JP5182337B2 - Detection deviation judgment device of fuel pressure sensor - Google Patents

Detection deviation judgment device of fuel pressure sensor Download PDF

Info

Publication number
JP5182337B2
JP5182337B2 JP2010182948A JP2010182948A JP5182337B2 JP 5182337 B2 JP5182337 B2 JP 5182337B2 JP 2010182948 A JP2010182948 A JP 2010182948A JP 2010182948 A JP2010182948 A JP 2010182948A JP 5182337 B2 JP5182337 B2 JP 5182337B2
Authority
JP
Japan
Prior art keywords
injection
waveform
cylinder
fuel
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010182948A
Other languages
Japanese (ja)
Other versions
JP2012041847A (en
Inventor
祥光 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010182948A priority Critical patent/JP5182337B2/en
Priority to DE102011052137.2A priority patent/DE102011052137B9/en
Publication of JP2012041847A publication Critical patent/JP2012041847A/en
Application granted granted Critical
Publication of JP5182337B2 publication Critical patent/JP5182337B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L27/00Testing or calibrating of apparatus for measuring fluid pressure
    • G01L27/007Malfunction diagnosis, i.e. diagnosing a sensor defect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、燃料噴射弁から燃料を噴射させることに伴い生じる燃料圧力の変化を検出する燃圧センサに、検出ずれが生じているか否かを判定する装置に関する。   The present invention relates to an apparatus for determining whether or not a detection deviation has occurred in a fuel pressure sensor that detects a change in fuel pressure caused by injecting fuel from a fuel injection valve.

燃料噴射弁の噴孔から燃料を噴射させると、噴孔に至るまでの燃料供給経路内の燃料圧力が変化する。そこで特許文献1では、燃料噴射弁の各々に燃圧センサを搭載し、噴射に伴い生じる燃料の圧力変化を検出している。これによれば、燃圧センサの検出値(噴射時センサ波形)に基づき噴射率変化を示す波形を推定でき、ひいては噴射開始時期、噴射終了時期、噴射量等の実際の噴射状態を検出できる。そして、検出した噴射状態に基づき燃料噴射弁の作動を制御することで、内燃機関の運転状態を最適化でき、排気エミッション低下や出力トルク向上を図ることができる。   When fuel is injected from the injection hole of the fuel injection valve, the fuel pressure in the fuel supply path leading to the injection hole changes. Therefore, in Patent Document 1, a fuel pressure sensor is mounted on each fuel injection valve to detect a change in fuel pressure caused by injection. According to this, it is possible to estimate the waveform indicating the change in the injection rate based on the detection value (injection sensor waveform) of the fuel pressure sensor, and it is possible to detect the actual injection state such as the injection start timing, the injection end timing, and the injection amount. By controlling the operation of the fuel injection valve based on the detected injection state, the operating state of the internal combustion engine can be optimized, and exhaust emission reduction and output torque improvement can be achieved.

但し、噴射時センサ波形には、噴射に伴い生じた圧力変化の他にも、燃料ポンプが燃料を圧送することに伴い生じる圧力変化や、燃料噴射分だけコモンレール内の圧力が低下することに伴い生じる圧力変化等が含まれている。そこで上記特許文献1では、燃料噴射していない気筒に対応する複数の燃圧センサの検出値(非噴射時センサ波形)を取得して、噴射時センサ波形から非噴射時センサ波形を差し引いて、噴射に起因する燃圧変化を表した噴射波形を抽出している。そして、抽出した噴射波形に基づき噴射率変化の波形を推定して噴射状態を検出している。   However, in the sensor waveform during injection, in addition to the pressure change caused by the injection, the pressure change caused when the fuel pump pumps the fuel, or the pressure in the common rail decreases by the amount of fuel injection. It includes the pressure changes that occur. Therefore, in Patent Document 1, the detection values (non-injection sensor waveforms) of the plurality of fuel pressure sensors corresponding to the cylinders that are not injecting fuel are acquired, and the non-injection sensor waveforms are subtracted from the injecting sensor waveforms. An injection waveform representing a change in fuel pressure due to the above is extracted. And the injection state is detected by estimating the waveform of the injection rate change based on the extracted injection waveform.

特開2009−97385号公報JP 2009-97385 A

しかしながら、上記燃圧センサの検出値は、例えば燃圧センサの経年劣化等が原因で、実際の圧力値からずれてくる場合がある。すると、先述した噴射状態の検出精度が悪くなり、内燃機関の運転状態を十分に最適化できなくなる。   However, the detected value of the fuel pressure sensor may deviate from the actual pressure value due to, for example, deterioration of the fuel pressure sensor over time. Then, the detection accuracy of the injection state described above is deteriorated, and the operation state of the internal combustion engine cannot be sufficiently optimized.

この問題に対し本発明者は、次の手法により検出ずれの発生有無を判定することを検討した。すなわち、いずれの燃圧センサにも検出ずれが生じていなければ、同時期に検出された非噴射時センサ波形はいずれの気筒についても同じ波形になる筈であることに着目し、同時期に検出された3気筒以上の非噴射時センサ波形を取得して、これらの非噴射時センサ波形を比較する。そして、例えば所定気筒の非噴射時センサ波形だけが、他の全ての非噴射時センサ波形と異なっていれば、前記所定気筒に対応する燃圧センサに検出ずれが生じていると判定できる。   In order to solve this problem, the present inventor studied to determine whether or not a detection error occurred by the following method. In other words, if there is no detection deviation in any fuel pressure sensor, the sensor waveform detected at the same time during non-injection should be the same for all cylinders. The non-injection sensor waveforms of three cylinders or more are acquired, and these non-injection sensor waveforms are compared. For example, if only the non-injection sensor waveform of a predetermined cylinder is different from all other non-injection sensor waveforms, it can be determined that a detection deviation has occurred in the fuel pressure sensor corresponding to the predetermined cylinder.

しかし、上記検出ずれの判定手法では、同時期に検出された3気筒以上の非噴射時センサ波形を同時に取得することが要求され、非噴射時センサ波形を2気筒分しか取得できていないと、2つの非噴射時センサ波形が互いに異なっている場合に、いずれの燃圧センサに検出ずれが生じているかを判定できない。   However, in the detection deviation determination method, it is required to simultaneously acquire the non-injection sensor waveforms of three or more cylinders detected at the same time, and only the non-injection sensor waveforms can be acquired for two cylinders. When the two non-injection sensor waveforms are different from each other, it is impossible to determine which fuel pressure sensor has a detection deviation.

また、噴射状態の検出に用いる噴射波形を抽出するには、噴射時センサ波形の他に非噴射時センサ波形を1つ取得すれば十分である。そのため、燃圧センサの検出値に基づきセンサ波形を生成するECU(演算装置)は、同時に2つの燃圧センサと通信できれば十分である。これに対し、上記検出ずれの判定手法では、3気筒以上の非噴射時センサ波形を同時に検出して取得することが必要となるため、ECUに要求される通信処理能力(通信可能チャンネル数)が高くなってしまう。   Further, in order to extract the injection waveform used for detection of the injection state, it is sufficient to acquire one non-injection sensor waveform in addition to the injection sensor waveform. Therefore, it is sufficient that an ECU (arithmetic unit) that generates a sensor waveform based on the detection value of the fuel pressure sensor can communicate with two fuel pressure sensors at the same time. On the other hand, in the detection deviation determination method, it is necessary to simultaneously detect and acquire the non-injection sensor waveforms of three or more cylinders. It will be high.

本発明は、上記課題を解決するためになされたものであり、その目的は、燃圧センサとの通信に要求される処理能力の増大を招くことなく、検出ずれの有無を判定可能な燃圧センサの検出ずれ判定装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel pressure sensor capable of determining the presence or absence of detection deviation without increasing the processing capability required for communication with the fuel pressure sensor. The object is to provide a detection deviation determination device.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、多気筒内燃機関の各気筒に設けられた燃料噴射弁と、燃料ポンプから供給される燃料を蓄圧して複数の前記燃料噴射弁へ分配供給する分配容器と、複数の気筒の各々に対して設けられ、前記燃料噴射弁の噴孔から燃料を噴射させることに伴い前記分配容器の吐出口から前記噴孔に至るまでの燃料供給経路内で生じる燃料圧力の変化を検出する燃圧センサと、を備えた燃料噴射システムに適用されることを前提とする。   In the first aspect of the invention, a fuel injection valve provided in each cylinder of the multi-cylinder internal combustion engine, a distribution container that accumulates fuel supplied from a fuel pump and distributes and distributes the fuel to the plurality of fuel injection valves, A change in fuel pressure generated in the fuel supply path from the outlet of the distribution container to the nozzle hole as fuel is injected from the nozzle hole of the fuel injection valve. It is assumed that the present invention is applied to a fuel injection system including a fuel pressure sensor to be detected.

そして、複数の前記燃圧センサのうち燃料噴射中の気筒に対応する燃圧センサにより検出された、噴射時センサ波形を取得する噴射時センサ波形取得手段と、複数の前記燃圧センサのうち燃料噴射停止中の気筒に対応する燃圧センサにより検出された、非噴射時センサ波形を取得する非噴射時センサ波形取得手段と、複数の前記燃圧センサのうち異なる燃圧センサにより同時期に検出された前記噴射時センサ波形及び前記非噴射時センサ波形を取得するとともに、前記噴射時センサ波形から前記非噴射時センサ波形を差し引いて、噴射に起因する燃圧変化を表した噴射波形を抽出する噴射波形抽出手段と、複数の前記気筒のうち任意の気筒を第1気筒、前記第1気筒とは別の任意の気筒を第2気筒、前記第1気筒及び前記第2気筒とは別の任意の気筒を第3気筒とした場合において、前記第1気筒が噴射気筒かつ前記第2気筒が非噴射気筒である時に前記噴射波形抽出手段により抽出された噴射波形と、検出ずれが生じていない場合の前記噴射波形を想定した基準噴射波形との偏差を算出する第1−第2偏差算出手段と、前記第3気筒が噴射気筒かつ前記第1気筒が非噴射気筒である時に前記噴射波形抽出手段により抽出された噴射波形と、前記基準噴射波形との偏差を算出する第3−第1偏差算出手段と、前記第1−第2偏差算出手段により算出された偏差、及び前記第3−第1偏差算出手段により算出された偏差に基づき、前記第1気筒に対応する燃圧センサに検出ずれが生じているかを判定する検出ずれ判定手段と、を備えることを特徴とする。 An injection-time sensor waveform acquisition means for acquiring an injection-time sensor waveform detected by a fuel pressure sensor corresponding to a cylinder during fuel injection among the plurality of fuel pressure sensors, and fuel injection is stopped among the plurality of fuel pressure sensors. Non-injection sensor waveform acquisition means for acquiring a non-injection sensor waveform detected by a fuel pressure sensor corresponding to the cylinder of the cylinder, and the injection sensor detected at the same time by different fuel pressure sensors among the plurality of fuel pressure sensors A plurality of injection waveform extracting means for acquiring a waveform and the non-injection sensor waveform, and subtracting the non-injection sensor waveform from the injection sensor waveform to extract an injection waveform representing a change in fuel pressure caused by injection; Of these cylinders, an arbitrary cylinder is a first cylinder, an arbitrary cylinder different from the first cylinder is a second cylinder, and the first cylinder and the second cylinder are different. In the case where the cylinder is defined as a third cylinder, and the injection waveform extracted by the ejection waveform extracting means when the first cylinder injection cylinder and the second cylinder is a non-injection cylinder, if the detected displacement is not generated first-and second deviation calculation means, the ejection waveform extracting means when said third cylinder injection cylinder and the first cylinder is a non-injection cylinder to the calculated difference between the reference injection waveform assuming the ejection waveform The third-first deviation calculating means for calculating a deviation between the injection waveform extracted by the reference injection waveform and the reference injection waveform, the deviation calculated by the first-second deviation calculating means, and the third-first Detection deviation determination means for determining whether a detection deviation has occurred in the fuel pressure sensor corresponding to the first cylinder based on the deviation calculated by the deviation calculation means.

上記発明による作用効果を、4気筒(#1,#2,#3,#4)の内燃機関を例に、図5を用いて以下に説明する。   The operation and effect of the present invention will be described below with reference to FIG. 5 using a four-cylinder (# 1, # 2, # 3, # 4) internal combustion engine as an example.

先ず、#1を第1気筒、#2を第2気筒、#3を第3気筒と設定した場合における抽出手段の作用について説明する。#1での噴射時には、噴射時センサ波形Wa(#1)から非噴射時センサ波形Wb(#2)が差し引かれた噴射波形W(#1-2)が抽出される(図5(a)参照)。また、#3での噴射時には、噴射時センサ波形Wa(#3)から非噴射時センサ波形Wb(#1)が差し引かれた噴射波形W(#3-1)が抽出される(図5(b)参照)。   First, the operation of the extracting means when # 1 is the first cylinder, # 2 is the second cylinder, and # 3 is the third cylinder will be described. During the injection at # 1, the injection waveform W (# 1-2) obtained by subtracting the non-injection sensor waveform Wb (# 2) from the injection sensor waveform Wa (# 1) is extracted (FIG. 5A). reference). Further, during the injection at # 3, the injection waveform W (# 3-1) obtained by subtracting the non-injection sensor waveform Wb (# 1) from the injection sensor waveform Wa (# 3) is extracted (FIG. 5 ( b)).

そして、#1〜#4に対応する各々の燃圧センサのうち、仮に、#1に対応する燃圧センサに検出ずれが生じていれば、抽出した2つの噴射波形W(#1-2),W(#3-1)のいずれについても、基準噴射波形Wbaseとの比較において偏差が生じる筈であり、噴射波形W(#1-2),W(#3-1)のいずれか一方だけに偏差が生じることはない。   If detection deviation occurs in the fuel pressure sensors corresponding to # 1 among the fuel pressure sensors corresponding to # 1 to # 4, the two extracted injection waveforms W (# 1-2), W In any of (# 3-1), there should be a deviation in comparison with the reference injection waveform Wbase, and there is a deviation in only one of the injection waveforms W (# 1-2) and W (# 3-1). Will not occur.

#4を第1気筒、#3を第2気筒、#2を第3気筒と設定した場合における抽出手段の作用についても同様であり、#4での噴射時には、噴射時センサ波形Wa(#4)から非噴射時センサ波形Wb(#3)が差し引かれた噴射波形W(#4-3)が抽出される(図5(c)参照)。また、#2での噴射時には、噴射時センサ波形Wa(#2)から非噴射時センサ波形Wb(#4)が差し引かれた噴射波形W(#2-4)が抽出される(図5(d)参照)。   The same applies to the operation of the extraction means when # 4 is set as the first cylinder, # 3 is set as the second cylinder, and # 2 is set as the third cylinder. During injection at # 4, the sensor waveform Wa (# 4 during injection) ) Is extracted from the non-injection sensor waveform Wb (# 3) (see FIG. 5C). Further, during the injection at # 2, the injection waveform W (# 2-4) obtained by subtracting the non-injection sensor waveform Wb (# 4) from the injection sensor waveform Wa (# 2) is extracted (FIG. 5 ( d)).

そして、#1〜#4に対応する各々の燃圧センサのうち、仮に、#4に対応する燃圧センサに検出ずれが生じていれば、抽出した2つの噴射波形W(#4-3),W(#2-4)のいずれについても、基準噴射波形Wbaseとの比較において偏差が生じる筈であり、噴射波形W(#4-3),W(#2-4)のいずれか一方だけに偏差が生じることはない。   If detection deviation occurs in the fuel pressure sensors corresponding to # 4 among the fuel pressure sensors corresponding to # 1 to # 4, the two extracted injection waveforms W (# 4-3), W In any of (# 2-4), there should be a deviation in comparison with the reference injection waveform Wbase, and there is a deviation in only one of the injection waveforms W (# 4-3) and W (# 2-4). Will not occur.

以上により、上記発明によれば、複数の燃圧センサのうち異なる燃圧センサにより同時期に検出された噴射時センサ波形及び非噴射時センサ波形の2つを取得するだけで、いずれの燃圧センサに検出ずれが生じているかを判定できる。よって、燃圧センサとの通信に要求される処理能力の増大を招くことなく、燃圧センサに検出ずれが生じているか否かを判定できる。なお、上記発明は3気筒以上の内燃機関であれば適用できるものであり、例えば6気筒、8気筒の内燃機関であっても、第1気筒、第2気筒及び第3気筒を上述の如く設定していけば同様の効果が発揮される。   As described above, according to the above-described invention, it is possible to detect any one of the fuel pressure sensors by simply obtaining two of the sensor waveform at the time of injection and the sensor waveform at the time of non-injection detected by different fuel pressure sensors among the plurality of fuel pressure sensors. It can be determined whether or not a deviation has occurred. Therefore, it is possible to determine whether or not there is a detection deviation in the fuel pressure sensor without increasing the processing capacity required for communication with the fuel pressure sensor. The above-described invention can be applied to an internal combustion engine having three or more cylinders. For example, even in a six-cylinder or eight-cylinder internal combustion engine, the first cylinder, the second cylinder, and the third cylinder are set as described above. If you do, the same effect will be demonstrated.

さらに上記発明によれば、燃圧センサの検出値が、プラス側及びマイナス側のいずれにズレているかを、以下に説明する如く判定できる。   Further, according to the above invention, it can be determined as described below whether the detected value of the fuel pressure sensor is shifted to the plus side or the minus side.

例えば、図5(a)に示す噴射波形W(#1-2)及び図5(b)に示す噴射波形W(#3-1)を抽出した場合において、仮に、図5(a)(b)中のWa(#1),Wb(#1)に示すように#1に対応する燃圧センサの検出値がマイナス側にずれていれば、基準噴射波形Wbaseに対する噴射波形W(#1-2)の偏差はマイナス値、噴射波形W(#3-1)の偏差はプラス値になる筈である。   For example, when the injection waveform W (# 1-2) shown in FIG. 5 (a) and the injection waveform W (# 3-1) shown in FIG. 5 (b) are extracted, suppose that FIG. ) If the detected value of the fuel pressure sensor corresponding to # 1 is shifted to the minus side as indicated by Wa (# 1) and Wb (# 1), the injection waveform W (# 1-2 for the reference injection waveform Wbase ) Should be a negative value, and the injection waveform W (# 3-1) should have a positive value.

この点を鑑みた上記発明では、第1−第2偏差算出手段により算出された偏差(Wbase−W(#1-2))、及び第3−第1偏差算出手段により算出された偏差(Wbase−W(#3-1))に基づき、第1気筒に対応する燃圧センサに検出ずれが生じているかを判定するので、上述した2つの偏差の正負に基づきいずれの側にずれているかを判定できる。   In the above invention in view of this point, the deviation (Wbase-W (# 1-2)) calculated by the first-second deviation calculating means and the deviation (Wbase) calculated by the third-first deviation calculating means. -W (# 3-1)), it is determined whether there is a detection error in the fuel pressure sensor corresponding to the first cylinder, so which side is determined based on the positive / negative of the two deviations described above it can.

請求項2記載の発明では、所定の気筒に対応する燃圧センサから、前記所定の気筒に対応する前記噴射時センサ波形及び前記非噴射時センサ波形を連続して取得することを特徴とする。   The invention according to claim 2 is characterized in that the injection-time sensor waveform and the non-injection-time sensor waveform corresponding to the predetermined cylinder are continuously obtained from a fuel pressure sensor corresponding to the predetermined cylinder.

例えば、圧縮行程、燃焼行程、排気行程、吸気行程を繰り返し行う4サイクルの内燃機関においては、所定の気筒が燃焼行程である期間中に噴射時センサ波形を取得し、その後連続して、排気行程期間中に非噴射時センサ波形を取得する。或いは、所定の気筒が圧縮行程である期間中に非噴射時センサ波形を取得し、その後連続して、燃焼行程期間中に噴射時センサ波形を取得する。   For example, in a four-cycle internal combustion engine that repeatedly performs a compression stroke, a combustion stroke, an exhaust stroke, and an intake stroke, a sensor waveform during injection is acquired during a period in which a predetermined cylinder is in the combustion stroke, and then the exhaust stroke is continuously acquired. The sensor waveform during non-injection is acquired during the period. Alternatively, the non-injection sensor waveform is acquired during a period in which the predetermined cylinder is in the compression stroke, and then the injection sensor waveform is acquired continuously during the combustion stroke period.

このように、1つの燃圧センサから噴射時センサ波形及び非噴射時センサ波形を連続して取得する上記発明によれば、燃圧センサから検出値を通信により取得する手段(ECU)が、複数の燃圧センサのうち2つのセンサを選択して切り替えるよう通信するにあたり、その切り替え回数を少なくできる。よって、前記手段(ECU)が燃圧センサとの通信に要求される処理能力を低減できる。   Thus, according to the above-described invention for continuously acquiring the sensor waveform during injection and the sensor waveform during non-injection from one fuel pressure sensor, the means (ECU) for acquiring the detected value from the fuel pressure sensor by communication includes a plurality of fuel pressures. When communicating to select and switch two sensors out of the sensors, the number of times of switching can be reduced. Therefore, the processing capability required for the means (ECU) to communicate with the fuel pressure sensor can be reduced.

ここで、上述の如く噴射時センサ波形及び非噴射時センサ波形を連続して取得するにあたり、その取得開始時期は、内燃機関のピストンが上死点又は下死点に達した時期等、予め設定しておいた時期(クランク角度)に固定して設定すればよい。   Here, in continuously acquiring the sensor waveform during injection and the sensor waveform during non-injection as described above, the acquisition start timing is set in advance, such as the timing when the piston of the internal combustion engine reaches top dead center or bottom dead center. What is necessary is just to fix and set to the time (crank angle) set beforehand.

或いは、請求項3記載の発明の如く、前記所定の気筒での燃料噴射開始時期に応じて可変設定してもよい。このように可変設定する上記発明によれば、噴孔からの燃料噴射に伴い生じた燃料圧力の変化を、噴射時センサ波形に確実に含ませることができる。
請求項4記載の発明では、複数の前記気筒の前記噴射波形抽出手段により抽出された前記噴射波形の最新値と過去に算出した現在の噴射気筒以外の全ての気筒の前記噴射波形の記憶値とから、それらの平均値を前記基準噴射波形として算出する基準噴射波形算出手段を備えることを特徴とする。
Alternatively, as in the invention described in claim 3, the fuel injection start timing in the predetermined cylinder may be variably set. According to the above-mentioned invention variably set in this way, a change in fuel pressure caused by fuel injection from the nozzle hole can be reliably included in the sensor waveform during injection.
According to a fourth aspect of the present invention, the latest value of the injection waveform extracted by the injection waveform extraction means of a plurality of the cylinders and the storage values of the injection waveforms of all cylinders other than the current injection cylinder calculated in the past, And a reference injection waveform calculating means for calculating the average value thereof as the reference injection waveform.

本発明の一実施形態にかかる燃料噴射状態検出装置が適用される、燃料噴射システムの概略を示す図。The figure which shows the outline of the fuel-injection system with which the fuel-injection state detection apparatus concerning one Embodiment of this invention is applied. (a)は図1に示す燃料噴射弁への噴射指令信号、(b)は噴射指令信号に伴い生じる燃料噴射率の変化を表す噴射率波形、(c)は図1に示す燃圧センサにより検出された検出圧力の変化を表す圧力波形を示すタイムチャート。(A) is an injection command signal to the fuel injection valve shown in FIG. 1, (b) is an injection rate waveform representing a change in fuel injection rate caused by the injection command signal, and (c) is detected by a fuel pressure sensor shown in FIG. The time chart which shows the pressure waveform showing the change of the detected pressure made. 噴射時センサ波形Waから非噴射時センサ波形Wbを差し引いて得られる噴射波形Wを示す図。The figure which shows the injection waveform W obtained by subtracting the sensor waveform Wb at the time of non-injection from the sensor waveform Wa at the time of injection. 複数の燃圧センサから出力される検出値の受信を切り替えるにあたり、その切り替え順序を示すタイムチャート。The time chart which shows the switching order in switching reception of the detection value output from a some fuel pressure sensor. 図4の切り替えにより取得される噴射時センサ波形Wa及び非噴射時センサ波形Wb等を示す図。The figure which shows the sensor waveform Wa at the time of injection acquired by switching of FIG. 4, the sensor waveform Wb at the time of non-injection, etc. 図5に示す噴射時センサ波形Wa及び非噴射時センサ波形Wbに基づいて、燃圧センサの検出ずれを判定する手順を示すフローチャート。The flowchart which shows the procedure which determines the detection shift | offset | difference of a fuel pressure sensor based on the sensor waveform Wa at the time of injection shown in FIG. 5, and the sensor waveform Wb at the time of non-injection. 図6の判定で用いる判定表。7 is a determination table used in the determination of FIG.

以下、本発明に係る燃料噴射状態検出装置を具体化した一実施形態を図面に基づいて説明する。本実施形態の燃料噴射状態検出装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, an embodiment embodying a fuel injection state detection device according to the present invention will be described with reference to the drawings. The fuel injection state detection device according to the present embodiment is mounted on a vehicle engine (internal combustion engine), and compression auto-ignition is performed by injecting high-pressure fuel into a plurality of cylinders # 1 to # 4. It assumes a diesel engine that burns.

図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30(検出ずれ判定装置に相当)等を示す模式図である。先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、高圧ポンプ41(燃料ポンプ)によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。なお、高圧ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して燃料は圧送される。   FIG. 1 shows a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on each fuel injection valve 10, and an ECU 30 (an electronic control device installed in a vehicle). FIG. First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulator) by a high pressure pump 41 (fuel pump), and is distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order. In addition, since the plunger pump is used for the high pressure pump 41, fuel is pumped in synchronism with the reciprocation of the plunger.

ECU30は、コモンレール42内の燃料圧力(レール圧)を次のように制御する。すなわち、エンジン負荷及びエンジン回転速度等のエンジン運転状態に基づき目標レール圧を算出し、実レール圧(後述する非噴射時センサ波形Wbの圧力に相当)を目標レール圧に一致させるよう、高圧ポンプ41の作動(例えば吐出量)をフィードバック制御する。   The ECU 30 controls the fuel pressure (rail pressure) in the common rail 42 as follows. That is, the high-pressure pump calculates the target rail pressure based on the engine operating state such as the engine load and the engine speed, and matches the actual rail pressure (corresponding to the pressure of the non-injection sensor waveform Wb described later) with the target rail pressure. 41 (feed amount, for example) is feedback controlled.

燃料噴射弁10は、以下に説明するボデー11、ニードル12(弁体)及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。ニードル12は、ボデー11内に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle 12 (valve element), an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The needle 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b.

ボデー11内にはニードル12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は制御弁14により切り替えられており、電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cは低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、ニードル12へ付与される背圧力が低下してニードル12は開弁作動する。一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cは高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、ニードル12へ付与される背圧力が上昇してニードル12は閉弁作動する。   A back pressure chamber 11c for applying a back pressure to the needle 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14, and the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized to push the control valve 14 downward in FIG. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. As a result, the back pressure applied to the needle 12 is lowered and the needle 12 is opened. On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the needle 12 rises, and the needle 12 is closed.

したがって、ECU30がアクチュエータ13への通電を制御することで、ニードル12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、ニードル12の開閉作動に応じて噴孔11bから噴射される。例えばECU30は、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の目標噴射状態を算出し、算出した目標噴射状態となるようアクチュエータ13へ噴射指令信号を出力して、燃料噴射弁10の作動を制御する。   Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the needle 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the needle 12. For example, the ECU 30 calculates a target injection state such as an injection start timing, an injection end timing, and an injection amount based on the rotation speed of the engine output shaft, the engine load, and the like, and sends an injection command signal to the actuator 13 so that the calculated target injection state is obtained. Is output to control the operation of the fuel injection valve 10.

ECU30は、アクセル操作量等から算出されるエンジン負荷やエンジン回転速度に基づき目標噴射状態を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態(噴射段数、噴射開始時期、噴射終了時期、噴射量等)を噴射状態マップにして記憶させておく。そして、現時点でのエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。そして、算出した目標噴射状態に基づき噴射指令信号t1、t2、Tqを設定する。例えば、目標噴射状態に対応する噴射指令信号を指令マップにして記憶させておき、算出した目標噴射状態に基づき、指令マップを参照して噴射指令信号を設定する。以上により、エンジン負荷及びエンジン回転速度に応じた噴射指令信号が設定され、ECU30から燃料噴射弁10へ出力される。   The ECU 30 calculates the target injection state based on the engine load and engine speed calculated from the accelerator operation amount and the like. For example, the optimal injection state (the number of injection stages, the injection start time, the injection end time, the injection amount, etc.) corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Then, injection command signals t1, t2, and Tq are set based on the calculated target injection state. For example, an injection command signal corresponding to the target injection state is stored as a command map, and the injection command signal is set with reference to the command map based on the calculated target injection state. Thus, the injection command signal corresponding to the engine load and the engine rotation speed is set and output from the ECU 30 to the fuel injection valve 10.

ここで、噴孔11bの磨耗等、燃料噴射弁10の経年劣化に起因して、噴射指令信号に対する実際の噴射状態は変化していく。そこで、後に詳述するように燃圧センサ20により検出された圧力波形に基づき燃料の噴射率波形を演算して噴射状態を検出し、検出した噴射状態と噴射指令信号(パルスオン時期t1、パルスオフ時期t2及びパルスオン期間Tq)との相関関係を学習し、その学習結果に基づき、指令マップに記憶された噴射指令信号を補正する。これにより、実噴射状態が目標噴射状態に一致するよう、燃料噴射状態を高精度で制御できる。   Here, the actual injection state with respect to the injection command signal changes due to deterioration of the fuel injection valve 10 such as wear of the injection hole 11b. Therefore, as described in detail later, the fuel injection rate waveform is calculated based on the pressure waveform detected by the fuel pressure sensor 20 to detect the injection state, and the detected injection state and the injection command signal (pulse on timing t1, pulse off timing t2). And the correlation with the pulse-on period Tq), and the injection command signal stored in the command map is corrected based on the learning result. Thus, the fuel injection state can be controlled with high accuracy so that the actual injection state matches the target injection state.

次に、燃圧センサ20のハード構成について説明する。燃圧センサ20は、以下に説明するステム21(起歪体)、圧力センサ素子22及びモールドIC23等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号を出力する。   Next, the hardware configuration of the fuel pressure sensor 20 will be described. The fuel pressure sensor 20 includes a stem 21 (distortion body), a pressure sensor element 22, a mold IC 23, and the like described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. The pressure sensor element 22 is attached to the diaphragm portion 21a, and outputs a pressure detection signal in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

モールドIC23は、圧力センサ素子22から出力された圧力検出信号を増幅する増幅回路や、ECU30と双方向通信を行うための通信回路23a等の電子部品を樹脂モールドして形成されており、ステム21とともに燃料噴射弁10に搭載されている。ボデー11上部にはコネクタ15が設けられており、コネクタ15に接続されたハーネス16により、モールドIC23及びアクチュエータ13とECU30とはそれぞれ電気接続される。   The mold IC 23 is formed by resin-molding electronic components such as an amplification circuit that amplifies the pressure detection signal output from the pressure sensor element 22 and a communication circuit 23a that performs bidirectional communication with the ECU 30. At the same time, it is mounted on the fuel injection valve 10. A connector 15 is provided on the upper portion of the body 11, and the mold IC 23, the actuator 13, and the ECU 30 are electrically connected by a harness 16 connected to the connector 15.

ここで、噴孔11bから燃料の噴射を開始することに伴い高圧通路11a内の燃料の圧力(燃圧)は低下し、噴射を終了することに伴い燃圧は上昇する。つまり、燃圧の変化と噴射率(単位時間当たりに噴射される噴射量)の変化とは相関があり、燃圧変化から噴射率変化(実噴射状態)を検出できると言える。そして、検出した実噴射状態が目標噴射状態となるよう先述した噴射指令信号を補正する。これにより、噴射状態を精度良く制御できる。   Here, the fuel pressure (fuel pressure) in the high-pressure passage 11a decreases with the start of fuel injection from the nozzle hole 11b, and the fuel pressure increases with the end of injection. That is, it can be said that the change in the fuel pressure and the change in the injection rate (injection amount injected per unit time) are correlated, and the change in the injection rate (actual injection state) can be detected from the change in the fuel pressure. Then, the above-described injection command signal is corrected so that the detected actual injection state becomes the target injection state. Thereby, the injection state can be controlled with high accuracy.

次に、燃料噴射中の燃料噴射弁10に搭載された燃圧センサ20により検出した燃圧変化を表した噴射時センサ波形と、その燃料噴射弁10にかかる燃料噴射率の変化を表した噴射率波形との相関について、図2を用いて説明する。   Next, a sensor waveform during injection that represents a change in fuel pressure detected by a fuel pressure sensor 20 mounted on the fuel injection valve 10 during fuel injection, and an injection rate waveform that represents a change in fuel injection rate applied to the fuel injection valve 10. Will be described with reference to FIG.

図2(a)は、燃料噴射弁10のアクチュエータ13へECU30から出力される噴射指令信号を示しており、この指令信号のパルスオンによりアクチュエータ13が通電作動して噴孔11bが開弁する。つまり、噴射指令信号のパルスオン時期t1により噴射開始が指令され、パルスオフ時期t2により噴射終了が指令される。よって、指令信号のパルスオン期間(噴射指令期間Tq)により噴孔11bの開弁時間を制御することで、噴射量Qを制御している。   FIG. 2A shows an injection command signal output from the ECU 30 to the actuator 13 of the fuel injection valve 10. When the command signal is turned on, the actuator 13 is energized to open the nozzle hole 11b. That is, the injection start is commanded by the pulse-on timing t1 of the injection command signal, and the injection end is commanded by the pulse-off timing t2. Therefore, the injection amount Q is controlled by controlling the valve opening time of the nozzle hole 11b according to the pulse-on period (injection command period Tq) of the command signal.

図2(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(噴射率波形)を示し、図2(c)は、燃料噴射中の燃料噴射弁10に設けられた燃圧センサ20により検出された、噴射率の変化に伴い生じる検出圧力の変化(噴射時センサ波形)を示す。噴射時センサ波形と噴射率波形とは以下に説明する相関があるため、検出された噴射時センサ波形から噴射率波形を推定(検出)することができる。   FIG. 2 (b) shows a change in fuel injection rate (injection rate waveform) from the nozzle hole 11b caused by the injection command, and FIG. 2 (c) is provided in the fuel injection valve 10 during fuel injection. The change of the detection pressure (sensor waveform at the time of injection) which arises with the change of the injection rate detected by the fuel pressure sensor 20 is shown. Since the injection sensor waveform and the injection rate waveform have the correlation described below, the injection rate waveform can be estimated (detected) from the detected injection sensor waveform.

すなわち、先ず、図2(a)に示すように噴射開始指令がなされたt1時点の後、噴射率がR1の時点で上昇を開始して噴射が開始される。一方、検出圧力は、R1の時点で噴射率が上昇を開始してから遅れ時間C1が経過した時点で、変化点P1にて下降を開始する。その後、R2の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P2にて停止する。次に、R3の時点で噴射率が下降を開始したことに伴い、検出圧力は変化点P3にて上昇を開始する。その後、R4の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P5にて停止する。   That is, first, as shown in FIG. 2 (a), after the time t1 when the injection start command is given, the injection rate starts to rise and the injection is started when the injection rate is R1. On the other hand, the detected pressure starts decreasing at the change point P1 when the delay time C1 elapses after the injection rate starts increasing at the time R1. Thereafter, as the injection rate reaches the maximum injection rate at the time of R2, the decrease in the detected pressure stops at the change point P2. Next, as the injection rate starts decreasing at the time point R3, the detected pressure starts increasing at the change point P3. Thereafter, as the injection rate becomes zero at the time point R4 and the actual injection ends, the increase in the detected pressure stops at the change point P5.

以上説明したように、噴射時センサ波形と噴射率波形とは相関が高い。そして、噴射率波形には、噴射開始時期(R1出現時期)や、噴射終了時期(R4出現時期)、噴射量(図2(b)中の網点部分の面積)が表されているので、噴射時センサ波形(又は後に詳述する噴射波形W)を噴射率波形に変換することで噴射状態を検出できる。   As explained above, the correlation between the injection sensor waveform and the injection rate waveform is high. The injection rate waveform shows the injection start time (R1 appearance time), the injection end time (R4 appearance time), and the injection amount (area of the halftone dot portion in FIG. 2B). An injection state can be detected by converting a sensor waveform during injection (or an injection waveform W described in detail later) into an injection rate waveform.

ところで、コモンレール42から燃料噴射弁10へ分配供給される燃料の圧力は刻々と変化する。例えば、図3(a)中の実線は噴射時センサ波形Waを示すのに対し、図3(a)中の点線Wbは、噴射時センサ波形と同時期に検出された分配供給圧力の変化を示す。なお、分配供給圧力の変化は、噴射していない燃料噴射弁10に対応する燃圧センサ20を用いて検出している。したがって、例えば#1気筒の燃料噴射弁10(#1)から燃料を噴射して、#2気筒の燃料噴射弁10(#2)からは噴射を停止している時には、#1気筒(表気筒)の燃圧センサ20による検出圧力が噴射時センサ波形Waに相当し、#2気筒(裏気筒)の燃圧センサ20による検出圧力が、分配供給圧力の変化を示す非噴射時センサ波形Wbに相当する。   By the way, the pressure of the fuel distributed and supplied from the common rail 42 to the fuel injection valve 10 changes every moment. For example, the solid line in FIG. 3A indicates the injection sensor waveform Wa, while the dotted line Wb in FIG. 3A indicates the change in the distribution supply pressure detected at the same time as the injection sensor waveform. Show. The change in the distribution supply pressure is detected by using the fuel pressure sensor 20 corresponding to the fuel injection valve 10 that is not injecting. Therefore, for example, when the fuel is injected from the fuel injection valve 10 (# 1) of the # 1 cylinder and the injection is stopped from the fuel injection valve 10 (# 2) of the # 2 cylinder, the # 1 cylinder (front cylinder) ) Detected by the fuel pressure sensor 20 corresponds to the injection sensor waveform Wa, and the pressure detected by the # 2 cylinder (back cylinder) fuel pressure sensor 20 corresponds to the non-injection sensor waveform Wb indicating a change in the distribution supply pressure. .

図3(a)に例示する非噴射時センサ波形Wbが、噴射開始に伴い徐々に低下していく波形になっている理由は、コモンレール42から噴射気筒の燃料噴射弁10へ分配供給した分だけ分配供給圧力が低下することによる。ちなみに、燃料噴射中に高圧ポンプ41によるポンプ圧送が行われると、分配供給圧力は燃料噴射中であっても上昇していく。   The reason why the non-injection sensor waveform Wb illustrated in FIG. 3A is a waveform that gradually decreases with the start of injection is the amount that is distributed and supplied from the common rail 42 to the fuel injection valve 10 of the injection cylinder. This is due to a decrease in the distribution supply pressure. Incidentally, when pumping by the high-pressure pump 41 is performed during fuel injection, the distribution supply pressure rises even during fuel injection.

要するに、噴射時センサ波形Waは分配供給圧力の変化(非噴射時センサ波形Wb)の影響を受けているので、噴射時センサ波形Waから非噴射時センサ波形Wbを差し引けば、噴射時センサ波形Waから分配供給圧力の変化による影響が除去される。図3(b)中の実線は、このように差し引く補正を実施した後の噴射時センサ波形を示しており、この波形は、噴射に起因する燃圧変化を表した噴射波形Wに相当する。   In short, since the sensor waveform Wa at the time of injection is affected by the change in the distribution supply pressure (sensor waveform Wb at the time of non-injection), if the sensor waveform Wb at the time of non-injection is subtracted from the sensor waveform Wa at the time of injection. The influence of the change in the distribution supply pressure is removed from Wa. The solid line in FIG. 3B shows the sensor waveform at the time of injection after performing the correction to be subtracted in this way, and this waveform corresponds to an injection waveform W representing a change in fuel pressure caused by injection.

なお、図2(c)に例示される噴射時センサ波形Waは、分配供給圧力が変化していないと仮定した場合の波形であり、差し引いた後の噴射波形Wと噴射時センサ波形Waとが同じ波形になっていると仮定したものである。   Note that the injection sensor waveform Wa illustrated in FIG. 2C is a waveform when it is assumed that the distribution supply pressure has not changed, and the subtracted injection waveform W and the injection sensor waveform Wa are obtained. It is assumed that the waveforms are the same.

次に、各気筒#1〜#4に対応する燃圧センサ20(#1)〜10(#4)とECU30との通信について説明する。各々の燃圧センサ20(#1)〜10(#4)はハーネス16(#1)〜16(#4)によりECU30と接続されており、燃圧センサ20(#1)〜10(#4)の通信回路23aと、ECU30に備えられた通信回路31とにより、燃圧センサ20(#1)〜10(#4)とECU30は双方向に通信可能である、但し、通信回路31が同時に受信可能な燃圧センサ20の数は2つに制限されている。つまり、通信回路31は、4つの燃圧センサ20(#1)〜10(#4)のうち選択された2つの燃圧センサ20から検出信号を受信して取得する。   Next, communication between the fuel pressure sensors 20 (# 1) to 10 (# 4) corresponding to the cylinders # 1 to # 4 and the ECU 30 will be described. Each of the fuel pressure sensors 20 (# 1) to 10 (# 4) is connected to the ECU 30 by harnesses 16 (# 1) to 16 (# 4), and the fuel pressure sensors 20 (# 1) to 10 (# 4) The communication circuit 23a and the communication circuit 31 provided in the ECU 30 allow the fuel pressure sensors 20 (# 1) to 10 (# 4) and the ECU 30 to communicate bidirectionally, provided that the communication circuit 31 can receive simultaneously. The number of fuel pressure sensors 20 is limited to two. That is, the communication circuit 31 receives and acquires detection signals from two fuel pressure sensors 20 selected from the four fuel pressure sensors 20 (# 1) to 10 (# 4).

選択される燃圧センサ20の1つには、噴射中の気筒に対応する燃圧センサ20が含まれるように上記選択は実施される。ちなみに、このように噴射気筒の燃圧センサ20から取得した検出値の波形は、噴射時センサ波形Waに相当する。なお、選択される燃圧センサ20の残りの1つである、非噴射気筒の燃圧センサから取得した検出値の波形は、非噴射時センサ波形Wbに相当する。   The selection is performed so that one of the selected fuel pressure sensors 20 includes the fuel pressure sensor 20 corresponding to the cylinder being injected. Incidentally, the waveform of the detection value acquired from the fuel pressure sensor 20 of the injection cylinder in this way corresponds to the sensor waveform Wa during injection. The waveform of the detection value acquired from the fuel pressure sensor of the non-injection cylinder, which is the remaining one of the selected fuel pressure sensors 20, corresponds to the non-injection sensor waveform Wb.

そして通信回路31は、所定の気筒に対応する燃圧センサ20から噴射時センサ波形Wa及び非噴射時センサ波形Wbを連続して取得するように、図4に示す如く選択する2つの燃圧センサ20を切り替える。図4(a)は、上記切り替えの一例を示すタイムチャートであり、縦軸は上段から順に#1,#3,#4,#2の燃圧センサ20を示し、横軸は燃焼行程が#1,#3,#4,#2,#1・・・の順に繰り返し実施されている場合の経過時間を示す。   Then, the communication circuit 31 selects two fuel pressure sensors 20 to be selected as shown in FIG. 4 so as to continuously acquire the sensor waveform Wa during injection and the sensor waveform Wb during non-injection from the fuel pressure sensor 20 corresponding to the predetermined cylinder. Switch. FIG. 4A is a time chart showing an example of the above switching, where the vertical axis indicates the fuel pressure sensors 20 of # 1, # 3, # 4, and # 2 in order from the top, and the horizontal axis indicates the combustion stroke of # 1. , # 3, # 4, # 2, # 1,...

図4(a)の例では、#1が燃焼行程である期間A1及び排気行程である期間A2は、#1の燃圧センサ20の検出値を連続して取得し、その後、#4が燃焼行程である期間A3及び排気行程である期間A4は、#4の燃圧センサ20の検出値を連続して取得するよう、上記切り替えを実施している。また、#3が燃焼行程である期間B1及び排気行程である期間B2は、#3の燃圧センサ20の検出値を連続して取得し、その後、#2が燃焼行程である期間B3及び排気行程である期間B4は、#2の燃圧センサ20の検出値を連続して取得するよう、上記切り替えを実施している。   In the example of FIG. 4A, in the period A1 where # 1 is the combustion stroke and the period A2 where the exhaust stroke is # 1, the detection value of the fuel pressure sensor 20 of # 1 is continuously acquired, and then # 4 is the combustion stroke. In the period A3 that is and the period A4 that is the exhaust stroke, the switching is performed so that the detection value of the # 4 fuel pressure sensor 20 is continuously acquired. In addition, in period B1 in which # 3 is the combustion stroke and in period B2 in which the exhaust stroke is performed, the detection value of the fuel pressure sensor 20 of # 3 is continuously acquired, and thereafter, period B3 and exhaust stroke in which # 2 is the combustion stroke. In the period B4, the switching is performed so that the detection value of the # 2 fuel pressure sensor 20 is continuously acquired.

図5は、図4の燃焼サイクルに対応した各気筒での燃圧変化を示す図であり、上述の如く切り替えを実施すると、例えば#1気筒の燃料噴射弁10(#1)から燃料を噴射している時には、#1気筒(表気筒)の燃圧センサ20による検出圧力(噴射時センサ波形Wa(#1))が取得されると同時に、#2気筒(裏気筒)の燃圧センサ20による検出圧力(非噴射時センサ波形Wb(#2))が取得されることとなる(図5(a)参照)。   FIG. 5 is a diagram showing a change in fuel pressure in each cylinder corresponding to the combustion cycle of FIG. 4. When switching is performed as described above, for example, fuel is injected from the fuel injection valve 10 (# 1) of the # 1 cylinder. At the same time, the pressure detected by the fuel pressure sensor 20 for the # 1 cylinder (front cylinder) (sensor waveform Wa (# 1) during injection) is acquired, and at the same time, the pressure detected by the fuel pressure sensor 20 for the # 2 cylinder (back cylinder) (Non-injection sensor waveform Wb (# 2)) is acquired (see FIG. 5A).

その後、#3気筒での燃料噴射時には、#3気筒(表気筒)での噴射時センサ波形Wa(#3)が取得されると同時に、#1気筒(裏気筒)での非噴射時センサ波形Wb(#1)が取得される(図5(b)参照)。以降も同様にして、#4気筒での燃料噴射時には噴射時センサ波形Wa(#4)及び非噴射時センサ波形Wb(#3)が同時に取得され(図5(c)参照)、#2気筒での燃料噴射時には噴射時センサ波形Wa(#2)及び非噴射時センサ波形Wb(#4)が同時に取得される(図5(d)参照)。   Thereafter, at the time of fuel injection in the # 3 cylinder, the sensor waveform Wa (# 3) at the time of injection at the # 3 cylinder (front cylinder) is acquired, and at the same time, the sensor waveform at the time of non-injection in the # 1 cylinder (back cylinder). Wb (# 1) is acquired (see FIG. 5B). In the same manner, the sensor waveform Wa (# 4) during injection and the sensor waveform Wb (# 3) during non-injection are simultaneously acquired during fuel injection in the # 4 cylinder (see FIG. 5 (c)). During fuel injection, the sensor waveform Wa (# 2) during injection and the sensor waveform Wb (# 4) during non-injection are acquired simultaneously (see FIG. 5 (d)).

このように取得した噴射時センサ波形Wa及び非噴射時センサ波形Wbは、図3を用いて先述した噴射波形Wの抽出に用いられる(W=Wa−Wb)。例えば#1気筒で噴射に起因する燃圧変化を表す噴射波形W(#1-2)は、噴射時センサ波形Wa(#1)から非噴射時センサ波形Wb(#2)を差し引くことで演算され、図5(a)中の最下段に示す波形となる。同様にして、各気筒での噴射に起因した燃圧変化を表す噴射波形W(#3-1),W(#4-3),W(#2-4)は、図5(b)(c)(d)中の最下段に示す波形となる。   The sensor waveform Wa during injection and the sensor waveform Wb during non-injection acquired in this way are used for extraction of the injection waveform W described above with reference to FIG. 3 (W = Wa−Wb). For example, the injection waveform W (# 1-2) representing the change in fuel pressure caused by injection in the # 1 cylinder is calculated by subtracting the non-injection sensor waveform Wb (# 2) from the injection sensor waveform Wa (# 1). The waveform shown at the bottom in FIG. Similarly, the injection waveforms W (# 3-1), W (# 4-3), and W (# 2-4) representing the change in fuel pressure caused by the injection in each cylinder are shown in FIGS. ) The waveform shown at the bottom in (d).

ちなみに、図4(a)の例では、燃圧センサ20の検出値を連続して取得するにあたり、表気筒の噴射時センサ波形Waを取得した後に、裏気筒の非噴射時センサ波形Wbを取得している。これに対し、図4(b)に示す如く、裏気筒の非噴射時センサ波形Wbを取得した後に、表気筒の噴射時センサ波形Waを取得するようにしてもよい。   Incidentally, in the example of FIG. 4A, in order to continuously obtain the detection value of the fuel pressure sensor 20, after obtaining the sensor waveform Wa at the time of injection of the front cylinder, the sensor waveform Wb at the time of non-injection of the back cylinder is obtained. ing. On the other hand, as shown in FIG. 4B, after acquiring the non-injection sensor waveform Wb of the back cylinder, the injection sensor waveform Wa of the front cylinder may be acquired.

ここで、燃圧センサ20の検出値は、燃圧センサ20の経年劣化等が原因で実際の圧力値からずれてくる場合がある。例えば、#1気筒の燃圧センサ20(#1)の検出値が実際の燃圧よりも低くなる(マイナス側にずれる)と、#1気筒に対応する噴射時センサ波形Wa(#1)及び非噴射時センサ波形Wb(#1)は、図5の最上段中の実線に示す波形となる。なお、最上段中の点線に示す波形は実際の燃圧変化を示す波形である。   Here, the detection value of the fuel pressure sensor 20 may deviate from the actual pressure value due to aging degradation of the fuel pressure sensor 20 or the like. For example, when the detected value of the fuel pressure sensor 20 (# 1) of the # 1 cylinder becomes lower than the actual fuel pressure (shifts to the minus side), the sensor waveform Wa (# 1) during injection corresponding to the # 1 cylinder and the non-injection The hour sensor waveform Wb (# 1) is a waveform indicated by a solid line in the uppermost stage of FIG. Note that the waveform indicated by the dotted line in the uppermost stage is a waveform indicating an actual change in fuel pressure.

そして、このような検出ずれが生じると、噴射に起因した実際の燃圧変化から噴射波形Wがずれてしまうので、噴射率波形の演算精度が悪くなり、噴射状態を精度良く目標噴射状態に制御することができなくなる。その結果、排気エミッションの悪化や出力トルク低下を招く等、エンジンの運転状態を十分に最適化できなくなる。   When such a detection deviation occurs, the injection waveform W deviates from the actual fuel pressure change caused by the injection, so that the calculation accuracy of the injection rate waveform is deteriorated and the injection state is accurately controlled to the target injection state. I can't do that. As a result, the engine operating state cannot be sufficiently optimized, for example, exhaust emission is deteriorated and output torque is reduced.

そこで本実施形態では、上述の如く取得したセンサ波形Wa,Wbを用いて、燃圧センサ20の検出ずれ有無を次のように判定している。図6は、ECU30が有するマイクロコンピュータによる上記判定の処理手順を示すフローチャートであり、当該処理は所定周期で繰り返し実行される。   Therefore, in the present embodiment, the presence or absence of detection deviation of the fuel pressure sensor 20 is determined as follows using the sensor waveforms Wa and Wb acquired as described above. FIG. 6 is a flowchart showing a processing procedure of the above determination by the microcomputer of the ECU 30, and the processing is repeatedly executed at a predetermined cycle.

先ず、図6に示すステップS10(噴射時センサ波形取得手段、非噴射時センサ波形取得手段)において、図4及び図5を用いて先述した噴射時センサ波形Wa及び非噴射時センサ波形Wbを順次取得する。続くステップS11(噴射波形抽出手段)では、ステップS10で取得した噴射時センサ波形Waから非噴射時センサ波形Wbを減算して、図5中の最下段に示す噴射波形Wを抽出する。   First, in step S10 shown in FIG. 6 (sensor waveform acquisition unit during injection, sensor waveform acquisition unit during non-injection), the sensor waveform Wa during injection and the sensor waveform Wb during non-injection described above with reference to FIGS. get. In the subsequent step S11 (injection waveform extracting means), the non-injection sensor waveform Wb is subtracted from the injection sensor waveform Wa acquired in step S10 to extract the injection waveform W shown in the lowermost stage in FIG.

続くステップS12では、後に実施する検出ずれ判定に用いる基準噴射波形Wbaseを算出する。この基準噴射波形Wbaseは、検出ずれが生じていない場合の噴射波形を想定したものであり、例えば、連続して得られた噴射波形W(#1-2),W(#3-1),W(#4-3),W(#2-4)の平均値を演算し、その平均値からなる波形(平均噴射波形)を基準噴射波形Wbaseとして算出する。   In subsequent step S12, a reference injection waveform Wbase used for detection deviation determination to be performed later is calculated. This reference injection waveform Wbase assumes an injection waveform when no detection deviation occurs. For example, the injection waveforms W (# 1-2), W (# 3-1), An average value of W (# 4-3) and W (# 2-4) is calculated, and a waveform (average injection waveform) including the average value is calculated as a reference injection waveform Wbase.

続くステップS13(第1−第2偏差算出手段、第3−第1偏差算出手段)では、各気筒の噴射波形W(#1-2),W(#3-1),W(#4-3),W(#2-4)から基準噴射波形Wbaseを減算することで、基準噴射波形Wbaseに対する噴射波形Wの偏差ΔW(#1-2),ΔW(#3-1),ΔW(#4-3),ΔW(#2-4)を算出する。なお、#1気筒の燃圧センサ20(#1)の検出値がマイナス側にずれている図5の例では、W(#1-2),W(#3-1),W(#4-3),W(#2-4)の平均値はW(#4-3),W(#2-4)と一致することとなる。よって、偏差ΔW(#4-3),ΔW(#2-4)はゼロとなる。一方、検出ずれが生じている燃圧センサ20(#1)のセンサ波形に基づいた噴射波形W(#1-2)の偏差ΔW(#1-2)はマイナスとなり、噴射波形W(#3-1)の偏差ΔW(#3-1)はプラスとなる。   In the subsequent step S13 (first-second deviation calculating means, third-first deviation calculating means), the injection waveforms W (# 1-2), W (# 3-1), W (# 4- 3) By subtracting the reference injection waveform Wbase from W (# 2-4), deviations ΔW (# 1-2), ΔW (# 3-1), ΔW (# 4-3) and ΔW (# 2-4) are calculated. In the example of FIG. 5 in which the detected value of the # 1 cylinder fuel pressure sensor 20 (# 1) is shifted to the minus side, W (# 1-2), W (# 3-1), W (# 4- 3) The average value of W (# 2-4) coincides with W (# 4-3) and W (# 2-4). Therefore, the deviations ΔW (# 4-3) and ΔW (# 2-4) are zero. On the other hand, the deviation ΔW (# 1-2) of the injection waveform W (# 1-2) based on the sensor waveform of the fuel pressure sensor 20 (# 1) where the detection deviation has occurred becomes negative, and the injection waveform W (# 3- The deviation ΔW (# 3-1) of 1) is positive.

続くステップS14(検出ずれ判定手段)では、ステップS13で算出した各気筒の偏差ΔW(#1-2),ΔW(#3-1),ΔW(#4-3),ΔW(#2-4)に基づき、各気筒の燃圧センサ20(#1),20(#2),20(#3),20(#4)のいずれかに検出ずれが生じているか否かを、図7の判定表に従って判定する。   In the subsequent step S14 (detection deviation determination means), the deviations ΔW (# 1-2), ΔW (# 3-1), ΔW (# 4-3), ΔW (# 2-4) of each cylinder calculated in step S13. ), Whether or not there is a detection deviation in any of the fuel pressure sensors 20 (# 1), 20 (# 2), 20 (# 3), and 20 (# 4) of each cylinder is determined in FIG. Determine according to the table.

図5にて例示したように、#1気筒の燃圧センサ20(#1)の検出値がマイナス側にずれている場合には、ΔW(#1-2)=マイナス、ΔW(#3-1)=プラス、ΔW(#4-3)=0、ΔW(#2-4)=0となる筈である。よって、これらの偏差ΔWが図7に示す判定パターンJ1である場合には、#1気筒の燃圧センサ20(#1)の検出値がずれていると判定するとともに、その検出ずれはマイナス側に生じていると判定する。一方、燃圧センサ20(#1)の検出値がプラス側にずれている場合には、ΔW(#1-2)=プラス、ΔW(#3-1)=マイナス、ΔW(#4-3)=0、ΔW(#2-4)=0となる筈である。よって、これらの偏差ΔWが判定パターンJ2である場合には、#1気筒の燃圧センサ20(#1)の検出値がプラス側にずれていると判定する。   As illustrated in FIG. 5, when the detected value of the # 1 cylinder fuel pressure sensor 20 (# 1) is shifted to the minus side, ΔW (# 1-2) = minus, ΔW (# 3-1 ) = Plus, ΔW (# 4-3) = 0, ΔW (# 2-4) = 0. Therefore, when these deviations ΔW are the determination pattern J1 shown in FIG. 7, it is determined that the detected value of the fuel pressure sensor 20 (# 1) of the # 1 cylinder is shifted, and the detected shift is on the minus side. Determine that it has occurred. On the other hand, when the detected value of the fuel pressure sensor 20 (# 1) is shifted to the plus side, ΔW (# 1-2) = plus, ΔW (# 3-1) = minus, ΔW (# 4-3) = 0 and ΔW (# 2-4) = 0. Therefore, when the deviation ΔW is the determination pattern J2, it is determined that the detected value of the fuel pressure sensor 20 (# 1) of the # 1 cylinder is shifted to the plus side.

同様にして、判定パターンJ3である場合には#3気筒の燃圧センサ20(#3)の検出値がマイナス側に、判定パターンJ4である場合には燃圧センサ20(#3)の検出値がプラス側にずれていると判定する。また、判定パターンJ5〜J8の場合も同様に判定する。   Similarly, when the determination pattern is J3, the detection value of the # 3 cylinder fuel pressure sensor 20 (# 3) is on the minus side, and when the determination pattern is J4, the detection value of the fuel pressure sensor 20 (# 3) is Judge that it is shifted to the plus side. The determination is similarly performed for the determination patterns J5 to J8.

要するに、複数気筒のいずれかにおいて燃圧センサ20に検出ずれが生じると、算出した複数の偏差ΔWのうちの2つが基準噴射波形Wbaseからずれることとなる。この場合、ずれが生じた2つの偏差ΔWのいずれにも関与している気筒の燃圧センサ20に検出ずれが生じていると判定できる。そして、ずれが生じた2つの偏差ΔWの正負に基づけば、検出ずれが生じている燃圧センサ20の検出値がプラス及びマイナスのいずれにズレているかを、図7の判定表に従って判定できる。   In short, if a detection deviation occurs in the fuel pressure sensor 20 in any of the plurality of cylinders, two of the calculated deviations ΔW will deviate from the reference injection waveform Wbase. In this case, it can be determined that a detection deviation has occurred in the fuel pressure sensor 20 of the cylinder involved in any of the two deviations ΔW in which the deviation has occurred. Then, based on the positive and negative of the two deviations ΔW where the deviation occurs, it can be determined according to the determination table of FIG. 7 whether the detected value of the fuel pressure sensor 20 where the detection deviation occurs is shifted between positive and negative.

ちなみに、全ての偏差ΔWがゼロである場合には、いずれの気筒の燃圧センサ20にも検出ずれが生じていないと判定する。そして、このように検出ずれが生じていないと判定された場合(S15:NO)には、図6の処理を一旦終了する。   Incidentally, when all the deviations ΔW are zero, it is determined that no detection deviation occurs in the fuel pressure sensor 20 of any cylinder. If it is determined that no detection deviation has occurred (S15: NO), the process of FIG. 6 is temporarily terminated.

一方、ステップS14による検出ずれ判定により、いずれかの気筒の燃圧センサ20に検出ずれが生じていると判定されれば(S15:YES)、続くステップS16(補正手段)において、検出ずれ有りと判定された燃圧センサ20の検出値を、その気筒に該当する偏差ΔWに基づき補正する。そして以降の噴射制御では、補正した検出値に基づく噴射時センサ波形Wa及び非噴射時センサ波形Wbを用いて噴射波形Wを算出し、当該噴射波形Wに基づき噴射率波形を推定して、先述した噴射マップの噴射指令信号を補正する。   On the other hand, if it is determined by the detection deviation determination in step S14 that there is a detection deviation in the fuel pressure sensor 20 of any cylinder (S15: YES), it is determined in step S16 (correction means) that there is a detection deviation. The detected value of the fuel pressure sensor 20 is corrected based on the deviation ΔW corresponding to the cylinder. In the subsequent injection control, the injection waveform W is calculated using the sensor waveform Wa during injection and the sensor waveform Wb during non-injection based on the corrected detection value, and the injection rate waveform is estimated based on the injection waveform W. The injection command signal in the injection map is corrected.

なお、ステップS13において、「第1−第2偏差算出手段」により算出される偏差、及び「第3−第1偏差算出手段」により算出される偏差の各々は、#1気筒が噴射気筒である場合には、偏差ΔW(#1-2)及び偏差ΔW(#3-1)に相当する。この場合には、#1気筒に対応する燃圧センサ20(#1)についての検出ずれを判定できる。この場合、#1気筒が「第1気筒」、#2気筒が「第2気筒」、#3気筒が「第3気筒」に相当する。   Note that in step S13, each of the deviation calculated by the “first-second deviation calculating unit” and the deviation calculated by the “third-first deviation calculating unit” is the # 1 cylinder being the injection cylinder. In this case, it corresponds to the deviation ΔW (# 1-2) and the deviation ΔW (# 3-1). In this case, it is possible to determine the detection deviation of the fuel pressure sensor 20 (# 1) corresponding to the # 1 cylinder. In this case, the # 1 cylinder corresponds to the “first cylinder”, the # 2 cylinder corresponds to the “second cylinder”, and the # 3 cylinder corresponds to the “third cylinder”.

また、#3気筒が噴射気筒である場合には、「第1−第2偏差算出手段」により算出される偏差、及び「第3−第1偏差算出手段」により算出される偏差の各々は、偏差ΔW(#3-1)及び偏差ΔW(#4-3)に相当する。この場合には、#3気筒に対応する燃圧センサ20(#3)についての検出ずれを判定できる。この場合、#3気筒が「第1気筒」、#1気筒が「第2気筒」、#4気筒が「第3気筒」に相当する。   When the # 3 cylinder is an injection cylinder, each of the deviation calculated by the “first-second deviation calculating unit” and the deviation calculated by the “third-first deviation calculating unit” is: This corresponds to the deviation ΔW (# 3-1) and the deviation ΔW (# 4-3). In this case, it is possible to determine the detection deviation of the fuel pressure sensor 20 (# 3) corresponding to the # 3 cylinder. In this case, the # 3 cylinder corresponds to the “first cylinder”, the # 1 cylinder corresponds to the “second cylinder”, and the # 4 cylinder corresponds to the “third cylinder”.

同様にして、#4気筒が噴射気筒である場合には、偏差ΔW(#4-3)及び偏差ΔW(#2-4)に相当し、燃圧センサ20(#4)についての検出ずれを判定できる。この場合、#4気筒が「第1気筒」、#3気筒が「第2気筒」、#2気筒が「第3気筒」に相当する。#2気筒が噴射気筒である場合には、偏差ΔW(#2-4)及び偏差ΔW(#1-2)に相当し、燃圧センサ20(#2)についての検出ずれを判定できる。この場合、#2気筒が「第1気筒」、#4気筒が「第2気筒」、#1気筒が「第3気筒」に相当する。   Similarly, when the # 4 cylinder is an injection cylinder, it corresponds to the deviation ΔW (# 4-3) and the deviation ΔW (# 2-4), and the detection deviation of the fuel pressure sensor 20 (# 4) is determined. it can. In this case, the # 4 cylinder corresponds to the “first cylinder”, the # 3 cylinder corresponds to the “second cylinder”, and the # 2 cylinder corresponds to the “third cylinder”. When the # 2 cylinder is an injection cylinder, it corresponds to the deviation ΔW (# 2-4) and the deviation ΔW (# 1-2), and the detection deviation of the fuel pressure sensor 20 (# 2) can be determined. In this case, the # 2 cylinder corresponds to the “first cylinder”, the # 4 cylinder corresponds to the “second cylinder”, and the # 1 cylinder corresponds to the “third cylinder”.

以上により、本実施形態によれば、全ての気筒の燃圧センサ20からセンサ波形を同時に取得することを不要にして、噴射時センサ波形Wa及び非噴射時センサ波形Wbの2つを同時に取得するだけで、いずれの燃圧センサ20に検出ずれが生じているか、及び検出ずれの向きを判定できる。よって、燃圧センサ20と通信に用いる通信回路31を4つ同時に受信可能な回路にすることなく検出ずれを判定できる。   As described above, according to the present embodiment, it is not necessary to simultaneously acquire sensor waveforms from the fuel pressure sensors 20 of all the cylinders, and only two of the sensor waveform Wa during injection and the sensor waveform Wb during non-injection are acquired simultaneously. Thus, it is possible to determine which fuel pressure sensor 20 has a detection deviation and the direction of the detection deviation. Therefore, it is possible to determine the detection deviation without making the communication circuit 31 used for communication with the fuel pressure sensor 20 into a circuit that can receive four simultaneously.

しかも、上述した検出ずれの判定を、噴射時センサ波形Waから非噴射時センサ波形Wbを差し引いて抽出した噴射波形Wを用いて実施するので、噴射率変化を示す波形(噴射率波形)の推定に用いる噴射波形Wを利用して検出ずれを判定できる。よって、検出ずれ判定専用の波形を燃圧センサ検出値から生成することを不要にできる。   In addition, since the detection deviation determination described above is performed using the injection waveform W extracted by subtracting the non-injection sensor waveform Wb from the injection sensor waveform Wa, a waveform (injection rate waveform) indicating an injection rate change is estimated. Detection deviation can be determined using the injection waveform W used in the above. Therefore, it is unnecessary to generate a waveform dedicated to detection deviation determination from the detected value of the fuel pressure sensor.

さらに、検出ずれ判定に用いた偏差ΔWに基づき、検出ずれが生じている燃圧センサ20の検出値を補正するので、噴射率波形の演算精度が向上でき、噴射状態を精度良く目標噴射状態に制御することができるようになる。よって、エンジンの運転状態を十分に最適化して、排気エミッションの低減及び出力トルク向上を促進できる。   Further, since the detection value of the fuel pressure sensor 20 in which the detection deviation has occurred is corrected based on the deviation ΔW used for detection deviation determination, the calculation accuracy of the injection rate waveform can be improved, and the injection state can be accurately controlled to the target injection state. Will be able to. Therefore, it is possible to sufficiently optimize the operating state of the engine and promote reduction of exhaust emission and improvement of output torque.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・図4(a)に示す上記実施形態では、エンジンのピストンが上死点又は下死点に位置する時点から360クランク角度に相当する期間であって、図4(a)中の符号M(#3)に示す期間(取得期間M(#3))に、噴射時センサ波形Wa及び非噴射時センサ波形Wbを連続して取得している。つまり、センサ波形Wa,Wbの取得開始時期を、上死点又は下死点に位置する時点としている。これに対し、センサ波形Wa,Wbの取得開始時期を、該当する気筒の燃料噴射開始時期に応じて可変設定してもよく、例えば、先述した取得期間M(#3)を、符号M’(#3)に示す如く上死点位置よりも進角側にずらしたり、遅角側にずらしたりしてもよい。   In the above-described embodiment shown in FIG. 4A, a period corresponding to a 360 crank angle from the time when the piston of the engine is located at the top dead center or the bottom dead center, and the symbol M ( During the period indicated by # 3) (acquisition period M (# 3)), the sensor waveform Wa during injection and the sensor waveform Wb during non-injection are continuously acquired. That is, the acquisition start timing of the sensor waveforms Wa and Wb is set as the time point at which the top dead center or the bottom dead center is located. On the other hand, the acquisition start timings of the sensor waveforms Wa and Wb may be variably set according to the fuel injection start timing of the corresponding cylinder. For example, the acquisition period M (# 3) described above may be represented by the symbol M ′ ( As shown in # 3), it may be shifted to the advance side or the retard side from the top dead center position.

例えば、1燃焼サイクル中に同一の燃料噴射弁10から複数回噴射させる多段噴射を実施するにあたり、パイロット噴射+メイン噴射の2段で噴射する場合と、メイン噴射+ポスト噴射の2段で噴射するとではメイン噴射の噴射開始時期が大きく変わってくる。そこで、メイン噴射に対する噴射時センサ波形Waの取得開始時期を、ピストン上死点時点に限ることなく燃料噴射開始時期に応じて可変設定すれば、燃料噴射に伴い生じた燃料圧力の変化を、噴射時センサ波形Waに確実に含ませることができる。   For example, when performing multi-stage injection in which multiple injections are performed from the same fuel injection valve 10 during one combustion cycle, injection is performed in two stages of pilot injection + main injection, and injection is performed in two stages of main injection + post injection. Then, the injection start timing of the main injection changes greatly. Therefore, if the acquisition start timing of the injection sensor waveform Wa for the main injection is variably set according to the fuel injection start timing without being limited to the piston top dead center point, the change in the fuel pressure caused by the fuel injection is injected. The time sensor waveform Wa can be reliably included.

・仮に、全ての燃圧センサ20について検出ずれが生じていなかったとしても、目標噴射状態を変化させている過渡時には、連続して順次取得する噴射時センサ波形Waの値は一致しなくなる。すると、検出ずれ判定に用いる各々の偏差ΔWも一致しなくなり、検出ずれが生じていると誤判定するおそれがある。この点を鑑みて、目標噴射状態(又は噴射率推定波形から検出される実噴射状態)が所定範囲内で変動するような安定状態の時に、噴射時センサ波形Wa及び非噴射時センサ波形Wbを順次取得して検出ずれ判定を実施することが望ましい。例えば、各気筒の指令噴射量が同一(又は所定範囲内)となっている時に、両センサ波形Wa,Wbを順次取得して検出ずれ判定を実施すればよい。   Even if there is no detection deviation for all the fuel pressure sensors 20, the values of the in-injection sensor waveforms Wa that are successively and sequentially acquired do not coincide with each other during the transition in which the target injection state is changed. Then, each deviation ΔW used for detection deviation determination also does not match, and there is a risk of erroneous determination that a detection deviation has occurred. In view of this point, when the target injection state (or the actual injection state detected from the injection rate estimation waveform) is in a stable state that fluctuates within a predetermined range, the in-injection sensor waveform Wa and the non-injection sensor waveform Wb are It is desirable to sequentially detect and perform detection deviation determination. For example, when the command injection amount of each cylinder is the same (or within a predetermined range), both sensor waveforms Wa and Wb may be sequentially acquired to perform detection deviation determination.

・仮に、全ての燃圧センサ20について検出ずれが生じていなかったとしても、レール圧が急激に変化している時には、連続して順次取得する非噴射時センサ波形Wbの値は一致しなくなる。すると、検出ずれ判定に用いる各々の偏差ΔWも一致しなくなり、検出ずれが生じていると誤判定するおそれがある。この点を鑑みて、目標レール圧(又は非噴射時センサ波形Wbから検出される実レール圧)が所定範囲内で変動するような安定状態の時に、非噴射時センサ波形Wb及び噴射時センサ波形Waを順次取得して検出ずれ判定を実施することが望ましい。   Even if there is no detection deviation for all the fuel pressure sensors 20, the values of the non-injection sensor waveforms Wb that are successively acquired when the rail pressure is changing abruptly do not match. Then, each deviation ΔW used for detection deviation determination also does not match, and there is a risk of erroneous determination that a detection deviation has occurred. In view of this point, the non-injection sensor waveform Wb and the injection sensor waveform when the target rail pressure (or the actual rail pressure detected from the non-injection sensor waveform Wb) fluctuates within a predetermined range. It is desirable to sequentially detect Wa and perform detection deviation determination.

・先に説明した通り、高圧ポンプ41はプランジャの往復動に同期して燃料を圧送する。そのため、燃料圧送期間中にはコモンレール42内の燃圧は上昇し、その上昇に伴って非噴射時センサ波形Wbも上昇することとなる。一方、燃料圧送していない期間には、噴射気筒での燃料を噴射した分だけコモンレール42内の燃圧は低下し、その低下に伴って非噴射時センサ波形Wbも低下する(図5参照)。そして、図5に示す上記実施形態では、燃料圧送していない期間に取得した非噴射時センサ波形Wbによる噴射波形Wを用いて、検出ずれ判定に用いる偏差ΔWを算出している。これに対し、燃料圧送期間中に取得した非噴射時センサ波形Wbによる噴射波形Wを用いて、検出ずれ判定に用いる偏差ΔWを算出してもよい。   As described above, the high pressure pump 41 pumps fuel in synchronism with the reciprocation of the plunger. Therefore, the fuel pressure in the common rail 42 increases during the fuel pumping period, and the non-injection sensor waveform Wb also increases with the increase. On the other hand, the fuel pressure in the common rail 42 is reduced by the amount of fuel injected in the injection cylinder during the period in which the fuel is not being pumped, and the non-injection sensor waveform Wb is also reduced along with the drop (see FIG. 5). In the embodiment shown in FIG. 5, the deviation ΔW used for detection deviation determination is calculated using the injection waveform W based on the non-injection sensor waveform Wb acquired during the period when the fuel is not being pumped. On the other hand, the deviation ΔW used for detection deviation determination may be calculated using the injection waveform W based on the non-injection sensor waveform Wb acquired during the fuel pumping period.

・ステップS14の検出ずれ判定を実施するにあたり、ステップS13で算出した各偏差ΔWが所定の閾値TH未満であれば、偏差ΔWをゼロとみなして判定するようにしてもよい。   In performing the detection deviation determination in step S14, if each deviation ΔW calculated in step S13 is less than a predetermined threshold value TH, the deviation ΔW may be regarded as zero and determined.

・上記実施形態では、連続して得られた噴射波形W(#1-2),W(#3-1),W(#4-3),W(#2-4)の平均値を演算し、その平均値からなる波形を基準噴射波形Wbaseとして算出している。すなわち、第1−第2噴射波形及び第3−第1噴射波形の平均を表した平均噴射波形を基準噴射波形Wbaseとしている。これに対し、燃料噴射弁10へ出力される噴射指令信号又は目標噴射状態に基づき推定噴射波形W’をマップ等を用いて演算し、その推定噴射波形W’を基準噴射波形Wbaseとして用いるようにしてもよい。   In the above embodiment, the average value of the injection waveforms W (# 1-2), W (# 3-1), W (# 4-3), and W (# 2-4) obtained continuously is calculated. Then, a waveform composed of the average value is calculated as a reference injection waveform Wbase. That is, the average injection waveform representing the average of the first to second injection waveforms and the third to first injection waveforms is set as the reference injection waveform Wbase. On the other hand, the estimated injection waveform W ′ is calculated using a map or the like based on the injection command signal output to the fuel injection valve 10 or the target injection state, and the estimated injection waveform W ′ is used as the reference injection waveform Wbase. May be.

・図1に示す上記実施形態では、燃圧センサ20を燃料噴射弁10に搭載しているが、本発明にかかる燃圧センサはコモンレール42の吐出口42aから噴孔11bに至るまでの燃料経路内の燃圧を検出するよう配置された燃圧センサであればよい。よって、例えばコモンレール42と燃料噴射弁10とを接続する高圧配管に燃圧センサを搭載してもよい。   In the above embodiment shown in FIG. 1, the fuel pressure sensor 20 is mounted on the fuel injection valve 10, but the fuel pressure sensor according to the present invention is located in the fuel path from the discharge port 42a of the common rail 42 to the injection hole 11b. Any fuel pressure sensor arranged to detect the fuel pressure may be used. Therefore, for example, a fuel pressure sensor may be mounted on a high-pressure pipe connecting the common rail 42 and the fuel injection valve 10.

10…燃料噴射弁、11b…噴孔、20…燃圧センサ、42…コモンレール(分配容器)、42a…吐出口、S10…噴射時センサ波形取得手段、非噴射時センサ波形取得手段、S11…噴射波形抽出手段、S13…第1−第2偏差算出手段、第3−第1偏差算出手段、S14…検出ずれ判定手段、Wa…噴射時センサ波形、Wb…非噴射時センサ波形、Wbase…基準噴射波形。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11b ... Injection hole, 20 ... Fuel pressure sensor, 42 ... Common rail (distribution container), 42a ... Discharge port, S10 ... Sensor waveform acquisition means at the time of injection, Sensor waveform acquisition means at the time of non-injection, S11 ... Injection waveform Extracting means, S13... 1st to 2nd deviation calculating means, 3rd to 1st deviation calculating means, S14... Detection deviation determining means, Wa... Sensor waveform during injection, Wb. .

Claims (4)

多気筒内燃機関の各気筒に設けられた燃料噴射弁と、
燃料ポンプから供給される燃料を蓄圧して複数の前記燃料噴射弁へ分配供給する分配容器と、
複数の気筒の各々に対して設けられ、前記燃料噴射弁の噴孔から燃料を噴射させることに伴い前記分配容器の吐出口から前記噴孔に至るまでの燃料供給経路内で生じる燃料圧力の変化を検出する燃圧センサと、
を備えた燃料噴射システムに適用され、
複数の前記燃圧センサのうち燃料噴射中の気筒に対応する燃圧センサにより検出された、噴射時センサ波形を取得する噴射時センサ波形取得手段と、
複数の前記燃圧センサのうち燃料噴射停止中の気筒に対応する燃圧センサにより検出された、非噴射時センサ波形を取得する非噴射時センサ波形取得手段と、
複数の前記燃圧センサのうち異なる燃圧センサにより同時期に検出された前記噴射時センサ波形及び前記非噴射時センサ波形を取得するとともに、前記噴射時センサ波形から前記非噴射時センサ波形を差し引いて、噴射に起因する燃圧変化を表した噴射波形を抽出する噴射波形抽出手段と、
複数の前記気筒のうち任意の気筒を第1気筒、前記第1気筒とは別の任意の気筒を第2気筒、前記第1気筒及び前記第2気筒とは別の任意の気筒を第3気筒とした場合において、前記第1気筒が噴射気筒かつ前記第2気筒が非噴射気筒である時に前記噴射波形抽出手段により抽出された噴射波形と、検出ずれが生じていない場合の前記噴射波形を想定した基準噴射波形との偏差を算出する第1−第2偏差算出手段と、
前記第3気筒が噴射気筒かつ前記第1気筒が非噴射気筒である時に前記噴射波形抽出手段により抽出された噴射波形と、前記基準噴射波形との偏差を算出する第3−第1偏差算出手段と、
前記第1−第2偏差算出手段により算出された偏差、及び前記第3−第1偏差算出手段により算出された偏差に基づき、前記第1気筒に対応する燃圧センサに検出ずれが生じているかを判定する検出ずれ判定手段と、
を備えることを特徴とする燃圧センサの検出ずれ判定装置。
A fuel injection valve provided in each cylinder of the multi-cylinder internal combustion engine;
A distribution container for accumulating and supplying fuel supplied from a fuel pump to the plurality of fuel injection valves;
Change in fuel pressure that is provided for each of a plurality of cylinders and that occurs in the fuel supply path from the outlet of the distribution container to the nozzle hole as fuel is injected from the nozzle hole of the fuel injection valve A fuel pressure sensor for detecting
Applied to the fuel injection system with
An in-injection sensor waveform acquisition means for acquiring an in-injection sensor waveform detected by a fuel pressure sensor corresponding to a cylinder during fuel injection among the plurality of fuel pressure sensors;
Non-injection sensor waveform acquisition means for acquiring a non-injection sensor waveform detected by a fuel pressure sensor corresponding to a cylinder in which fuel injection is stopped among the plurality of fuel pressure sensors;
While acquiring the sensor waveform during injection and the sensor waveform during non-injection detected at the same time by different fuel pressure sensors among the plurality of fuel pressure sensors, subtracting the sensor waveform during non-injection from the sensor waveform during injection, An injection waveform extracting means for extracting an injection waveform representing a change in fuel pressure caused by injection;
An arbitrary cylinder among the plurality of cylinders is a first cylinder, an arbitrary cylinder different from the first cylinder is a second cylinder, an arbitrary cylinder different from the first cylinder and the second cylinder is a third cylinder When the first cylinder is an injection cylinder and the second cylinder is a non-injection cylinder, the injection waveform extracted by the injection waveform extraction means and the injection waveform when no detection deviation occurs are assumed. First to second deviation calculating means for calculating a deviation from the reference injection waveform,
Third-first deviation calculating means for calculating a deviation between the injection waveform extracted by the injection waveform extracting means and the reference injection waveform when the third cylinder is an injection cylinder and the first cylinder is a non-injection cylinder. When,
Based on the deviation calculated by the first-second deviation calculating means and the deviation calculated by the third-first deviation calculating means, it is determined whether a detection deviation has occurred in the fuel pressure sensor corresponding to the first cylinder. Detection deviation determination means for determining;
A detection deviation determination device for a fuel pressure sensor, comprising:
所定の気筒に対応する燃圧センサから、前記所定の気筒に対応する前記噴射時センサ波形及び前記非噴射時センサ波形を連続して取得することを特徴とする請求項1に記載の燃圧センサの検出ずれ判定装置。   The detection of the fuel pressure sensor according to claim 1, wherein the sensor waveform during injection and the sensor waveform during non-injection corresponding to the predetermined cylinder are continuously acquired from a fuel pressure sensor corresponding to the predetermined cylinder. Deviation determination device. 前記噴射時センサ波形及び前記非噴射時センサ波形を連続して取得するにあたり、その取得開始時期を、前記所定の気筒での燃料噴射開始時期に応じて可変設定することを特徴とする請求項2に記載の燃圧センサの検出ずれ判定装置。   3. The acquisition start timing is variably set according to the fuel injection start timing in the predetermined cylinder when continuously acquiring the injection sensor waveform and the non-injection sensor waveform. The detection deviation determination apparatus of the fuel pressure sensor described in 1. 複数の前記気筒の前記噴射波形抽出手段により抽出された前記噴射波形の最新値と過去に算出した現在の噴射気筒以外の全ての気筒の前記噴射波形の記憶値とから、それらの平均値を前記基準噴射波形として算出する基準噴射波形算出手段を備えることを特徴とする請求項1〜3のいずれか1項に記載の燃圧センサの検出ずれ判定装置。From the latest value of the injection waveform extracted by the injection waveform extraction means of the plurality of cylinders and the stored value of the injection waveform of all cylinders other than the current injection cylinder calculated in the past, the average value thereof is The fuel pressure sensor detection deviation determination device according to any one of claims 1 to 3, further comprising reference injection waveform calculation means for calculating the reference injection waveform.
JP2010182948A 2010-08-18 2010-08-18 Detection deviation judgment device of fuel pressure sensor Active JP5182337B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010182948A JP5182337B2 (en) 2010-08-18 2010-08-18 Detection deviation judgment device of fuel pressure sensor
DE102011052137.2A DE102011052137B9 (en) 2010-08-18 2011-07-26 Detection deviation determining device for a fuel pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010182948A JP5182337B2 (en) 2010-08-18 2010-08-18 Detection deviation judgment device of fuel pressure sensor

Publications (2)

Publication Number Publication Date
JP2012041847A JP2012041847A (en) 2012-03-01
JP5182337B2 true JP5182337B2 (en) 2013-04-17

Family

ID=45557452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010182948A Active JP5182337B2 (en) 2010-08-18 2010-08-18 Detection deviation judgment device of fuel pressure sensor

Country Status (2)

Country Link
JP (1) JP5182337B2 (en)
DE (1) DE102011052137B9 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5929740B2 (en) * 2012-12-21 2016-06-08 株式会社デンソー Fuel injection control device
JP5949578B2 (en) 2013-01-23 2016-07-06 株式会社デンソー Abnormality diagnosis device for fuel pressure sensor
JP6020387B2 (en) * 2013-08-23 2016-11-02 株式会社デンソー Pressure sensor responsiveness learning device
DE102022210021A1 (en) 2022-09-22 2024-03-28 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating an internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161172A (en) * 1998-11-26 2000-06-13 Mitsubishi Motors Corp Accumulator type fuel injection device
DE102004028891A1 (en) * 2004-06-15 2006-01-05 Robert Bosch Gmbh Method for running of internal combustion engine of especially motor vehicle entails determining difference signal which represents deviation of pressure measured by pressure sensor from specific pressure
JP2008121534A (en) * 2006-11-10 2008-05-29 Denso Corp Abnormality diagnostic device of internal combustion engine
JP4424395B2 (en) * 2007-08-31 2010-03-03 株式会社デンソー Fuel injection control device for internal combustion engine
US7873460B2 (en) * 2007-09-25 2011-01-18 Denso Corporation Controller for fuel injection system
JP4678397B2 (en) * 2007-10-15 2011-04-27 株式会社デンソー Fuel injection state detection device
JP4631937B2 (en) * 2008-06-18 2011-02-16 株式会社デンソー Learning device and fuel injection system
DE102008043592A1 (en) * 2008-11-10 2010-05-12 Robert Bosch Gmbh Method and device for checking a pressure sensor of a fuel injection device

Also Published As

Publication number Publication date
JP2012041847A (en) 2012-03-01
DE102011052137B4 (en) 2020-11-12
DE102011052137B9 (en) 2021-01-07
DE102011052137A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP4424395B2 (en) Fuel injection control device for internal combustion engine
JP5136617B2 (en) Fuel injection waveform calculation device
JP4416026B2 (en) Control device for accumulator fuel injection system
JP5141723B2 (en) Fuel injection control device for internal combustion engine
US7316220B2 (en) Actuator drive system and fuel injection system
JP2008144749A (en) Fuel injection system and its adjusting method
JP5003796B2 (en) Fuel injection state detection device
US20150112576A1 (en) Pump control apparatus for fuel supply system of fuel-injection engine
JP5182337B2 (en) Detection deviation judgment device of fuel pressure sensor
EP1338781A2 (en) Accumulation type fuel injection system
JP6020387B2 (en) Pressure sensor responsiveness learning device
JP5126296B2 (en) Fuel injection state detection device
JP5370348B2 (en) Fuel injection control device for internal combustion engine
JP5024429B2 (en) Fuel injection state detection device
JP5565435B2 (en) Fuel injection control device
JP2014227952A (en) Fuel injection characteristic detection device
JP4375432B2 (en) Fuel injection characteristic detection device and engine control system
JP5168325B2 (en) Fuel injection state detection device
JP4292717B2 (en) Accumulated fuel injection system
US10760515B2 (en) Controller for internal combustion engine and method for controlling internal combustion engine
JP5267441B2 (en) Fuel injection device for internal combustion engine
JP6863236B2 (en) Fuel injection control device
JP4214642B2 (en) Accumulated fuel injection system
JP2003314338A (en) Injection quantity control device for internal combustion engine
JP7054363B2 (en) Fuel pump controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121231

R151 Written notification of patent or utility model registration

Ref document number: 5182337

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250