tsta. In contrast, in view of the correlation between the timing at which the injection command signal shown in FIG. 2A is output (pulse-on timing t1) and the superposition start timing ta, the superposition start timing ta is based on the timing t1 at which the injection start is commanded. May be calculated.

・図1に示す上記実施形態では、燃圧センサ20を燃料噴射弁10に搭載しているが、本発明にかかる燃圧センサはコモンレール42の吐出口42aから噴孔11bに至るまでの燃料経路内の燃圧を検出するよう配置された燃圧センサであればよい。よって、例えば高圧配管42bに燃圧センサを搭載してもよい。つまり、燃料噴射弁10の高圧通路11a及び高圧配管42bの内部通路が「燃料供給経路」に相当する。   In the above embodiment shown in FIG. 1, the fuel pressure sensor 20 is mounted on the fuel injection valve 10, but the fuel pressure sensor according to the present invention is located in the fuel path from the discharge port 42a of the common rail 42 to the injection hole 11b. Any fuel pressure sensor arranged to detect the fuel pressure may be used. Therefore, for example, a fuel pressure sensor may be mounted on the high-pressure pipe 42b. That is, the high-pressure passage 11a of the fuel injection valve 10 and the internal passage of the high-pressure pipe 42b correspond to the “fuel supply passage”.

10…燃料噴射弁、11b…噴孔、20…燃圧センサ、41…高圧ポンプ(燃料ポンプ)、42…コモンレール(蓄圧容器)、42a…吐出口、42b…高圧配管(燃料配管)、S10…圧力波形取得手段、S20…脈動推定手段、S30…脈動除去手段、S70〜S100…噴射状態推定手段、P1…降下波形の降下開始時点での圧力、P2…降下波形の降下終了時点での圧力、Pγ…供給脈動波形の上昇の傾き、t1…噴射開始指令時期、ta…供給脈動波形の重畳開始時期、Tsta…降下波形の降下開始時期、W(P1-P2)…降下波形。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11b ... Injection hole, 20 ... Fuel pressure sensor, 41 ... High pressure pump (fuel pump), 42 ... Common rail (accumulation container), 42a ... Discharge port, 42b ... High pressure piping (fuel piping), S10 ... Pressure Waveform acquisition means, S20 ... pulsation estimation means, S30 ... pulsation removal means, S70 to S100 ... injection state estimation means, P1 ... pressure at the start of descent of the descent waveform, P2 ... pressure at the end of descent of the descent waveform, Pγ ... slope of increase of supply pulsation waveform, t1 ... injection start command time, ta ... supply superposition start time of supply pulsation waveform, Tsta ... drop start time of drop waveform, W (P1-P2) ... drop waveform.

Claims (7)

燃料ポンプから供給される燃料を蓄圧する蓄圧容器と、
前記蓄圧容器の吐出口に接続される燃料配管と、
前記燃料配管を通じて前記蓄圧容器から供給される燃料を噴射させる噴孔、及び前記噴孔を開閉する弁体を有する燃料噴射弁と、
前記吐出口から前記噴孔に至るまでの燃料供給経路に設けられて燃料圧力を検出し、燃料噴射に伴い生じる燃料圧力の変化を表したセンサ波形を出力する燃圧センサと、
を備えた燃料噴射システムに適用され、
今回の燃料噴射に伴って、前記吐出口から前記燃料配管を通じて前記燃料噴射弁へ流れ込む燃料の流れによってその噴射期間中に発生する供給脈動を、今回の燃料噴射における前記センサ波形から推定する脈動推定手段と、
前記脈動推定手段により推定された供給脈動の波形を今回の燃料噴射における前記センサ波形から除去するよう、前記センサ波形を補正する脈動除去手段と、
前記脈動除去手段により除去補正されたセンサ波形に基づき、前記噴孔からの燃料噴射状態を推定する噴射状態推定手段と、
を備えることを特徴とする燃料噴射状態検出装置。
A pressure accumulating container for accumulating fuel supplied from the fuel pump;
A fuel pipe connected to a discharge port of the pressure accumulating vessel;
A fuel injection valve having a nozzle hole for injecting fuel supplied from the pressure accumulating vessel through the fuel pipe;
A fuel pressure sensor that is provided in a fuel supply path from the discharge port to the nozzle hole, detects a fuel pressure, and outputs a sensor waveform representing a change in fuel pressure caused by fuel injection;
Applied to the fuel injection system with
With the current fuel injection, the supply pulsation generated during the injection period by the flow of fuel flowing into the fuel injection valve through the fuel pipe from the discharge port, pulsation estimation to estimate from the sensor waveform in the current fuel injection Means,
Pulsation removing means for correcting the sensor waveform so as to remove the waveform of the supply pulsation estimated by the pulsation estimating means from the sensor waveform in the current fuel injection ;
Injection state estimating means for estimating the fuel injection state from the nozzle hole based on the sensor waveform that has been corrected for removal by the pulsation removing means;
A fuel injection state detection device comprising:
前記脈動推定手段は、前記センサ波形のうち噴射開始に伴い燃圧降下していく部分の降下波形に基づき、前記供給脈動の波形を推定することを特徴とする請求項1に記載の燃料噴射状態検出装置。   2. The fuel injection state detection according to claim 1, wherein the pulsation estimating unit estimates the waveform of the supply pulsation based on a descending waveform of a portion of the sensor waveform in which a fuel pressure decreases as the injection starts. apparatus. 前記脈動推定手段は、前記降下波形の降下の傾きに基づき、前記供給脈動の波形の上昇の傾きを推定することを特徴とする請求項2に記載の燃料噴射状態検出装置。   3. The fuel injection state detection device according to claim 2, wherein the pulsation estimation unit estimates an increase gradient of the supply pulsation waveform based on a decrease gradient of the decrease waveform. 前記脈動推定手段は、前記降下波形の降下開始時期、又は前記燃料噴射弁へ噴射開始を指令した時期に基づき、前記供給脈動の波形が前記センサ波形に重畳開始する時期を推定することを特徴とする請求項2又は3に記載の燃料噴射状態検出装置。   The pulsation estimating means estimates a timing at which the supply pulsation waveform starts to be superimposed on the sensor waveform based on a descent start timing of the descent waveform or a timing instructed to start injection to the fuel injection valve. The fuel injection state detection device according to claim 2 or 3. 前記脈動推定手段は、前記降下波形の降下開始時期における燃料圧力に応じて、前記供給脈動の波形が前記センサ波形に重畳開始する時期を推定することを特徴とする請求項4に記載の燃料噴射状態検出装置。   5. The fuel injection according to claim 4, wherein the pulsation estimating unit estimates a timing at which the supply pulsation waveform starts to be superimposed on the sensor waveform in accordance with a fuel pressure at a descent start timing of the descending waveform. State detection device. 前記脈動推定手段は、前記降下波形のうち降下開始時点での圧力及び降下終了時点での圧力に基づき、前記供給脈動による圧力上昇量を推定することを特徴とする請求項2〜5のいずれか1つに記載の燃料噴射状態検出装置。   The said pulsation estimation means estimates the pressure rise amount by the said supply pulsation based on the pressure at the time of descent | fall start, and the pressure at the time of descent | fall end among the said descent | fall waveforms. The fuel-injection state detection apparatus as described in one. 最大噴射率に達する前に噴射率を低下させていく小噴射を実施する場合において、前記噴射状態推定手段は、前記脈動除去手段により除去補正されたセンサ波形のうち噴射終了に伴い燃圧上昇していく部分の上昇波形に基づき、噴射終了時期を算出することを特徴とする請求項1〜6のいずれか1つに記載の燃料噴射状態検出装置。   In the case of carrying out small injection that lowers the injection rate before reaching the maximum injection rate, the injection state estimating means increases the fuel pressure with the end of injection in the sensor waveform that has been corrected for removal by the pulsation removing means. The fuel injection state detection device according to any one of claims 1 to 6, wherein an injection end timing is calculated based on a rising waveform of a certain portion.
JP2010222336A 2010-09-30 2010-09-30 Fuel injection state detection device Active JP5278398B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010222336A JP5278398B2 (en) 2010-09-30 2010-09-30 Fuel injection state detection device
DE102011053839.9A DE102011053839B4 (en) 2010-09-30 2011-09-21 Fuel injection condition detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010222336A JP5278398B2 (en) 2010-09-30 2010-09-30 Fuel injection state detection device

Publications (2)

Publication Number Publication Date
JP2012077653A JP2012077653A (en) 2012-04-19
JP5278398B2 true JP5278398B2 (en) 2013-09-04

Family

ID=45832656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010222336A Active JP5278398B2 (en) 2010-09-30 2010-09-30 Fuel injection state detection device

Country Status (2)

Country Link
JP (1) JP5278398B2 (en)
DE (1) DE102011053839B4 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012206586A1 (en) * 2012-04-20 2013-10-24 Robert Bosch Gmbh Method for operating a fuel injector
JP2014139426A (en) * 2013-01-21 2014-07-31 Denso Corp Fuel injection device
JP6028603B2 (en) * 2013-02-06 2016-11-16 株式会社デンソー Fuel injection state estimation device
JP5998970B2 (en) * 2013-02-07 2016-09-28 株式会社デンソー Fuel injection characteristic detection device
DE102013210984B3 (en) * 2013-06-12 2014-09-11 Mtu Friedrichshafen Gmbh Method for determining an injection start of an injector of an internal combustion engine, control unit for an internal combustion engine and internal combustion engine
JP6040877B2 (en) 2013-07-05 2016-12-07 株式会社デンソー Fuel injection state estimation device
JP6020387B2 (en) * 2013-08-23 2016-11-02 株式会社デンソー Pressure sensor responsiveness learning device
JP6308080B2 (en) 2014-09-16 2018-04-11 株式会社デンソー Fuel injection state detection device
JP7021595B2 (en) 2018-04-02 2022-02-17 株式会社デンソー Fuel passage characteristic acquisition device
FR3090039B1 (en) * 2018-12-13 2021-06-04 Continental Automotive France Method for determining a volume of fuel exiting an injection rail
DE102022205734A1 (en) * 2022-06-07 2023-12-07 Robert Bosch Gesellschaft mit beschränkter Haftung Method for controlling an injector, control device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57924A (en) 1980-05-30 1982-01-06 Jeco Co Ltd Electronic alarm for automobile
JP2003314331A (en) * 2002-04-17 2003-11-06 Toyota Motor Corp Fuel injection device
JP4428427B2 (en) 2007-08-31 2010-03-10 株式会社デンソー Fuel injection characteristic detecting device and fuel injection command correcting device
JP4678397B2 (en) * 2007-10-15 2011-04-27 株式会社デンソー Fuel injection state detection device
JP4631937B2 (en) * 2008-06-18 2011-02-16 株式会社デンソー Learning device and fuel injection system
JP2010002004A (en) 2008-06-20 2010-01-07 Showa Corp Check valve structure of hydraulic shock absorber
JP5165728B2 (en) 2010-06-18 2013-03-21 株式会社デンソー Fuel pressure waveform acquisition device
JP5126296B2 (en) 2010-06-18 2013-01-23 株式会社デンソー Fuel injection state detection device

Also Published As

Publication number Publication date
DE102011053839A1 (en) 2012-04-05
JP2012077653A (en) 2012-04-19
DE102011053839B4 (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP5278398B2 (en) Fuel injection state detection device
JP5394432B2 (en) Fuel state estimation device
JP5321606B2 (en) Fuel injection control device
JP5003796B2 (en) Fuel injection state detection device
JP4911199B2 (en) Fuel condition detection device
JP2013007341A (en) Fuel-injection-condition estimating apparatus
JP6040877B2 (en) Fuel injection state estimation device
JP5723244B2 (en) Fuel injection control device
JP4998521B2 (en) Learning device
JP5263280B2 (en) Fuel injection control device
JP5278472B2 (en) Abnormality diagnosis device for fuel injection valve
JP5024430B2 (en) Fuel injection control device
JP5067461B2 (en) Fuel injection state detection device
JP5126296B2 (en) Fuel injection state detection device
JP5024429B2 (en) Fuel injection state detection device
JP5998970B2 (en) Fuel injection characteristic detection device
JP6028603B2 (en) Fuel injection state estimation device
JP6160454B2 (en) Injection characteristic acquisition device and injection characteristic acquisition method
JP5240283B2 (en) Noise diagnosis device for fuel injection system
JP2012002176A (en) Fuel injection state sensing device
JP5168325B2 (en) Fuel injection state detection device
JP6507982B2 (en) Fuel injection state detection device
JP5565435B2 (en) Fuel injection control device
JP7021595B2 (en) Fuel passage characteristic acquisition device
JP2012167644A (en) Fuel injection control apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5278398

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250