JP5024429B2 - Fuel injection state detection device - Google Patents

Fuel injection state detection device Download PDF

Info

Publication number
JP5024429B2
JP5024429B2 JP2010151928A JP2010151928A JP5024429B2 JP 5024429 B2 JP5024429 B2 JP 5024429B2 JP 2010151928 A JP2010151928 A JP 2010151928A JP 2010151928 A JP2010151928 A JP 2010151928A JP 5024429 B2 JP5024429 B2 JP 5024429B2
Authority
JP
Japan
Prior art keywords
injection
fuel
waveform
pressure
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010151928A
Other languages
Japanese (ja)
Other versions
JP2012013036A (en
Inventor
航 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2010151928A priority Critical patent/JP5024429B2/en
Priority to DE102011051105.9A priority patent/DE102011051105B4/en
Priority to CN201110185994.5A priority patent/CN102312746B/en
Publication of JP2012013036A publication Critical patent/JP2012013036A/en
Application granted granted Critical
Publication of JP5024429B2 publication Critical patent/JP5024429B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/04Fuel pressure pulsation in common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/24Fuel-injection apparatus with sensors
    • F02M2200/247Pressure sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

本発明は、内燃機関の燃料噴射弁から燃料を噴射させることに伴い生じる燃料圧力の変化を燃圧センサで検出し、検出した圧力波形に基づき燃料噴射状態を推定する燃料噴射状態検出装置に関する。   The present invention relates to a fuel injection state detection device that detects a change in fuel pressure caused by injecting fuel from a fuel injection valve of an internal combustion engine with a fuel pressure sensor and estimates a fuel injection state based on the detected pressure waveform.

内燃機関の出力トルク及びエミッション状態を精度良く制御するには、燃料噴射弁から噴射される燃料の噴射量及び噴射開始時期等、その噴射状態を精度良く制御することが重要である。そこで特許文献1〜3等には、コモンレール(分配容器)の吐出口から燃料噴射弁の噴孔に至るまでの燃料供給経路内で噴射に伴い生じる燃料圧力の変化を燃圧センサで検出している。燃圧センサにより検出される圧力波形は、噴射率の変化を表す噴射率波形と相関が高いため、検出した圧力波形(噴射時検出波形)に基づき噴射率波形を推定することで、噴射開始時期や噴射量等の噴射状態の検出を図っている。このように実際の噴射状態を検出できれば、その検出値に基づき噴射状態を精度良く制御できる。   In order to accurately control the output torque and the emission state of the internal combustion engine, it is important to accurately control the injection state such as the injection amount of fuel injected from the fuel injection valve and the injection start timing. Therefore, in Patent Documents 1 to 3 and the like, a fuel pressure sensor detects a change in fuel pressure caused by injection in the fuel supply path from the discharge port of the common rail (distribution container) to the injection hole of the fuel injection valve. . Since the pressure waveform detected by the fuel pressure sensor has a high correlation with the injection rate waveform representing the change in the injection rate, the injection rate waveform is estimated based on the detected pressure waveform (detection waveform at the time of injection). The detection of the injection state such as the injection amount is intended. If the actual injection state can be detected in this way, the injection state can be accurately controlled based on the detected value.

但し、噴射時検出波形は、噴射による影響のみを表しているわけではなく、以下に例示する噴射以外の影響で生じた波形成分をも含んでいる。すなわち、燃料タンクの燃料をコモンレールへ圧送する燃料ポンプがプランジャポンプの如く間欠的に燃料を圧送するものである場合には、燃料噴射中にポンプ圧送が行われると、そのポンプ圧送期間中における噴射時検出波形は全体的に圧力が高くなった波形となる。つまり、噴射時検出波形W(図3(a)参照)には、噴射による燃圧変化を表した噴射圧波形成分Wc(図3(d)参照)と、ポンプ圧送による燃圧上昇を表した波形成分Wb(図3(c)中の実線参照)とが含まれていると言える。   However, the detection waveform at the time of injection does not represent only the influence due to the injection, but also includes a waveform component caused by an influence other than the injection exemplified below. That is, when the fuel pump that pumps fuel in the fuel tank to the common rail is a pump that intermittently pumps fuel, such as a plunger pump, if pump pumping is performed during fuel injection, injection during the pump pumping period is performed. The time detection waveform is a waveform in which the pressure is increased as a whole. That is, the injection detection waveform W (see FIG. 3A) includes an injection pressure waveform component Wc that represents a change in fuel pressure due to injection (see FIG. 3D) and a waveform component that represents an increase in fuel pressure due to pumping. It can be said that Wb (see the solid line in FIG. 3C) is included.

また、このようなポンプ圧送が燃料噴射中に行われなかった場合であっても、燃料を噴射した直後は、その噴射分だけ噴射システム内全体の燃圧が低下する。そのため、噴射時検出波形は全体的に圧力が低くなった波形となる。つまり、噴射時検出波形Wには、噴射による燃圧変化を表した噴射圧波形成分Wcと、噴射システム内全体の燃圧低下を表した波形成分Wb’(図3(c)中の点線参照)とが含まれていると言える。   Even if such pump pumping is not performed during fuel injection, immediately after the fuel is injected, the fuel pressure in the entire injection system is reduced by that amount. Therefore, the injection detection waveform is a waveform in which the pressure is lowered as a whole. That is, the injection detection waveform W includes an injection pressure waveform component Wc that represents a change in fuel pressure due to injection, and a waveform component Wb ′ that represents a decrease in the fuel pressure in the entire injection system (see the dotted line in FIG. 3C). Can be said to be included.

そこで特許文献3記載の発明では、噴射していない気筒の燃料噴射弁に対応する燃圧センサ(非噴射気筒センサ)により検出される波形はコモンレール内の燃圧(噴射システム内全体の燃圧)の変化を表していることに着目し、噴射中の気筒の燃料噴射弁に対応する燃圧センサ(噴射気筒センサ)により検出された噴射時検出波形から、非噴射気筒センサによる検出波形を差し引いて噴射圧波形成分を演算している。このようにして得られた噴射圧波形成分に基づき噴射率波形を推定すれば、実際の噴射状態を精度良く検出できる。   Therefore, in the invention described in Patent Document 3, the waveform detected by the fuel pressure sensor (non-injection cylinder sensor) corresponding to the fuel injection valve of the cylinder that is not injecting represents the change in the fuel pressure in the common rail (the fuel pressure in the entire injection system). Focusing on the expression, the injection pressure waveform component is obtained by subtracting the detection waveform from the non-injection cylinder sensor from the detection waveform detected by the fuel pressure sensor (injection cylinder sensor) corresponding to the fuel injection valve of the cylinder under injection. Is calculated. If the injection rate waveform is estimated based on the injection pressure waveform component thus obtained, the actual injection state can be detected with high accuracy.

特開2010−3004号公報JP 2010-3004 A 特開2009−57924号公報JP 2009-57924 A 特許第4424395号公報Japanese Patent No. 4424395

しかしながら、上述した特許文献3記載の手法では、噴射気筒センサによる検出値から噴射時検出波形を生成すると同時に、非噴射気筒センサによる検出値から検出波形を生成することを要するので、これらの検出波形を生成する演算処理負荷が大きくなる。   However, in the technique described in Patent Document 3 described above, it is necessary to generate a detection waveform from the detection value by the injection cylinder sensor and at the same time to generate a detection waveform from the detection value by the non-injection cylinder sensor. The processing load for generating is increased.

本発明は、上記課題を解決するためになされたものであり、その目的は、噴射状態を精度良く検出することと、演算処理負荷の軽減との両立を図った燃料噴射状態検出装置を提供することにある。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel injection state detection device that is capable of detecting the injection state with high accuracy and reducing the processing load. There is.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、多気筒内燃機関の各気筒に設けられた燃料噴射弁と、燃料ポンプから供給される燃料を蓄圧して複数の前記燃料噴射弁へ分配供給する分配容器と、複数の前記燃料噴射弁の各々に対して設けられ、前記燃料噴射弁の噴孔から燃料を噴射させることに伴い前記分配容器の吐出口から前記噴孔に至るまでの燃料供給経路内で生じる燃料圧力の変化を検出する燃圧センサと、を備えた燃料噴射システムに適用されることを前提とする。   In the first aspect of the invention, a fuel injection valve provided in each cylinder of the multi-cylinder internal combustion engine, a distribution container that accumulates fuel supplied from a fuel pump and distributes and distributes the fuel to the plurality of fuel injection valves, A fuel pressure that is provided for each of the fuel injection valves and that is generated in the fuel supply path from the discharge port of the distribution container to the injection hole as fuel is injected from the injection hole of the fuel injection valve It is assumed that the present invention is applied to a fuel injection system including a fuel pressure sensor that detects a change in the fuel pressure.

そして、複数の前記燃圧センサのうち燃料噴射中の燃料噴射弁に対応する燃圧センサにより検出された圧力の波形である、噴射時検出波形を取得する検出波形取得手段と、前記噴射時検出波形から所定周波数以上の高周波数成分を除去して、前記分配容器内の分配供給圧力の変化を表した供給圧波形成分を抽出するフィルタ手段と、前記噴射時検出波形から前記供給圧波形成分を差し引いて、噴射による燃圧変化を表した噴射圧波形成分を算出する噴射圧波形算出手段と、前記噴射圧波形成分に基づき、前記噴孔からの燃料噴射状態を推定する噴射状態推定手段と、を備えることを特徴とする。   And from the plurality of fuel pressure sensors, detection waveform acquisition means for acquiring a detection waveform at the time of injection, which is a waveform of a pressure detected by a fuel pressure sensor corresponding to a fuel injection valve during fuel injection, and the detection waveform at the time of injection Filter means for removing a high frequency component above a predetermined frequency and extracting a supply pressure waveform component representing a change in the distribution supply pressure in the distribution container; and subtracting the supply pressure waveform component from the detection waveform during injection Injection pressure waveform calculating means for calculating an injection pressure waveform component representing a change in fuel pressure due to injection, and injection state estimating means for estimating a fuel injection state from the injection hole based on the injection pressure waveform component. It is characterized by.

ここで、図3(d)は噴射による燃圧変化を表した噴射圧波形成分Wcを例示し、図3(c)中の実線は、ポンプ圧送による燃圧上昇を表した波形成分Wbを例示し、図3(c)中の点線は、噴射システム内全体の燃圧低下を表した波形成分Wb’を例示する。このように、噴射圧波形成分Wcは、ポンプ圧送等による噴射以外の影響による波形成分Wb,Wb’に比べて短時間で急激に変化する波形であり、Wb,Wb’に比べて高周波数の波形であると言える。したがって、噴射時検出波形W(図3(a)参照)から高周波数成分を除去すれば、ポンプ圧送等の波形成分Wb,Wb’を抽出することができる。本発明者はこの点に着目して上記発明を想起した。   Here, FIG. 3D illustrates an injection pressure waveform component Wc that represents a change in fuel pressure due to injection, and a solid line in FIG. 3C illustrates a waveform component Wb that represents an increase in fuel pressure due to pumping. The dotted line in FIG.3 (c) illustrates waveform component Wb 'showing the fuel pressure fall of the whole injection system. Thus, the injection pressure waveform component Wc is a waveform that changes abruptly in a short time compared to the waveform components Wb and Wb ′ due to the effects other than the injection due to pumping and the like, and has a higher frequency than Wb and Wb ′. It can be said that it is a waveform. Therefore, if high frequency components are removed from the injection detection waveform W (see FIG. 3A), the waveform components Wb, Wb ′ such as pump pressure can be extracted. The present inventor recalled the above-mentioned invention by paying attention to this point.

上記発明は要するに、噴射時検出波形Wから所定周波数以上の高周波数成分を除去してポンプ圧送等の供給圧波形成分Wb,Wb’を抽出し(フィルタ手段)、噴射時検出波形Wから供給圧波形成分Wb,Wb’を差し引いて噴射圧波形成分Wcを算出する(噴射圧波形算出手段)。そのため、特許文献3記載の如く非噴射気筒センサにより検出される燃圧の波形を必要とすることなく、噴射時検出波形Wからポンプ圧送等の波形成分Wb,Wb’が除去された噴射圧波形成分Wcを取得できる。   In short, the invention described above essentially removes high-frequency components of a predetermined frequency or more from the detection waveform W during injection to extract supply pressure waveform components Wb, Wb ′ such as pump pumping (filter means) and supplies the supply pressure from the detection waveform W during injection. The injection pressure waveform component Wc is calculated by subtracting the waveform components Wb and Wb ′ (injection pressure waveform calculation means). Therefore, the injection pressure waveform component in which the waveform components Wb and Wb ′ such as pump pressure are removed from the detected waveform W during the injection without requiring the waveform of the fuel pressure detected by the non-injection cylinder sensor as described in Patent Document 3. Wc can be acquired.

そして、このように取得した噴射圧波形成分Wcに基づき燃料噴射状態を推定する上記発明によれば、実際の噴射状態を精度良く検出できる。したがって上記発明によれば、噴射状態を精度良く検出することと、燃圧センサの検出値から検出波形を生成する演算処理の負荷軽減との両立を図ることができる。   And according to the said invention which estimates a fuel-injection state based on the injection pressure waveform component Wc acquired in this way, an actual injection state can be detected accurately. Therefore, according to the above-described invention, it is possible to achieve both the detection of the injection state with high accuracy and the reduction in the load of the arithmetic processing for generating the detection waveform from the detection value of the fuel pressure sensor.

請求項2記載の発明では、前記フィルタ手段により除去される高周波数成分に、噴射開始に伴い燃圧低下を開始してから噴射終了に伴い燃圧上昇が終了するまでの波形成分が含まれるよう、前記所定周波数を設定することを特徴とする。   In the invention of claim 2, the high frequency component removed by the filter means includes a waveform component from the start of fuel pressure decrease at the start of injection to the end of fuel pressure increase at the end of injection. A predetermined frequency is set.

上記発明によれば、噴射開始に伴い燃圧低下を開始してから噴射終了に伴い燃圧上昇が終了するまでの波形成分がフィルタ手段により除去されるので、供給圧波形成分Wb,Wb’を精度良く抽出でき、ひいては噴射状態推定手段による燃料噴射状態の推定精度を向上できる。   According to the invention, since the filter component removes the waveform component from the start of the fuel pressure decrease at the start of the injection to the end of the increase in the fuel pressure at the end of the injection, the supply pressure waveform components Wb and Wb ′ are accurately obtained. As a result, the estimation accuracy of the fuel injection state by the injection state estimating means can be improved.

請求項3記載の発明では、前記フィルタ手段により除去される高周波数成分に、前記燃料ポンプから前記分配容器へ燃料が圧送されることに伴い燃圧上昇する波形成分が含まれることのないよう、前記所定周波数を設定することを特徴とする。   According to a third aspect of the present invention, the high frequency component removed by the filter means does not include a waveform component that increases in fuel pressure as fuel is pumped from the fuel pump to the distribution container. A predetermined frequency is set.

図3(c)に例示されるように、噴射以外の影響による波形成分Wb,Wb’のうち、ポンプ圧送による燃圧上昇波形成分Wbは、噴射に伴い生じた噴射システム内全体の燃圧低下を表した燃圧低下波形成分Wb’に比べて燃圧変化が大きい。そのため、噴射時検出波形Wから燃圧上昇波形成分Wbを除去することは、燃圧低下波形成分Wb’を除去することに比べて、噴射圧波形成分Wcの算出精度向上に大きく寄与する。この点を鑑みた上記発明によれば、少なくともポンプ圧送による燃圧上昇波形成分Wbがフィルタ手段により除去されるよう所定周波数を設定するので、噴射圧波形成分Wcの算出精度向上を促進できる。   As illustrated in FIG. 3C, among the waveform components Wb and Wb ′ due to influences other than injection, the fuel pressure increase waveform component Wb due to pumping represents a decrease in the fuel pressure in the entire injection system caused by the injection. The fuel pressure change is larger than the reduced fuel pressure waveform component Wb ′. Therefore, removing the fuel pressure increase waveform component Wb from the injection detection waveform W greatly contributes to improving the calculation accuracy of the injection pressure waveform component Wc compared to removing the fuel pressure decrease waveform component Wb ′. According to the above-described invention in view of this point, since the predetermined frequency is set so that at least the fuel pressure increasing waveform component Wb due to pumping is removed by the filter means, it is possible to promote improvement in calculation accuracy of the injection pressure waveform component Wc.

請求項4記載の発明では、前記噴射時検出波形から、前記所定周波数よりもさらに高周波数以上のノイズ成分を除去するノイズフィルタ手段を備えることを特徴とする。   The invention according to claim 4 is characterized by comprising noise filter means for removing a noise component higher than the predetermined frequency from the injection detection waveform.

ここで、図3(a)に例示されるように、噴射時検出波形Wには各種要因によるノイズNが含まれている。これに対し上記発明によれば、噴射圧波形算出手段の算出に用いる噴射時検出波形を、ノイズフィルタ手段によりノイズNが除去された波形にできる。よって、噴射圧波形算出手段による噴射圧波形成分の算出精度を向上できる。   Here, as illustrated in FIG. 3A, the injection detection waveform W includes noise N due to various factors. On the other hand, according to the above invention, the injection detection waveform used for the calculation of the injection pressure waveform calculating means can be made the waveform from which the noise N is removed by the noise filter means. Therefore, the calculation accuracy of the injection pressure waveform component by the injection pressure waveform calculation means can be improved.

本発明の一実施形態にかかる燃料噴射状態検出装置が適用される、燃料噴射システムの概略を示す図。The figure which shows the outline of the fuel-injection system with which the fuel-injection state detection apparatus concerning one Embodiment of this invention is applied. (a)は図1に示す燃料噴射弁への噴射指令信号、(b)は噴射指令信号に伴い生じる燃料噴射率の変化を表す噴射率波形、(c)は図1に示す燃圧センサによる検出波形に基づく噴射圧波形成分Wcを示す図。(A) is an injection command signal to the fuel injection valve shown in FIG. 1, (b) is an injection rate waveform representing a change in the fuel injection rate caused by the injection command signal, and (c) is detected by the fuel pressure sensor shown in FIG. The figure which shows the injection pressure waveform component Wc based on a waveform. (a)は噴射時検出波形W、(b)はノイズ除去後の噴射時検出波形W、(c)は供給圧波形成分Wb、(d)は噴射圧波形成分Wcを示す図。(A) is an injection detection waveform W, (b) is an injection detection waveform W after noise removal, (c) is a supply pressure waveform component Wb, and (d) is an injection pressure waveform component Wc. 噴射圧波形成分Wcを算出するための各種手段を示す機能ブロック図。The functional block diagram which shows the various means for calculating the injection pressure waveform component Wc. 噴射圧波形成分Wcを算出する処理手順を示すフローチャート。The flowchart which shows the process sequence which calculates the injection pressure waveform component Wc.

以下、本発明に係る燃料噴射状態検出装置を具体化した一実施形態を図面に基づいて説明する。本実施形態の燃料噴射状態検出装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, an embodiment embodying a fuel injection state detection device according to the present invention will be described with reference to the drawings. The fuel injection state detection device according to the present embodiment is mounted on a vehicle engine (internal combustion engine), and compression auto-ignition is performed by injecting high-pressure fuel into a plurality of cylinders # 1 to # 4. It assumes a diesel engine that burns.

図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ20、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。   FIG. 1 is a schematic diagram showing a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 20 mounted on each fuel injection valve 10, an ECU 30 that is an electronic control device mounted on a vehicle, and the like. is there.

先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、高圧ポンプ41(燃料ポンプ)によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。なお、高圧ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して間欠的に燃料は圧送される。   First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulator) by a high pressure pump 41 (fuel pump), and is distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order. Since the plunger pump is used as the high-pressure pump 41, the fuel is intermittently pumped in synchronism with the reciprocating movement of the plunger.

燃料噴射弁10は、以下に説明するボデー11、ニードル形状の弁体12及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。弁体12は、ボデー11内に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle-shaped valve body 12, an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The valve body 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b.

ボデー11内には弁体12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は制御弁14により切り替えられており、電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cは低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、弁体12へ付与される背圧力が低下して弁体12は開弁作動する。一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cは高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、弁体12へ付与される背圧力が上昇して弁体12は閉弁作動する。   A back pressure chamber 11c for applying a back pressure to the valve body 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14, and the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized to push the control valve 14 downward in FIG. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. As a result, the back pressure applied to the valve body 12 decreases and the valve body 12 opens. On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the valve body 12 rises and the valve body 12 is closed.

したがって、ECU30がアクチュエータ13への通電を制御することで、弁体12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、弁体12の開閉作動に応じて噴孔11bから噴射される。例えばECU30は、エンジン出力軸の回転速度及びエンジン負荷等に基づき、噴射開始時期、噴射終了時期及び噴射量等の目標噴射状態を算出し、算出した目標噴射状態となるようアクチュエータ13へ噴射指令信号を出力して、燃料噴射弁10の作動を制御する。   Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the valve body 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the valve body 12. For example, the ECU 30 calculates a target injection state such as an injection start timing, an injection end timing, and an injection amount based on the rotation speed of the engine output shaft, the engine load, and the like, and sends an injection command signal to the actuator 13 so that the calculated target injection state is obtained. Is output to control the operation of the fuel injection valve 10.

ECU30は、アクセル操作量等から算出されるエンジン負荷やエンジン回転速度に基づき目標噴射状態を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態(噴射段数、噴射開始時期、噴射終了時期、噴射量等)を噴射状態マップにして記憶させておく。そして、現時点でのエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。そして、算出した目標噴射状態に基づき噴射指令信号t1、t2、Tqを設定する。例えば、目標噴射状態に対応する噴射指令信号を指令マップにして記憶させておき、算出した目標噴射状態に基づき、指令マップを参照して噴射指令信号を設定する。以上により、エンジン負荷及びエンジン回転速度に応じた噴射指令信号が設定され、ECU30から燃料噴射弁10へ出力される。   The ECU 30 calculates the target injection state based on the engine load and engine speed calculated from the accelerator operation amount and the like. For example, the optimal injection state (the number of injection stages, the injection start time, the injection end time, the injection amount, etc.) corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Then, injection command signals t1, t2, and Tq are set based on the calculated target injection state. For example, an injection command signal corresponding to the target injection state is stored as a command map, and the injection command signal is set with reference to the command map based on the calculated target injection state. Thus, the injection command signal corresponding to the engine load and the engine rotation speed is set and output from the ECU 30 to the fuel injection valve 10.

ここで、噴孔11bの磨耗等、燃料噴射弁10の経年劣化に起因して、噴射指令信号に対する実際の噴射状態は変化していく。そこで、後に詳述するように燃圧センサ20により検出された圧力波形に基づき燃料の噴射率波形を演算して噴射状態を検出し、検出した噴射状態と噴射指令信号(パルスオン時期t1、パルスオフ時期t2及びパルスオン期間Tq)との相関関係を学習し、その学習結果に基づき、指令マップに記憶された噴射指令信号を補正する。これにより、実噴射状態が目標噴射状態に一致するよう、燃料噴射状態を高精度で制御できる。   Here, the actual injection state with respect to the injection command signal changes due to deterioration of the fuel injection valve 10 such as wear of the injection hole 11b. Therefore, as described in detail later, the fuel injection rate waveform is calculated based on the pressure waveform detected by the fuel pressure sensor 20 to detect the injection state, and the detected injection state and the injection command signal (pulse on timing t1, pulse off timing t2). And the correlation with the pulse-on period Tq), and the injection command signal stored in the command map is corrected based on the learning result. Thus, the fuel injection state can be controlled with high accuracy so that the actual injection state matches the target injection state.

次に、燃圧センサ20のハード構成について説明する。燃圧センサ20は、以下に説明するステム21(起歪体)、圧力センサ素子22及びモールドIC23等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号を出力する。   Next, the hardware configuration of the fuel pressure sensor 20 will be described. The fuel pressure sensor 20 includes a stem 21 (distortion body), a pressure sensor element 22, a mold IC 23, and the like described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. The pressure sensor element 22 is attached to the diaphragm portion 21a, and outputs a pressure detection signal in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

モールドIC23は、圧力センサ素子22から出力された圧力検出信号を増幅する増幅回路や、圧力検出信号を送信する送信回路等の電子部品を樹脂モールドして形成されており、ステム21とともに燃料噴射弁10に搭載されている。ボデー11上部にはコネクタ15が設けられており、コネクタ15に接続されたハーネス16により、モールドIC23及びアクチュエータ13とECU30とはそれぞれ電気接続される。そして、増幅された圧力検出信号はECU30に送信されて、ECU30が有する受信回路により受信される。この送受信にかかる通信処理は、各気筒の燃圧センサ20毎に実施される。   The mold IC 23 is formed by resin molding electronic components such as an amplification circuit that amplifies the pressure detection signal output from the pressure sensor element 22 and a transmission circuit that transmits the pressure detection signal. 10 is installed. A connector 15 is provided on the upper portion of the body 11, and the mold IC 23, the actuator 13, and the ECU 30 are electrically connected by a harness 16 connected to the connector 15. The amplified pressure detection signal is transmitted to the ECU 30 and received by a receiving circuit included in the ECU 30. This communication process for transmission / reception is performed for each fuel pressure sensor 20 of each cylinder.

ここで、噴孔11bから燃料の噴射を開始することに伴い高圧通路11a内の燃料の圧力(燃圧)は低下し、噴射を終了することに伴い燃圧は上昇する。つまり、燃圧の変化と噴射率(単位時間当たりに噴射される噴射量)の変化とは相関があり、燃圧変化から噴射率変化(実噴射状態)を検出できると言える。そして、検出した実噴射状態が目標噴射状態となるよう先述した噴射指令信号を補正する。これにより、噴射状態を精度良く制御できる。   Here, the fuel pressure (fuel pressure) in the high-pressure passage 11a decreases with the start of fuel injection from the nozzle hole 11b, and the fuel pressure increases with the end of injection. That is, it can be said that the change in the fuel pressure and the change in the injection rate (injection amount injected per unit time) have a correlation, and the change in the injection rate (actual injection state) can be detected from the change in the fuel pressure. Then, the above-described injection command signal is corrected so that the detected actual injection state becomes the target injection state. Thereby, the injection state can be controlled with high accuracy.

次に、燃料噴射中の燃料噴射弁10に搭載された燃圧センサ20により検出された圧力の波形である検出波形と、その燃料噴射弁10にかかる燃料噴射率の変化を表した噴射率波形との相関について、図2を用いて説明する。   Next, a detection waveform that is a waveform of the pressure detected by the fuel pressure sensor 20 mounted on the fuel injection valve 10 during fuel injection, and an injection rate waveform that represents a change in the fuel injection rate applied to the fuel injection valve 10 The correlation will be described with reference to FIG.

図2(a)は、燃料噴射弁10のアクチュエータ13へECU30から出力される噴射指令信号を示しており、この指令信号のパルスオンによりアクチュエータ13が通電作動して噴孔11bが開弁する。つまり、噴射指令信号のパルスオン時期t1により噴射開始が指令され、パルスオフ時期t2により噴射終了が指令される。よって、指令信号のパルスオン期間(噴射指令期間Tq)により噴孔11bの開弁時間を制御することで、噴射量Qを制御している。   FIG. 2A shows an injection command signal output from the ECU 30 to the actuator 13 of the fuel injection valve 10. When the command signal is turned on, the actuator 13 is energized to open the nozzle hole 11b. That is, the injection start is commanded by the pulse-on timing t1 of the injection command signal, and the injection end is commanded by the pulse-off timing t2. Therefore, the injection amount Q is controlled by controlling the valve opening time of the nozzle hole 11b according to the pulse-on period (injection command period Tq) of the command signal.

図2(b)は、上記噴射指令に伴い生じる噴孔11bからの燃料噴射率の変化(噴射率波形)を示し、図2(c)は、燃料噴射中の燃料噴射弁10に設けられた燃圧センサ20により検出された、噴射率の変化に伴い生じる検出圧力の変化を示す。なお、図2(c)は後述する噴射圧波形成分Wcを示すものであるが、ここでは単に「噴射圧波形」と呼ぶ。   FIG. 2 (b) shows a change in fuel injection rate (injection rate waveform) from the nozzle hole 11b caused by the injection command, and FIG. 2 (c) is provided in the fuel injection valve 10 during fuel injection. The change of the detection pressure which arises with the change of the injection rate detected by the fuel pressure sensor 20 is shown. FIG. 2C shows an injection pressure waveform component Wc, which will be described later, but is simply referred to as “injection pressure waveform” here.

噴射圧波形と噴射率波形とは以下に説明する相関があるため、検出された噴射圧波形から噴射率波形を推定(検出)することができる。すなわち、先ず、図2(a)に示すように噴射開始指令がなされたt1時点の後、噴射率がR1の時点で上昇を開始して噴射が開始される。一方、検出圧力は、R1の時点で噴射率が上昇を開始してから遅れ時間C1が経過した時点で、変化点P1にて下降を開始する。その後、R2の時点で噴射率が最大噴射率に到達したことに伴い、検出圧力の下降は変化点P2にて停止する。次に、R3の時点で噴射率が下降を開始してから遅れ時間C3が経過した時点で、検出圧力は変化点P3にて上昇を開始する。その後、R4の時点で噴射率がゼロになり実際の噴射が終了したことに伴い、検出圧力の上昇は変化点P5にて停止する。   Since the injection pressure waveform and the injection rate waveform have a correlation described below, the injection rate waveform can be estimated (detected) from the detected injection pressure waveform. That is, first, as shown in FIG. 2 (a), after the time t1 when the injection start command is given, the injection rate starts to rise and the injection is started when the injection rate is R1. On the other hand, the detected pressure starts decreasing at the change point P1 when the delay time C1 elapses after the injection rate starts increasing at the time R1. Thereafter, as the injection rate reaches the maximum injection rate at the time of R2, the decrease in the detected pressure stops at the change point P2. Next, when the delay time C3 elapses after the injection rate starts decreasing at the time point R3, the detected pressure starts increasing at the change point P3. Thereafter, as the injection rate becomes zero at the time point R4 and the actual injection ends, the increase in the detected pressure stops at the change point P5.

以上説明したように、噴射圧波形と噴射率波形とは相関が高い。そして、噴射率波形には、噴射開始時期(R1出現時期)や、噴射終了時期(R4出現時期)、噴射量(図2(b)中の網点部分の面積)が表されているので、噴射圧波形から噴射率波形を推定することで噴射状態を検出できる。   As described above, the correlation between the injection pressure waveform and the injection rate waveform is high. The injection rate waveform shows the injection start time (R1 appearance time), the injection end time (R4 appearance time), and the injection amount (area of the halftone dot portion in FIG. 2B). The injection state can be detected by estimating the injection rate waveform from the injection pressure waveform.

ここで、燃料噴射中の燃料噴射弁10に対応する燃圧センサ20からECU30へ出力された圧力検出信号を、ECU30にてA/D変換し、そのデジタル信号の変化を表した波形(噴射時検出波形W)は、図3(a)に例示される波形となる。この噴射時検出波形Wは、噴射による影響のみを表しているわけではなく、コモンレール42から燃料噴射弁10へ分配供給される燃料の圧力変化を表した波形成分をも含んでいる。   Here, the pressure detection signal output from the fuel pressure sensor 20 corresponding to the fuel injection valve 10 during fuel injection to the ECU 30 is A / D converted by the ECU 30, and a waveform representing the change in the digital signal (detection at injection) The waveform W) is the waveform illustrated in FIG. This injection detection waveform W does not represent only the influence of the injection, but also includes a waveform component that represents a change in the pressure of the fuel distributed and supplied from the common rail 42 to the fuel injection valve 10.

すなわち、高圧ポンプ41によるポンプ圧送が燃料噴射中に行われると、そのポンプ圧送期間中における噴射時検出波形Wは全体的に圧力が高くなった波形となる。つまり、噴射時検出波形W(図3(a)参照)には、噴射による燃圧変化を表した噴射圧波形成分Wc(図3(d)参照)と、ポンプ圧送による燃圧上昇を表した波形成分Wb(図3(c)中の実線参照)とが含まれていると言える。   That is, if pump pumping by the high pressure pump 41 is performed during fuel injection, the detection waveform W during injection during the pump pumping period becomes a waveform in which the pressure is increased as a whole. That is, the injection detection waveform W (see FIG. 3A) includes an injection pressure waveform component Wc that represents a change in fuel pressure due to injection (see FIG. 3D) and a waveform component that represents an increase in fuel pressure due to pumping. It can be said that Wb (see the solid line in FIG. 3C) is included.

また、このようなポンプ圧送が燃料噴射中に行われなかった場合であっても、燃料を噴射した直後は、その噴射分だけ噴射システム内全体(つまりコモンレール42、高圧配管42b及び高圧通路11a等を含む燃料供給経路全体)の燃圧が低下する。そのため、噴射時検出波形Wは全体的に圧力が低くなった波形となる。つまり、噴射時検出波形Wには、噴射による燃圧変化を表した噴射圧波形成分Wcと、噴射システム内全体の燃圧低下を表した波形成分Wb’(図3(c)中の点線参照)とが含まれていると言える。   Even if such pump pumping is not performed during fuel injection, immediately after fuel injection, the entire injection system (that is, the common rail 42, the high-pressure pipe 42b, the high-pressure passage 11a, etc.) The fuel pressure of the entire fuel supply path including the fuel pressure decreases. Therefore, the injection detection waveform W is a waveform in which the pressure is lowered as a whole. That is, the injection detection waveform W includes an injection pressure waveform component Wc that represents a change in fuel pressure due to injection, and a waveform component Wb ′ that represents a decrease in the fuel pressure in the entire injection system (see the dotted line in FIG. 3C). Can be said to be included.

要するに、噴射時検出波形Wは分配供給圧力PCや噴射システム内全体の燃圧変化の影響を受けているので、噴射時検出波形Wから前記波形成分Wb,Wb’(供給圧波形成分に相当)を差し引けば、噴射時検出波形Wから分配供給圧力PCやシステム内全体燃圧の変化による影響が除去される。図3(d)中の実線は、このように差し引いて得られた波形成分(噴射圧波形成分Wc)を示している。   In short, since the detection waveform W at the time of injection is affected by the distribution supply pressure PC and the fuel pressure change in the entire injection system, the waveform components Wb and Wb ′ (corresponding to the supply pressure waveform components) are detected from the detection waveform W at the time of injection. If subtracted, the influence of the change in the distribution supply pressure PC and the overall fuel pressure in the system is removed from the detection waveform W during injection. The solid line in FIG. 3D shows the waveform component (injection pressure waveform component Wc) obtained by subtracting in this way.

そこで本実施形態では、図4を用いて以下に説明するように噴射以外の影響による波形成分Wb,Wb’を算出し、噴射時検出波形Wから波形成分Wb,Wb’を差し引いて噴射圧波形成分Wcを算出している。   Therefore, in the present embodiment, as described below with reference to FIG. 4, the waveform components Wb and Wb ′ due to the influence other than the injection are calculated, and the waveform components Wb and Wb ′ are subtracted from the detection waveform W at the time of injection to thereby calculate the injection pressure waveform. The component Wc is calculated.

図4に示すように、ECU30は、以下に説明するA/D変換器31、第1ローパスフィルタ32、第2ローパスフィルタ33、減算器34、及び噴射率波形演算器35を有している。A/D変換器31は、燃圧センサ20からECU30へ出力された圧力検出信号をA/D変換して、図3に示す噴射時検出波形Wを生成する。   As shown in FIG. 4, the ECU 30 includes an A / D converter 31, a first low-pass filter 32, a second low-pass filter 33, a subtracter 34, and an injection rate waveform calculator 35 described below. The A / D converter 31 performs A / D conversion on the pressure detection signal output from the fuel pressure sensor 20 to the ECU 30, and generates an injection detection waveform W shown in FIG.

第1ローパスフィルタ32(ノイズフィルタ手段)は、噴射時検出波形Wに含まれている電気ノイズ等の各種ノイズN(図3(a))を除去する。具体的には、カットオフ周波数を例えば3kHzに設定し、噴射時検出波形W中の3kHz以上の周波数成分をカットして、3kHz未満の周波数成分を抽出する。ちなみに、図3(b)は、第1ローパスフィルタ32によりノイズ除去された状態の噴射時検出波形Waを示す。   The first low-pass filter 32 (noise filter means) removes various noises N (FIG. 3A) such as electrical noise included in the ejection detection waveform W. Specifically, the cutoff frequency is set to 3 kHz, for example, and frequency components of 3 kHz or higher in the ejection detection waveform W are cut to extract frequency components of less than 3 kHz. Incidentally, FIG. 3B shows a detection waveform Wa at the time of injection in a state where noise is removed by the first low-pass filter 32.

第2ローパスフィルタ33(フィルタ手段)は、噴射時検出波形Waに含まれている所定周波数(例えば500Hz)以上の高周波数成分を除去して、所定周波数未満の低周波数成分を抽出する。上記所定周波数(カットオフ周波数)は、第2ローパスフィルタ33により除去される高周波数成分に噴射圧波形成分Wcが含まれるように設定されている。具体的には、噴射圧波形成分Wcのうち、噴射開始に伴い生じた変化点P1から噴射終了に伴い生じた変化点P5までの部分を半波長とした波形成分の周波数よりも低い周波数に、前記所定周波数を設定する。   The second low-pass filter 33 (filter means) removes a high frequency component of a predetermined frequency (for example, 500 Hz) or more included in the ejection detection waveform Wa, and extracts a low frequency component less than the predetermined frequency. The predetermined frequency (cutoff frequency) is set so that the injection pressure waveform component Wc is included in the high frequency component removed by the second low-pass filter 33. Specifically, in the injection pressure waveform component Wc, a frequency lower than the frequency of the waveform component having a half-wavelength from the change point P1 generated at the start of injection to the change point P5 generated at the end of injection, The predetermined frequency is set.

さらに上記所定周波数は、第2ローパスフィルタ33により除去される高周波数成分に、ポンプ圧送に伴い生じた供給圧の上昇を表した波形成分Wbが含まれることのないように設定されている。また、第2ローパスフィルタ33により除去される高周波数成分に、噴射量分に相当する噴射システム内全体の燃圧低下を表した波形成分Wb’や、以下に説明する変動波形が含まれることのないように設定されている。   Further, the predetermined frequency is set so that the high frequency component removed by the second low pass filter 33 does not include the waveform component Wb representing the increase in the supply pressure caused by the pumping. Further, the high-frequency component removed by the second low-pass filter 33 does not include a waveform component Wb ′ that represents a decrease in the fuel pressure in the entire injection system corresponding to the injection amount, and a fluctuation waveform described below. Is set to

すなわち、コモンレール42内の圧力(レール圧)を高圧ポンプ41や図示しない減圧弁等により制御するにあたり、その制御性が低下したことに伴い、噴射時検出波形Waよりも長い周期で変動する波形成分(長周期波形成分)が噴射時検出波形Wに含まれるようになる。例えば、目標レール圧が変化した直後において、実レール圧を目標レール圧に合わせ込むよう制御する過渡期に、上述した長周期の変動が生じる。なお、この長周期波形成分の形状は先述した波形成分Wb’と同様の形状になることを想定しており、供給圧波形成分の一例として挙げられる。   That is, when the pressure in the common rail 42 (rail pressure) is controlled by the high-pressure pump 41, a pressure reducing valve (not shown) or the like, a waveform component that fluctuates in a longer cycle than the detection waveform Wa at the time of injection due to a decrease in controllability. (Long-cycle waveform component) is included in the detection waveform W upon injection. For example, immediately after the target rail pressure changes, the above-described long-cycle fluctuation occurs in a transition period in which the actual rail pressure is controlled to match the target rail pressure. Note that this long-period waveform component is assumed to have the same shape as the waveform component Wb ′ described above, and is an example of the supply pressure waveform component.

以上により、上述の如く所定周波数が設定された第2ローパスフィルタ33によれば、噴射時検出波形Waに含まれている噴射圧波形成分Wcを除去して、波形成分Wb,Wb’が抽出されることとなる。   As described above, according to the second low-pass filter 33 in which the predetermined frequency is set as described above, the injection pressure waveform component Wc included in the injection detection waveform Wa is removed, and the waveform components Wb and Wb ′ are extracted. The Rukoto.

減算器34(噴射圧波形算出手段)は、第1ローパスフィルタ32によりノイズ除去された噴射時検出波形Waから、第2ローパスフィルタ33により抽出された噴射以外の影響による波形成分Wb,Wb’を減算して差し引く演算を実施する。これにより、図3(d)に示す噴射圧波形成分Wcが算出される。噴射率波形演算器35(噴射状態推定手段)は、図2を用いて先述した圧力波形と噴射率波形との相関に基づき、減算器34で算出された噴射圧波形成分Wcから噴射率波形を演算する。   The subtractor 34 (injection pressure waveform calculating means) calculates the waveform components Wb and Wb ′ due to the influence other than the injection extracted by the second low-pass filter 33 from the detection waveform Wa at the time of injection from which noise has been removed by the first low-pass filter 32. Perform subtraction and subtraction operations. Thereby, the injection pressure waveform component Wc shown in FIG. 3D is calculated. The injection rate waveform calculator 35 (injection state estimation means) calculates an injection rate waveform from the injection pressure waveform component Wc calculated by the subtractor 34 based on the correlation between the pressure waveform and the injection rate waveform described above with reference to FIG. Calculate.

図5は、上述の如く噴射時検出波形Wから噴射率波形を演算するに至るまでの手順を示すフローチャートであり、先ずステップS10(検出波形取得手段)において、ECU30が有するマイクロコンピュータが、燃料噴射中の気筒#1の燃料噴射弁10に対応する燃圧センサ20により検出された噴射時検出波形Wを取得する。   FIG. 5 is a flowchart showing a procedure from the injection detection waveform W to the calculation of the injection rate waveform as described above. First, in step S10 (detection waveform acquisition means), the microcomputer included in the ECU 30 performs fuel injection. An injection detection waveform W detected by the fuel pressure sensor 20 corresponding to the fuel injection valve 10 of the middle cylinder # 1 is acquired.

続くステップS20では、第1ローパスフィルタ32が、ノイズ除去された噴射時検出波形Wに含まれるノイズNを除去する処理を実施する。続くステップS30では、第2ローパスフィルタ33が、噴射時検出波形Waから噴射圧波形成分Wcを除去して、噴射以外の影響による波形成分Wb,Wb’を抽出する。   In the subsequent step S20, the first low-pass filter 32 performs a process of removing the noise N included in the injection detection waveform W from which noise has been removed. In subsequent step S30, the second low-pass filter 33 removes the injection pressure waveform component Wc from the injection detection waveform Wa, and extracts the waveform components Wb, Wb 'due to effects other than the injection.

続くステップS40では、減算器34が、ノイズ除去された噴射時検出波形Waから波形成分Wb,Wb’を差し引いて噴射圧波形成分Wcを算出する。続くステップS50では、噴射率波形演算器35が、噴射圧波形成分Wcに基づき噴射率波形を算出する。   In subsequent step S40, the subtractor 34 calculates the injection pressure waveform component Wc by subtracting the waveform components Wb and Wb 'from the injection detected waveform Wa from which noise has been removed. In subsequent step S50, the injection rate waveform calculator 35 calculates an injection rate waveform based on the injection pressure waveform component Wc.

以上詳述した本実施形態によれば、以下の効果が得られるようになる。   According to the embodiment described in detail above, the following effects can be obtained.

(1)燃料噴射中の気筒#1に対応する燃圧センサ20により検出された噴射時検出波形Wから、第2ローパスフィルタ33により噴射圧波形成分Wcを除去して波形成分Wb,Wb’を抽出するので、非噴射気筒#2に対応する燃圧センサ20を用いることなく噴射以外の影響による波形成分Wb,Wb’を取得できる。そして、取得した波形成分Wb,Wb’を噴射時検出波形Wから差し引いて噴射圧波形成分Wcを算出するので、非噴射気筒#2に対応する燃圧センサ20による検出波形の生成を必要とすることなく、噴射圧波形成分Wcを取得できる。よって、実際の噴射状態を表した噴射圧波形成分Wcを精度良く検出することと、燃圧センサ20の検出値から検出波形を生成するECU30の演算処理の負荷軽減との両立を図ることができる。   (1) The injection pressure waveform component Wc is removed by the second low-pass filter 33 and the waveform components Wb and Wb ′ are extracted from the detection waveform W at the time of injection detected by the fuel pressure sensor 20 corresponding to the cylinder # 1 during fuel injection. Therefore, the waveform components Wb and Wb ′ due to the influence other than the injection can be acquired without using the fuel pressure sensor 20 corresponding to the non-injection cylinder # 2. Then, since the acquired waveform components Wb and Wb ′ are subtracted from the detection waveform W during injection to calculate the injection pressure waveform component Wc, it is necessary to generate a detection waveform by the fuel pressure sensor 20 corresponding to the non-injection cylinder # 2. The injection pressure waveform component Wc can be acquired. Therefore, it is possible to achieve both the detection of the injection pressure waveform component Wc representing the actual injection state with high accuracy and the reduction of the calculation processing load of the ECU 30 that generates the detection waveform from the detection value of the fuel pressure sensor 20.

さらに、燃料気筒#1に対応する燃圧センサ20及び非噴射気筒#2に対応する燃圧センサ20の両センサから同時に検出値を取得することを不要にできるので、ECU30が前記両センサと同時に通信することを不要にできる。よって、ECU30と燃圧センサ20との通信処理の煩雑化を回避でき、ECU30の通信処理負荷も軽減できる。   Further, since it is unnecessary to simultaneously acquire detection values from both the fuel pressure sensor 20 corresponding to the fuel cylinder # 1 and the fuel pressure sensor 20 corresponding to the non-injection cylinder # 2, the ECU 30 communicates with both the sensors simultaneously. Can be made unnecessary. Therefore, complication of communication processing between the ECU 30 and the fuel pressure sensor 20 can be avoided, and the communication processing load on the ECU 30 can be reduced.

(2)第2ローパスフィルタ33のカットオフ周波数は、噴射圧波形成分Wcのうち、噴射開始に伴い生じた変化点P1から噴射終了に伴い生じた変化点P5までの部分が少なくとも除去されるように設定されている。よって、噴射圧波形成分Wcの主要部分を確実に除去することができ、噴射以外の影響による波形成分Wb,Wb’の抽出精度を向上できる。その結果、噴射圧波形成分Wcの算出精度を向上でき、ひいては噴射圧波形成分Wcの算出精度を向上できる。   (2) The cutoff frequency of the second low-pass filter 33 is such that at least a portion of the injection pressure waveform component Wc from the change point P1 generated at the start of injection to the change point P5 generated at the end of injection is removed. Is set to Therefore, the main part of the injection pressure waveform component Wc can be reliably removed, and the extraction accuracy of the waveform components Wb and Wb ′ due to the influence other than the injection can be improved. As a result, the calculation accuracy of the injection pressure waveform component Wc can be improved, and consequently the calculation accuracy of the injection pressure waveform component Wc can be improved.

(3)第2ローパスフィルタ33のカットオフ周波数は、ポンプ圧送に伴い生じた供給圧PCの上昇を表した波形成分Wbが除去されることのないように設定されている。よって、供給圧波形成分Wbの抽出精度を向上できる。   (3) The cut-off frequency of the second low-pass filter 33 is set so that the waveform component Wb representing the increase in the supply pressure PC caused by pumping is not removed. Therefore, the extraction accuracy of the supply pressure waveform component Wb can be improved.

(4)また、ポンプ圧送が燃料噴射中に行われなかった場合であっても、燃料噴射した分だけ噴射システム内全体の燃圧が低下する。このような噴射システム内全体の燃圧低下を表した波形成分Wb’が除去されることのないように第2ローパスフィルタ33のカットオフ周波数は設定されている。よって、波形成分Wb’の抽出精度を向上できる。   (4) Moreover, even if pump pumping is not performed during fuel injection, the fuel pressure in the entire injection system is reduced by the amount of fuel injection. The cut-off frequency of the second low-pass filter 33 is set so that the waveform component Wb ′ representing the decrease in the fuel pressure in the entire injection system is not removed. Therefore, it is possible to improve the extraction accuracy of the waveform component Wb ′.

(5)第2ローパスフィルタ33の他に、ノイズ除去用の第1ローパスフィルタ32を備えるので、減算器34の演算に用いる噴射時検出波形Wから、各種要因によるノイズNを十分に除去できる。よって、減算器34による噴射圧波形成分Wcの算出精度を向上できる。   (5) Since the first low-pass filter 32 for noise removal is provided in addition to the second low-pass filter 33, the noise N due to various factors can be sufficiently removed from the detection waveform W at the time of injection used for the calculation of the subtractor 34. Therefore, the calculation accuracy of the injection pressure waveform component Wc by the subtractor 34 can be improved.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・上記実施形態では、A/D変換器31によりA/D変換された後のデジタル信号を対象として、デジタルフィルタ(第2ローパスフィルタ33)を用いて噴射時検出波形Wから噴射圧波形成分Wcを除去しているが、A/D変換される前のアナログ信号を対象として、アナログフィルタ(図示せず)を用いて噴射時検出波形Wから噴射圧波形成分Wcを除去するようにしてもよい。また、第1ローパスフィルタ32についても同様にして、デジタルフィルタに限らずアナログフィルタに変更してもよい。   In the above embodiment, the digital signal after A / D conversion by the A / D converter 31 is used as a target to detect the injection pressure waveform component Wc from the detection waveform W during injection using the digital filter (second low-pass filter 33). However, the injection pressure waveform component Wc may be removed from the detection waveform W during injection using an analog filter (not shown) for the analog signal before A / D conversion. . Similarly, the first low-pass filter 32 may be changed to an analog filter instead of a digital filter.

・上記実施形態では、第2ローパスフィルタ33とは別にノイズ除去用の第1ローパスフィルタ32を備えているが、第1ローパスフィルタ32を廃止して、第2ローパスフィルタ33によりノイズ除去を兼用させてもよい。   In the above embodiment, the first low-pass filter 32 for noise removal is provided separately from the second low-pass filter 33. However, the first low-pass filter 32 is eliminated and the second low-pass filter 33 is also used for noise removal. May be.

・図1に示す上記実施形態では、燃圧センサ20を燃料噴射弁10に搭載しているが、本発明にかかる燃圧センサはコモンレール42の吐出口42aから噴孔11bに至るまでの燃料供給経路内の燃圧を検出するよう配置された燃圧センサであればよい。よって、例えばコモンレール42と燃料噴射弁10とを接続する高圧配管42bに燃圧センサを搭載してもよい。つまり、コモンレール42及び燃料噴射弁10を接続する高圧配管42bと、ボデー11内の高圧通路11aとが「燃料供給経路」に相当する。   In the above embodiment shown in FIG. 1, the fuel pressure sensor 20 is mounted on the fuel injection valve 10, but the fuel pressure sensor according to the present invention is in the fuel supply path from the discharge port 42a of the common rail 42 to the injection hole 11b. Any fuel pressure sensor may be used so long as it detects the fuel pressure. Therefore, for example, a fuel pressure sensor may be mounted on the high-pressure pipe 42 b that connects the common rail 42 and the fuel injection valve 10. That is, the high-pressure pipe 42b connecting the common rail 42 and the fuel injection valve 10 and the high-pressure passage 11a in the body 11 correspond to the “fuel supply path”.

10…燃料噴射弁、11b…噴孔、20…燃圧センサ、32…第1ローパスフィルタ(ノイズフィルタ手段)、33…第2ローパスフィルタ(フィルタ手段)、34…減算器(噴射圧波形算出手段)、35…噴射率波形演算器(噴射状態推定手段)、42…コモンレール(分配容器)、S10…検出波形取得手段、S40…噴射圧波形算出手段、S50…噴射率波形演算器。   DESCRIPTION OF SYMBOLS 10 ... Fuel injection valve, 11b ... Injection hole, 20 ... Fuel pressure sensor, 32 ... 1st low-pass filter (noise filter means), 33 ... 2nd low-pass filter (filter means), 34 ... Subtractor (injection pressure waveform calculation means) 35 ... Injection rate waveform calculator (injection state estimation means), 42 ... Common rail (distribution container), S10 ... Detection waveform acquisition means, S40 ... Injection pressure waveform calculation means, S50 ... Injection rate waveform calculator.

Claims (4)

多気筒内燃機関の各気筒に設けられた燃料噴射弁と、
燃料ポンプから供給される燃料を蓄圧して複数の前記燃料噴射弁へ分配供給する分配容器と、
複数の前記燃料噴射弁の各々に対して設けられ、前記燃料噴射弁の噴孔から燃料を噴射させることに伴い前記分配容器の吐出口から前記噴孔に至るまでの燃料供給経路内で生じる燃料圧力の変化を検出する燃圧センサと、
を備えた燃料噴射システムに適用され、
複数の前記燃圧センサのうち燃料噴射中の燃料噴射弁に対応する燃圧センサにより検出された圧力の波形である、噴射時検出波形を取得する検出波形取得手段と、
前記噴射時検出波形から所定周波数以上の高周波数成分を除去して、前記分配容器内の分配供給圧力の変化を表した供給圧波形成分を抽出するフィルタ手段と、
前記噴射時検出波形から前記供給圧波形成分を差し引いて、噴射による燃圧変化を表した噴射圧波形成分を算出する噴射圧波形算出手段と、
前記噴射圧波形成分に基づき、前記噴孔からの燃料噴射状態を推定する噴射状態推定手段と、
を備えることを特徴とする燃料噴射状態検出装置。
A fuel injection valve provided in each cylinder of the multi-cylinder internal combustion engine;
A distribution container for accumulating and supplying fuel supplied from a fuel pump to the plurality of fuel injection valves;
Fuel that is provided for each of the plurality of fuel injection valves and that is generated in the fuel supply path from the outlet of the distribution container to the injection hole as fuel is injected from the injection hole of the fuel injection valve A fuel pressure sensor for detecting a change in pressure;
Applied to the fuel injection system with
A detection waveform acquisition means for acquiring a detection waveform during injection, which is a waveform of a pressure detected by a fuel pressure sensor corresponding to a fuel injection valve during fuel injection among the plurality of fuel pressure sensors;
Filter means for removing a high frequency component of a predetermined frequency or more from the detection waveform at the time of injection and extracting a supply pressure waveform component representing a change in the distribution supply pressure in the distribution container;
An injection pressure waveform calculating means for subtracting the supply pressure waveform component from the injection detection waveform to calculate an injection pressure waveform component representing a fuel pressure change due to injection;
Injection state estimation means for estimating a fuel injection state from the nozzle hole based on the injection pressure waveform component;
A fuel injection state detection device comprising:
前記フィルタ手段により除去される高周波数成分に、噴射開始に伴い燃圧低下を開始してから噴射終了に伴い燃圧上昇が終了するまでの波形成分が含まれるよう、前記所定周波数を設定することを特徴とする請求項1に記載の燃料噴射状態検出装置。   The predetermined frequency is set so that the high frequency component removed by the filter means includes a waveform component from when the fuel pressure decrease starts at the start of injection until the fuel pressure increase ends at the end of injection. The fuel injection state detection device according to claim 1. 前記フィルタ手段により除去される高周波数成分に、前記燃料ポンプから前記分配容器へ燃料が圧送されることに伴い燃圧上昇する波形成分が含まれることのないよう、前記所定周波数を設定することを特徴とする請求項1又は2に記載の燃料噴射状態検出装置。   The predetermined frequency is set so that a high-frequency component removed by the filter means does not include a waveform component that increases in fuel pressure as fuel is pumped from the fuel pump to the distribution container. The fuel injection state detection device according to claim 1 or 2. 前記噴射時検出波形から、前記所定周波数よりもさらに高周波数以上のノイズ成分を除去するノイズフィルタ手段を備えることを特徴とする請求項1〜3のいずれか1つに記載の燃料噴射状態検出装置。   The fuel injection state detection device according to any one of claims 1 to 3, further comprising noise filter means for removing a noise component having a frequency higher than the predetermined frequency from the detection waveform at the time of injection. .
JP2010151928A 2010-07-02 2010-07-02 Fuel injection state detection device Expired - Fee Related JP5024429B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010151928A JP5024429B2 (en) 2010-07-02 2010-07-02 Fuel injection state detection device
DE102011051105.9A DE102011051105B4 (en) 2010-07-02 2011-06-16 Device for detecting a fuel injection condition
CN201110185994.5A CN102312746B (en) 2010-07-02 2011-06-30 Device for detecting fuel injection state

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010151928A JP5024429B2 (en) 2010-07-02 2010-07-02 Fuel injection state detection device

Publications (2)

Publication Number Publication Date
JP2012013036A JP2012013036A (en) 2012-01-19
JP5024429B2 true JP5024429B2 (en) 2012-09-12

Family

ID=45346944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010151928A Expired - Fee Related JP5024429B2 (en) 2010-07-02 2010-07-02 Fuel injection state detection device

Country Status (3)

Country Link
JP (1) JP5024429B2 (en)
CN (1) CN102312746B (en)
DE (1) DE102011051105B4 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5579787B2 (en) * 2012-06-19 2014-08-27 本田技研工業株式会社 Control device for internal combustion engine
KR101856243B1 (en) * 2012-07-03 2018-05-09 현대자동차주식회사 Method of controlling engine noise including combustion noise of internal combustion engine
JP6044524B2 (en) 2013-11-20 2016-12-14 株式会社デンソー Fuel injection condition analyzer
CN103994006A (en) * 2014-06-13 2014-08-20 天津大学 Fuel injector needle valve response time measuring system and measuring method
CN104806409A (en) * 2015-03-27 2015-07-29 天津大学 Gas direct injection injector dynamic response time measuring system and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004056893A1 (en) 2004-11-25 2006-06-01 Robert Bosch Gmbh Device and method for determining pressure fluctuations in a fuel supply system
JP4840288B2 (en) * 2006-11-14 2011-12-21 株式会社デンソー Fuel injection apparatus and adjustment method thereof
JP4424395B2 (en) * 2007-08-31 2010-03-03 株式会社デンソー Fuel injection control device for internal combustion engine
JP4428427B2 (en) 2007-08-31 2010-03-10 株式会社デンソー Fuel injection characteristic detecting device and fuel injection command correcting device
DE102007045606B3 (en) * 2007-09-25 2009-02-26 Mtu Friedrichshafen Gmbh Method for controlling and regulating internal combustion engine with common rail system, involves filtering individual accumulator pressure within time frame in measuring interval after end of injection of main injection
JP4678397B2 (en) 2007-10-15 2011-04-27 株式会社デンソー Fuel injection state detection device
EP2083161A1 (en) * 2008-01-28 2009-07-29 GM Global Technology Operations, Inc. Method for evaluating the quantity of fuel injected in an internal combustion engine
JP4631937B2 (en) 2008-06-18 2011-02-16 株式会社デンソー Learning device and fuel injection system

Also Published As

Publication number Publication date
DE102011051105B4 (en) 2018-07-26
CN102312746B (en) 2014-04-16
JP2012013036A (en) 2012-01-19
DE102011051105A1 (en) 2012-01-05
CN102312746A (en) 2012-01-11

Similar Documents

Publication Publication Date Title
JP5394432B2 (en) Fuel state estimation device
JP5195842B2 (en) Pressure reducing valve controller
JP5136617B2 (en) Fuel injection waveform calculation device
JP5003796B2 (en) Fuel injection state detection device
JP5024429B2 (en) Fuel injection state detection device
JP5278398B2 (en) Fuel injection state detection device
JP6274690B2 (en) Fuel injection control method and common rail fuel injection control device
JP5263280B2 (en) Fuel injection control device
JP2013044237A (en) Fuel injection control device
JP6040877B2 (en) Fuel injection state estimation device
JP5370348B2 (en) Fuel injection control device for internal combustion engine
JP5067461B2 (en) Fuel injection state detection device
JP5126296B2 (en) Fuel injection state detection device
JP5182337B2 (en) Detection deviation judgment device of fuel pressure sensor
JP5240283B2 (en) Noise diagnosis device for fuel injection system
JP6020387B2 (en) Pressure sensor responsiveness learning device
JP5168325B2 (en) Fuel injection state detection device
WO2019088188A1 (en) Fuel injection control device
JP5565435B2 (en) Fuel injection control device
JP6507982B2 (en) Fuel injection state detection device
JP6451539B2 (en) Fuel injection valve
JP6056666B2 (en) Fuel injection condition analyzer
JP6308080B2 (en) Fuel injection state detection device
JP6398631B2 (en) Fuel injection status acquisition device
JP2014141951A (en) Fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120522

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150629

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5024429

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees