JP5126296B2 - Fuel injection state detection device - Google Patents

Fuel injection state detection device Download PDF

Info

Publication number
JP5126296B2
JP5126296B2 JP2010139481A JP2010139481A JP5126296B2 JP 5126296 B2 JP5126296 B2 JP 5126296B2 JP 2010139481 A JP2010139481 A JP 2010139481A JP 2010139481 A JP2010139481 A JP 2010139481A JP 5126296 B2 JP5126296 B2 JP 5126296B2
Authority
JP
Japan
Prior art keywords
waveform
injection
pressure
fuel
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010139481A
Other languages
Japanese (ja)
Other versions
JP2012002180A (en
Inventor
正和 阪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010139481A priority Critical patent/JP5126296B2/en
Priority to DE102011050925.9A priority patent/DE102011050925B4/en
Priority to CN201110167050.5A priority patent/CN102287285B/en
Publication of JP2012002180A publication Critical patent/JP2012002180A/en
Application granted granted Critical
Publication of JP5126296B2 publication Critical patent/JP5126296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0614Actual fuel mass or fuel injection amount
    • F02D2200/0616Actual fuel mass or fuel injection amount determined by estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails

Description

本発明は、内燃機関の燃料噴射弁から燃料を噴射させることに伴い生じる燃料圧力の変化を燃圧センサで検出し、検出した圧力波形に基づき燃料噴射状態を推定する燃料噴射状態検出装置に関する。   The present invention relates to a fuel injection state detection device that detects a change in fuel pressure caused by injecting fuel from a fuel injection valve of an internal combustion engine with a fuel pressure sensor and estimates a fuel injection state based on the detected pressure waveform.

内燃機関の出力トルク及びエミッション状態を精度良く制御するには、燃料噴射弁から噴射される燃料の噴射量及び噴射開始時期等、その噴射状態を精度良く制御することが重要である。そこで特許文献1,2等には、コモンレール(分配容器)の吐出口から燃料噴射弁の噴孔に至るまでの燃料供給経路内で噴射に伴い生じる燃料圧力の変化を燃圧センサで検出している。燃圧センサにより検出される圧力波形は、噴射率の変化を表す噴射率波形と相関が高いため、検出した圧力波形に基づき噴射率波形を推定することで、噴射開始時期や噴射量等の噴射状態の検出を図っている。このように実際の噴射状態を検出できれば、その検出値に基づき噴射状態を精度良く制御できる。   In order to accurately control the output torque and the emission state of the internal combustion engine, it is important to accurately control the injection state such as the injection amount of fuel injected from the fuel injection valve and the injection start timing. Therefore, in Patent Documents 1 and 2, etc., a fuel pressure sensor detects a change in fuel pressure caused by injection in the fuel supply path from the discharge port of the common rail (distribution container) to the injection hole of the fuel injection valve. . Since the pressure waveform detected by the fuel pressure sensor has a high correlation with the injection rate waveform representing the change in the injection rate, by estimating the injection rate waveform based on the detected pressure waveform, the injection state such as the injection start timing and the injection amount We are trying to detect this. If the actual injection state can be detected in this way, the injection state can be accurately controlled based on the detected value.

特開2010−3004号公報JP 2010-3004 A 特開2009−57924号公報JP 2009-57924 A

本発明者は、噴射率波形を推定する具体的手法を以下のように検討した。先ず、燃圧センサにより検出される圧力波形を取得する。次に、取得した圧力波形中に現れる各種変化点(例えば図2(c)中のP1,P2,P3,P5等)を検出する。具体的には、圧力波形中の都度の圧力値を微分し、その微分値が所定以上となっているか否かに基づき上記変化点を検出する。次に、開弁作動開始に伴い圧力が下降する部分(P1〜P2の部分)の波形、及び閉弁作動開始に伴い圧力が上昇する部分(P3〜P5の部分)の波形を直線に近似して、これらの近似直線の傾きPα,Pβを算出する。また、変化点P1からP2までの圧力降下量P1−P2を算出する。   The inventor has studied a specific method for estimating the injection rate waveform as follows. First, the pressure waveform detected by the fuel pressure sensor is acquired. Next, various change points appearing in the acquired pressure waveform (for example, P1, P2, P3, P5, etc. in FIG. 2C) are detected. Specifically, each time the pressure value in the pressure waveform is differentiated, and the change point is detected based on whether the differentiated value is equal to or greater than a predetermined value. Next, the waveform of the portion where the pressure decreases as the valve opening operation starts (portion P1 to P2) and the waveform of the portion where the pressure increases as the valve closing operation starts (portion P3 to P5) are approximated to a straight line. Thus, the inclinations Pα and Pβ of these approximate straight lines are calculated. Further, the pressure drop amount P1-P2 from the change point P1 to P2 is calculated.

そして、圧力波形の変化点P1が出現する時期、圧力降下量P1−P2、及び傾きPα,Pβの各々を、噴射率波形の生成に必要な噴射開始時期t(R1)、最大噴射率Rh、及び傾きRα,Rβに変換する。これにより、噴射率波形を生成でき、実際の噴射状態を推定できる。   The timing at which the pressure waveform change point P1 appears, the pressure drop amount P1-P2, and the slopes Pα and Pβ are respectively set to the injection start timing t (R1), the maximum injection rate Rh, And the slopes Rα and Rβ. Thereby, an injection rate waveform can be generated and an actual injection state can be estimated.

さらに本発明者は、コモンレールから燃料噴射弁への燃料の分配供給圧力が異なれば、圧力波形と噴射率波形との相関が異なってくることに着目し、噴射開始時点での分配供給圧力に応じて、圧力波形を噴射率波形に変換する変換値を可変設定することを検討した。これによれば、噴射率波形の推定精度を向上できる。しかし、以下の点について未だ改良の余地があることを本発明者は見出した。   Further, the present inventor noticed that the correlation between the pressure waveform and the injection rate waveform differs if the fuel distribution supply pressure from the common rail to the fuel injection valve is different, and responded to the distribution supply pressure at the start of injection. Thus, the variable value for converting the pressure waveform into the injection rate waveform was variably set. According to this, the estimation accuracy of the injection rate waveform can be improved. However, the present inventors have found that there is still room for improvement in the following points.

すなわち、分配供給圧力は燃料噴射中にも変化することが多い。例えば、燃料タンクの燃料をコモンレールへ圧送する燃料ポンプが、プランジャポンプの如く間欠的に燃料を圧送するものである場合において、燃料噴射中にポンプ圧送が行われると分配供給圧力は燃料噴射中に上昇する。また、燃料噴射中にポンプ圧送が行われなかった場合であっても、燃料を噴射した直後は、コモンレールから燃料噴射弁へ分配供給した分だけ分配供給圧力は低下する。したがって、噴射1回分の圧力波形中で、噴射率波形への変換値を一律に固定して設定してしまうと、上述の如く燃料噴射中に分配供給圧力が変化した場合には、圧力波形を噴射率波形に変換する精度が悪くなる。   That is, the distribution supply pressure often changes during fuel injection. For example, in a case where a fuel pump that pumps fuel in a fuel tank to a common rail is a pump that intermittently pumps fuel, such as a plunger pump, if the pump pumping is performed during fuel injection, the distribution supply pressure is reduced during fuel injection. To rise. Even if the pumping is not performed during fuel injection, immediately after the fuel is injected, the distribution supply pressure is reduced by the amount distributed and supplied from the common rail to the fuel injection valve. Therefore, if the conversion value to the injection rate waveform is fixed and set uniformly in the pressure waveform for one injection, the pressure waveform is changed when the distribution supply pressure changes during the fuel injection as described above. The accuracy of conversion to the injection rate waveform is deteriorated.

本発明は、上記課題を解決するためになされたものであり、その目的は、燃圧センサにより検出された噴射時圧力波形を噴射率波形に変換するにあたり、その変換精度の向上を図った燃料噴射状態検出装置を提供することにある。   The present invention has been made in order to solve the above-described problems, and an object of the present invention is to improve the conversion accuracy when converting the injection pressure waveform detected by the fuel pressure sensor into the injection rate waveform. It is to provide a state detection device.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

第1の発明では、多気筒内燃機関の各気筒に設けられた燃料噴射弁と、燃料ポンプから供給される燃料を蓄圧して複数の前記燃料噴射弁へ分配供給する分配容器と、複数の前記燃料噴射弁の各々に対して設けられ、前記燃料噴射弁の噴孔から燃料を噴射させることに伴い前記分配容器の吐出口から前記噴孔に至るまでの燃料経路内で生じる燃料圧力の変化を検出する燃圧センサと、を備えた燃料噴射システムに適用されることを前提とする。 In the first invention, a fuel injection valve provided in each cylinder of a multi-cylinder internal combustion engine, a distribution container that accumulates fuel supplied from a fuel pump and distributes and supplies the fuel to a plurality of the fuel injection valves, A change in fuel pressure that is provided for each fuel injection valve and that occurs in the fuel path from the outlet of the distribution container to the injection hole as fuel is injected from the injection hole of the fuel injection valve. It is assumed that the present invention is applied to a fuel injection system including a fuel pressure sensor to be detected.

そして、複数の前記燃圧センサのうち燃料噴射中の燃料噴射弁に対応する燃圧センサにより検出された、噴射時圧力波形を取得する噴射時波形取得手段と、前記噴射時圧力波形を、燃料噴射率の変化を表す噴射率波形に変換する変換手段と、を備え、前記変換手段は、前記噴射時圧力波形を前記噴射率波形に変換する変換関数を、前記分配容器内の分配供給圧力に基づき設定するとともに、燃料噴射中に生じた前記分配供給圧力の変化に応じて、噴射1回分の前記噴射時圧力波形内で前記変換関数を変化させることを特徴とする。   An injection waveform acquisition means for acquiring an injection pressure waveform detected by a fuel pressure sensor corresponding to a fuel injection valve during fuel injection among the plurality of fuel pressure sensors, and the injection pressure waveform are expressed as a fuel injection rate. Conversion means for converting into an injection rate waveform representing a change in the pressure, and the conversion means sets a conversion function for converting the pressure waveform during injection into the injection rate waveform based on the distribution supply pressure in the distribution container In addition, the conversion function is changed in the pressure waveform during injection for one injection according to the change in the distribution supply pressure generated during fuel injection.

上記発明は、「分配供給圧力が異なれば、圧力波形と噴射率波形との相関が異なってくる」及び「分配供給圧力は燃料噴射中にも変化する」といった先述の知見に基づき想起されたものであり、燃料噴射中に生じた分配供給圧力の変化に応じて、噴射1回分の噴射時圧力波形内で変換関数を変化させるので、噴射時圧力波形を噴射率波形に変換するにあたり、その変換精度を向上できる。   The above invention was conceived based on the aforementioned findings such as “if the distribution supply pressure is different, the correlation between the pressure waveform and the injection rate waveform is different” and “the distribution supply pressure also changes during fuel injection”. Since the conversion function is changed in the pressure waveform during injection for one injection according to the change in the distribution supply pressure generated during fuel injection, the conversion is performed when converting the pressure waveform during injection into the injection rate waveform. Accuracy can be improved.

第2の発明では、前記噴射時圧力波形のうち、前記燃料噴射弁の開弁作動開始に伴い圧力が下降する部分の波形である下降波形(図2(c)中のP1〜P2の部分の波形参照)を取得する下降波形取得手段と、前記噴射時圧力波形のうち、前記燃料噴射弁の閉弁作動開始に伴い圧力が上昇する部分の波形である上昇波形(図2(c)中のP3〜P5の部分の波形参照)を取得する上昇波形取得手段と、を備え、前記下降波形が現れている期間での前記分配供給圧力に基づき前記下降波形に対する前記変換関数を設定し、前記上昇波形が現れている期間での前記分配供給圧力に基づき前記上昇波形に対する前記変換関数を設定することを特徴とする。 In the second invention, of the pressure waveform during the injection, a falling waveform (P1 to P2 in FIG. 2C) is a waveform of the portion where the pressure decreases as the fuel injection valve starts opening. 2) in the rising waveform (FIG. 2 (c)) which is a waveform of a portion where the pressure rises with the start of the closing operation of the fuel injection valve in the injection pressure waveform. Rising waveform acquisition means for acquiring the waveform (refer to the waveform of the portion of P3 to P5), setting the conversion function for the falling waveform based on the distributed supply pressure during the period in which the falling waveform appears, and The conversion function for the rising waveform is set based on the distributed supply pressure during a period in which the waveform appears.

噴射時圧力波形と噴射率波形との相関の中でも特に、下降波形及び上昇波形の部分についての相関は分配供給圧力の変化による影響を大きく受ける。この点を鑑みた上記発明では、下降波形が現れている期間での分配供給圧力に基づき下降波形に対する変換関数を設定し、上昇波形が現れている期間での分配供給圧力に基づき上昇波形に対する変換関数を設定する。そのため、下降波形及び上昇波形について、それぞれの波形に適した変換関数を別々に設定するので、噴射時圧力波形を噴射率波形に変換する精度の向上を促進できる。   Among the correlations between the pressure waveform during injection and the injection rate waveform, the correlation regarding the descending waveform and the ascending waveform is greatly affected by the change in the distribution supply pressure. In view of this point, in the above invention, a conversion function for the falling waveform is set based on the distributed supply pressure during the period when the falling waveform appears, and the conversion for the rising waveform is performed based on the distributed supply pressure during the period when the rising waveform appears. Set the function. Therefore, since the conversion function suitable for each waveform is separately set for the descending waveform and the ascending waveform, it is possible to promote the improvement of the accuracy of converting the injection pressure waveform into the injection rate waveform.

第3の発明では、前記下降波形に対する前記変換関数には、前記下降波形の傾きを変換する係数(図5(a)中の符号Kα参照)が含まれており、前記上昇波形に対する前記変換関数には、前記上昇波形の傾きを変換する係数(図5(b)中の符号Kβ参照)が含まれていることを特徴とする。また、第4の発明では、前記下降波形に対する前記変換関数には、前記噴射率波形中の噴射率上昇開始に対する前記噴射時圧力波形中の圧力下降開始の遅れ時間(図5(c)中の符号C1参照)が含まれており、前記上昇波形に対する前記変換関数には、前記噴射率波形中の噴射率下降開始に対する前記噴射時圧力波形中の圧力上昇開始の遅れ時間(図5(d)中の符号C3参照)が含まれていることを特徴とする。 In the third invention, the conversion function for the falling waveform includes a coefficient (see symbol Kα in FIG. 5A) for converting the slope of the falling waveform, and the conversion function for the rising waveform. Includes a coefficient for converting the slope of the rising waveform (see symbol Kβ in FIG. 5B). According to a fourth aspect of the present invention, the conversion function for the falling waveform includes a delay time (in FIG. 5C) of the pressure drop start in the injection pressure waveform with respect to the injection rate rise start in the injection rate waveform. The conversion function for the rising waveform includes a delay time (FIG. 5D) of the pressure increase start in the injection pressure waveform with respect to the injection rate decrease start in the injection rate waveform. (See the reference C3 in the figure).

下降波形及び上昇波形の部分を噴射率波形に変換する際には、具体的には下降波形及び上昇波形の傾き(図2(c)中の符号Pα,Pβ参照)を噴射率波形の傾き(図2(c)中の符号Rα,Rβ参照)へ変換することと、圧力下降開始又は上昇開始のタイミング(図2(c)中の符号P1,P3参照)を噴射率上昇開始又は噴射率下降開始のタイミング(図2(b)中の符号R1,R3参照)に変換することとを要する。そして、これら種々の変換パラメータKα,Kβ,C1,C3は、分配供給圧力の変化による影響を大きく受ける。   When converting the descending waveform and ascending waveform into the injection rate waveform, specifically, the slopes of the descending waveform and the ascending waveform (see symbols Pα and Pβ in FIG. 2 (c) (refer to symbols Rα and Rβ) and the pressure drop start or rise start timing (see symbols P1 and P3 in FIG. 2 (c)) injection rate increase start or injection rate decrease It is necessary to convert to the start timing (see symbols R1 and R3 in FIG. 2B). These various conversion parameters Kα, Kβ, C1, and C3 are greatly affected by changes in the distribution supply pressure.

この点を鑑みた上記第3の発明によれば、下降波形の傾きを変換する係数Kαは下降波形が現れている期間での分配供給圧力に基づき設定され、上昇波形の傾きを変換する係数Kβは上昇波形が現れている期間での分配供給圧力に基づき設定される。よって、下降波形及び上昇波形を変換するための各々の係数Kα,Kβを、分配供給圧力の変化に応じた最適値に設定することができる。よって、噴射時圧力波形を噴射率波形に変換する精度の向上を促進できる。 According to the third invention in view of this point, the coefficient Kα for converting the slope of the descending waveform is set based on the distribution supply pressure during the period in which the descending waveform appears, and the coefficient Kβ for converting the slope of the ascending waveform Is set based on the distribution supply pressure during the period in which the rising waveform appears. Therefore, the coefficients Kα and Kβ for converting the descending waveform and the ascending waveform can be set to optimum values according to the change in the distribution supply pressure. Therefore, the improvement of the precision which converts the pressure waveform at the time of injection into an injection rate waveform can be promoted.

また、上記第4の発明によれば、下降波形にかかる圧力下降開始タイミングを噴射率上昇開始タイミングに変換するための遅れ時間C1は下降波形が現れている期間での分配供給圧力に基づき設定され、上昇波形にかかる圧力上昇開始タイミングを噴射率下降開始タイミングに変換するための遅れ時間C3は上昇波形が現れている期間での分配供給圧力に基づき設定される。よって、下降波形及び上昇波形を変換するための各々の遅れ時間C1,C3βを、分配供給圧力の変化に応じた最適値に設定することができる。よって、噴射時圧力波形を噴射率波形に変換する精度の向上を促進できる。 According to the fourth aspect of the invention, the delay time C1 for converting the pressure decrease start timing applied to the decrease waveform to the injection rate increase start timing is set based on the distributed supply pressure during the period in which the decrease waveform appears. The delay time C3 for converting the pressure rise start timing applied to the rise waveform to the injection rate fall start timing is set based on the distributed supply pressure during the period in which the rise waveform appears. Therefore, each of the delay times C1 and C3β for converting the descending waveform and the ascending waveform can be set to an optimum value corresponding to the change in the distribution supply pressure. Therefore, the improvement of the precision which converts the pressure waveform at the time of injection into an injection rate waveform can be promoted.

第5の発明では、複数の前記燃圧センサのうち噴射していない燃料噴射弁に対応する燃圧センサにより検出された、非噴射時圧力波形を取得する非噴射時波形取得手段を備え、前記変換手段は、前記非噴射時波形を前記分配供給圧力の変化とみなして前記変換関数を変化させることを特徴とする。 According to a fifth aspect of the invention, the converter includes a non-injection waveform acquisition unit that acquires a non-injection pressure waveform detected by a fuel pressure sensor corresponding to a fuel injection valve that is not injecting among the plurality of fuel pressure sensors, The non-injection waveform is regarded as a change in the distributed supply pressure, and the conversion function is changed.

非噴射時圧力波形は分配供給圧力の変化を表していると言えるので、非噴射時圧力波形に基づき変換関数を変化させる上記発明によれば、分配供給圧力を検出する専用の燃圧センサを分配容器に設けることを不要にできる。   Since it can be said that the non-injection pressure waveform represents a change in the distribution supply pressure, according to the above invention that changes the conversion function based on the non-injection pressure waveform, a dedicated fuel pressure sensor for detecting the distribution supply pressure is provided in the distribution container. It is possible to eliminate the need to provide it.

第6の発明では、前記変換手段は、前記噴射時圧力波形から前記分配供給圧力の変化を表す波形を差し引いて前記噴射時圧力波形を補正し、補正後の前記噴射時圧力波形を前記噴射率波形に変換することを特徴とする。 In a sixth aspect of the invention, the conversion means corrects the injection pressure waveform by subtracting a waveform representing a change in the distributed supply pressure from the injection pressure waveform, and converts the corrected injection pressure waveform to the injection rate. It is characterized by being converted into a waveform.

ここで、燃圧センサにより検出された噴射時圧力波形には、噴射に起因して生じた圧力変化に加え、分配供給圧力の変化に起因して生じた圧力変化も含まっている。この点を鑑みた上記発明によれば、分配供給圧力の変化を表す波形を噴射時圧力波形から差し引いて補正するので、噴射時圧力波形から分配供給圧力の変化による影響が除去される。よって、噴射時圧力波形と噴射率波形との相関を高めることができる。そして、このように相関が高められた補正後の噴射時圧力波形を用いて噴射率波形へ変換するので、噴射率波形を高精度で取得できる。   Here, the pressure waveform at the time of injection detected by the fuel pressure sensor includes not only the pressure change caused by the injection but also the pressure change caused by the change of the distribution supply pressure. According to the above invention in view of this point, the waveform representing the change in the distribution supply pressure is corrected by subtracting from the pressure waveform at the time of injection, so that the influence due to the change in the distribution supply pressure is removed from the pressure waveform at the time of injection. Therefore, the correlation between the injection pressure waveform and the injection rate waveform can be increased. And since it converts into an injection rate waveform using the pressure waveform at the time of injection after a correlation by which the correlation was raised in this way, an injection rate waveform can be acquired with high precision.

本発明の一実施形態にかかる燃料噴射状態検出装置が適用される、燃料噴射システムの概略を示す図。The figure which shows the outline of the fuel-injection system with which the fuel-injection state detection apparatus concerning one Embodiment of this invention is applied. (a)は図1に示す燃料噴射弁への噴射指令信号、(b)は噴射指令信号に伴い生じる燃料噴射率の変化を表す噴射率波形、(c)は図1に示す燃圧センサにより検出された検出圧力の変化を表す圧力波形を示すタイムチャート。(A) is an injection command signal to the fuel injection valve shown in FIG. 1, (b) is an injection rate waveform representing a change in fuel injection rate caused by the injection command signal, and (c) is detected by a fuel pressure sensor shown in FIG. The time chart which shows the pressure waveform showing the change of the detected pressure made. 噴射時圧力波形Wから非噴射時圧力波形PCを差し引いて補正した波形W−PCを示す図。The figure which shows the waveform W-PC correct | amended by subtracting the non-injection pressure waveform PC from the injection pressure waveform W. 噴射時圧力波形を噴射率波形に変換する処理の手順を示すフローチャート。The flowchart which shows the procedure of the process which converts the pressure waveform at the time of injection into an injection rate waveform. 図4の変換処理で用いるマップ。The map used in the conversion process of FIG. 燃料噴射中にポンプ圧送が為された場合の、噴射時圧力波形及び噴射率波形を示す図。The figure which shows the pressure waveform and injection rate waveform at the time of injection when pumping is made during fuel injection.

以下、本発明に係る燃料噴射状態検出装置を具体化した一実施形態を図面に基づいて説明する。本実施形態の燃料噴射状態検出装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, an embodiment embodying a fuel injection state detection device according to the present invention will be described with reference to the drawings. The fuel injection state detection device according to the present embodiment is mounted on a vehicle engine (internal combustion engine), and compression auto-ignition is performed by injecting high-pressure fuel into a plurality of cylinders # 1 to # 4. It assumes a diesel engine that burns.

図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30(制御装置に相当)等を示す模式図である。   FIG. 1 shows a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on each fuel injection valve 10, and an ECU 30 (corresponding to a control device) that is an electronic control device mounted on a vehicle. It is a schematic diagram which shows etc.

先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、高圧ポンプ41によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。なお、高圧ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して間欠的に燃料は圧送される。   First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulating container) by the high pressure pump 41, and is distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order. Since the plunger pump is used as the high-pressure pump 41, the fuel is intermittently pumped in synchronism with the reciprocating movement of the plunger.

燃料噴射弁10は、以下に説明するボデー11、ニードル12(弁体)及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。ニードル12は、ボデー11内に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle 12 (valve element), an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The needle 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b.

ボデー11内にはニードル12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は制御弁14により切り替えられており、電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cは低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、ニードル12へ付与される背圧力が低下してニードル12は開弁作動する。一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cは高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、ニードル12へ付与される背圧力が上昇してニードル12は閉弁作動する。   A back pressure chamber 11c for applying a back pressure to the needle 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14, and the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized to push the control valve 14 downward in FIG. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. As a result, the back pressure applied to the needle 12 is lowered and the needle 12 is opened. On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the needle 12 rises, and the needle 12 is closed.

したがって、ECU30がアクチュエータ13への通電を制御することで、ニードル12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、ニードル12の開閉作動に応じて噴孔11bから噴射される。例えばECU30は、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の目標噴射状態を算出し、算出した目標噴射状態となるようアクチュエータ13へ噴射指令信号を出力して、燃料噴射弁10の作動を制御する。   Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the needle 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the needle 12. For example, the ECU 30 calculates a target injection state such as an injection start timing, an injection end timing, and an injection amount based on the rotation speed of the engine output shaft, the engine load, and the like, and sends an injection command signal to the actuator 13 so that the calculated target injection state is obtained. Is output to control the operation of the fuel injection valve 10.

ECU30は、アクセル操作量等から算出されるエンジン負荷やエンジン回転速度に基づき目標噴射状態を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態(噴射段数、噴射開始時期、噴射終了時期、噴射量等)を噴射状態マップにして記憶させておく。そして、現時点でのエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。そして、算出した目標噴射状態に基づき噴射指令信号t1、t2、Tqを設定する。例えば、目標噴射状態に対応する噴射指令信号を指令マップにして記憶させておき、算出した目標噴射状態に基づき、指令マップを参照して噴射指令信号を設定する。以上により、エンジン負荷及びエンジン回転速度に応じた噴射指令信号が設定され、ECU30から燃料噴射弁10へ出力される。   The ECU 30 calculates the target injection state based on the engine load and engine speed calculated from the accelerator operation amount and the like. For example, the optimal injection state (the number of injection stages, the injection start time, the injection end time, the injection amount, etc.) corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Then, injection command signals t1, t2, and Tq are set based on the calculated target injection state. For example, an injection command signal corresponding to the target injection state is stored as a command map, and the injection command signal is set with reference to the command map based on the calculated target injection state. Thus, the injection command signal corresponding to the engine load and the engine rotation speed is set and output from the ECU 30 to the fuel injection valve 10.

ここで、噴孔11bの磨耗等、燃料噴射弁10の経年劣化に起因して、噴射指令信号に対する実際の噴射状態は変化していく。そこで、後に詳述するように燃圧センサ20により検出された圧力波形に基づき燃料の噴射率波形を演算して噴射状態を検出し、検出した噴射状態と噴射指令信号(パルスオン時期t1、パルスオフ時期t2及びパルスオン期間Tq)との相関関係を学習し、その学習結果に基づき、指令マップに記憶された噴射指令信号を補正する。これにより、実噴射状態が目標噴射状態に一致するよう、燃料噴射状態を高精度で制御できる。   Here, the actual injection state with respect to the injection command signal changes due to deterioration of the fuel injection valve 10 such as wear of the injection hole 11b. Therefore, as described in detail later, the fuel injection rate waveform is calculated based on the pressure waveform detected by the fuel pressure sensor 20 to detect the injection state, and the detected injection state and the injection command signal (pulse on timing t1, pulse off timing t2). And the correlation with the pulse-on period Tq), and the injection command signal stored in the command map is corrected based on the learning result. Thus, the fuel injection state can be controlled with high accuracy so that the actual injection state matches the target injection state.

次に、燃圧センサ20のハード構成について説明する。燃圧センサ20は、以下に説明するステム21(起歪体)、圧力センサ素子22及びモールドIC23等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号を出力する。   Next, the hardware configuration of the fuel pressure sensor 20 will be described. The fuel pressure sensor 20 includes a stem 21 (distortion body), a pressure sensor element 22, a mold IC 23, and the like described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. The pressure sensor element 22 is attached to the diaphragm portion 21a, and outputs a pressure detection signal in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

モールドIC23は、圧力センサ素子22から出力された圧力検出信号を増幅する増幅回路等の電子部品を樹脂モールドして形成されており、ステム21とともに燃料噴射弁10に搭載されている。ボデー11上部にはコネクタ15が設けられており、コネクタ15に接続されたハーネス16により、モールドIC23及びアクチュエータ13とECU30とはそれぞれ電気接続される。   The mold IC 23 is formed by resin molding an electronic component such as an amplifier circuit that amplifies the pressure detection signal output from the pressure sensor element 22, and is mounted on the fuel injection valve 10 together with the stem 21. A connector 15 is provided on the upper portion of the body 11, and the mold IC 23, the actuator 13, and the ECU 30 are electrically connected by a harness 16 connected to the connector 15.

ここで、噴孔11bから燃料の噴射を開始することに伴い高圧通路11a内の燃料の圧力(燃圧)は低下し、噴射を終了することに伴い燃圧は上昇する。つまり、燃圧の変化と噴射率(単位時間当たりに噴射される噴射量)の変化とは相関があり、燃圧変化から噴射率変化(実噴射状態)を検出できると言える。そして、検出した実噴射状態が目標噴射状態となるよう先述した噴射指令信号を補正する。これにより、噴射状態を精度良く制御できる。   Here, the fuel pressure (fuel pressure) in the high-pressure passage 11a decreases with the start of fuel injection from the nozzle hole 11b, and the fuel pressure increases with the end of injection. That is, it can be said that the change in the fuel pressure and the change in the injection rate (injection amount injected per unit time) are correlated, and the change in the injection rate (actual injection state) can be detected from the change in the fuel pressure. Then, the above-described injection command signal is corrected so that the detected actual injection state becomes the target injection state. Thereby, the injection state can be controlled with high accuracy.

次に、燃料噴射中の燃料噴射弁10に搭載された燃圧センサ20により検出した燃圧変化を表した噴射時圧力波形と、その燃料噴射弁10にかかる燃料噴射率の変化を表した噴射率波形との相関について、図2を用いて説明する。   Next, an injection pressure waveform representing a change in fuel pressure detected by a fuel pressure sensor 20 mounted on the fuel injection valve 10 during fuel injection, and an injection rate waveform representing a change in the fuel injection rate applied to the fuel injection valve 10 Will be described with reference to FIG.

図2(a)は、燃料噴射弁10のアクチュエータ13へECU30から出力される噴射指令信号を示しており、この指令信号のパルスオンによりアクチュエータ13が通電作動して噴孔11bが開弁する。つまり、噴射指令信号のパルスオン時期t1により噴射開始が指令され、パルスオフ時期t2により噴射終了が指令される。よって、指令信号のパルスオン期間(噴射指令期間Tq)により噴孔11bの開弁時間を制御することで、噴射量Qを制御している。   FIG. 2A shows an injection command signal output from the ECU 30 to the actuator 13 of the fuel injection valve 10. When the command signal is turned on, the actuator 13 is energized to open the nozzle hole 11b. That is, the injection start is commanded by the pulse-on timing t1 of the injection command signal, and the injection end is commanded by the pulse-off timing t2. Therefore, the injection amount Q is controlled by controlling the valve opening time of the nozzle hole 11b according to the pulse-on period (injection command period Tq) of the command signal.

図2(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(噴射率波形)を示し、図2(c)は、燃料噴射中の燃料噴射弁10に設けられた燃圧センサ20により検出された、噴射率の変化に伴い生じる検出圧力の変化(噴射時圧力波形)を示す。噴射時圧力波形と噴射率波形とは以下に説明する相関があるため、検出された噴射時圧力波形から噴射率波形を推定(検出)することができる。   FIG. 2 (b) shows a change in fuel injection rate (injection rate waveform) from the nozzle hole 11b caused by the injection command, and FIG. 2 (c) is provided in the fuel injection valve 10 during fuel injection. The change of the detection pressure (pressure waveform at the time of injection) which arises with the change of the injection rate detected by the fuel pressure sensor 20 is shown. Since the injection pressure waveform and the injection rate waveform have the correlation described below, the injection rate waveform can be estimated (detected) from the detected injection pressure waveform.

すなわち、先ず、図2(a)に示すように噴射開始指令がなされたt1時点の後、噴射率がR1の時点で上昇を開始して噴射が開始される。一方、検出圧力は、R1の時点で噴射率が上昇を開始してから遅れ時間C1が経過した時点で、変化点P1にて下降を開始する。その後、R2の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P2にて停止する。次に、R3の時点で噴射率が下降を開始したことに伴い、検出圧力は変化点P3にて上昇を開始する。その後、R4の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P5にて停止する。   That is, first, as shown in FIG. 2 (a), after the time t1 when the injection start command is given, the injection rate starts to rise and the injection is started when the injection rate is R1. On the other hand, the detected pressure starts decreasing at the change point P1 when the delay time C1 elapses after the injection rate starts increasing at the time R1. Thereafter, as the injection rate reaches the maximum injection rate at the time of R2, the decrease in the detected pressure stops at the change point P2. Next, as the injection rate starts decreasing at the time point R3, the detected pressure starts increasing at the change point P3. Thereafter, as the injection rate becomes zero at the time point R4 and the actual injection ends, the increase in the detected pressure stops at the change point P5.

ちなみに、噴射時圧力波形のうち一点鎖線Aに示す部分の脈動は、燃料噴射に伴い生じた高圧通路11a内の燃料減少分を補うべく、最大噴射率に達した直後にコモンレール42から高圧通路11aへ燃料供給されることに起因して生じるものである。   Incidentally, the pulsation of the portion indicated by the alternate long and short dash line A in the pressure waveform at the time of injection compensates for the fuel decrease in the high pressure passage 11a caused by the fuel injection, and immediately after reaching the maximum injection rate, from the common rail 42 to the high pressure passage 11a. This is caused by the fuel being supplied.

また、噴射時圧力波形のうち一点鎖線Bに示す部分の脈動は、以下に説明する現象に起因して生じるものである。   Moreover, the pulsation of the part shown with the dashed-dotted line B among the pressure waveforms at the time of injection arises from the phenomenon demonstrated below.

すなわち、ニードル12にはシート面12aが形成されており、このシート面12aがボデー11に着座すると高圧通路11aが閉鎖されて噴孔11bが閉弁されることとなる。一方、シート面12aがボデー11から離座すると高圧通路11aが開放されて噴孔11bが開弁されることとなる。そして、ニードル12がフルリフト位置まで開弁作動した状態では、高圧通路11aの流路面積は噴孔11bの部分で最小となり、噴射燃料の流量は噴孔11bで絞られた噴孔絞り状態となる。そして、閉弁作動の開始後、ニードル12のストローク量(リフトアップ量)が所定量に達するまでは、噴孔絞り状態が継続する。   That is, a seat surface 12a is formed on the needle 12, and when the seat surface 12a is seated on the body 11, the high-pressure passage 11a is closed and the injection hole 11b is closed. On the other hand, when the seat surface 12a is separated from the body 11, the high-pressure passage 11a is opened and the nozzle hole 11b is opened. In the state where the needle 12 is opened to the full lift position, the flow passage area of the high pressure passage 11a is minimized at the injection hole 11b, and the flow rate of the injected fuel is in the injection hole throttled state at the injection hole 11b. . After the start of the valve closing operation, the nozzle hole throttle state continues until the stroke amount (lift up amount) of the needle 12 reaches a predetermined amount.

一方、ニードル12のストローク量が所定量未満になると、高圧通路11aの流路面積はシート面12aの部分で最小となり、シート面12aで流量が絞られるシート絞り状態になる。つまり、フルリフト位置にあるニードル12が閉弁位置へ向けて移動を開始すると、噴孔絞り状態からシート絞り状態へ移行し、この移行時点R3(図2(b)参照)で、実際の噴射率は低下を開始する。そして、ニードル12が閉弁位置へ達したR4時点(つまりシート面12aへの着座時点)で噴射率はゼロになる。   On the other hand, when the stroke amount of the needle 12 becomes less than a predetermined amount, the flow passage area of the high-pressure passage 11a is minimized at the seat surface 12a, and a sheet throttle state in which the flow rate is reduced at the seat surface 12a is achieved. That is, when the needle 12 in the full lift position starts moving toward the valve closing position, the nozzle hole state is shifted to the seat throttle state, and the actual injection rate at this transition time point R3 (see FIG. 2B). Begins to decline. The injection rate becomes zero at the time R4 when the needle 12 reaches the valve closing position (that is, the time when the needle 12 is seated on the seat surface 12a).

この点を鑑みると、圧力波形が上昇を開始するのは、噴孔絞り状態からシート絞り状態へ移行した時点であると当初では想定していた。しかし、実際に本発明者が試験して得た圧力波形には、シート絞り状態へ移行する直前に僅かに圧力上昇する脈動Bが生じることが分かった。このように脈動Bが生じるメカニズムを本発明者は次のように考察した。   In view of this point, it was initially assumed that the pressure waveform starts to rise when the transition is made from the nozzle hole throttle state to the sheet throttle state. However, it has been found that a pulsation B in which the pressure slightly increases immediately before the transition to the sheet squeezed state occurs in the pressure waveform actually tested by the present inventors. The present inventor considered the mechanism of the occurrence of pulsation B as follows.

すなわち、ニードル12がフルリフト位置から閉弁位置へ向けて移動すると、高圧通路11aのうちニードル12を収容するニードル収容室11f(図1参照)の容積が小さくなっていく。すると、その容積縮小分だけ高圧通路11a内の燃料圧力は僅かに上昇することとなり、この上昇が前記脈動Bとなって圧力波形に現れる。要するに、ニードル12が閉弁位置へ向けて移動を開始すると、ニードル収容室11fの容積縮小に起因して、噴孔絞り状態であるにも拘わらずP3a時点で圧力が僅かに上昇する脈動Bが生じる。その後、シート絞り状態へ移行したことに起因してP3時点で圧力上昇を開始する。   That is, when the needle 12 moves from the full lift position toward the valve closing position, the volume of the needle storage chamber 11f (see FIG. 1) that stores the needle 12 in the high-pressure passage 11a decreases. Then, the fuel pressure in the high pressure passage 11a slightly increases by the volume reduction, and this increase becomes the pulsation B and appears in the pressure waveform. In short, when the needle 12 starts to move toward the valve closing position, a pulsation B in which the pressure slightly increases at the point P3a despite the nozzle hole throttle state due to the volume reduction of the needle housing chamber 11f. Arise. Thereafter, the pressure starts to increase at time P3 due to the shift to the sheet squeezed state.

以上説明したように、噴射時圧力波形と噴射率波形とは相関が高い。そして、噴射率波形には、噴射開始時期(R1出現時期)や、噴射終了時期(R4出現時期)、噴射量(図2(b)中の網点部分の面積)が表されているので、噴射時圧力波形を噴射率波形に変換することで噴射状態を検出できる。   As explained above, the pressure waveform during injection and the injection rate waveform are highly correlated. The injection rate waveform shows the injection start time (R1 appearance time), the injection end time (R4 appearance time), and the injection amount (area of the halftone dot portion in FIG. 2B). The injection state can be detected by converting the injection pressure waveform into the injection rate waveform.

ところで、コモンレール42から燃料噴射弁10へ分配供給される燃料の圧力は刻々と変化する。例えば、図3(a)中の実線は噴射時圧力波形Wを示すのに対し、図3(a)中の点線は、噴射時圧力波形と同時期に検出された分配供給圧力PCの変化を示す。なお、分配供給圧力PCの変化は、噴射していない燃料噴射弁10に対応する燃圧センサ20を用いて検出している。したがって、例えば#1気筒の燃料噴射弁10(#1)から燃料を噴射して、#2気筒の燃料噴射弁10(#2)からは噴射を停止している時には、#1気筒の燃圧センサ20による検出圧力が噴射時圧力波形Wに相当し、#2気筒(裏気筒)の燃圧センサ20による検出圧力が、分配供給圧力PCの変化を示す非噴射時圧力波形に相当する。   By the way, the pressure of the fuel distributed and supplied from the common rail 42 to the fuel injection valve 10 changes every moment. For example, the solid line in FIG. 3A shows the pressure waveform W during injection, while the dotted line in FIG. 3A shows the change in the distribution supply pressure PC detected at the same time as the pressure waveform during injection. Show. The change in the distribution supply pressure PC is detected by using the fuel pressure sensor 20 corresponding to the fuel injection valve 10 that is not injecting. Therefore, for example, when the fuel is injected from the fuel injection valve 10 (# 1) of the # 1 cylinder and the injection is stopped from the fuel injection valve 10 (# 2) of the # 2 cylinder, the fuel pressure sensor of the # 1 cylinder The pressure detected by 20 corresponds to the pressure waveform W during injection, and the pressure detected by the fuel pressure sensor 20 of the # 2 cylinder (back cylinder) corresponds to the pressure waveform during non-injection indicating the change in the distribution supply pressure PC.

図3(a)に例示する非噴射時圧力波形が、噴射開始に伴い徐々に低下していく波形になっている理由は、コモンレール42から噴射気筒の燃料噴射弁10へ分配供給した分だけ分配供給圧力PCが低下することによる。ちなみに、燃料噴射中に高圧ポンプ41によるポンプ圧送が行われると、分配供給圧力PCは燃料噴射中であっても上昇していく(図6(c)参照)。   The reason why the non-injection pressure waveform illustrated in FIG. 3A is a waveform that gradually decreases with the start of injection is that the distribution is performed by the amount distributed from the common rail 42 to the fuel injection valve 10 of the injection cylinder. This is because the supply pressure PC decreases. Incidentally, when pumping by the high-pressure pump 41 is performed during fuel injection, the distribution supply pressure PC increases even during fuel injection (see FIG. 6C).

要するに、噴射時圧力波形Wは分配供給圧力PCの変化(非噴射時圧力波形)の影響を受けているので、噴射時圧力波形Wから非噴射時圧力波形を差し引けば、噴射時圧力波形Wから分配供給圧力PCの変化による影響が除去される。図3(b)中の実線は、このように差し引く補正を実施した後の噴射時圧力波形W−PCを示している。なお、図2(c)に例示される噴射時圧力波形Wは、分配供給圧力PCが変化していないと仮定した場合の波形であり、差し引いた後の波形W−PCと噴射時圧力波形Wとが同じ波形になっていると仮定したものである。   In short, since the injection pressure waveform W is affected by the change of the distribution supply pressure PC (non-injection pressure waveform), if the non-injection pressure waveform is subtracted from the injection pressure waveform W, the injection pressure waveform W Thus, the influence of the change in the distribution supply pressure PC is removed. The solid line in FIG. 3B shows the pressure waveform W-PC at the time of injection after performing the correction for subtraction in this way. In addition, the pressure waveform W at the time of injection illustrated in FIG. 2C is a waveform when it is assumed that the distribution supply pressure PC has not changed. The subtracted waveform W-PC and the pressure waveform W at the time of injection W Are assumed to have the same waveform.

次に、図3(b)又は図2(c)に示す補正後の噴射時圧力波形W−PCを、図2(b)に示す噴射率波形に変換する手順について説明する。   Next, the procedure for converting the corrected injection pressure waveform W-PC shown in FIG. 3B or FIG. 2C into the injection rate waveform shown in FIG. 2B will be described.

図4は、ECU30が有するマイクロコンピュータによる上記変換の処理手順を示すフローチャートであり、当該処理は、イグニッションスイッチがオン操作されたことをトリガとして起動した後、所定周期で繰り返し実行される。   FIG. 4 is a flowchart showing a processing procedure of the conversion by the microcomputer of the ECU 30. The processing is repeatedly executed at a predetermined cycle after being started with the ignition switch being turned on as a trigger.

先ず、図4に示すステップS10(噴射時波形取得手段)において、燃料噴射中の気筒#1の燃料噴射弁10に対応する燃圧センサ20により検出された、先述の噴射時圧力波形W(図3(a)中の実線参照)を取得する。続くステップS20(非噴射時波形取得手段)では、噴射していない気筒#2の燃料噴射弁10に対応する燃圧センサ20により検出された、先述の非噴射時圧力波形PCを取得する(図3(a)中の破線参照)。続くステップS30では、ステップS10で取得した噴射時圧力波形Wから、ステップS20で取得した非噴射時圧力波形PCを差し引いて、噴射時圧力波形Wを補正する(図3(b)中の実線参照)。これにより、噴射時圧力波形Wに含まれている非噴射気筒(裏気筒)の波形成分(供給圧PCの変化)が、噴射時圧力波形から除去される。   First, in step S10 (injection waveform acquisition means) shown in FIG. 4, the aforementioned injection pressure waveform W (FIG. 3) detected by the fuel pressure sensor 20 corresponding to the fuel injection valve 10 of the cylinder # 1 during fuel injection. (Refer to the solid line in (a)). In the subsequent step S20 (non-injection waveform acquisition means), the above-described non-injection pressure waveform PC detected by the fuel pressure sensor 20 corresponding to the fuel injection valve 10 of the cylinder # 2 that is not injecting is acquired (FIG. 3). (See broken line in (a)). In subsequent step S30, the non-injection pressure waveform PC acquired in step S20 is subtracted from the injection pressure waveform W acquired in step S10 to correct the injection pressure waveform W (see the solid line in FIG. 3B). ). Thereby, the waveform component (change in supply pressure PC) of the non-injection cylinder (back cylinder) included in the injection pressure waveform W is removed from the injection pressure waveform.

続くステップS40(下降波形取得手段、上昇波形取得手段)では、補正後の噴射時圧力波形W−PCのうち、燃料噴射弁10の開弁作動開始に伴い圧力が下降する部分(P1’〜P3’に相当する部分)の波形である下降波形と、燃料噴射弁10の閉弁作動開始に伴い圧力が上昇する部分(P3’〜P5’に相当する部分)の波形である上昇波形を取得する。具体的には、下降波形の傾きPα’及び下降波形の下降開始時期t(P1’)と、上昇波形の傾きPβ’及び上昇波形の上昇開始時期t(P3’)とを、補正後の噴射時圧力波形W−PCから算出する。   In the subsequent step S40 (decrease waveform acquisition means, increase waveform acquisition means), a portion (P1 ′ to P3) in which the pressure decreases as the fuel injection valve 10 starts to open in the corrected injection pressure waveform W-PC. And a rising waveform that is a waveform of a portion where the pressure rises (a portion corresponding to P3 ′ to P5 ′) with the start of the valve closing operation of the fuel injection valve 10 is acquired. . Specifically, the slope Pα ′ of the descending waveform and the descending start timing t (P1 ′) of the descending waveform, and the slope Pβ ′ of the ascent waveform and the ascent start timing t (P3 ′) of the ascending waveform are corrected. Calculated from the hourly pressure waveform W-PC.

ここで、噴射時圧力波形W−PCの下降波形及び上昇波形と、図2(b)に示す噴射率波形のうち噴射開始に伴い噴射率が上昇する部分(R1〜R2に相当する部分)及び噴射終了に伴い噴射率が下降する部分(R3〜R4に相当する部分)とは相関性が高い。そこで、前記相関を予め実施した試験により取得して記憶させておき、その記憶させておいた相関を用いて、噴射時圧力波形W−PCの下降波形及び上昇波形を、噴射率波形のうちR1〜R2及びR3〜R4に相当する部分の直線に変換する。但し、その時の分配供給圧力PCに応じて前記相関は変化するので、分配供給圧力PCの変化(つまり非噴射気筒の波形成分)に応じた相関を用いて変換している。   Here, a descending waveform and an ascending waveform of the pressure waveform W-PC at the time of injection, and a portion of the injection rate waveform shown in FIG. There is a high correlation with the portion (the portion corresponding to R3 to R4) where the injection rate decreases as the injection ends. Therefore, the correlation is acquired and stored by a test performed in advance, and using the stored correlation, the falling waveform and the rising waveform of the injection pressure waveform W-PC are expressed as R1 in the injection rate waveform. It converts into the straight line of the part corresponded to -R2 and R3-R4. However, since the correlation changes according to the distribution supply pressure PC at that time, the conversion is performed using the correlation according to the change of the distribution supply pressure PC (that is, the waveform component of the non-injection cylinder).

より詳細に説明すると、噴射時圧力波形W−PCにかかる前記傾きPα’,Pβ’と、噴射率波形(図2(b)参照)の噴射率上昇傾きRα及び噴射率下降傾きRβとは相関が高い。そこで次のステップS50(変換手段)では、Pα’,Pβ’に変換係数Kα,Kβを乗算してRα,Rβを算出している(下記の式1、式2参照)。   More specifically, the slopes Pα ′ and Pβ ′ applied to the pressure waveform W-PC during injection correlate with the injection rate increase gradient Rα and the injection rate decrease gradient Rβ of the injection rate waveform (see FIG. 2B). Is expensive. Therefore, in the next step S50 (conversion means), Rα and Rβ are calculated by multiplying Pα ′ and Pβ ′ by conversion coefficients Kα and Kβ (see the following equations 1 and 2).

Rα=−Kα×Pα’・・・(式1)
Rβ=−Kβ×Pβ’・・・(式2)
なお、これらの演算式はPα’又はPβ’を変数としてRα又はRβを表した「変換関数」に相当する。
Rα = −Kα × Pα ′ (Formula 1)
Rβ = −Kβ × Pβ ′ (Formula 2)
Note that these arithmetic expressions correspond to “conversion functions” representing Rα or Rβ with Pα ′ or Pβ ′ as a variable.

図5(a)(b)は、予め試験して得られた変換係数Kα,Kβと分配供給圧力PCとの関係を示すマップM1,M2を示す。これらのマップM1,M2に示すように、変換係数Kα,Kβは分配供給圧力PCに応じて異なる値に設定されている。具体的には、分配供給圧力PCが高いほど変換係数Kα,Kβの値を大きくして変換ゲインを大きくしている。したがって、Pα’,Pβ’の値が同じであっても、その時の分配供給圧力PCが高いほど噴射率波形の傾きRα,Rβは大きくなるよう変換される。   FIGS. 5A and 5B show maps M1 and M2 showing the relationship between the conversion coefficients Kα and Kβ obtained in advance and the distribution supply pressure PC. As shown in these maps M1 and M2, the conversion coefficients Kα and Kβ are set to different values according to the distribution supply pressure PC. Specifically, the conversion gains Kα and Kβ are increased by increasing the distribution supply pressure PC to increase the conversion gain. Therefore, even if the values of Pα ′ and Pβ ′ are the same, the gradients Rα and Rβ of the injection rate waveform are converted to increase as the distribution supply pressure PC at that time increases.

要するに、マップM1,M2中の変換係数Kα,Kβを選択する引数として分配供給圧力PCを用いている。そして、変換係数Kαの引数として用いる分配供給圧力PCは、非噴射時圧力波形のうち噴射時圧力波形W中のt(P1’)時点と同時期に検出された圧力(分配供給圧力PC)であってもよいし、t(P2’)時点と同時期に検出された圧力であってもよいし、t(P1’)時点からt(P2’)時点までの平均圧力であってもよい。或いは、噴射開始指令信号を出力したt1時点から所定時間が経過した時と同時期に検出された分配供給圧力PCを引数として用いてもよい。   In short, the distribution supply pressure PC is used as an argument for selecting the conversion coefficients Kα and Kβ in the maps M1 and M2. The distribution supply pressure PC used as an argument of the conversion coefficient Kα is a pressure (distribution supply pressure PC) detected at the same time as the time t (P1 ′) in the injection pressure waveform W among the non-injection pressure waveforms. It may be a pressure detected at the same time as the time point t (P2 ′), or may be an average pressure from the time point t (P1 ′) to the time point t (P2 ′). Alternatively, the distribution supply pressure PC detected at the same time as a predetermined time from the time t1 when the injection start command signal is output may be used as an argument.

また、変換係数Kβの引数として用いる分配供給圧力PCは、非噴射時圧力波形のうち噴射時圧力波形W中のt(P3’)時点と同時期に検出された圧力(分配供給圧力PC)であってもよいし、t(P4’)時点と同時期に検出された圧力であってもよいし、t(P3’)時点からt(P4’)時点までの平均圧力であってもよい。或いは、噴射終了指令信号を出力したt2時点から所定時間が経過した時と同時期に検出された分配供給圧力PCを引数として用いてもよい。   The distribution supply pressure PC used as an argument of the conversion coefficient Kβ is a pressure (distribution supply pressure PC) detected at the same time as the time t (P3 ′) in the injection pressure waveform W among the non-injection pressure waveforms. It may be a pressure detected at the same time as the time point t (P4 ′) or an average pressure from the time point t (P3 ′) to the time point t (P4 ′). Alternatively, the distribution supply pressure PC detected at the same time when a predetermined time has elapsed from the time t2 when the injection end command signal is output may be used as an argument.

噴射時圧力波形W−PCにかかる下降開始時期t(P1’)及び上昇開始時期t(P3’)と、噴射率波形(図2(b)参照)の噴射率上昇開始時期t(R1)及び噴射率下降開始時期t(R3)とは相関が高い。そこで次のステップS60(変換手段)では、t(P1’),t(P3’)に遅れ時間C1,C3を減算して、t(R1),t(R3)を算出している(下記の式3、式4参照)。   Decreasing start timing t (P1 ′) and rising start timing t (P3 ′) applied to the injection pressure waveform W-PC, and an injection rate increase starting timing t (R1) of the injection rate waveform (see FIG. 2B) and The correlation with the injection rate lowering start timing t (R3) is high. Therefore, in the next step S60 (conversion means), t (R1) and t (R3) are calculated by subtracting the delay times C1 and C3 from t (P1 ′) and t (P3 ′) (described below). (See Equation 3 and Equation 4).

t(R1)=t(P1’)−C1・・・(式3)
t(R3)=t(P3’)−C3・・・(式4)
これらの演算式はt(P1’)又はt(P3’)を変数としてt(R1)又はt(R3)を表した「変換関数」に相当する。
t (R1) = t (P1 ′) − C1 (Formula 3)
t (R3) = t (P3 ′) − C3 (Formula 4)
These arithmetic expressions correspond to “conversion functions” representing t (R1) or t (R3) with t (P1 ′) or t (P3 ′) as variables.

図5(c)(d)は、予め試験して得られた遅れ時間C1,C3と分配供給圧力PCとの関係を示すマップM3,M4を示す。これらのマップM3,M4に示すように、遅れ時間C1,C3は分配供給圧力PCに応じて異なる値に設定されている。具体的には、分配供給圧力PCが低いほど遅れ時間C1,C3の値を大きくしている。したがって、t(P1’),t(P3’)の出現時期が同じであっても、その時の分配供給圧力PCが低いほど噴射率波形の上昇開始時期t(R1)や下降開始時期t(R3)は遅くなるよう変換される。   FIGS. 5C and 5D show maps M3 and M4 showing the relationship between the delay times C1 and C3 obtained by testing in advance and the distribution supply pressure PC. As shown in these maps M3 and M4, the delay times C1 and C3 are set to different values according to the distribution supply pressure PC. Specifically, the values of the delay times C1 and C3 are increased as the distribution supply pressure PC is lower. Therefore, even if the appearance times of t (P1 ′) and t (P3 ′) are the same, the lower the distribution supply pressure PC at that time, the lower the start timing t (R1) and the lower start timing t (R3) of the injection rate waveform. ) Is converted to be slower.

要するに、マップM3,M4中の遅れ時間C1を選択する引数として分配供給圧力PCを用いている。そして、遅れ時間C1の引数として用いる分配供給圧力PCは、非噴射時圧力波形のうち噴射時圧力波形W中のt(P1’)時点と同時期に検出された圧力(分配供給圧力PC)であってもよいし、t(P2’)時点と同時期に検出された圧力であってもよいし、t(P1’)時点からt(P2’)時点までの平均圧力であってもよい。或いは、噴射開始指令信号を出力したt1時点から所定時間が経過した時と同時期に検出された分配供給圧力PCを引数として用いてもよい。   In short, the distribution supply pressure PC is used as an argument for selecting the delay time C1 in the maps M3 and M4. The distribution supply pressure PC used as an argument of the delay time C1 is a pressure (distribution supply pressure PC) detected at the same time as the time t (P1 ′) in the injection pressure waveform W among the non-injection pressure waveforms. It may be a pressure detected at the same time as the time point t (P2 ′), or may be an average pressure from the time point t (P1 ′) to the time point t (P2 ′). Alternatively, the distribution supply pressure PC detected at the same time as a predetermined time from the time t1 when the injection start command signal is output may be used as an argument.

また、遅れ時間C3の引数として用いる分配供給圧力PCは、非噴射時圧力波形のうち噴射時圧力波形W中のt(P3’)時点と同時期に検出された圧力(分配供給圧力PC)であってもよいし、t(P4’)時点と同時期に検出された圧力であってもよいし、t(P3’)時点からt(P4’)時点までの平均圧力であってもよい。或いは、噴射終了指令信号を出力したt2時点から所定時間が経過した時と同時期に検出された分配供給圧力PCを引数として用いてもよい。   The distribution supply pressure PC used as an argument of the delay time C3 is a pressure (distribution supply pressure PC) detected at the same time as the time t (P3 ′) in the injection pressure waveform W among the non-injection pressure waveforms. It may be a pressure detected at the same time as the time point t (P4 ′) or an average pressure from the time point t (P3 ′) to the time point t (P4 ′). Alternatively, the distribution supply pressure PC detected at the same time when a predetermined time has elapsed from the time t2 when the injection end command signal is output may be used as an argument.

続くステップS70では、分配供給圧力PCに基づき、台形形状である噴射率波形の台形高さRh(図2(b)参照)を算出する。この台形高さRhは最大噴射率に相当する。最大噴射率で燃料を噴射している時には先述した噴孔絞り状態になっており、この状態時の噴射率は分配供給圧力PCにより決まる。つまり、噴孔絞り状態時には分配供給圧力PCと噴射率との相関性が高い。   In subsequent step S70, a trapezoidal height Rh (see FIG. 2B) of an injection rate waveform having a trapezoidal shape is calculated based on the distribution supply pressure PC. This trapezoidal height Rh corresponds to the maximum injection rate. When the fuel is injected at the maximum injection rate, the above-described nozzle hole throttle state is set, and the injection rate in this state is determined by the distribution supply pressure PC. That is, the correlation between the distribution supply pressure PC and the injection rate is high when the nozzle hole is in the throttle state.

したがって、上述の如く分配供給圧力PCに基づけば、最大噴射率Rhを精度良く算出できる。なお、Rhの算出に用いられる分配供給圧力PCは、非噴射時圧力波形の所定期間における平均圧力PCaveである。前記所定期間の具体例としては、P1からP3に相当する期間や、R1からR4に相当する期間等が挙げられる。そして、図5(e)に示すようにRh=Kh×PCaveとの式に基づきRhを算出しており、式中のKhは所定の係数である。   Therefore, the maximum injection rate Rh can be accurately calculated based on the distribution supply pressure PC as described above. The distribution supply pressure PC used for calculating Rh is the average pressure PCave during a predetermined period of the non-injection pressure waveform. Specific examples of the predetermined period include a period corresponding to P1 to P3, a period corresponding to R1 to R4, and the like. Then, as shown in FIG. 5E, Rh is calculated based on the equation Rh = Kh × PCave, where Kh is a predetermined coefficient.

上述した各種値Rα,Rβ,t(R1),t(R3),Rhが特定されれば、台形形状の噴射率波形を特定することができる。そこで続くステップS80では、ステップS50での変換で得られたRα,Rβ、ステップS60での変換で得られたt(R1),t(R3)、ステップS70で算出された最大噴射率Rhに基づき噴射率波形を算出する。   If the various values Rα, Rβ, t (R1), t (R3), and Rh described above are specified, a trapezoidal injection rate waveform can be specified. In step S80, Rα and Rβ obtained by the conversion in step S50, t (R1) and t (R3) obtained by the conversion in step S60, and the maximum injection rate Rh calculated in step S70. Calculate the injection rate waveform.

ちなみに、噴射指令期間Tqが短く噴射量が少ない場合には、噴射率波形の形状は三角形になる。この場合には、Rhの値を算出しなくても、Rα,Rβ,t(R1),t(R3)が特定されれば三角形形状の噴射率波形を特定することができる。   Incidentally, when the injection command period Tq is short and the injection amount is small, the shape of the injection rate waveform is a triangle. In this case, without calculating the value of Rh, if Rα, Rβ, t (R1), and t (R3) are specified, a triangular injection rate waveform can be specified.

ここで、燃料噴射中にポンプ圧送が為された場合、図6(c)に示すように非噴射時圧力波形はプランジャ吐出期間に上昇する。すると、この上昇に伴い、噴射時圧力波形W−PC及び噴射率波形は、図6(a)(b)中の点線に示すように上昇する。一方、燃料噴射中にポンプ圧送が為されなかった場合には、図3(a)中の点線に示すように非噴射時圧力波形(分配供給圧力PC)は徐々に低下する。このように、分配供給圧力PCは燃料噴射中に変化することが多い。   Here, when pumping is performed during fuel injection, the non-injection pressure waveform rises during the plunger discharge period as shown in FIG. Then, with this increase, the injection pressure waveform W-PC and the injection rate waveform increase as shown by the dotted lines in FIGS. On the other hand, when pumping is not performed during fuel injection, the non-injection pressure waveform (distributed supply pressure PC) gradually decreases as shown by the dotted line in FIG. Thus, the distribution supply pressure PC often changes during fuel injection.

そして、分配供給圧力PCが異なれば、噴射時圧力波形Wと噴射率波形との相関は異なってくる。例えば、分配供給圧力が100MPaの時の噴射時圧力波形Wの傾きPβ’(図6(b)中の実線参照)と、分配供給圧力が120MPaの時の傾きPβ’は同じであるが、前記相関が異なるため噴射率波形の傾きRβは異なってくる。具体的は、傾きPβ’が同じであっても、その時の分配供給圧力PCが高いほど、噴射率波形の降下の傾きRβは大きくなり噴射率は急降下するようになる。   If the distribution supply pressure PC is different, the correlation between the injection pressure waveform W and the injection rate waveform is different. For example, the slope Pβ ′ of the injection pressure waveform W when the distributed supply pressure is 100 MPa (see the solid line in FIG. 6B) and the slope Pβ ′ when the distributed supply pressure is 120 MPa are the same. Since the correlation is different, the slope Rβ of the injection rate waveform is different. Specifically, even if the slope Pβ ′ is the same, the higher the distribution supply pressure PC at that time, the greater the slope Rβ of the drop in the injection rate waveform, and the injection rate falls rapidly.

この点を鑑みた本実施形態によれば、噴射時圧力波形W−PCの下降部分(下降波形P1’〜P2’)を噴射率波形に変換する変換係数Kα及び遅れ時間C1と、噴射時圧力波形Wの上昇部分(上昇波形P3’〜P5’)を噴射率波形に変換する変換係数Kβ及び遅れ時間C3とを、その時の分配供給圧力PCに応じて異なる値に設定するので、噴射時圧力波形W−PCを噴射率波形に変換するにあたり、その変換精度を向上できる。   According to this embodiment in view of this point, the conversion coefficient Kα and the delay time C1 for converting the descending portion (the descending waveforms P1 ′ to P2 ′) of the injecting pressure waveform W-PC into the injecting rate waveform, and the injecting pressure Since the conversion coefficient Kβ for converting the rising portion of the waveform W (the rising waveforms P3 ′ to P5 ′) into the injection rate waveform and the delay time C3 are set to different values according to the distribution supply pressure PC at that time, the injection pressure In converting the waveform W-PC into the injection rate waveform, the conversion accuracy can be improved.

また、本実施形態によれば、非噴射気筒の燃圧センサ20により噴射時圧力波形と同時期に検出された波形(非噴射時圧力波形)は分配供給圧力PCの変化を表していることに着目し、非噴射時圧力波形に基づき変換係数Kα,Kβ及び遅れ時間C1,C3を算出するので、分配供給圧力を検出する専用の燃圧センサをコモンレール42に設けることを不要にできる。   Further, according to the present embodiment, attention is paid to the fact that the waveform (non-injection pressure waveform) detected by the fuel pressure sensor 20 of the non-injection cylinder at the same time as the injection pressure waveform represents a change in the distribution supply pressure PC. In addition, since the conversion coefficients Kα and Kβ and the delay times C1 and C3 are calculated based on the non-injection pressure waveform, it is unnecessary to provide the common rail 42 with a dedicated fuel pressure sensor for detecting the distributed supply pressure.

さらに、本実施形態によれば、分配供給圧力PCの変化を表す波形を噴射時圧力波形Wから差し引いて補正するので、噴射時圧力波形Wから分配供給圧力PCの変化による影響が除去される。よって、噴射時圧力波形W−PCと噴射率波形との相関を高めることができる。そして、このように相関が高められた補正後の噴射時圧力波形W−PCを用いて噴射率波形へ変換するので、噴射率波形を高精度で取得できる。   Furthermore, according to the present embodiment, the waveform representing the change in the distribution supply pressure PC is corrected by subtracting it from the injection pressure waveform W, so that the influence due to the change in the distribution supply pressure PC is removed from the injection pressure waveform W. Therefore, the correlation between the injection pressure waveform W-PC and the injection rate waveform can be increased. And since it converts into an injection rate waveform using the pressure waveform W-PC after the injection in which the correlation was improved in this way, the injection rate waveform can be acquired with high accuracy.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・図4に示す実施形態では、噴射時圧力波形W−PC中のP3と噴射率波形中のR3との相関(遅れ時間C3)に基づき、P3からR3を算出している。この変形例として、例えばP3からR4を算出してもよいし、P3a(図2(c)参照)からR3又はR4を算出してもよいし、P5からR3又はR4を算出してもよい。また、図3(b)に中の点線に示す基準圧力と噴射時圧力波形W−PCとの交点であるP4’を算出し、当該P4’からR3又はR4を算出してもよい。なお、前記基準圧力は、噴射開始指令がなされたt1時点からP1出現時点までの期間における圧力の値に設定する。上記変形例によっても、噴射率波形を表す台形の噴射率降下部分の形状を特定できる。   In the embodiment shown in FIG. 4, R3 is calculated from P3 based on the correlation (delay time C3) between P3 in the injection pressure waveform W-PC and R3 in the injection rate waveform. As this modification, for example, R4 may be calculated from P3, R3 or R4 may be calculated from P3a (see FIG. 2C), or R3 or R4 may be calculated from P5. Alternatively, P4 ′ that is the intersection of the reference pressure indicated by the dotted line in FIG. 3B and the pressure waveform W-PC during injection may be calculated, and R3 or R4 may be calculated from the P4 ′. The reference pressure is set to a pressure value in a period from the time t1 when the injection start command is issued to the time P1 is released. The shape of the trapezoidal injection rate drop part representing the injection rate waveform can also be specified by the above modification.

・図4に示す上記実施形態では、噴射時圧力波形W−PC中のP1と噴射率波形中のR1との相関(遅れ時間C1)に基づき、P1からR1を算出している。この変形例として、例えばP1からR2を算出してもよいし、P2からR1又はR2を算出してもよい。上記変形例によっても、噴射率波形を表す台形の噴射率上昇部分の形状を特定できる。   In the embodiment shown in FIG. 4, R1 is calculated from P1 based on the correlation (delay time C1) between P1 in the injection pressure waveform W-PC and R1 in the injection rate waveform. As a modification, for example, R2 may be calculated from P1, or R1 or R2 may be calculated from P2. The shape of the trapezoidal injection rate increasing portion representing the injection rate waveform can also be specified by the above modification.

・上記実施形態では、非噴射気筒の燃圧センサ20により検出された圧力波形に基づき分配供給圧PCの変化を取得しているが、コモンレール42に燃圧センサ(図示せず)を搭載して、その燃圧センサにより検出された圧力波形に基づき分配供給圧PCの変化を取得してもよい。   In the above embodiment, the change in the distribution supply pressure PC is acquired based on the pressure waveform detected by the fuel pressure sensor 20 of the non-injection cylinder, but a fuel pressure sensor (not shown) is mounted on the common rail 42, A change in the distribution supply pressure PC may be acquired based on the pressure waveform detected by the fuel pressure sensor.

・上記実施形態では、噴射時圧力波形Wから非噴射時圧力波形を差し引いて補正し、補正後の噴射時圧力波形W−PCを変換して噴射率波形を算出しているが、上記補正を廃止して、噴射時圧力波形Wを変換して噴射率波形を算出するようにしてもよい。特に、図6に例示されるようにポンプ圧送開始が噴射時圧力波形Wの下降波形部分よりも後である場合には、上記補正が為されていない噴射時圧力波形Wの下降波形部分に基づき噴射開始時期t(R1)を算出しても、ポンプ圧送の影響を受けていないため前記算出の精度を十分に確保できる。   In the above embodiment, the non-injection pressure waveform is corrected by subtracting from the injection pressure waveform W, and the injection rate waveform is calculated by converting the corrected injection pressure waveform W-PC. Alternatively, the injection pressure waveform may be calculated by converting the injection pressure waveform W. In particular, as illustrated in FIG. 6, when the pump pumping start is later than the falling waveform portion of the injection pressure waveform W, the above correction is not performed, but based on the falling waveform portion of the injection pressure waveform W that has not been corrected. Even if the injection start timing t (R1) is calculated, the calculation accuracy can be sufficiently ensured because it is not affected by pumping.

・図1に示す上記実施形態では、燃圧センサ20を燃料噴射弁10に搭載しているが、本発明にかかる燃圧センサはコモンレール42の吐出口42aから噴孔11bに至るまでの燃料経路内の燃圧を検出するよう配置された燃圧センサであればよい。よって、例えばコモンレール42と燃料噴射弁10とを接続する高圧配管に燃圧センサを搭載してもよい。   In the above embodiment shown in FIG. 1, the fuel pressure sensor 20 is mounted on the fuel injection valve 10, but the fuel pressure sensor according to the present invention is located in the fuel path from the discharge port 42a of the common rail 42 to the injection hole 11b. Any fuel pressure sensor arranged to detect the fuel pressure may be used. Therefore, for example, a fuel pressure sensor may be mounted on a high-pressure pipe connecting the common rail 42 and the fuel injection valve 10.

10…燃料噴射弁、11b…噴孔、20…燃圧センサ、42…コモンレール(分配容器)、42a…吐出口、S10…噴射時波形取得手段、S20…非噴射時波形取得手段、S40…下降波形取得手段、上昇波形取得手段、S50,S60…変換手段、Kα…下降波形の傾きを変換する係数、Kβ…上昇波形の傾きを変換する係数、C1…圧力下降開始の遅れ時間、C3…圧力上昇開始の遅れ時間。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11b ... Injection hole, 20 ... Fuel pressure sensor, 42 ... Common rail (distribution container), 42a ... Discharge port, S10 ... Waveform acquisition means at injection, S20 ... Waveform acquisition means at non-injection, S40 ... Falling waveform Acquisition means, rising waveform acquisition means, S50, S60... Conversion means, Kα... Coefficient for converting the slope of the falling waveform, Kβ... Coefficient for converting the slope of the rising waveform, C1. Start delay time.

Claims (8)

多気筒内燃機関の各気筒に設けられた燃料噴射弁と、
燃料ポンプから供給される燃料を蓄圧して複数の前記燃料噴射弁へ分配供給する分配容器と、
複数の前記燃料噴射弁の各々に対して設けられ、前記燃料噴射弁の噴孔から燃料を噴射させることに伴い前記分配容器の吐出口から前記噴孔に至るまでの燃料経路内で生じる燃料圧力の変化を検出する燃圧センサと、
を備えた燃料噴射システムに適用され、
複数の前記燃圧センサのうち燃料噴射中の燃料噴射弁に対応する燃圧センサにより検出された、噴射時圧力波形を取得する噴射時波形取得手段と、
前記噴射時圧力波形を、燃料噴射率の変化を表す噴射率波形に変換する変換手段と、
を備え、
前記変換手段は、
前記噴射時圧力波形を前記噴射率波形に変換する変換関数を、前記分配容器内の分配供給圧力に基づき設定するとともに、
燃料噴射中に生じた前記分配供給圧力の変化に応じて、噴射1回分の前記噴射時圧力波形内で前記変換関数を変化させることを特徴とする燃料噴射状態検出装置。
A fuel injection valve provided in each cylinder of the multi-cylinder internal combustion engine;
A distribution container for accumulating and supplying fuel supplied from a fuel pump to the plurality of fuel injection valves;
Fuel pressure that is provided for each of the plurality of fuel injection valves and is generated in the fuel path from the outlet of the distribution container to the injection hole as fuel is injected from the injection hole of the fuel injection valve A fuel pressure sensor that detects changes in
Applied to the fuel injection system with
An injection waveform acquisition means for acquiring an injection pressure waveform detected by a fuel pressure sensor corresponding to a fuel injection valve during fuel injection among the plurality of fuel pressure sensors;
Conversion means for converting the pressure waveform during injection into an injection rate waveform representing a change in fuel injection rate;
With
The converting means includes
A conversion function for converting the injection pressure waveform into the injection rate waveform is set based on the distribution supply pressure in the distribution container, and
A fuel injection state detection device that changes the conversion function within a pressure waveform during injection for one injection in accordance with a change in the distributed supply pressure generated during fuel injection.
前記噴射時圧力波形のうち、前記燃料噴射弁の開弁作動開始に伴い圧力が下降する部分の波形である下降波形を取得する下降波形取得手段と、
前記噴射時圧力波形のうち、前記燃料噴射弁の閉弁作動開始に伴い圧力が上昇する部分の波形である上昇波形を取得する上昇波形取得手段と、
を備え、
前記下降波形が現れている期間での前記分配供給圧力に基づき前記下降波形に対する前記変換関数を設定し、
前記上昇波形が現れている期間での前記分配供給圧力に基づき前記上昇波形に対する前記変換関数を設定することを特徴とする請求項1に記載の燃料噴射状態検出装置。
A descending waveform acquisition means for acquiring a descending waveform that is a waveform of a portion where the pressure decreases as the fuel injection valve starts opening operation of the injection pressure waveform;
An ascending waveform obtaining means for obtaining an ascending waveform that is a waveform of a portion where the pressure rises with the start of the closing operation of the fuel injection valve in the injection pressure waveform;
With
Setting the conversion function for the falling waveform based on the distributed supply pressure during the period in which the falling waveform appears;
2. The fuel injection state detection device according to claim 1, wherein the conversion function for the rising waveform is set based on the distributed supply pressure during a period in which the rising waveform appears.
前記変換手段は、The converting means includes
前記下降波形が現れている期間での前記分配供給圧力が高いほど、前記噴射時圧力波形を前記噴射率波形に変換する際の変換ゲインを大きくし、The higher the distribution supply pressure in the period in which the descending waveform appears, the greater the conversion gain when converting the injection pressure waveform into the injection rate waveform,
前記上昇波形が現れている期間での前記分配供給圧力が高いほど、前記噴射時圧力波形を前記噴射率波形に変換する際の変換ゲインを大きくすることを特徴とする請求項2に記載の燃料噴射状態検出装置。3. The fuel according to claim 2, wherein a conversion gain when the pressure waveform during injection is converted into the injection rate waveform is increased as the distribution supply pressure in a period in which the rising waveform appears is increased. Injection state detection device.
前記下降波形に対する前記変換関数には、前記下降波形の傾きを変換する係数が含まれており、
前記上昇波形に対する前記変換関数には、前記上昇波形の傾きを変換する係数が含まれていることを特徴とする請求項2又は3に記載の燃料噴射状態検出装置。
The conversion function for the falling waveform includes a coefficient for converting the slope of the falling waveform,
The fuel injection state detection device according to claim 2 or 3 , wherein the conversion function for the rising waveform includes a coefficient for converting a slope of the rising waveform.
前記下降波形に対する前記変換関数には、前記噴射率波形中の噴射率上昇開始に対する前記噴射時圧力波形中の圧力下降開始の遅れ時間が含まれており、
前記上昇波形に対する前記変換関数には、前記噴射率波形中の噴射率下降開始に対する前記噴射時圧力波形中の圧力上昇開始の遅れ時間が含まれていることを特徴とする請求項2〜4のいずれか1つに記載の燃料噴射状態検出装置。
The conversion function for the falling waveform includes a delay time of the pressure drop start in the injection pressure waveform with respect to the injection rate increase start in the injection rate waveform,
Wherein the said conversion function for rising waveform of claims 2-4, characterized in that the contains the delay time of the pressure increase start during an injection time of the pressure waveform for injection rate decrease start in the injection rate waveform The fuel-injection state detection apparatus as described in any one .
前記変換手段は、The converting means includes
前記下降波形が現れている期間での前記分配供給圧力が低いほど、前記圧力下降開始の遅れ時間を大きくし、The lower the distribution supply pressure in the period in which the falling waveform appears, the greater the delay time of the pressure drop start,
前記上昇波形が現れている期間での前記分配供給圧力が低いほど、前記圧力上昇開始の遅れ時間を大きくすることを特徴とする請求項5に記載の燃料噴射状態検出装置。6. The fuel injection state detection device according to claim 5, wherein the delay time of the pressure increase start is increased as the distribution supply pressure is lower during the period in which the rising waveform appears.
複数の前記燃圧センサのうち噴射していない燃料噴射弁に対応する燃圧センサにより検出された、非噴射時圧力波形を取得する非噴射時波形取得手段を備え、
前記変換手段は、前記非噴射時波形を前記分配供給圧力の変化とみなして前記変換関数を変化させることを特徴とする請求項1〜のいずれか1つに記載の燃料噴射状態検出装置。
Non-injection waveform acquisition means for acquiring a non-injection pressure waveform detected by a fuel pressure sensor corresponding to a fuel injection valve that is not injecting among the plurality of fuel pressure sensors,
And the converting means, the fuel injection detecting device according to any one of claims 1-6, characterized in that varying the conversion function the non-ejection time waveform is regarded as a change in the distribution supply pressure.
前記変換手段は、前記噴射時圧力波形から前記分配供給圧力の変化を表す波形を差し引いて前記噴射時圧力波形を補正し、補正後の前記噴射時圧力波形を前記噴射率波形に変換することを特徴とする請求項1〜のいずれか1つに記載の燃料噴射状態検出装置。 The converting means corrects the injection pressure waveform by subtracting a waveform representing a change in the distributed supply pressure from the injection pressure waveform, and converts the corrected injection pressure waveform into the injection rate waveform. fuel injection detecting device according to any one of claims 1-7, characterized.
JP2010139481A 2010-06-18 2010-06-18 Fuel injection state detection device Expired - Fee Related JP5126296B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010139481A JP5126296B2 (en) 2010-06-18 2010-06-18 Fuel injection state detection device
DE102011050925.9A DE102011050925B4 (en) 2010-06-18 2011-06-08 Fuel injection state detecting device
CN201110167050.5A CN102287285B (en) 2010-06-18 2011-06-16 Fuel injection state sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010139481A JP5126296B2 (en) 2010-06-18 2010-06-18 Fuel injection state detection device

Publications (2)

Publication Number Publication Date
JP2012002180A JP2012002180A (en) 2012-01-05
JP5126296B2 true JP5126296B2 (en) 2013-01-23

Family

ID=45115884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010139481A Expired - Fee Related JP5126296B2 (en) 2010-06-18 2010-06-18 Fuel injection state detection device

Country Status (3)

Country Link
JP (1) JP5126296B2 (en)
CN (1) CN102287285B (en)
DE (1) DE102011050925B4 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5278398B2 (en) 2010-09-30 2013-09-04 株式会社デンソー Fuel injection state detection device
JP6040877B2 (en) * 2013-07-05 2016-12-07 株式会社デンソー Fuel injection state estimation device
DE102014007963A1 (en) * 2014-06-04 2015-12-17 Man Diesel & Turbo Se Method for operating an internal combustion engine and engine control unit
JP6614195B2 (en) 2017-04-06 2019-12-04 トヨタ自動車株式会社 Control device for internal combustion engine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015503A1 (en) * 2006-03-31 2007-10-04 Fev Motorentechnik Gmbh Method for control of injection process of directly fuel injected internal combustion engine is implemented in such way that change of injection process is effected on basis of parameter recorded during first working cycle
JP4375487B2 (en) * 2007-08-31 2009-12-02 株式会社デンソー Fuel injection device and fuel injection system
JP4428427B2 (en) 2007-08-31 2010-03-10 株式会社デンソー Fuel injection characteristic detecting device and fuel injection command correcting device
JP4678397B2 (en) 2007-10-15 2011-04-27 株式会社デンソー Fuel injection state detection device
CN201137543Y (en) * 2008-01-11 2008-10-22 广西玉柴机器股份有限公司 Oil jetting pump oil spout rule test stand
JP4631937B2 (en) 2008-06-18 2011-02-16 株式会社デンソー Learning device and fuel injection system

Also Published As

Publication number Publication date
CN102287285A (en) 2011-12-21
DE102011050925A1 (en) 2011-12-29
DE102011050925B4 (en) 2019-02-14
JP2012002180A (en) 2012-01-05
CN102287285B (en) 2014-03-26

Similar Documents

Publication Publication Date Title
JP5195842B2 (en) Pressure reducing valve controller
JP5003796B2 (en) Fuel injection state detection device
JP5278398B2 (en) Fuel injection state detection device
JP5287915B2 (en) Fuel injection state estimation device
JP5321606B2 (en) Fuel injection control device
US20120158268A1 (en) Fuel-injection-characteristics learning apparatus
JP5723244B2 (en) Fuel injection control device
JP5141723B2 (en) Fuel injection control device for internal combustion engine
JP5136617B2 (en) Fuel injection waveform calculation device
JP5263280B2 (en) Fuel injection control device
JP2013007341A (en) Fuel-injection-condition estimating apparatus
JP6040877B2 (en) Fuel injection state estimation device
JP5126296B2 (en) Fuel injection state detection device
JP5067461B2 (en) Fuel injection state detection device
JP5024429B2 (en) Fuel injection state detection device
JP5182337B2 (en) Detection deviation judgment device of fuel pressure sensor
JP5565435B2 (en) Fuel injection control device
JP5370348B2 (en) Fuel injection control device for internal combustion engine
JP5240283B2 (en) Noise diagnosis device for fuel injection system
JP5168325B2 (en) Fuel injection state detection device
JP6028603B2 (en) Fuel injection state estimation device
JP5382006B2 (en) Fuel injection control device
JP5267441B2 (en) Fuel injection device for internal combustion engine
WO2019088188A1 (en) Fuel injection control device
JP6056666B2 (en) Fuel injection condition analyzer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R151 Written notification of patent or utility model registration

Ref document number: 5126296

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees