JP5293765B2 - Fuel injection state estimation device - Google Patents

Fuel injection state estimation device Download PDF

Info

Publication number
JP5293765B2
JP5293765B2 JP2011090043A JP2011090043A JP5293765B2 JP 5293765 B2 JP5293765 B2 JP 5293765B2 JP 2011090043 A JP2011090043 A JP 2011090043A JP 2011090043 A JP2011090043 A JP 2011090043A JP 5293765 B2 JP5293765 B2 JP 5293765B2
Authority
JP
Japan
Prior art keywords
injection
fuel
fuel injection
time
injection valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011090043A
Other languages
Japanese (ja)
Other versions
JP2012219802A (en
Inventor
啓 梅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011090043A priority Critical patent/JP5293765B2/en
Priority to DE102012102907.5A priority patent/DE102012102907B4/en
Priority to CN201210109369.7A priority patent/CN102733974B/en
Publication of JP2012219802A publication Critical patent/JP2012219802A/en
Application granted granted Critical
Publication of JP5293765B2 publication Critical patent/JP5293765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/005Fuel-injectors combined or associated with other devices the devices being sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0618Actual fuel injection timing or delay, e.g. determined from fuel pressure drop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/0045Three-way valves
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

A first curve obtaining unit receives a fuel injection pressure curve and a fuel non-injection pressure curve related to the fuel injection states of a fuel injector (10-1). A transmission time calculation unit calculates the transmission time required till a change in the fuel pressure, based on the phase difference between both the pressure curves. A detecting unit detects the fuel injection state in the fuel injector (10-3), based on a fuel non-injection curve received by a second curve obtaining unit, and the calculated transmission time. The fuel injection pressure curve obtained by the first curve obtaining unit, represents the relationship between a change of pressure due to fuel injection by the first fuel injector, which is detected by the first fuel pressure sensor (22), and the detection time. The fuel non-injection pressure curve represents a relationship between a change of pressure due to fuel injection by the first fuel injector, which is detected by the second fuel pressure sensor (20), and a detection time. A transmission time calculation unit calculates the transmission time required till a change in the fuel pressure, based on the phase difference between both the pressure curves. The second curve obtaining unit receives the fuel non-injection curve that represents the relationship between a change of pressure due to fuel injection by the third fuel injector, which is detected by the first fuel pressure sensor or the second fuel pressure sensor, and the pick-up timing. A detecting unit detects the fuel injection state in the third fuel injector, based on the fuel non-injection curve received by the second curve obtaining unit, and the calculated transmission time.

Description

本発明は、多気筒の内燃機関において、燃料の噴射開始時期や噴射終了時期、噴射異常発生等の噴射状態を推定する燃料噴射状態推定装置に関する。   The present invention relates to a fuel injection state estimation device for estimating an injection state such as a fuel injection start timing, an injection end timing, and an injection abnormality occurrence in a multi-cylinder internal combustion engine.

特許文献1〜3等には、燃料噴射弁へ供給される燃料の圧力を燃圧センサで検出することで、燃料噴射に伴い生じた圧力変化(噴射気筒波形)を検出し、その噴射気筒波形に基づき燃料の噴射状態を算出する発明が開示されている。噴射状態の具体例としては、以下に説明する噴射開始時期、噴射終了時期、噴射異常等が挙げられる。   In Patent Documents 1 to 3 and the like, a pressure change (injection cylinder waveform) caused by fuel injection is detected by detecting the pressure of the fuel supplied to the fuel injection valve with a fuel pressure sensor. An invention for calculating the fuel injection state based on this is disclosed. Specific examples of the injection state include an injection start timing, an injection end timing, an injection abnormality, and the like described below.

すなわち、噴射開始に伴い生じた圧力降下開始時期と噴射開始時期とは相関が高いことに着目し、噴射気筒波形から検出される圧力降下開始時期に基づき噴射開始時期(噴射状態)を算出する。また、噴射終了に伴い生じた圧力上昇終了時期と噴射終了時期とは相関が高いことに着目し、噴射気筒波形から検出される圧力上昇終了時期に基づき噴射終了時期(噴射状態)を算出する。そして、このように算出した噴射状態に基づき燃料噴射弁の作動をフィードバック制御することで、噴射状態が所望の状態になるように高精度で噴射制御できる。   That is, paying attention to the fact that there is a high correlation between the pressure drop start time and the injection start time that occur as a result of the start of injection, the injection start time (injection state) is calculated based on the pressure drop start time detected from the injection cylinder waveform. In addition, paying attention to the fact that the correlation between the pressure rise end time and the injection end time generated with the end of injection is high, the injection end time (injection state) is calculated based on the pressure rise end time detected from the injection cylinder waveform. Then, by performing feedback control of the operation of the fuel injection valve based on the injection state calculated in this way, the injection control can be performed with high accuracy so that the injection state becomes a desired state.

また、上述した圧力降下開始時期や圧力上昇終了時期が、燃料噴射弁へ指令信号を出力した時期から想定される時期から大きくずれている場合には、噴射を開始できない異常や噴射を終了できない異常状態(噴射状態)であると診断できる。   In addition, when the pressure drop start timing and the pressure rise end timing described above are greatly deviated from the expected timing from the time when the command signal is output to the fuel injection valve, an abnormality in which the injection cannot be started or an abnormality in which the injection cannot be ended It can be diagnosed as a state (injection state).

特開2009−103063号公報JP 2009-103063 A 特開2010−3004号公報JP 2010-3004 A 特開2010−223184号公報JP 2010-223184 A

しかし、上記従来技術を多気筒エンジンに適用させる場合には、複数の燃料噴射弁の各々に対して燃圧センサを備えることとなり、多くの燃圧センサを要するので多大なコストアップを招く。   However, when the above-described conventional technology is applied to a multi-cylinder engine, a fuel pressure sensor is provided for each of the plurality of fuel injection valves, and a lot of fuel pressure sensors are required.

そこで本発明者は、燃圧センサを搭載しない特定の燃料噴射弁(以下「センサ無し噴射弁」と記載)と、燃圧センサを搭載した他の燃料噴射弁(以下「センサ有り噴射弁」と記載)を多気筒エンジンに搭載した場合、上記センサ有り噴射弁の燃圧センサの検出値に基づき、センサ無し噴射弁での噴射状態を推定することを、以下のように検討した。   Therefore, the present inventor has a specific fuel injection valve not equipped with a fuel pressure sensor (hereinafter referred to as “sensorless injection valve”) and another fuel injection valve equipped with a fuel pressure sensor (hereinafter referred to as “sensor-equipped injection valve”). In a multi-cylinder engine, estimation of the injection state at the sensorless injection valve based on the detection value of the fuel pressure sensor of the injection valve with sensor was studied as follows.

すなわち、センサ無し噴射弁で燃料噴射を開始させると、センサ無し噴射弁で生じた燃圧低下の脈動がコモンレール(蓄圧分配容器)を通じてセンサ有り噴射弁へ伝播していく。したがって、センサ無し噴射弁での噴射開始時期から前記伝播に要する時間(伝播時間)が経過した時点で、燃圧センサで検出される圧力波形(非噴射気筒波形)には圧力降下開始の変化点が現れる。同様にして、センサ無し噴射弁での燃料噴射を終了させると、センサ無し噴射弁での噴射終了時期から前記伝播時間が経過した時点で、非噴射気筒波形には圧力上昇終了の変化点が現れる。したがって、センサ無し噴射弁での噴射状態は、非噴射気筒波形に基づけば推定することができ、燃圧センサの個数削減を図ることができる。   That is, when fuel injection is started by the sensorless injection valve, the pulsation of the fuel pressure drop generated by the sensorless injection valve propagates to the sensored injection valve through the common rail (accumulated pressure distribution container). Therefore, when the time required for propagation (propagation time) has elapsed from the injection start timing at the sensorless injection valve, the pressure waveform detected by the fuel pressure sensor (non-injection cylinder waveform) has a change point at the start of pressure drop. appear. Similarly, when the fuel injection at the sensorless injection valve is terminated, the change point of the pressure increase end appears in the non-injection cylinder waveform when the propagation time has elapsed from the injection end timing at the sensorless injection valve. . Therefore, the injection state at the sensorless injection valve can be estimated based on the non-injection cylinder waveform, and the number of fuel pressure sensors can be reduced.

しかしながら、使用されている燃料の性状や温度等、燃料中の音速に影響を与える物理量が変化すると、前記伝播時間は変化する。したがって、予め設定しておいた所定の伝播時間に基づいて、上述の如く非噴射気筒波形からセンサ無し噴射弁での噴射状態を推定しようとすると、正確な推定ができないことが本発明者らの検討により明らかとなった。   However, the propagation time changes when physical quantities that affect the speed of sound in the fuel, such as the properties and temperature of the fuel being used, change. Therefore, the inventors of the present invention cannot accurately estimate the injection state at the sensorless injection valve from the non-injection cylinder waveform as described above based on a predetermined propagation time set in advance. It became clear by examination.

本発明は、上記課題を解決するためになされたものであり、その目的は、燃圧センサの個数削減を図るにあたり、その削減対象となった燃料噴射弁における燃料噴射状態の正確な推定を可能にした燃料噴射状態推定装置を提供することにある。   The present invention has been made to solve the above-mentioned problems, and its purpose is to enable accurate estimation of the fuel injection state in the fuel injection valve targeted for reduction in reducing the number of fuel pressure sensors. Another object of the present invention is to provide a fuel injection state estimating device.

以下、上記課題を解決するための手段、及びその作用効果について記載する。   Hereinafter, means for solving the above-described problems and the operation and effects thereof will be described.

請求項1記載の発明では、内燃機関の第1気筒に備えられた第1燃料噴射弁、第2気筒に備えられた第2燃料噴射弁、および第3気筒に備えられた第3燃料噴射弁と、前記第1燃料噴射弁、前記第2燃料噴射弁、および前記第3燃料噴射弁の各々へ、蓄圧した高圧燃料を分配する蓄圧分配容器と、前記第1燃料噴射弁に設けられた第1燃圧センサ、および前記第2燃料噴射弁に設けられた第2燃圧センサと、を備える燃料噴射システムに適用されることを前提とする。   In the first aspect of the invention, the first fuel injection valve provided in the first cylinder of the internal combustion engine, the second fuel injection valve provided in the second cylinder, and the third fuel injection valve provided in the third cylinder. A pressure accumulation container for distributing the accumulated high-pressure fuel to each of the first fuel injection valve, the second fuel injection valve, and the third fuel injection valve; and a first accumulator provided in the first fuel injection valve It is assumed that the present invention is applied to a fuel injection system including a first fuel pressure sensor and a second fuel pressure sensor provided in the second fuel injection valve.

そして、前記第1燃料噴射弁での燃料噴射時に前記第1燃圧センサにより検出される圧力変化とその検出時刻との関係を表した噴射気筒波形、および前記第1燃料噴射弁での燃料噴射時に前記第2燃圧センサにより検出される圧力変化とその検出時刻との関係を表した非噴射気筒波形を取得する第1の波形取得手段と、前記第1の波形取得手段により取得された前記噴射気筒波形と前記非噴射気筒波形との位相差に基づき、第1燃料噴射弁で生じた燃料圧力変化が前記蓄圧分配容器を通じて前記第2燃料噴射弁まで伝播されるのに要する伝播時間を算出する伝播時間算出手段と、前記第3燃料噴射弁での燃料噴射時に前記第1燃圧センサまたは前記第2燃圧センサにより検出される圧力変化と、その検出時刻との関係を表した推定用非噴射気筒波形を取得する第2の波形取得手段と、前記第2の波形取得手段により取得された推定用非噴射気筒波形、および前記伝播時間算出手段により算出された前記伝播時間に基づき、前記第3燃料噴射弁での燃料噴射状態を推定する推定手段と、を備えることを特徴とする。   An injection cylinder waveform representing a relationship between a pressure change detected by the first fuel pressure sensor at the time of fuel injection at the first fuel injection valve and a detection time thereof, and at the time of fuel injection at the first fuel injection valve A first waveform acquisition means for acquiring a non-injection cylinder waveform representing a relationship between a pressure change detected by the second fuel pressure sensor and a detection time thereof; and the injection cylinder acquired by the first waveform acquisition means Based on the phase difference between the waveform and the non-injection cylinder waveform, a propagation time for calculating the propagation time required for the fuel pressure change generated in the first fuel injection valve to propagate to the second fuel injection valve through the pressure accumulation distribution container is calculated. Non-injection air for estimation representing the relationship between the time calculation means, the pressure change detected by the first fuel pressure sensor or the second fuel pressure sensor at the time of fuel injection by the third fuel injection valve, and the detection time Based on the second waveform acquisition means for acquiring a waveform, the non-injection cylinder waveform for estimation acquired by the second waveform acquisition means, and the propagation time calculated by the propagation time calculation means, the third fuel Estimating means for estimating the fuel injection state at the injection valve.

要するに、第1燃料噴射弁での燃料噴射時に、第1燃圧センサによる噴射気筒波形および第2燃圧センサによる非噴射気筒波形を取得する。そして、両波形の位相差に基づき、第1燃料噴射弁から第2燃料噴射弁まで燃圧変化が伝播されるのに要する伝播時間を算出する。そして、第3燃料噴射弁での燃料噴射時に、第1燃圧センサまたは第2燃圧センサによる推定用非噴射気筒波形を取得して、その推定用非噴射気筒波形および前記伝播時間に基づき、第3燃料噴射弁での燃料噴射状態(例えば噴射開始時期、噴射終了時期等)を推定する。   In short, at the time of fuel injection at the first fuel injection valve, an injection cylinder waveform by the first fuel pressure sensor and a non-injection cylinder waveform by the second fuel pressure sensor are acquired. Based on the phase difference between the two waveforms, the propagation time required for the fuel pressure change to propagate from the first fuel injection valve to the second fuel injection valve is calculated. Then, at the time of fuel injection at the third fuel injection valve, an estimation non-injection cylinder waveform by the first fuel pressure sensor or the second fuel pressure sensor is acquired, and based on the estimation non-injection cylinder waveform and the propagation time, the third A fuel injection state (for example, injection start timing, injection end timing, etc.) at the fuel injection valve is estimated.

そのため、実際に使用されている燃料性状や燃料温度が変化して伝播時間が変化したとしても、2つの燃圧センサにより実際の伝播時間を検出し、その検出値(伝播時間)を用いて推定用非噴射気筒波形から第3燃料噴射弁(センサ無し噴射弁)での噴射状態を推定するので、その噴射状態を正確に推定できる。以上により、上記発明によれば、第3燃料噴射弁への燃圧センサ搭載を必要とすることなく、第3燃料噴射弁での噴射状態を正確に推定できる。   For this reason, even if the fuel property or fuel temperature actually used changes and the propagation time changes, the actual propagation time is detected by two fuel pressure sensors, and the detected value (propagation time) is used for estimation. Since the injection state at the third fuel injection valve (sensorless injection valve) is estimated from the non-injection cylinder waveform, the injection state can be accurately estimated. As described above, according to the above-described invention, the injection state at the third fuel injection valve can be accurately estimated without requiring the mounting of the fuel pressure sensor on the third fuel injection valve.

なお、推定手段により推定される前記「噴射状態」の具体例としては、以下に説明する時期や時間等が挙げられる。すなわち、第3燃料噴射弁からの燃料噴射開始時期、燃料噴射終了時期、これらの開始時期および終了時期から算出される噴射期間(噴射量に相当)、噴射率(単位時間当たりの噴射量)が最大に達した時期、閉弁作動を開始した時期、噴射率が低下を開始した時期、噴射開始を指令してから上記各時期に達するまでの時間、噴射終了を指令してから上記各時期に達するまでの時間、等である。   Specific examples of the “injection state” estimated by the estimation means include time and time described below. That is, the fuel injection start timing from the third fuel injection valve, the fuel injection end timing, the injection period (corresponding to the injection amount) calculated from these start timing and end timing, and the injection rate (injection amount per unit time) are The time when the maximum is reached, the time when the valve closing operation is started, the time when the injection rate starts to decrease, the time from when the start of injection is commanded until the time when each time is reached, the time when the end of injection is commanded, Time to reach, etc.

前記「位相差」の具体例としては、以下に説明する時刻のずれ量が挙げられる。すなわち、第1燃料噴射弁での噴射開始に伴い生じた噴射気筒波形での圧力降下開始時刻P1と、第1燃料噴射弁での噴射開始に伴い生じた非噴射気筒波形での圧力降下開始時刻P1uとのずれ量(図6参照)である。また、前記第1燃料噴射弁での噴射終了に伴い生じた噴射気筒波形での圧力上昇終了時刻P5と、第1燃料噴射弁での噴射終了に伴い生じた非噴射気筒波形での圧力上昇終了時刻P5uとのずれ量(図6参照)である。   Specific examples of the “phase difference” include the amount of time shift described below. That is, the pressure drop start time P1 in the injection cylinder waveform generated when the injection at the first fuel injection valve starts, and the pressure drop start time in the non-injection cylinder waveform generated when the injection starts at the first fuel injection valve The amount of deviation from P1u (see FIG. 6). Further, the pressure rise end time P5 in the injection cylinder waveform generated when the injection at the first fuel injection valve is ended, and the pressure increase end in the non-injection cylinder waveform generated when the injection at the first fuel injection valve is ended. This is the amount of deviation from time P5u (see FIG. 6).

また、第1燃料噴射弁での噴射率(単位時間当たりの噴射量)が最大になったことに伴い生じた噴射気筒波形での圧力降下終了時刻P2(図2(c)参照)と、第1燃料噴射弁での噴射率が最大になったことに伴い生じた非噴射気筒波形での圧力降下終了時刻とのずれ量である。また、第1燃料噴射弁での噴射率が低下を開始したことに伴い生じた噴射気筒波形での圧力上昇開始時刻P3(図2(c)参照)と、第1燃料噴射弁での噴射率が低下を開始したことに伴い生じた非噴射気筒波形での圧力上昇開始時刻とのずれ量である。   Further, the pressure drop end time P2 (see FIG. 2 (c)) in the injection cylinder waveform generated when the injection rate (injection amount per unit time) at the first fuel injection valve is maximized, This is the amount of deviation from the pressure drop end time in the non-injection cylinder waveform caused by the maximum injection rate at one fuel injection valve. Further, the pressure increase start time P3 (see FIG. 2C) in the injection cylinder waveform generated when the injection rate at the first fuel injection valve starts to decrease, and the injection rate at the first fuel injection valve Is the amount of deviation from the pressure rise start time in the non-injection cylinder waveform caused by the start of the decrease.

請求項2記載の発明では、前記第1燃料噴射弁から前記蓄圧分配容器を通じて前記第2燃料噴射弁に至るまでの燃料経路長を第1の経路長とし、前記第3燃料噴射弁から前記蓄圧分配容器を通じて前記第1燃料噴射弁または前記第2燃料噴射弁に至るまでの燃料経路長を第2の経路長とした場合において、前記第1の経路長と前記第2の経路長とが同じであることを特徴とする。   According to a second aspect of the present invention, a fuel path length from the first fuel injection valve to the second fuel injection valve through the pressure accumulation distribution container is a first path length, and the pressure accumulation from the third fuel injection valve. In the case where the fuel path length from the distribution container to the first fuel injection valve or the second fuel injection valve is the second path length, the first path length and the second path length are the same. It is characterized by being.

以下の説明では、第3燃料噴射弁での燃料噴射時に当該第3燃料噴射弁で生じた燃料の圧力変化と、その検出時刻との関係を表した波形を、「推定対象波形」と記載する。第3燃料噴射弁には燃圧センサが搭載されていないので、前記推定対象波形(図6(b)参照)は直接検出することができないものである。   In the following description, the waveform representing the relationship between the change in the pressure of the fuel generated in the third fuel injection valve at the time of fuel injection by the third fuel injection valve and the detection time is referred to as “estimation target waveform”. . Since the fuel pressure sensor is not mounted on the third fuel injection valve, the estimation target waveform (see FIG. 6B) cannot be directly detected.

ここで、燃料経路長が異なれば、燃圧変化の伝播時間は異なってくる。したがって、第1燃料噴射弁から第2燃料噴射弁に至るまでの燃料経路長(第1の経路長)と、推定対象となる第3燃料噴射弁(センサ無し噴射弁)から第1または第2燃料噴射弁に至るまでの燃料経路長(第2の経路長)とが異なれば、伝播時間の算出に用いた噴射気筒波形および非噴射気筒波形との位相差は、推定用非噴射気筒波形と推定対象波形との位相差と異なってくる。そのため、この場合には、伝播時間算出手段により算出した伝播時間を用いて推定用非噴射気筒波形から第3燃料噴射弁(センサ無し噴射弁)での噴射状態を推定するにあたり、その推定精度が悪くなることが懸念される。   Here, if the fuel path length is different, the propagation time of the fuel pressure change is different. Accordingly, the fuel path length (first path length) from the first fuel injection valve to the second fuel injection valve and the first or second from the third fuel injection valve (sensorless injection valve) to be estimated. If the fuel path length up to the fuel injection valve (second path length) is different, the phase difference between the injection cylinder waveform and the non-injection cylinder waveform used for calculating the propagation time is the same as the estimation non-injection cylinder waveform. It differs from the phase difference from the estimation target waveform. Therefore, in this case, when estimating the injection state at the third fuel injection valve (sensorless injection valve) from the non-injection cylinder waveform for estimation using the propagation time calculated by the propagation time calculation means, the estimation accuracy is There is concern about getting worse.

この点を鑑みた上記発明では、第1の燃料経路長と第2の燃料経路長とを同じにしている(図5、図13参照)ので、上述した「推定精度が悪くなる」との懸念を解消できる。   In the above invention in view of this point, since the first fuel path length and the second fuel path length are the same (see FIGS. 5 and 13), there is a concern that “the estimation accuracy is deteriorated” as described above. Can be eliminated.

請求項3記載の発明では、前記第1燃料噴射弁から前記蓄圧分配容器を通じて前記第2燃料噴射弁に至るまでの燃料経路長を第1の経路長とし、前記第3燃料噴射弁から前記蓄圧分配容器を通じて前記第1燃料噴射弁または前記第2燃料噴射弁に至るまでの燃料経路長を第2の経路長とし、前記第1の経路長と前記第2の経路長とが異なる場合において、前記第1の経路長と前記第2の経路長との差分、或いは前記差分と相関のある物理量を経路長情報として記憶する記憶手段を備え、前記推定手段は、前記伝播時間および前記経路長情報に基づいて前記推定を実施することを特徴とする。   According to a third aspect of the present invention, a fuel path length from the first fuel injection valve to the second fuel injection valve through the pressure accumulation distribution container is defined as a first path length, and the pressure accumulation from the third fuel injection valve. In the case where the fuel path length from the distribution container to the first fuel injection valve or the second fuel injection valve is a second path length, and the first path length and the second path length are different, Storage means for storing, as path length information, a difference between the first path length and the second path length or a physical quantity correlated with the difference, and the estimation means includes the propagation time and the path length information. Based on the above, the estimation is performed.

先述したように、第1の経路長と第2の経路長とが異なれば、伝播時間の算出に用いた噴射気筒波形および非噴射気筒波形との位相差と、推定用非噴射気筒波形と推定対象波形との位相差とが異なってくるので、センサ無し噴射弁での噴射状態の推定精度が悪くなることが懸念される。   As described above, if the first path length is different from the second path length, the phase difference between the injection cylinder waveform and the non-injection cylinder waveform used for calculating the propagation time, the estimation non-injection cylinder waveform, and the estimation are estimated. Since the phase difference from the target waveform is different, there is a concern that the estimation accuracy of the injection state in the injection valve without sensor is deteriorated.

この点を鑑みた上記発明では、第1の経路長と第2の経路長との差分、或いは前記差分と相関のある物理量を経路長情報として予め記憶させておき、前記伝播時間および前記経路長情報に基づいて前記推定を実施する。そのため、例えば、伝播時間に基づき推定した噴射開始時期を、第1の経路長と第2の経路長との差分に応じて補正することができるので、上述した「推定精度が悪くなる」との懸念を解消できる。なお、「前記差分と相関のある物理量」の具体例としては、第1経路長での伝播時間と第2経路長での伝播時間とのずれ量(前記補正の値に相当)等が挙げられる。   In the above invention in view of this point, a difference between the first path length and the second path length or a physical quantity correlated with the difference is stored in advance as path length information, and the propagation time and the path length are stored. The estimation is performed based on the information. Therefore, for example, since the injection start time estimated based on the propagation time can be corrected according to the difference between the first path length and the second path length, the above-mentioned “estimation accuracy is degraded”. Can eliminate concerns. A specific example of the “physical quantity correlated with the difference” includes a deviation amount (corresponding to the correction value) between the propagation time in the first path length and the propagation time in the second path length. .

請求項4記載の発明では、内燃機関の第1気筒に備えられた第1燃料噴射弁、第2気筒に備えられた第2燃料噴射弁、第3気筒に備えられた第3燃料噴射弁、および第4気筒に備えられた第4燃料噴射弁と、前記第1燃料噴射弁、前記第2燃料噴射弁、前記第3燃料噴射弁、および前記第4燃料噴射弁の各々へ、蓄圧した高圧燃料を分配する蓄圧分配容器と、前記第1燃料噴射弁に設けられた燃圧センサと、を備える燃料噴射システムに適用されることを前提とする。   In a fourth aspect of the invention, a first fuel injection valve provided in the first cylinder of the internal combustion engine, a second fuel injection valve provided in the second cylinder, a third fuel injection valve provided in the third cylinder, And the fourth fuel injection valve provided in the fourth cylinder, and the high pressure accumulated in each of the first fuel injection valve, the second fuel injection valve, the third fuel injection valve, and the fourth fuel injection valve It is assumed that the present invention is applied to a fuel injection system including a pressure accumulation container for distributing fuel and a fuel pressure sensor provided in the first fuel injection valve.

そして、前記第2燃料噴射弁での燃料噴射時に前記燃圧センサにより検出される圧力変化を第2噴射時波形として取得し、前記第3燃料噴射弁での燃料噴射時に前記燃圧センサにより検出される圧力変化を第3噴射時波形として取得し、前記第4燃料噴射弁での燃料噴射時に前記燃圧センサにより検出される圧力変化を第4噴射時波形として取得する波形取得手段を備える。   Then, a pressure change detected by the fuel pressure sensor at the time of fuel injection at the second fuel injection valve is acquired as a second injection waveform, and detected by the fuel pressure sensor at the time of fuel injection by the third fuel injection valve. Waveform acquisition means is provided for acquiring a pressure change as a third injection waveform and acquiring a pressure change detected by the fuel pressure sensor as a fourth injection waveform when fuel is injected by the fourth fuel injection valve.

さらに、前記第2燃料噴射弁へ噴射開始または噴射終了を指令してから、当該指令に伴い前記第2噴射時波形に変化が生じるまでの時間である第2噴射時応答時間を算出する第2噴射時応答時間算出手段と、前記第3燃料噴射弁へ噴射開始または噴射終了を指令してから、当該指令に伴い前記第3噴射時波形に変化が生じるまでの時間である第3噴射時応答時間を算出する第3噴射時応答時間算出手段と、前記第4燃料噴射弁へ噴射開始または噴射終了を指令してから、当該指令に伴い前記第4噴射時波形に変化が生じるまでの時間である第4噴射時応答時間を算出する第4噴射時応答時間算出手段と、を備える。   Further, a second injection response time is calculated which is a time from when the second fuel injection valve is commanded to start or end the injection until the second injection waveform changes according to the command. Response time calculation unit for injection and response at the time of third injection which is a time from when the start or end of injection is commanded to the third fuel injection valve to when the waveform at the time of third injection changes according to the command The time from the time when the third injection response time calculating means for calculating the time and the fourth fuel injection valve are commanded to start or end the injection to the time when the fourth injection waveform changes according to the command. And a fourth injection response time calculating means for calculating a fourth injection response time.

そしてさらに、前記第2噴射時応答時間、前記第3噴射時応答時間および前記第4噴射時応答時間の比較に基づき、前記第2燃料噴射弁、前記第3燃料噴射弁および前記第4燃料噴射弁での燃料噴射状態に異常が生じているか否かを診断する異常診断手段を備えることを特徴とする。   Further, based on the comparison of the second injection time response time, the third injection time response time, and the fourth injection time response time, the second fuel injection valve, the third fuel injection valve, and the fourth fuel injection An abnormality diagnosis means for diagnosing whether or not an abnormality has occurred in the fuel injection state at the valve is provided.

上記発明は、第1燃料噴射弁に設けられた燃圧センサの検出結果を、第2〜第4燃料噴射弁の異常診断に利用することで、第2〜第4燃料噴射弁への燃圧センサ搭載を不要にすることを図ったものである。なお、前記異常の具体例としては、燃料噴射弁の噴孔を開閉する弁体が、異物噛み込み等の原因により摺動不良の異常状態になっていたり、前記弁体を開弁作動させるアクチュエータが経年劣化していたりすることが挙げられる。このような異常が生じると、燃料噴射弁へ噴射開始を指令してから噴射が開始されるまでの応答遅れや、噴射終了を指令してから噴射が終了するまでの応答遅れが長くなるといった、燃料噴射状態の異常を来たす。   The above invention uses the detection result of the fuel pressure sensor provided in the first fuel injection valve for abnormality diagnosis of the second to fourth fuel injection valves, so that the fuel pressure sensor is mounted on the second to fourth fuel injection valves. Is intended to be unnecessary. In addition, as a specific example of the abnormality, the valve body that opens and closes the nozzle hole of the fuel injection valve is in an abnormal state of poor sliding due to foreign matter biting or the like, or an actuator that opens the valve body May have deteriorated over time. When such an abnormality occurs, a response delay from the start of injection to the fuel injection valve until the start of injection, or a delay in response from the end of injection to the end of injection becomes longer. Abnormal fuel injection condition.

したがって、このような異常が生じると噴射時応答時間は長くなる。但し、先述したように燃料の性状や温度等が変化すると伝播時間が変化するので、この場合にも、第2噴射時応答時間や第3噴射時応答時間は長くなる可能性がある。しかしながら、このように燃料性状や温度に起因して伝播時間が変化した場合には、第2〜第4噴射時応答時間のいずれもが長くなる筈である。そのため、第2〜第4噴射時応答時間の各々を比較して違いが小さければ、応答時間が長くなっていたとしても前記異常は生じていない筈である。一方、いずれか1つの応答時間だけが他の応答時間と大きく異なっていれば、その大きく異なっている応答時間を検出した時の燃料噴射弁において前記異常が生じている筈である。   Therefore, when such an abnormality occurs, the response time during injection becomes longer. However, since the propagation time changes when the fuel property, temperature, etc. change as described above, the response time at the time of the second injection and the response time at the time of the third injection may also become longer in this case. However, when the propagation time changes due to the fuel property or temperature, any of the second to fourth response times during injection should be longer. Therefore, if each of the second to fourth response times at the time of injection is compared and the difference is small, the abnormality should not occur even if the response time is long. On the other hand, if only one of the response times is significantly different from the other response times, the abnormality should have occurred in the fuel injection valve when the greatly different response time is detected.

この点を鑑みた上記発明によれば、第2〜第4噴射時応答時間の比較に基づき、第2〜第4燃料噴射弁での燃料噴射状態に異常が生じているか否かを診断する。そのため、実際に使用されている燃料性状や燃料温度が変化して伝播時間が変化したとしても、第2〜第4燃料噴射弁での異常有無を正確に診断できる。よって、第2〜第4燃料噴射弁への燃圧センサ搭載を必要とすることなく、これらの燃料噴射弁での噴射状態(異常有無)を正確に診断できる。   According to the above-mentioned invention in view of this point, it is diagnosed whether or not an abnormality has occurred in the fuel injection state in the second to fourth fuel injection valves based on the comparison of the response times during the second to fourth injections. Therefore, even if the fuel property or fuel temperature actually used changes and the propagation time changes, it is possible to accurately diagnose the presence or absence of abnormality in the second to fourth fuel injection valves. Therefore, it is possible to accurately diagnose the injection state (abnormality presence / absence) of these fuel injection valves without requiring the fuel pressure sensors to be mounted on the second to fourth fuel injection valves.

本発明の第1実施形態にかかる燃料噴射状態推定装置が適用される、燃料噴射システムの概略を示す図。The figure which shows the outline of the fuel-injection system with which the fuel-injection-state estimation apparatus concerning 1st Embodiment of this invention is applied. 噴射指令信号に対応する噴射率および燃圧の変化を示す図。The figure which shows the change of the injection rate and fuel pressure corresponding to an injection command signal. 第1実施形態において、センサ有り噴射弁(#2,#3)に対する噴射指令信号の設定等の概要を示すブロック図。The block diagram which shows the outline | summarys, such as a setting of the injection command signal with respect to an injection valve with a sensor (# 2, # 3) in 1st Embodiment. 噴射時燃圧波形Wa、非噴射時燃圧波形Wu、噴射波形Wbを示す図。The figure which shows the fuel pressure waveform Wa at the time of injection, the fuel pressure waveform Wu at the time of non-injection, and the injection waveform Wb. 所定の噴射弁から他の噴射弁へ圧力変化が伝播していく伝播経路を示す図。The figure which shows the propagation path along which a pressure change propagates from a predetermined injection valve to another injection valve. 第1実施形態において、噴射時波形および非噴射時波形に基づき伝播時間を算出する手法を説明する図。The figure explaining the method of calculating propagation time based on the waveform at the time of injection and the waveform at the time of non-injection in a 1st embodiment. 第1実施形態において、算出した伝播時間および非噴射時波形に基づき、センサ無し噴射弁の噴射状態を推定する手法を説明する図。The figure explaining the method of estimating the injection state of a sensorless injection valve based on the calculated propagation time and the non-injection waveform in the first embodiment. 第1実施形態において、センサ無し噴射弁(#1,#4)に対する噴射指令信号の設定等の概要を示すブロック図。The block diagram which shows the outline | summarys, such as a setting of the injection command signal with respect to a sensorless injection valve (# 1, # 4) in 1st Embodiment. 第1実施形態において、伝播時間の算出手順を示すフローチャート。The flowchart which shows the calculation procedure of propagation time in 1st Embodiment. 第1実施形態において、センサ無し噴射弁にかかる噴射率パラメータの算出手順を示すフローチャート。The flowchart which shows the calculation procedure of the injection rate parameter concerning a sensorless injection valve in 1st Embodiment. 本発明の第2実施形態における伝播経路を示す図。The figure which shows the propagation path in 2nd Embodiment of this invention. 本発明の第3実施形態における伝播経路を示す図。The figure which shows the propagation path in 3rd Embodiment of this invention. 本発明の第4実施形態における伝播経路を示す図。The figure which shows the propagation path in 4th Embodiment of this invention. 本発明の第5実施形態における伝播経路を示す図。The figure which shows the propagation path in 5th Embodiment of this invention. 第5実施形態において、噴射弁の異常診断手順を示すフローチャート。The flowchart which shows the abnormality diagnosis procedure of an injection valve in 5th Embodiment.

以下、本発明を具体化した各実施形態を図面に基づいて説明する。なお、以下に説明する燃料噴射状態推定装置は、車両用のエンジン(内燃機関)に搭載されたものであり、当該エンジンには、複数の気筒#1〜#4について高圧燃料を噴射して圧縮自着火燃焼させるディーゼルエンジンを想定している。   Hereinafter, embodiments embodying the present invention will be described with reference to the drawings. The fuel injection state estimation device described below is mounted on a vehicle engine (internal combustion engine), and compresses the engine by injecting high-pressure fuel into a plurality of cylinders # 1 to # 4. A diesel engine that burns by self-ignition is assumed.

(第1実施形態)
図1は、上記エンジンの各気筒に搭載された燃料噴射弁10、各々の燃料噴射弁10に搭載された燃圧センサ22、及び車両に搭載された電子制御装置であるECU30等を示す模式図である。
(First embodiment)
FIG. 1 is a schematic diagram showing a fuel injection valve 10 mounted on each cylinder of the engine, a fuel pressure sensor 22 mounted on each fuel injection valve 10, an ECU 30 as an electronic control device mounted on a vehicle, and the like. is there.

先ず、燃料噴射弁10を含むエンジンの燃料噴射システムについて説明する。燃料タンク40内の燃料は、燃料ポンプ41によりコモンレール42(蓄圧容器)に圧送されて蓄圧され、各気筒の燃料噴射弁10(#1〜#4)へ分配供給される。複数の燃料噴射弁10(#1〜#4)は、予め設定された順番で燃料の噴射を順次行う。本実施形態では、#1→#3→#4→#2の順番で噴射することを想定している。   First, an engine fuel injection system including the fuel injection valve 10 will be described. The fuel in the fuel tank 40 is pumped and stored in the common rail 42 (pressure accumulating container) by the fuel pump 41, and distributed and supplied to the fuel injection valves 10 (# 1 to # 4) of each cylinder. The plurality of fuel injection valves 10 (# 1 to # 4) sequentially inject fuel in a preset order. In this embodiment, it is assumed that injection is performed in the order of # 1 → # 3 → # 4 → # 2.

なお、燃料ポンプ41にはプランジャポンプが用いられているため、プランジャの往復動に同期して燃料は圧送される。そして、当該燃料ポンプ41はエンジン出力を駆動源としてクランク軸により駆動するので、1燃焼サイクル中に決められた回数だけ燃料ポンプ41から燃料を圧送することとなる。   In addition, since the plunger pump is used for the fuel pump 41, fuel is pumped in synchronism with the reciprocating motion of the plunger. Since the fuel pump 41 is driven by the crankshaft using the engine output as a driving source, the fuel is pumped from the fuel pump 41 a predetermined number of times during one combustion cycle.

燃料噴射弁10は、以下に説明するボデー11、ニードル形状の弁体12及びアクチュエータ13等を備えて構成されている。ボデー11は、内部に高圧通路11aを形成するとともに、燃料を噴射する噴孔11bを形成する。弁体12は、ボデー11内に収容されて噴孔11bを開閉する。   The fuel injection valve 10 includes a body 11, a needle-shaped valve body 12, an actuator 13, and the like described below. The body 11 forms a high-pressure passage 11a inside and a nozzle hole 11b for injecting fuel. The valve body 12 is accommodated in the body 11 and opens and closes the nozzle hole 11b.

ボデー11内には弁体12に背圧を付与する背圧室11cが形成されており、高圧通路11a及び低圧通路11dは背圧室11cと接続されている。高圧通路11a及び低圧通路11dと背圧室11cとの連通状態は制御弁14により切り替えられており、電磁コイルやピエゾ素子等のアクチュエータ13へ通電して制御弁14を図1の下方へ押し下げ作動させると、背圧室11cは低圧通路11dと連通して背圧室11c内の燃料圧力は低下する。その結果、弁体12へ付与される背圧力が低下して弁体12はリフトアップ(開弁作動)する。これにより、弁体12のシート面12aがボデー11のシート面から離座して、噴孔11bから燃料が噴射される。   A back pressure chamber 11c for applying a back pressure to the valve body 12 is formed in the body 11, and the high pressure passage 11a and the low pressure passage 11d are connected to the back pressure chamber 11c. The communication state between the high pressure passage 11a and the low pressure passage 11d and the back pressure chamber 11c is switched by the control valve 14, and the actuator 13 such as an electromagnetic coil or a piezoelectric element is energized to push the control valve 14 downward in FIG. As a result, the back pressure chamber 11c communicates with the low pressure passage 11d and the fuel pressure in the back pressure chamber 11c decreases. As a result, the back pressure applied to the valve body 12 is lowered and the valve body 12 is lifted up (opening operation). Thereby, the seat surface 12a of the valve body 12 is separated from the seat surface of the body 11, and fuel is injected from the injection hole 11b.

一方、アクチュエータ13への通電をオフして制御弁14を図1の上方へ作動させると、背圧室11cは高圧通路11aと連通して背圧室11c内の燃料圧力は上昇する。その結果、弁体12へ付与される背圧力が上昇して弁体12はリフトダウン(閉弁作動)する。これにより、弁体12のシート面12aがボデー11のシート面に着座して、噴孔11bからの燃料噴射が停止される。   On the other hand, when the power supply to the actuator 13 is turned off and the control valve 14 is operated upward in FIG. 1, the back pressure chamber 11c communicates with the high pressure passage 11a and the fuel pressure in the back pressure chamber 11c increases. As a result, the back pressure applied to the valve body 12 increases and the valve body 12 is lifted down (closed valve operation). Thereby, the seat surface 12a of the valve body 12 is seated on the seat surface of the body 11, and the fuel injection from the injection hole 11b is stopped.

したがって、ECU30がアクチュエータ13への通電を制御することで、弁体12の開閉作動が制御される。これにより、コモンレール42から高圧通路11aへ供給された高圧燃料は、弁体12の開閉作動に応じて噴孔11bから噴射される。   Therefore, the ECU 30 controls the energization of the actuator 13 so that the opening / closing operation of the valve body 12 is controlled. Thereby, the high-pressure fuel supplied from the common rail 42 to the high-pressure passage 11 a is injected from the injection hole 11 b according to the opening / closing operation of the valve body 12.

燃圧センサ22は、全ての燃料噴射弁10に搭載されているわけではないが、最低でも2つの燃料噴射弁10に搭載されている。要するに、燃圧センサ22の搭載数は、燃料噴射弁10の数より少なく、かつ、2つ以上である。本実施形態では、#2,#3の燃料噴射弁10(センサ無し噴射弁)に燃圧センサ22が搭載され、#1,#4の燃料噴射弁10(センサ有り噴射弁)には燃圧センサ22が搭載されていない。   The fuel pressure sensors 22 are not mounted on all the fuel injection valves 10, but are mounted on at least two fuel injection valves 10. In short, the number of fuel pressure sensors 22 mounted is less than the number of fuel injection valves 10 and two or more. In the present embodiment, the fuel pressure sensor 22 is mounted on the # 2 and # 3 fuel injection valves 10 (sensorless injection valves), and the fuel pressure sensor 22 is mounted on the # 1 and # 4 fuel injection valves 10 (sensor injection valves). Is not installed.

センサ装置20は、各々の燃料噴射弁10に搭載されており、以下に説明するステム21(起歪体)、燃圧センサ22、燃温センサ23及びモールドIC24等を備えて構成されている。ステム21はボデー11に取り付けられており、ステム21に形成されたダイヤフラム部21aが高圧通路11aを流通する高圧燃料の圧力を受けて弾性変形する。圧力センサ素子により構成される燃圧センサ22はダイヤフラム部21aに取り付けられており、ダイヤフラム部21aで生じた弾性変形量に応じて圧力検出信号をECU30へ出力する。   The sensor device 20 is mounted on each fuel injection valve 10 and includes a stem 21 (distortion body), a fuel pressure sensor 22, a fuel temperature sensor 23, a mold IC 24, and the like described below. The stem 21 is attached to the body 11, and the diaphragm portion 21a formed on the stem 21 is elastically deformed by receiving the pressure of the high-pressure fuel flowing through the high-pressure passage 11a. A fuel pressure sensor 22 constituted by a pressure sensor element is attached to the diaphragm portion 21a, and outputs a pressure detection signal to the ECU 30 in accordance with the amount of elastic deformation generated in the diaphragm portion 21a.

また、ダイヤフラム部21aには、温度センサ素子により構成される燃温センサ23が取り付けられている。この燃温センサ23により検出された温度は、分岐通路内の燃料の温度とみなすことができる。つまり、センサ装置20は燃温センサの機能を備えていると言える。但し、本発明の実施にあたり、この燃温センサ23は廃止してもよい。   Moreover, the fuel temperature sensor 23 comprised by the temperature sensor element is attached to the diaphragm part 21a. The temperature detected by the fuel temperature sensor 23 can be regarded as the temperature of the fuel in the branch passage. That is, it can be said that the sensor device 20 has a function of a fuel temperature sensor. However, this fuel temperature sensor 23 may be abolished in the implementation of the present invention.

モールドIC24は、燃圧センサ22や燃温センサ23から出力された検出信号を増幅する増幅回路や、検出信号を送信する送信回路等の電子部品を樹脂モールドして形成されており、ステム21とともに燃料噴射弁10に搭載されている。モールドIC24はECU30と電気接続されており、増幅された検出信号はECU30に送信される。   The mold IC 24 is formed by resin molding electronic components such as an amplification circuit that amplifies the detection signal output from the fuel pressure sensor 22 and the fuel temperature sensor 23 and a transmission circuit that transmits the detection signal. It is mounted on the injection valve 10. The mold IC 24 is electrically connected to the ECU 30, and the amplified detection signal is transmitted to the ECU 30.

ECU30は、アクセルペダルの操作量やエンジン負荷、エンジン回転速度NE等に基づき目標噴射状態(例えば噴射段数、噴射開始時期、噴射終了時期、噴射量等)を算出する。例えば、エンジン負荷及びエンジン回転速度に対応する最適噴射状態を噴射状態マップにして記憶させておく。そして、現状のエンジン負荷及びエンジン回転速度に基づき、噴射状態マップを参照して目標噴射状態を算出する。そして、算出した目標噴射状態に対応する噴射指令信号t1、t2、Tq(図2(a)参照)を、後に詳述する噴射率パラメータtd,te,Rα,Rβ,Rmaxに基づき設定し、燃料噴射弁10へ出力することで燃料噴射弁10の作動を制御する。   The ECU 30 calculates a target injection state (for example, the number of injection stages, the injection start timing, the injection end timing, the injection amount, etc.) based on the operation amount of the accelerator pedal, the engine load, the engine rotational speed NE, and the like. For example, the optimal injection state corresponding to the engine load and the engine speed is stored as an injection state map. Based on the current engine load and engine speed, the target injection state is calculated with reference to the injection state map. Then, the injection command signals t1, t2, and Tq (see FIG. 2A) corresponding to the calculated target injection state are set based on the injection rate parameters td, te, Rα, Rβ, and Rmax described in detail later, and the fuel By outputting to the injection valve 10, the operation of the fuel injection valve 10 is controlled.

次に、センサ有り噴射弁10(#2,#3)から燃料を噴射させる場合における、噴射制御の手法について、図2〜図4を用いて以下に説明する。   Next, an injection control method when fuel is injected from the sensor-equipped injection valve 10 (# 2, # 3) will be described below with reference to FIGS.

例えば#2気筒の燃料噴射弁10(#2)で燃料噴射した時には、そのセンサ有り噴射弁10に搭載されている燃圧センサ22(#2)の検出値に基づき、噴射に伴い生じた燃料圧力の変化を燃圧波形(図2(c)参照)として検出する。そして、検出した燃圧波形に基づき単位時間当たりの燃料噴射量の変化を表した噴射率波形(図2(b)参照)を演算して噴射状態を検出する。そして、検出した噴射率波形(噴射状態)を特定する噴射率パラメータRα,Rβ,Rmaxを学習するとともに、噴射指令信号(パルスオン時期t1、パルスオフ時期t2及びパルスオン期間Tq)と噴射状態との相関関係を特定する噴射率パラメータtd,teを学習する。   For example, when fuel is injected by the # 2 cylinder fuel injection valve 10 (# 2), the fuel pressure generated by the injection based on the detected value of the fuel pressure sensor 22 (# 2) mounted on the sensor-equipped injection valve 10 Is detected as a fuel pressure waveform (see FIG. 2C). Then, the injection state is detected by calculating an injection rate waveform (see FIG. 2B) representing a change in the fuel injection amount per unit time based on the detected fuel pressure waveform. Then, while learning the injection rate parameters Rα, Rβ, and Rmax that specify the detected injection rate waveform (injection state), the correlation between the injection command signals (pulse-on timing t1, pulse-off timing t2, and pulse-on period Tq) and the injection state. The injection rate parameters td and te for specifying

具体的には、燃圧波形のうち、噴射開始に伴い燃圧降下を開始する変曲点P1から降下が終了する変曲点P2までの降下波形を、最小二乗法等により直線に近似した降下近似直線Lαを算出する。そして、降下近似直線Lαのうち基準値Bαとなる時期(LαとBαの交点時期LBα)を算出する。この交点時期LBαと噴射開始時期R1とは相関が高いことに着目し、交点時期LBαに基づき噴射開始時期R1を算出する。例えば、交点時期LBαよりも所定の遅れ時間Cαだけ前の時期を噴射開始時期R1として算出すればよい。   Specifically, in the fuel pressure waveform, a descending approximation line that approximates a descending waveform from the inflection point P1 at which the fuel pressure drop starts at the start of injection to the inflection point P2 at which the descent ends by a least square method or the like. Lα is calculated. Then, a time (a crossing time LBα between Lα and Bα) that is the reference value Bα in the descending approximate straight line Lα is calculated. Focusing on the fact that the intersection time LBα and the injection start time R1 are highly correlated, the injection start time R1 is calculated based on the intersection time LBα. For example, a timing that is a predetermined delay time Cα before the intersection timing LBα may be calculated as the injection start timing R1.

また、燃圧波形のうち、噴射終了に伴い燃圧上昇を開始する変曲点P3から降下が終了する変曲点P5までの上昇波形を、最小二乗法等により直線に近似した上昇近似直線Lβを算出する。そして、上昇近似直線Lβのうち基準値Bβとなる時期(LβとBβの交点時期LBβ)を算出する。この交点時期LBβと噴射終了時期R4とは相関が高いことに着目し、交点時期LBβに基づき噴射終了時期R4を算出する。例えば、交点時期LBβよりも所定の遅れ時間Cβだけ前の時期を噴射終了時期R4として算出すればよい。   In addition, a rising approximation line Lβ is calculated by approximating the rising waveform from the inflection point P3 where the fuel pressure rises at the end of injection to the inflection point P5 where the descent ends from the fuel pressure waveform by a least square method or the like. To do. Then, a time (intersection time LBβ between Lβ and Bβ) that is the reference value Bβ in the rising approximate straight line Lβ is calculated. Focusing on the fact that the intersection timing LBβ and the injection end timing R4 are highly correlated, the injection end timing R4 is calculated based on the intersection timing LBβ. For example, a timing that is a predetermined delay time Cβ before the intersection timing LBβ may be calculated as the injection end timing R4.

次に、降下近似直線Lαの傾きと噴射率増加の傾きとは相関が高いことに着目し、図2(b)に示す噴射率波形のうち噴射増加を示す直線Rαの傾きを、降下近似直線Lαの傾きに基づき算出する。例えば、Lαの傾きに所定の係数を掛けてRαの傾きを算出すればよい。同様にして、上昇近似直線Lβの傾きと噴射率減少の傾きとは相関が高いので、噴射率波形のうち噴射減少を示す直線Rβの傾きを、上昇近似直線Lβの傾きに基づき算出する。   Next, paying attention to the fact that the slope of the descending approximate line Lα and the slope of the injection rate increase are highly correlated, the slope of the straight line Rα indicating the increase in the injection rate waveform shown in FIG. Calculation is based on the slope of Lα. For example, the slope of Rα may be calculated by multiplying the slope of Lα by a predetermined coefficient. Similarly, since the slope of the rising approximate line Lβ and the slope of the injection rate decrease are highly correlated, the slope of the straight line Rβ indicating the decrease in injection in the injection rate waveform is calculated based on the slope of the rising approximate line Lβ.

次に、噴射率波形の直線Rα,Rβに基づき、噴射終了を指令したことに伴い弁体12がリフトダウンを開始する時期(閉弁作動開始時期R23)を算出する。具体的には、両直線Rα,Rβの交点を算出し、その交点時期を閉弁作動開始時期R23として算出する。また、噴射開始時期R1の噴射開始指令時期t1に対する遅れ時間(噴射開始遅れ時間td)を算出する。また、閉弁作動開始時期R23の噴射終了指令時期t2に対する遅れ時間(閉弁開始遅れ時間te)を算出する。   Next, based on the straight lines Rα and Rβ of the injection rate waveform, a timing (valve closing operation start timing R23) at which the valve body 12 starts lift-down in response to the command to end injection is calculated. Specifically, the intersection of both straight lines Rα and Rβ is calculated, and the intersection timing is calculated as the valve closing operation start timing R23. Further, a delay time (injection start delay time td) with respect to the injection start command timing t1 of the injection start timing R1 is calculated. Further, a delay time (valve closing start delay time te) with respect to the injection end command timing t2 of the valve closing operation start timing R23 is calculated.

また、降下近似直線Lα及び上昇近似直線Lβの交点に対応した圧力を交点圧力Pαβとして算出し、後に詳述する基準圧力Pbaseと交点圧力Pαβとの圧力差ΔPγを算出し、この圧力差ΔPγと最大噴射率Rmaxとは相関が高いことに着目し、圧力差ΔPγに基づき最大噴射率Rmaxを算出する。具体的には、圧力差ΔPγに相関係数Cγを掛けることで最大噴射率Rmaxを算出する。但し、圧力差ΔPγが所定値ΔPγth未満である小噴射の場合には、上述の如くRmax=ΔPγ×Cγとする一方で、ΔPγ≧ΔPγthである大噴射の場合には、予め設定しておいた値(設定値Rγ)を最大噴射率Rmaxとして算出する。   Further, the pressure corresponding to the intersection of the descending approximate straight line Lα and the ascending approximate straight line Lβ is calculated as the intersection pressure Pαβ, and a pressure difference ΔPγ between the reference pressure Pbase and the intersection pressure Pαβ, which will be described in detail later, is calculated. Focusing on the fact that the correlation with the maximum injection rate Rmax is high, the maximum injection rate Rmax is calculated based on the pressure difference ΔPγ. Specifically, the maximum injection rate Rmax is calculated by multiplying the pressure difference ΔPγ by the correlation coefficient Cγ. However, in the case of the small injection in which the pressure difference ΔPγ is less than the predetermined value ΔPγth, Rmax = ΔPγ × Cγ is set as described above, while in the case of the large injection in which ΔPγ ≧ ΔPγth, it is set in advance. The value (set value Rγ) is calculated as the maximum injection rate Rmax.

なお、上記「小噴射」とは、噴射率がRγに達する前に弁体12がリフトダウンを開始する態様の噴射を想定しており、シート面12aで燃料が絞られて噴射量が制限されている時の噴射率が最大噴射率Rmaxとなる。一方、上記「大噴射」とは、噴射率がRγに達した後に弁体12がリフトダウンを開始する態様の噴射を想定しており、噴孔11bで燃料が絞られて噴射量が制限されている時の噴射率が最大噴射率Rmaxとなる。要するに、噴射指令期間Tqが十分に長く、最大噴射率に達した以降も開弁状態を継続させる場合においては、図2(b)に示す噴射率波形は台形となる。一方、最大噴射率に達する前に閉弁作動を開始させるような小噴射の場合には、噴射率波形は三角形となる。   Note that the “small injection” is assumed to be an injection in which the valve body 12 starts to be lifted down before the injection rate reaches Rγ, and fuel is throttled at the seat surface 12a to limit the injection amount. The injection rate when the engine is running is the maximum injection rate Rmax. On the other hand, the “large injection” is assumed to be an injection in which the valve body 12 starts to lift down after the injection rate reaches Rγ, and the injection amount is limited by the fuel being throttled at the injection hole 11b. The injection rate when the engine is running is the maximum injection rate Rmax. In short, when the injection command period Tq is sufficiently long and the valve opening state is continued even after reaching the maximum injection rate, the injection rate waveform shown in FIG. On the other hand, in the case of small injection that starts the valve closing operation before reaching the maximum injection rate, the injection rate waveform is a triangle.

大噴射時の最大噴射率Rmaxである上記設定値Rγは、燃料噴射弁10の経年変化に伴い変化していく。例えば、噴孔11bにデポジット等の異物が堆積して噴射量が減少するといった経年劣化が進行すると、図2(c)に示す圧力降下量ΔPは小さくなっていく。また、シート面12aが磨耗して噴射量が増大するといった経年劣化が進行すると、圧力降下量ΔPは大きくなっていく。なお、圧力降下量ΔPとは、噴射率上昇に伴い生じた検出圧力の降下量のことであり、例えば、基準圧力Pbaseから変曲点P2までの圧力降下量、又は、変曲点P1から変曲点P2までの圧力降下量のことである。   The set value Rγ which is the maximum injection rate Rmax at the time of large injection changes as the fuel injection valve 10 changes over time. For example, when aged deterioration such as deposits or the like deposits on the nozzle holes 11b and the injection amount decreases, the pressure drop amount ΔP shown in FIG. 2C decreases. Further, when the aging deterioration such that the seat surface 12a wears and the injection amount increases, the pressure drop amount ΔP increases. Note that the pressure drop amount ΔP is the amount of decrease in the detected pressure caused by the increase in the injection rate. For example, the pressure drop amount from the reference pressure Pbase to the inflection point P2 or the change from the inflection point P1. It is the amount of pressure drop to the bend point P2.

そこで本実施形態では、大噴射時の最大噴射率Rmax(設定値Rγ)と圧力降下量ΔPとは相関が高いことに着目し、圧力降下量ΔPの検出結果から設定値Rγを算出して学習する。つまり、大噴射時における最大噴射率Rmaxの学習値は、圧力降下量ΔPに基づく設定値Rγの学習値に相当する。   Therefore, in the present embodiment, focusing on the fact that the maximum injection rate Rmax (set value Rγ) and the pressure drop amount ΔP during large injection are highly correlated, learning is performed by calculating the set value Rγ from the detection result of the pressure drop amount ΔP. To do. That is, the learned value of the maximum injection rate Rmax at the time of large injection corresponds to the learned value of the set value Rγ based on the pressure drop amount ΔP.

以上により、燃圧波形から噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出することができる。そして、これらの噴射率パラメータtd,te,Rα,Rβ,Rmaxの学習値に基づき、噴射指令信号(図2(a)参照)に対応した噴射率波形(図2(b)参照)を算出することができる。なお、このように算出した噴射率波形の面積(図2(b)中の網点ハッチ参照)は噴射量に相当するので、噴射率パラメータに基づき噴射量を算出することもできる。   As described above, the injection rate parameters td, te, Rα, Rβ, and Rmax can be calculated from the fuel pressure waveform. Based on the learned values of the injection rate parameters td, te, Rα, Rβ, and Rmax, an injection rate waveform (see FIG. 2B) corresponding to the injection command signal (see FIG. 2A) is calculated. be able to. Since the area of the injection rate waveform calculated in this way (see halftone dot hatching in FIG. 2B) corresponds to the injection amount, the injection amount can also be calculated based on the injection rate parameter.

図3は、これら噴射率パラメータの学習、及び#2,#3気筒の燃料噴射弁10へ出力する噴射指令信号の設定等の概要を示すブロック図であり、ECU30により機能する各手段31,32,33について以下に説明する。噴射率パラメータ算出手段31は、燃圧センサ22により検出された燃圧波形に基づき噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出する。   FIG. 3 is a block diagram showing an outline of learning of these injection rate parameters and setting of an injection command signal to be output to the fuel injection valves 10 of the # 2 and # 3 cylinders. Each means 31 and 32 functioning by the ECU 30 is shown in FIG. , 33 will be described below. The injection rate parameter calculation means 31 calculates injection rate parameters td, te, Rα, Rβ, Rmax based on the fuel pressure waveform detected by the fuel pressure sensor 22.

学習手段32は、算出した噴射率パラメータをECU30のメモリに記憶更新して学習する。なお、噴射率パラメータは、その時の供給燃圧(コモンレール42内の圧力)に応じて異なる値となるため、供給燃圧又は後述する基準圧力Pbase(図2(c)参照)と関連付けて学習させることが望ましい。図3の例では、燃圧に対応する噴射率パラメータの値を噴射率パラメータマップMに記憶させている。   The learning means 32 learns by updating the calculated injection rate parameter in the memory of the ECU 30. Since the injection rate parameter varies depending on the supply fuel pressure (pressure in the common rail 42) at that time, the injection rate parameter can be learned in association with the supply fuel pressure or a reference pressure Pbase (see FIG. 2C) described later. desirable. In the example of FIG. 3, the injection rate parameter value corresponding to the fuel pressure is stored in the injection rate parameter map M.

設定手段33は、現状の燃圧に対応する噴射率パラメータ(学習値)を、噴射率パラメータマップMから取得する。そして、取得した噴射率パラメータに基づき、目標噴射状態に対応する噴射指令信号t1、t2、Tqを設定する。そして、このように設定した噴射指令信号にしたがって燃料噴射弁10を作動させた時の燃圧波形を燃圧センサ22で検出し、検出した燃圧波形に基づき噴射率パラメータ算出手段31は噴射率パラメータtd,te,Rα,Rβ,Rmaxを算出する。   The setting means 33 acquires an injection rate parameter (learned value) corresponding to the current fuel pressure from the injection rate parameter map M. And based on the acquired injection rate parameter, the injection command signals t1, t2, and Tq corresponding to the target injection state are set. The fuel pressure sensor 22 detects the fuel pressure waveform when the fuel injection valve 10 is operated in accordance with the injection command signal set in this way. Based on the detected fuel pressure waveform, the injection rate parameter calculation means 31 calculates the injection rate parameter td, te, Rα, Rβ, Rmax are calculated.

要するに、噴射指令信号に対する実際の噴射状態(つまり噴射率パラメータtd,te,Rα,Rβ,Rmax)を検出して学習し、その学習値に基づき、目標噴射状態に対応する噴射指令信号を設定する。そのため、実際の噴射状態に基づき噴射指令信号がフィードバック制御されることとなり、先述した経年劣化が進行しても、実噴射状態が目標噴射状態に一致するよう燃料噴射状態を高精度で制御できる。特に、実噴射量が目標噴射量となるように、噴射率パラメータに基づき噴射指令期間Tqを設定するようフィードバック制御することで、実噴射量が目標噴射量となるように補償している。   In short, an actual injection state (that is, injection rate parameters td, te, Rα, Rβ, Rmax) with respect to the injection command signal is detected and learned, and an injection command signal corresponding to the target injection state is set based on the learned value. . Therefore, the injection command signal is feedback-controlled based on the actual injection state, and the fuel injection state can be controlled with high accuracy so that the actual injection state coincides with the target injection state even when the above-described aging deterioration proceeds. In particular, feedback control is performed so as to set the injection command period Tq based on the injection rate parameter so that the actual injection amount becomes the target injection amount, so that the actual injection amount is compensated to become the target injection amount.

以下の説明では、燃料噴射弁10から燃料を噴射させている気筒を噴射気筒(表気筒)、この噴射気筒が燃料を噴射している時に燃料噴射させていない気筒を非噴射気筒(裏気筒)とし、かつ、噴射気筒に対応する燃圧センサ22を噴射時燃圧センサ、非噴射気筒に対応する燃圧センサ22を非噴射時燃圧センサと呼ぶ。   In the following description, a cylinder that is injecting fuel from the fuel injection valve 10 is an injection cylinder (front cylinder), and a cylinder that is not injecting fuel when the injection cylinder is injecting fuel is a non-injection cylinder (back cylinder). The fuel pressure sensor 22 corresponding to the injection cylinder is referred to as an injection fuel pressure sensor, and the fuel pressure sensor 22 corresponding to the non-injection cylinder is referred to as a non-injection fuel pressure sensor.

噴射時燃圧センサにより検出された燃圧波形である噴射時燃圧波形Wa(図4(a)参照)は、噴射による影響のみを表しているわけではなく、以下に例示する噴射以外の影響で生じた波形成分をも含んでいる。すなわち、燃料タンク40の燃料をコモンレール42へ圧送する燃料ポンプ41がプランジャポンプの如く間欠的に燃料を圧送するものである場合には、燃料噴射中にポンプ圧送が行われると、そのポンプ圧送期間中における噴射時燃圧波形Waは全体的に圧力が高くなった波形となる。つまり、噴射時燃圧波形Wa(図4(a)参照)には、噴射による燃圧変化を表した燃圧波形である噴射波形Wb(図4(c)参照)と、ポンプ圧送による燃圧上昇を表した燃圧波形(図4(b)中の実線Wu’参照)とが含まれていると言える。   The fuel pressure waveform Wa during injection, which is the fuel pressure waveform detected by the fuel pressure sensor during injection (see FIG. 4A), does not represent only the influence due to the injection, but is caused by the influence other than the injection exemplified below. It also includes waveform components. That is, when the fuel pump 41 that pumps the fuel in the fuel tank 40 to the common rail 42 pumps the fuel intermittently like a plunger pump, if pump pumping is performed during fuel injection, the pump pumping period The fuel pressure waveform Wa during the injection is a waveform in which the pressure is increased as a whole. That is, the injection fuel pressure waveform Wa (see FIG. 4 (a)) represents the injection waveform Wb (see FIG. 4 (c)), which is the fuel pressure waveform representing the fuel pressure change due to injection, and the fuel pressure increase due to pumping. It can be said that the fuel pressure waveform (see the solid line Wu ′ in FIG. 4B) is included.

また、このようなポンプ圧送が燃料噴射中に行われなかった場合であっても、燃料を噴射した直後は、その噴射分だけ噴射システム内全体の燃圧が低下する。そのため、噴射時燃圧波形Waは全体的に圧力が低くなった波形となる。つまり、噴射時燃圧波形Waには、噴射による燃圧変化を表した噴射波形Wbの成分と、噴射システム内全体の燃圧低下を表した燃圧波形(図4(b)中の点線Wu参照)の成分とが含まれていると言える。   Even if such pump pumping is not performed during fuel injection, immediately after the fuel is injected, the fuel pressure in the entire injection system is reduced by that amount. Therefore, the fuel pressure waveform Wa at the time of injection becomes a waveform in which the pressure is lowered as a whole. That is, the injection fuel pressure waveform Wa includes a component of an injection waveform Wb that represents a change in fuel pressure due to injection and a component of a fuel pressure waveform that represents a decrease in the fuel pressure in the entire injection system (see the dotted line Wu in FIG. 4B). It can be said that is included.

そこで本実施形態では、非噴射気筒センサにより検出される非噴射時燃圧波形Wu’(Wu)はコモンレール内の燃圧(噴射システム内全体の燃圧)の変化を表していることに着目し、噴射気筒センサにより検出された噴射時燃圧波形Waから、非噴射気筒センサによる非噴射時燃圧波形Wu’(Wu)を差し引いて噴射波形Wbを演算する処理(裏消し処理)を実施している。なお、図2(c)に示す燃圧波形は噴射波形Wbである。   Therefore, in this embodiment, focusing on the fact that the non-injection fuel pressure waveform Wu ′ (Wu) detected by the non-injection cylinder sensor represents a change in the fuel pressure in the common rail (the fuel pressure in the entire injection system), the injection cylinder A process of calculating the injection waveform Wb by subtracting the non-injection fuel pressure waveform Wu ′ (Wu) from the non-injection cylinder sensor from the injection fuel pressure waveform Wa detected by the sensor is performed. The fuel pressure waveform shown in FIG. 2C is the injection waveform Wb.

また、多段噴射を実施する場合には、前段噴射にかかる燃圧波形の脈動Wc(図2(c)参照)が燃圧波形Waに重畳する。特に、前段噴射とのインターバルが短い場合には、燃圧波形Waは脈動Wcの影響を大きく受ける。そこで、非噴射時燃圧波形Wu’(Wu)に加えて脈動Wcを燃圧波形Waから差し引く処理(うねり消し処理)を実施して、噴射波形Wbを算出することが望ましい。   Further, when performing multi-stage injection, the pulsation Wc (see FIG. 2C) of the fuel pressure waveform applied to the previous stage injection is superimposed on the fuel pressure waveform Wa. In particular, when the interval with the pre-stage injection is short, the fuel pressure waveform Wa is greatly affected by the pulsation Wc. Therefore, it is desirable to calculate the injection waveform Wb by performing a process (undulation process) of subtracting the pulsation Wc from the fuel pressure waveform Wa in addition to the non-injection fuel pressure waveform Wu ′ (Wu).

以上、センサ有り噴射弁10(#2,#3)に対する噴射制御の手法について、図2〜図4を用いて説明してきたが、次に、センサ無し噴射弁10(#1,#4)に対する噴射制御の手法について、図5〜図10を用いて説明する。   The injection control method for the sensor-equipped injection valve 10 (# 2, # 3) has been described above with reference to FIGS. 2 to 4. Next, the sensor-less injection valve 10 (# 1, # 4) will be described. The injection control method will be described with reference to FIGS.

図5は、コモンレール42から高圧配管42bを通じて各々の燃料噴射弁10へ燃料が供給される経路を示す模式図である。そして、例えばセンサ無し噴射弁10(#1)で燃料噴射を開始させると、センサ無し噴射弁10(#1)で生じた燃圧低下の脈動は、高圧配管42b(#1)を通じてコモンレール42へ伝播し、その後さらに、他の高圧配管42b(#2〜#4)を通じて各々の噴射弁へ伝播していく。このうち、センサ有り噴射弁10(#2)へ伝播していく伝播経路を図5中の符号K12は表している。つまり、当該伝播経路K12は、センサ無し噴射弁10(#1)→高圧配管42b(#1)→コモンレール42→高圧配管42b(#2)→センサ有り噴射弁10(#2)といった経路である。   FIG. 5 is a schematic diagram showing a path through which fuel is supplied from the common rail 42 to each fuel injection valve 10 through the high-pressure pipe 42b. For example, when fuel injection is started by the sensorless injection valve 10 (# 1), the pulsation of the fuel pressure drop generated by the sensorless injection valve 10 (# 1) propagates to the common rail 42 through the high-pressure pipe 42b (# 1). After that, it further propagates to each injection valve through the other high-pressure pipes 42b (# 2 to # 4). Among these, a propagation path propagating to the injection valve with sensor 10 (# 2) is indicated by a symbol K12 in FIG. That is, the propagation path K12 is a path such as the sensorless injection valve 10 (# 1) → the high pressure pipe 42b (# 1) → the common rail 42 → the high pressure pipe 42b (# 2) → the sensor-equipped injection valve 10 (# 2). .

同様にして、図5中の符号K23は、センサ有り噴射弁10(#2)→高圧配管42b(#2)→コモンレール42→高圧配管42b(#3)→センサ有り噴射弁10(#3)といった経路を表している。また、図5中の符号K43は、センサ無し噴射弁10(#4)→高圧配管42b(#4)→コモンレール42→高圧配管42b(#3)→センサ有り噴射弁10(#3)といった経路を表している。   Similarly, the symbol K23 in FIG. 5 indicates the injection valve with sensor 10 (# 2) → the high pressure pipe 42b (# 2) → the common rail 42 → the high pressure pipe 42b (# 3) → the injection valve 10 with sensor (# 3). Represents the route. In FIG. 5, a symbol K43 indicates a route such as the sensorless injection valve 10 (# 4) → the high pressure pipe 42b (# 4) → the common rail 42 → the high pressure pipe 42b (# 3) → the injection valve 10 with sensor (# 3). Represents.

各噴射弁10(#1〜#4)に接続されている高圧配管42b(#1〜#4)の長さは、全て同じである。また、これらの高圧配管42b(#1〜#4)は、同一ピッチでコモンレール42に接続されている。換言すれば、コモンレール42のうち、高圧配管42b(#1)の接続部および高圧配管42b(#2)の接続部の間隔L12と、高圧配管42b(#2)の接続部および高圧配管42b(#3)の接続部の間隔L23と、高圧配管42b(#3)の接続部および高圧配管42b(#4)の接続部の間隔L34とは、同一である。したがって、先述した各々の経路K12,K23,K43の長さは、全て同一である。   The lengths of the high-pressure pipes 42b (# 1 to # 4) connected to the injection valves 10 (# 1 to # 4) are all the same. These high-pressure pipes 42b (# 1 to # 4) are connected to the common rail 42 at the same pitch. In other words, in the common rail 42, the interval L12 between the connecting portion of the high pressure pipe 42b (# 1) and the connecting portion of the high pressure pipe 42b (# 2), and the connecting portion of the high pressure pipe 42b (# 2) and the high pressure pipe 42b ( The distance L23 between the connecting portions of # 3) is the same as the distance L34 between the connecting portion of the high-pressure pipe 42b (# 3) and the connecting portion of the high-pressure pipe 42b (# 4). Accordingly, the lengths of the paths K12, K23, and K43 described above are all the same.

ちなみに、センサ有り噴射弁10(#2)が第1燃料噴射弁に相当し、センサ有り噴射弁10(#3)が第2燃料噴射弁に相当し、センサ無し噴射弁10(#1)が第3燃料噴射弁に相当する。また、センサ有り噴射弁10(#2)に搭載されている燃圧センサ22(#2)が第1燃圧センサに相当し、センサ有り噴射弁10(#3)に搭載されている燃圧センサ22(#3)が第2燃圧センサに相当する。また、経路K23の経路長が第1の経路長に相当し、経路K12の経路長が第2の経路長に相当する。   Incidentally, the injection valve with sensor 10 (# 2) corresponds to the first fuel injection valve, the injection valve with sensor 10 (# 3) corresponds to the second fuel injection valve, and the injection valve 10 without sensor (# 1). This corresponds to the third fuel injection valve. The fuel pressure sensor 22 (# 2) mounted on the sensor-equipped injection valve 10 (# 2) corresponds to a first fuel pressure sensor, and the fuel pressure sensor 22 (mounted on the sensor-equipped injection valve 10 (# 3)) ( # 3) corresponds to the second fuel pressure sensor. The path length of the path K23 corresponds to the first path length, and the path length of the path K12 corresponds to the second path length.

図6(a)〜(c)は、センサ有り噴射弁10(#2)で燃料を噴射させる際の、噴射指令信号、噴射時燃圧波形Wa(#2)および非噴射時燃圧波形Wu(#3)を示すものである。この場合、噴射時燃圧波形Wa(#2)に示す燃圧変化の脈動は、経路23を通じてセンサ有り噴射弁10(#3)の燃圧センサ22で検出される。   FIGS. 6A to 6C show an injection command signal, an injection fuel pressure waveform Wa (# 2), and a non-injection fuel pressure waveform Wu (#) when fuel is injected by the injection valve with sensor 10 (# 2). 3). In this case, the pulsation of the fuel pressure change shown in the fuel pressure waveform Wa (# 2) at the time of injection is detected by the fuel pressure sensor 22 of the sensor-equipped injection valve 10 (# 3) through the path 23.

また、図6では、噴射指令信号の出力時刻と、噴射時燃圧波形Wa(#2)の検出時刻と、非噴射時燃圧波形Wu(#3)の検出時刻との関係も表している。すなわち、噴射開始指令時期t1の出力時刻から所定時間C1(C1=td+Cα)が経過した時刻に、噴射時燃圧波形Wa(#2)の変曲点P1が現れる。また、噴射終了指令時期t2の出力時刻から所定時間C2(C2=teu+Cβu、またはC2=te+Cβu’)が経過した時刻に、噴射時燃圧波形Wa(#2)の変曲点P5が現れる。   FIG. 6 also shows the relationship between the output time of the injection command signal, the detection time of the fuel pressure waveform Wa (# 2) during injection, and the detection time of the fuel pressure waveform Wu (# 3) during non-injection. That is, the inflection point P1 of the fuel pressure waveform Wa (# 2) at the time of injection appears at the time when the predetermined time C1 (C1 = td + Cα) has elapsed from the output time of the injection start command timing t1. Further, an inflection point P5 of the fuel pressure waveform Wa (# 2) at the time of injection appears at a time when a predetermined time C2 (C2 = teu + Cβu, or C2 = te + Cβu ′) has elapsed from the output time of the injection end command timing t2.

そして、変曲点P1の出現時刻から、燃圧変化が経路K23を伝播していくのに要する時間(伝播時間tw)が経過した時刻に、非噴射時燃圧波形Wu(#3)の変曲点P1uが現れる。また、変曲点P5の出現時刻から伝播時間twが経過した時刻に、非噴射時燃圧波形Wu(#3)の変曲点P5uが現れる。変曲点P1の出現時刻と変曲点P1uの出現時刻との時間差、或いは変曲点P5の出現時刻と変曲点P5uの出現時刻との時間差が「位相差」に相当する。ちなみに、図4(a)(b)に示す各々の波形Wa,Wuは、前記位相差を解消する補正が為されており、これにより、先述した裏消し処理の高精度化を図っている。   And the inflection point of the non-injection fuel pressure waveform Wu (# 3) at the time when the time required for the fuel pressure change to propagate through the path K23 (propagation time tw) elapses from the appearance time of the inflection point P1. P1u appears. Further, the inflection point P5u of the non-injection fuel pressure waveform Wu (# 3) appears at the time when the propagation time tw has elapsed from the appearance time of the inflection point P5. The time difference between the appearance time of the inflection point P1 and the appearance time of the inflection point P1u, or the time difference between the appearance time of the inflection point P5 and the appearance time of the inflection point P5u corresponds to the “phase difference”. Incidentally, each of the waveforms Wa and Wu shown in FIGS. 4A and 4B has been corrected to eliminate the phase difference, thereby improving the accuracy of the above-described reverse processing.

図7(a)〜(c)は、センサ無し噴射弁10(#1)で燃料を噴射させる際の、噴射指令信号、噴射時燃圧波形Wa(#1)および非噴射時燃圧波形Wu(#2)を示すものである。この場合、噴射時燃圧波形Wa(#1)に示す燃圧変化の脈動は、経路12を通じてセンサ有り噴射弁10(#2)の燃圧センサ22で検出される。但し、この場合の噴射時燃圧波形Wa(#1)は検出することができない。   7A to 7C show an injection command signal, an injection fuel pressure waveform Wa (# 1), and a non-injection fuel pressure waveform Wu (#) when fuel is injected by the sensorless injection valve 10 (# 1). 2). In this case, the pulsation of the fuel pressure change shown in the fuel pressure waveform Wa (# 1) at the time of injection is detected by the fuel pressure sensor 22 of the sensor-equipped injection valve 10 (# 2) through the path 12. However, the injection fuel pressure waveform Wa (# 1) in this case cannot be detected.

図7においても図6と同様にして、噴射開始指令時期t1の出力時刻から所定時間C1が経過した時刻に、噴射時燃圧波形Wa(#1)の変曲点P1が現れると予想される。また、噴射終了指令時期t2の出力時刻から所定時間C2が経過した時刻に、噴射時燃圧波形Wa(#1)の変曲点P5が現れると予想される。   In FIG. 7, as in FIG. 6, the inflection point P1 of the fuel pressure waveform Wa (# 1) during injection is expected to appear at the time when the predetermined time C1 has elapsed from the output time of the injection start command timing t1. In addition, it is expected that the inflection point P5 of the fuel pressure waveform Wa (# 1) during injection will appear at the time when the predetermined time C2 has elapsed from the output time of the injection end command timing t2.

そして、変曲点P1の出現時刻から、燃圧変化が経路K12を伝播していくのに要する時間(伝播時間tw)が経過した時刻に、非噴射時燃圧波形Wu(#2)の変曲点P1uが現れると予想される。また、変曲点P5の出現時刻から伝播時間twが経過した時刻に、非噴射時燃圧波形Wu(#2)の変曲点P5uが現れると予想される。ここで、経路23と経路12とでは経路長が同一であるため、図6に示す伝播時間twと図7に示す伝播時間twは同一であるとみなすことができる。   The inflection point of the non-injection fuel pressure waveform Wu (# 2) is obtained at the time when the time required for the fuel pressure change to propagate through the path K12 (propagation time tw) elapses from the appearance time of the inflection point P1. P1u is expected to appear. Further, it is expected that the inflection point P5u of the non-injection fuel pressure waveform Wu (# 2) appears at the time when the propagation time tw has elapsed from the appearance time of the inflection point P5. Here, since the route lengths of the route 23 and the route 12 are the same, the propagation time tw shown in FIG. 6 and the propagation time tw shown in FIG. 7 can be regarded as the same.

上記点に鑑み、本実施形態では、センサ有り噴射弁10(#2または#3)での噴射時に、図6に示す伝播時間twを計測しておく。そして、センサ無し噴射弁10(#1または#4)での噴射時に、非噴射時燃圧波形Wu(#2または#3)の変曲点P1u,P5uの出現時刻を検出し、その検出時刻から、計測しておいた伝播時間twを遡った時刻を、センサ無し噴射弁10にかかる変曲点P1,P5の出現時刻であると推定する。そして、この推定時刻に基づき、噴射開始時刻R1および噴射終了時刻R4を算出する。例えば、推定した変曲点P1の出現時刻から所定の遅れ時間Cαだけ前の時期を噴射開始時期R1として算出すればよい。また、推定した変曲点P5の出現時刻から所定の遅れ時間Cβu(図2参照)だけ前の時期を噴射終了時期R4として算出すればよい。   In view of the above points, in the present embodiment, the propagation time tw shown in FIG. 6 is measured at the time of injection at the sensor-equipped injection valve 10 (# 2 or # 3). Then, at the time of injection at the sensorless injection valve 10 (# 1 or # 4), the appearance time of the inflection points P1u and P5u of the non-injection fuel pressure waveform Wu (# 2 or # 3) is detected, and from the detection time It is estimated that the time that has gone back the measured propagation time tw is the appearance time of the inflection points P1 and P5 applied to the sensorless injection valve 10. Based on this estimated time, an injection start time R1 and an injection end time R4 are calculated. For example, the injection start time R1 may be calculated as a time that is a predetermined delay time Cα before the estimated inflection point P1 appearance time. Further, a timing that is a predetermined delay time Cβu (see FIG. 2) from the estimated time of appearance of the inflection point P5 may be calculated as the injection end timing R4.

なお、図6および図7に示す例では、図4(b)中の符号Wuに対応する、ポンプ圧送が為されていない時の非噴射時波形Wuを示しているが、ポンプ圧送時の非噴射時波形Wu’についても、上記手法と同様にして、伝播時間twの算出、変曲点P1u,P5uの出現時刻の検出、噴射開始時期R1および噴射終了時期R4の算出を実施できる。   6 and 7 show the non-injection waveform Wu when the pump is not pumped, corresponding to the symbol Wu in FIG. 4B. For the injection waveform Wu ′, the propagation time tw can be calculated, the appearance times of the inflection points P1u and P5u can be calculated, and the injection start timing R1 and the injection end timing R4 can be calculated in the same manner as described above.

図8は、センサ無し噴射弁10(#1または#4)を対象とした、伝播時間twの算出、噴射率パラメータtd,teuの算出、学習、及び#1,#4気筒の燃料噴射弁10へ出力する噴射指令信号の設定等の概要を示すブロック図であり、ECU30により機能する各手段34,31a,32a,33aについて以下に説明する。   FIG. 8 shows calculation of propagation time tw, calculation of injection rate parameters td, te, learning, and fuel injection valve 10 for # 1, # 4 cylinders for sensorless injector 10 (# 1 or # 4). FIG. 2 is a block diagram showing an outline of setting of an injection command signal to be output to, and each means 34, 31a, 32a, 33a functioning by the ECU 30 will be described below.

伝播時間算出手段34は、センサ有り噴射弁10(#2または#3)での燃料噴射時に、図6(b)(c)に示す噴射時燃圧波形Wa及び非噴射時燃圧波形Wuを取得する。そして、これらの波形Wa,Wuから変曲点P1,変曲点P1uの出現時刻を検出して、伝播時間twを算出する(tw=P1u−P1)。なお、本実施形態ではP1u−P1とP5u−P5が同一であるとみなして、P5u−P5の出現時刻の検出は実施しない。   The propagation time calculation means 34 obtains the fuel pressure waveform Wa during injection and the fuel pressure waveform Wu during non-injection shown in FIGS. 6B and 6C at the time of fuel injection by the injection valve 10 with sensor (# 2 or # 3). . Then, the appearance time of the inflection point P1 and the inflection point P1u is detected from these waveforms Wa and Wu, and the propagation time tw is calculated (tw = P1u−P1). In this embodiment, P1u-P1 and P5u-P5 are considered to be the same, and detection of the appearance time of P5u-P5 is not performed.

噴射率パラメータ算出手段31aでは、センサ無し噴射弁10(#1または#4)での燃料噴射時に、図7(c)に示す非噴射時燃圧波形Wu(推定用非噴射気筒波形)を取得する。また、伝播時間算出手段34で算出した伝播時間twを取得する。そして、この波形Wuから変曲点P1u,P5uの出現時刻を検出して、その検出時刻から伝播時間twおよび所定の遅れ時間Cα,Cβuだけ前の時期を、噴射開始時期R1および噴射終了時期R4として算出する。そして、噴射開始指令時期t1から噴射開始時期R1までの時間を噴射開始遅れ時間td(噴射率パラメータ)として算出する。また、噴射終了指令時期t2から噴射終了時期R4までの時間を、図2に示す噴射終了遅れ時間teu(噴射率パラメータ)として算出する。   The injection rate parameter calculation means 31a acquires the non-injection fuel pressure waveform Wu (estimated non-injection cylinder waveform) shown in FIG. 7C when fuel is injected from the sensorless injection valve 10 (# 1 or # 4). . Further, the propagation time tw calculated by the propagation time calculating means 34 is acquired. Then, the appearance times of the inflection points P1u and P5u are detected from the waveform Wu, and the timings before the propagation time tw and the predetermined delay times Cα and Cβu from the detection time are set as the injection start timing R1 and the injection end timing R4. Calculate as Then, the time from the injection start command timing t1 to the injection start timing R1 is calculated as the injection start delay time td (injection rate parameter). Further, the time from the injection end command timing t2 to the injection end timing R4 is calculated as the injection end delay time teu (injection rate parameter) shown in FIG.

なお、P5uの出現時刻から伝播時間twおよび所定の遅れ時間Cβu’(図2参照)だけ前の時期を、閉弁作動開始時期R23として算出し、噴射終了指令時期t2から閉弁作動開始時期R23までの時間を閉弁開始遅れ時間te(噴射率パラメータ)として算出してもよい。   Note that the time before the propagation time tw and the predetermined delay time Cβu ′ (see FIG. 2) from the appearance time of P5u is calculated as the valve closing operation start timing R23, and the valve closing operation start timing R23 from the injection end command timing t2. May be calculated as the valve closing start delay time te (injection rate parameter).

学習手段32aでは、噴射率パラメータ算出手段31aで算出した噴射率パラメータtd,teu(またはte)をECU30のメモリに記憶更新して学習する。なお、噴射率パラメータは、その時の供給燃圧(コモンレール42内の圧力)に応じて異なる値となるため、供給燃圧又は後述する基準圧力Pbase(図2(c)参照)と関連付けて学習させることが望ましい。また、燃温センサ23の検出値に基づき、燃料温度と関連付けて学習させるようにしてもよい。図8の例では、燃圧に対応する噴射率パラメータの値を噴射率パラメータマップMに記憶させている。   In the learning means 32a, the injection rate parameters td and teu (or te) calculated by the injection rate parameter calculation means 31a are stored in the memory of the ECU 30 and learned. Since the injection rate parameter varies depending on the supply fuel pressure (pressure in the common rail 42) at that time, the injection rate parameter can be learned in association with the supply fuel pressure or a reference pressure Pbase (see FIG. 2C) described later. desirable. Further, learning may be performed in association with the fuel temperature based on the detection value of the fuel temperature sensor 23. In the example of FIG. 8, the injection rate parameter value corresponding to the fuel pressure is stored in the injection rate parameter map M.

設定手段33aは、現状の燃圧に対応する噴射率パラメータ(学習値)を、噴射率パラメータマップMから取得する。そして、取得した噴射率パラメータに基づき、目標噴射状態に対応する噴射指令信号t1、t2、Tqを設定する。そして、このように設定した噴射指令信号にしたがって燃料噴射弁10を作動させた時の燃圧波形を燃圧センサ22で検出し、検出した燃圧波形に基づき噴射率パラメータ算出手段31aは噴射率パラメータtd,teu(またはte)を算出する。   The setting means 33a acquires an injection rate parameter (learned value) corresponding to the current fuel pressure from the injection rate parameter map M. And based on the acquired injection rate parameter, the injection command signals t1, t2, and Tq corresponding to the target injection state are set. The fuel pressure sensor 22 detects the fuel pressure waveform when the fuel injection valve 10 is operated in accordance with the injection command signal set in this way. Based on the detected fuel pressure waveform, the injection rate parameter calculation means 31a uses the injection rate parameter td, teu (or te) is calculated.

要するに、噴射指令信号に対する実際の噴射状態(つまり噴射率パラメータtd,te)を検出して学習し、その学習値に基づき、目標噴射状態に対応する噴射指令信号を設定する。そのため、実際の噴射状態に基づき噴射指令信号がフィードバック制御されることとなり、先述した経年劣化が進行しても、実噴射状態が目標噴射状態に一致するよう燃料噴射状態を高精度で制御できる。特に、噴射量は噴射指令期間Tq(つまりt1とt2)に応じて変化するため、実噴射量が目標噴射量となるように、噴射率パラメータtd,teに基づき噴射指令期間Tqを設定するようフィードバック制御することで、実噴射量が目標噴射量となるように補償している。   In short, an actual injection state (that is, injection rate parameters td, te) with respect to the injection command signal is detected and learned, and an injection command signal corresponding to the target injection state is set based on the learned value. Therefore, the injection command signal is feedback-controlled based on the actual injection state, and the fuel injection state can be controlled with high accuracy so that the actual injection state coincides with the target injection state even when the above-described aging deterioration proceeds. In particular, since the injection amount changes according to the injection command period Tq (that is, t1 and t2), the injection command period Tq is set based on the injection rate parameters td and te so that the actual injection amount becomes the target injection amount. By performing feedback control, compensation is performed so that the actual injection amount becomes the target injection amount.

次に、伝播時間算出手段34により伝播時間twを算出する手順について、図9のフローチャートを用いて説明する。なお、図9に示す処理は、ECU30が有するマイクロコンピュータにより、センサ有り噴射弁10(#2,#3)において燃料の噴射を1回実施する毎に実行される。   Next, the procedure for calculating the propagation time tw by the propagation time calculating means 34 will be described with reference to the flowchart of FIG. The process shown in FIG. 9 is executed each time fuel injection is performed once in the sensor-equipped injection valve 10 (# 2, # 3) by the microcomputer of the ECU 30.

先ず、図9に示すステップS10(第1の波形取得手段)において、2つの燃圧センサ22から噴射時燃圧波形Wa及び非噴射時燃圧波形Wuをそれぞれ取得する。なお、噴射時燃圧波形Waに替えて噴射波形Wb(Wb=Wa−Wu)を用いてもよい。また、非噴射時燃圧波形Wuは、ポンプ圧送時の波形でもよいしポンプ非圧送時の波形でもよい。   First, in step S10 (first waveform acquisition means) shown in FIG. 9, the fuel pressure waveform Wa during injection and the fuel pressure waveform Wu during non-injection are acquired from the two fuel pressure sensors 22, respectively. An injection waveform Wb (Wb = Wa−Wu) may be used instead of the fuel pressure waveform Wa during injection. Further, the non-injection fuel pressure waveform Wu may be a waveform at the time of pumping or a waveform at the time of non-pumping.

続くステップS11では、取得した噴射波形Wb(またはWa)から、変曲点P1の出現時刻(以下、降下開始時期P1と記載)を検出する。続くステップS12では、取得した非噴射時燃圧波形Wu(またはWu’)から、変曲点P1uの出現時刻(以下、降下開始時期P1uと記載)を検出する。続くステップS13(伝播時間算出手段)では、検出した降下開始時期P1,P1uに基づき伝播時間tw(tw=P1u−P1)を算出する。なお、伝播時間twは燃料の性状や温度によって変化するので、所定周期で算出した伝播時間twを逐次更新して学習させることが望ましい。   In the subsequent step S11, the appearance time of the inflection point P1 (hereinafter referred to as the descent start time P1) is detected from the acquired injection waveform Wb (or Wa). In the subsequent step S12, the appearance time of the inflection point P1u (hereinafter referred to as the descent start time P1u) is detected from the acquired non-injection fuel pressure waveform Wu (or Wu ′). In the subsequent step S13 (propagation time calculation means), the propagation time tw (tw = P1u−P1) is calculated based on the detected descent start timings P1 and P1u. Since the propagation time tw varies depending on the properties and temperature of the fuel, it is desirable that the propagation time tw calculated at a predetermined cycle is sequentially updated and learned.

次に、噴射率パラメータ算出手段31aにより、センサ無し噴射弁10(#1,#4)についての噴射率パラメータtd,teuを算出する手順について、図10のフローチャートを用いて説明する。なお、図10に示す処理は、ECU30が有するマイクロコンピュータにより、センサ無し噴射弁10(#1,#4)において燃料の噴射を1回実施する毎に実行される。   Next, the procedure for calculating the injection rate parameters td and teu for the sensorless injection valve 10 (# 1, # 4) by the injection rate parameter calculation means 31a will be described with reference to the flowchart of FIG. Note that the process shown in FIG. 10 is executed each time fuel is injected into the sensorless injector 10 (# 1, # 4) by the microcomputer of the ECU 30.

先ず、図10に示すステップS20(第2の波形取得手段)において、2つの燃圧センサ22のうち以下の如く選択された燃圧センサから、非噴射時燃圧波形Wu(またはWu’)を取得する。すなわち、選択した燃圧センサ22と噴射指令している燃料噴射弁10との経路長が、図9の処理で用いた2つの燃圧センサ22の経路長(つまり経路K23の経路長)と同一となるよう、燃圧センサ22を選択する。図5の例では、#1気筒で燃料噴射している場合には#2気筒の燃圧センサ22を選択して、経路K12の経路長とする。また、#4気筒で燃料噴射している場合には#3気筒の燃圧センサ22を選択して、経路K43の経路長とする。   First, in step S20 (second waveform acquisition means) shown in FIG. 10, the non-injection fuel pressure waveform Wu (or Wu ′) is acquired from the fuel pressure sensor selected from the two fuel pressure sensors 22 as follows. That is, the path length between the selected fuel pressure sensor 22 and the fuel injection valve 10 that has commanded injection is the same as the path length of the two fuel pressure sensors 22 used in the process of FIG. 9 (that is, the path length of the path K23). Thus, the fuel pressure sensor 22 is selected. In the example of FIG. 5, when fuel is injected in the # 1 cylinder, the fuel pressure sensor 22 for the # 2 cylinder is selected and the path length of the path K12 is set. Further, when fuel is injected in the # 4 cylinder, the # 3 cylinder fuel pressure sensor 22 is selected to set the path length of the path K43.

図5に示すように、4気筒エンジンであり4つの気筒(燃料噴射弁10)が一列に配置されている場合には、4つの燃料噴射弁10のうち中央に位置する2つの噴射弁10(#2、#3)に燃圧センサ22を搭載させればよい。そして、両端に位置する2つのセンサ無し噴射弁10(#1、#4)から燃料噴射した時には、噴射した噴射弁の隣に位置するセンサ有り噴射弁の燃圧センサ22の検出値(非噴射時波形)を、図10のステップS20および図8の噴射率パラメータ算出手段31aで取得すれば、上述の如く経路長を同一にできる。   As shown in FIG. 5, in the case of a four-cylinder engine and four cylinders (fuel injection valves 10) arranged in a row, two injection valves 10 ( The fuel pressure sensor 22 may be mounted on # 2, # 3). When fuel is injected from the two sensorless injection valves 10 (# 1, # 4) located at both ends, the detected value of the fuel pressure sensor 22 of the sensor-equipped injection valve located next to the injected injection valve (during non-injection) If the waveform is acquired by step S20 of FIG. 10 and the injection rate parameter calculation means 31a of FIG. 8, the path length can be made the same as described above.

続くステップS21では、ステップS20で取得した非噴射時燃圧波形Wu(またはWu’)から、変曲点P1uの出現時刻(降下開始時期P1u)、および変曲点P5uの出現時刻(上昇終了時期P5u)を検出する。続くステップS22(推定手段)では、ステップS21で検出した降下開始時期P1uおよび上昇終了時期P5uと、図9の処理で算出した伝播時間twとに基づいて、噴射開始時期R1および噴射終了時期R4を推定する(R1=P1u−tw−Cα、R4=P5u−tw−Cβ)。   In the subsequent step S21, the appearance time of the inflection point P1u (fall start time P1u) and the appearance time of the inflection point P5u (rise end time P5u) from the non-injection fuel pressure waveform Wu (or Wu ′) acquired in step S20. ) Is detected. In the subsequent step S22 (estimating means), the injection start timing R1 and the injection end timing R4 are determined based on the descent start timing P1u and the rise end timing P5u detected in step S21 and the propagation time tw calculated in the process of FIG. Estimate (R1 = P1u-tw-Cα, R4 = P5u-tw-Cβ).

続くステップS23では、ステップS22で算出した噴射開始時期R1および噴射開始指令時期t1に基づき、噴射開始遅れ時間tdを算出する(td=R1−t1)。また、ステップS22で算出した噴射終了時期R4および噴射終了指令時期t2に基づき、噴射終了遅れ時間teuを算出する(teu=R4−t2)。続くステップS24では、ステップS23で算出した噴射率パラメータtd,teuをマップMa(図8参照)に記憶させて学習する。   In the subsequent step S23, the injection start delay time td is calculated based on the injection start timing R1 and the injection start command timing t1 calculated in step S22 (td = R1-t1). Further, the injection end delay time teu is calculated based on the injection end timing R4 and the injection end command timing t2 calculated in step S22 (teu = R4-t2). In subsequent step S24, the injection rate parameters td and teu calculated in step S23 are stored in a map Ma (see FIG. 8) for learning.

以上により、本実施形態によれば、センサ有り噴射弁10での燃料噴射時に、2つの燃圧センサ22により実際の伝播時間twを検出しておく。そして、センサ無し噴射弁10での燃料噴射時には、その噴射時に取得した非噴射時燃圧波形Wu(推定用非噴射気筒波形)および検出しておいた伝播時間twに基づいて、センサ無し噴射弁10での噴射開始遅れ時間tdや閉弁開始遅れ時間te、噴射終了遅れ時間teu等の噴射率パラメータを算出する。そのため、実際に使用されている燃料性状や燃料温度が変化して伝播時間twが変化したとしても、実際に検出した伝播時間twに基づいてセンサ無し噴射弁10にかかる噴射率パラメータ(噴射状態)を算出するので、噴射率パラメータの算出を正確にできる。   As described above, according to the present embodiment, the actual propagation time tw is detected by the two fuel pressure sensors 22 when fuel is injected from the sensor-equipped injection valve 10. At the time of fuel injection by the sensorless injector 10, the sensorless injector 10 is based on the non-injection fuel pressure waveform Wu (estimated non-injection cylinder waveform) acquired at the time of injection and the detected propagation time tw. The injection rate parameters such as the injection start delay time td, the valve closing start delay time te, and the injection end delay time teu are calculated. Therefore, even if the fuel property or fuel temperature actually used changes and the propagation time tw changes, the injection rate parameter (injection state) applied to the sensorless injection valve 10 based on the actually detected propagation time tw. Therefore, the injection rate parameter can be calculated accurately.

また、伝播時間twの検出に用いる噴射時燃圧波形Wa及び非噴射時燃圧波形Wuを検出する2つの燃圧センサ22の経路K23の長さと、センサ無し噴射弁での噴射状態算出に用いる燃圧センサ22からセンサ無し噴射弁までの経路K12の長さとを、同一に設定している。そのため、経路K23において検出した伝播時間twと、センサ無し噴射弁で噴射した時の伝播時間とを同じにできるので、センサ無し噴射弁での噴射状態算出の精度を向上できる。   Also, the length of the path K23 of the two fuel pressure sensors 22 for detecting the fuel pressure waveform Wa during injection and the fuel pressure waveform Wu during non-injection used for detecting the propagation time tw, and the fuel pressure sensor 22 used for calculating the injection state at the sensorless injection valve. The length of the path K12 from the sensorless injection valve to the sensorless injection valve is set to be the same. Therefore, the propagation time tw detected in the path K23 can be made the same as the propagation time when the injection is performed with the sensorless injection valve, so that the accuracy of the injection state calculation with the sensorless injection valve can be improved.

(第2実施形態)
上記第1実施形態では、4気筒エンジンを対象とするのに対し、図11に示す本実施形態では、6気筒エンジンを対象とし、燃圧センサ22を2つ搭載させている。図11の例では、伝播時間twの検出に用いる噴射時燃圧波形Wa及び非噴射時燃圧波形Wuを検出する2つの燃圧センサ22の経路K34の長さと、センサ無し噴射弁での噴射状態算出に用いる燃圧センサ22からセンサ無し噴射弁までの経路K13,K24,K53,K64の長さとは、同一ではない。但し、前記経路K13,K24,K53,K64の長さは全て同一となるように設定している。
(Second Embodiment)
In the first embodiment, a 4-cylinder engine is targeted. In the present embodiment shown in FIG. 11, two fuel pressure sensors 22 are mounted for a 6-cylinder engine. In the example of FIG. 11, the length of the path K34 of the two fuel pressure sensors 22 that detects the fuel pressure waveform Wa during injection and the fuel pressure waveform Wu during non-injection used for detecting the propagation time tw, and the injection state calculation at the sensorless injection valve. The lengths of the paths K13, K24, K53, K64 from the fuel pressure sensor 22 to be used to the sensorless injection valve are not the same. However, the lengths of the paths K13, K24, K53, K64 are all set to be the same.

なお、本実施形態においても第1実施形態と同様にして、各噴射弁10(#1〜#6)に接続されている高圧配管42b(#1〜#6)の長さは、全て同じである。また、これらの高圧配管42b(#1〜#6)は、同一ピッチでコモンレール42に接続されている。   In this embodiment, the lengths of the high-pressure pipes 42b (# 1 to # 6) connected to the injection valves 10 (# 1 to # 6) are all the same as in the first embodiment. is there. These high-pressure pipes 42b (# 1 to # 6) are connected to the common rail 42 at the same pitch.

また、本実施形態では、図9の処理で算出した伝播時間twを用いて、噴射開始時期R1および噴射終了時期R4を算出する(R1=P1u−tw×Cw−Cα、R4=P5u−tw×Cw−Cβ)にあたり、ECU30のメモリ(記憶手段)に予め記憶させておいた所定の係数Cw(経路長情報)を伝播時間twに乗算して算出している。前記係数Cwには、経路長の違い(差分)を表した比率(例えば、経路K13の長さ/経路K34の長さ)を用いてもよいし、予め実施しておいた試験結果に基づき設定した値を用いてもよい。   Further, in the present embodiment, the injection start timing R1 and the injection end timing R4 are calculated using the propagation time tw calculated in the process of FIG. 9 (R1 = P1u−tw × Cw−Cα, R4 = P5u−tw ×). Cw−Cβ) is calculated by multiplying the propagation time tw by a predetermined coefficient Cw (path length information) stored in advance in the memory (storage means) of the ECU 30. The coefficient Cw may use a ratio (for example, the length of the route K13 / the length of the route K34) representing a difference (difference) in the route length, or may be set based on a test result performed in advance. The value may be used.

本実施形態によっても、上記第1実施形態と同様にして、実際に検出した伝播時間twに基づいてセンサ無し噴射弁10にかかる噴射率パラメータ(噴射状態)を算出するので、噴射率パラメータの算出を正確にできる。また、センサ無し噴射弁での噴射状態算出に用いる燃圧センサ22からセンサ無し噴射弁までの経路K13,K24,K53,K64の長さが全て同一となるように設定している。そのため、センサ無し噴射弁での噴射状態算出に用いる係数Cwを、全てのセンサ無し噴射弁に対して同一にできる。よって、センサ無し噴射弁の間で生じる噴射状態の算出ばらつきを抑制できる。また、各々の経路長に応じた係数Cwを試験等の実施に基づき設定する手間を軽減できる。   Also in the present embodiment, the injection rate parameter (injection state) applied to the sensorless injection valve 10 is calculated based on the actually detected propagation time tw in the same manner as in the first embodiment. Can be accurate. The lengths of the paths K13, K24, K53, and K64 from the fuel pressure sensor 22 used for calculating the injection state at the sensorless injection valve to the sensorless injection valve are all set to be the same. Therefore, the coefficient Cw used for calculating the injection state in the sensorless injection valve can be made the same for all the sensorless injection valves. Therefore, the calculation variation of the injection state which occurs between the sensorless injection valves can be suppressed. Moreover, the trouble of setting the coefficient Cw corresponding to each path length based on the execution of a test or the like can be reduced.

(第3実施形態)
図12に示す本実施形態では、センサ無し噴射弁での噴射状態算出に用いる燃圧センサ22からセンサ無し噴射弁までの経路K13,K23,K54,K64のうち、経路13および経路64の長さについては、伝播時間twの検出に用いる噴射時燃圧波形Wa及び非噴射時燃圧波形Wuを検出する2つの燃圧センサ22の経路K34の長さと異なる。但し、経路23および経路54については経路K34の長さと同一となるように設定している。
(Third embodiment)
In the present embodiment shown in FIG. 12, the length of the path 13 and the path 64 among the paths K13, K23, K54, and K64 from the fuel pressure sensor 22 to the sensorless injection valve used for calculating the injection state at the sensorless injection valve. Is different from the length of the path K34 of the two fuel pressure sensors 22 that detect the fuel pressure waveform Wa during injection and the fuel pressure waveform Wu during non-injection used for detecting the propagation time tw. However, the route 23 and the route 54 are set to be the same as the length of the route K34.

そして、経路13および経路64にかかるセンサ無し噴射弁10(#1、#6)については、上記第2実施形態と同様にして、伝播時間twを用いて噴射状態を算出するにあたり、伝播時間twに所定の係数Cwを乗算して算出している。一方、経路23および経路53にかかるセンサ無し噴射弁10(#2、#5)については、上記第1実施形態と同様にして、前記係数Cwを用いることなく噴射状態を算出する。   And about the sensorless injection valve 10 (# 1, # 6) concerning the path | route 13 and the path | route 64, when calculating an injection state using the propagation time tw similarly to the said 2nd Embodiment, propagation time tw Is multiplied by a predetermined coefficient Cw. On the other hand, for the sensorless injection valve 10 (# 2, # 5) on the path 23 and the path 53, the injection state is calculated without using the coefficient Cw, as in the first embodiment.

以上により、本実施形態によれば、経路23および経路53にかかるセンサ無し噴射弁10(#2、#5)については、経路23および経路54の長さが経路K34の長さと同一となるように設定しているので、係数Cwを用いることなく噴射状態を算出でき、センサ無し噴射弁10(#2、#5)に対する噴射状態の算出精度を向上できる。   As described above, according to the present embodiment, for the sensorless injectors 10 (# 2, # 5) on the path 23 and the path 53, the lengths of the path 23 and the path 54 are the same as the length of the path K34. Therefore, the injection state can be calculated without using the coefficient Cw, and the calculation accuracy of the injection state for the sensorless injection valve 10 (# 2, # 5) can be improved.

(第4実施形態)
上記第1〜第3実施形態では、複数の気筒(燃料噴射弁10)が一列に配置されている直列エンジンを対象としているのに対し、図13に示す本実施形態では、コモンレール42を2本備えるV型エンジンまたは水平対向エンジンを対象としている。そして、コモンレール42毎に燃圧センサ22を2つ搭載させている。
(Fourth embodiment)
In the first to third embodiments, an in-line engine in which a plurality of cylinders (fuel injection valves 10) are arranged in a row is targeted, whereas in the present embodiment shown in FIG. 13, two common rails 42 are provided. It is intended for V-type engines or horizontally opposed engines. Two fuel pressure sensors 22 are mounted for each common rail 42.

図13の例では、8気筒エンジンであり、1本のコモンレール42に対して4つの燃料噴射弁10および2つの燃圧センサ22が搭載されている。また、上記第1実施形態と同様にして、センサ無し噴射弁での噴射状態算出に用いる燃圧センサ22からセンサ無し噴射弁までの経路K12,K43,K56,K87の長さと、伝播時間twの検出に用いる噴射時燃圧波形Wa及び非噴射時燃圧波形Wuを検出する2つの燃圧センサ22の経路K23,K67の長さとを、同一に設定している。   In the example of FIG. 13, the engine is an 8-cylinder engine, and four fuel injection valves 10 and two fuel pressure sensors 22 are mounted on one common rail 42. Similarly to the first embodiment, the lengths of the paths K12, K43, K56, K87 from the fuel pressure sensor 22 used for calculating the injection state at the sensorless injection valve to the sensorless injection valve and the propagation time tw are detected. The lengths of the paths K23 and K67 of the two fuel pressure sensors 22 that detect the fuel pressure waveform Wa during injection and the fuel pressure waveform Wu during non-injection used in the above are set to be the same.

したがって、本実施形態によっても、上記第1実施形態と同様にして、実際に検出した伝播時間twに基づいてセンサ無し噴射弁10にかかる噴射率パラメータ(噴射状態)を算出するので、噴射率パラメータの算出を正確にできる。また、伝播時間twを検出する時の経路K23,K67の長さと、センサ無し噴射弁での噴射状態算出に用いる燃圧センサ22からセンサ無し噴射弁までの経路K12,K43,K56,K87の長さとを、同一に設定している。そのため、経路K23,K67において検出した伝播時間twと、センサ無し噴射弁で噴射した時の伝播時間とを同じにできるので、センサ無し噴射弁での噴射状態算出の精度を向上できる。   Therefore, also in the present embodiment, the injection rate parameter (injection state) applied to the sensorless injection valve 10 is calculated based on the actually detected propagation time tw in the same manner as in the first embodiment. Can be calculated accurately. The lengths of the paths K23 and K67 when detecting the propagation time tw and the lengths of the paths K12, K43, K56, and K87 from the fuel pressure sensor 22 used for calculating the injection state at the sensorless injection valve to the sensorless injection valve Are set to be the same. Therefore, the propagation time tw detected in the paths K23 and K67 can be made the same as the propagation time when the injection is performed with the sensorless injection valve, so that the accuracy of the injection state calculation with the sensorless injection valve can be improved.

(第5実施形態)
上記各実施形態では、燃圧センサ22を少なくとも2つは搭載させているのに対し、本実施形態では、図14に示すように燃圧センサ22が1つであってもよい。なお、本実施形態における燃料噴射システムのハード構成は、#3気筒の燃圧センサを廃止している点を除いては、図5に示す上記第1実施形態と同じである。
(Fifth embodiment)
In each of the above embodiments, at least two fuel pressure sensors 22 are mounted. In the present embodiment, one fuel pressure sensor 22 may be provided as shown in FIG. The hardware configuration of the fuel injection system in this embodiment is the same as that of the first embodiment shown in FIG. 5 except that the # 3 cylinder fuel pressure sensor is eliminated.

そして本実施形態では、センサ無し噴射弁への噴射開始指令時期t1から、当該指令に伴い燃圧センサ22の検出波形に変化が生じるまでの応答時間tv(図7参照)を検出する。或いは、センサ無し噴射弁への噴射終了指令時期t2から、当該指令に伴い燃圧センサ22の検出波形に変化が生じるまでの応答時間tvを検出する。そして、各々のセンサ無し噴射弁10(#1,#3,#4)で噴射させた時の応答時間tv12,tv32,tv42を比較して、センサ無し噴射弁10で異常が生じているか否かを診断する。   In the present embodiment, the response time tv (see FIG. 7) from the injection start command timing t1 to the sensorless injection valve until the detection waveform of the fuel pressure sensor 22 changes in accordance with the command is detected. Alternatively, the response time tv from the injection end command timing t2 to the sensorless injection valve to the change in the detection waveform of the fuel pressure sensor 22 accompanying the command is detected. Then, by comparing the response times tv12, tv32, tv42 when the injection is performed by each sensorless injection valve 10 (# 1, # 3, # 4), whether or not an abnormality has occurred in the sensorless injection valve 10 is determined. Diagnose.

以下、上記診断の手順について、図15のフローチャートを用いて説明する。なお、図15に示す処理は、ECU30が有するマイクロコンピュータにより、所定の周期で繰り返し実行される。   Hereinafter, the diagnosis procedure will be described with reference to the flowchart of FIG. Note that the process shown in FIG. 15 is repeatedly executed at a predetermined cycle by a microcomputer included in the ECU 30.

先ず、図15のステップS30において、#1気筒のセンサ無し噴射弁10(第2燃料噴射弁に相当)からの燃料噴射時に、そのセンサ無し噴射弁10から#2気筒のセンサ有り噴射弁10(第1燃料噴射弁に相当)へ伝播してきた圧力変化(すなわち図7(c)に示す非噴射時波形Wu)を取得する。そして、その非噴射時波形Wu(第2噴射時波形に相当)に現れる降下開始時期P1uまたは上昇終了時期P5uを検出する。そして、噴射開始指令時期t1から降下開始時期P1uまでの時間、或いは、噴射終了指令時期t2から上昇終了時期P5uまでの時間を、応答時間t12(第2噴射時応答時間に相当)として算出する。   First, in step S30 of FIG. 15, at the time of fuel injection from the # 1 cylinder sensorless injection valve 10 (corresponding to the second fuel injection valve), the sensorless injection valve 10 to # 2 cylinder sensored injection valve 10 ( The pressure change (that is, the non-injection waveform Wu shown in FIG. 7C) that has propagated to the first fuel injection valve is acquired. Then, the descent start timing P1u or the rise end timing P5u appearing in the non-injection waveform Wu (corresponding to the second injection waveform) is detected. Then, the time from the injection start command timing t1 to the descent start timing P1u or the time from the injection end command timing t2 to the rise end timing P5u is calculated as a response time t12 (corresponding to the second injection response time).

次に、ステップS31において、#3気筒のセンサ無し噴射弁10(第3燃料噴射弁に相当)からの燃料噴射時に、非噴射時波形Wu(第3噴射時波形に相当)を取得する。そして、その非噴射時波形Wuの現れる降下開始時期P1uまたは上昇終了時期P5uを検出し、ステップS30と同様にして応答時間t32(第3噴射時応答時間に相当)を算出する。次に、ステップS32において、#4気筒のセンサ無し噴射弁10(第4燃料噴射弁に相当)からの燃料噴射時に、非噴射時波形Wu(第4噴射時波形に相当)を取得する。そして、その非噴射時波形Wuの現れる降下開始時期P1uまたは上昇終了時期P5uを検出し、ステップS30と同様にして応答時間t42(第3噴射時応答時間に相当)を算出する。   Next, in step S31, the non-injection waveform Wu (corresponding to the third injection waveform) is acquired during fuel injection from the sensorless injection valve 10 (corresponding to the third fuel injection valve) of the # 3 cylinder. Then, the descent start timing P1u or the rise end timing P5u at which the non-injection waveform Wu appears is detected, and the response time t32 (corresponding to the third injection response time) is calculated in the same manner as in step S30. Next, in step S32, the non-injection waveform Wu (corresponding to the fourth injection waveform) is acquired during fuel injection from the sensorless injection valve 10 (corresponding to the fourth fuel injection valve) of the # 4 cylinder. Then, the descent start timing P1u or the rise end timing P5u at which the non-injection waveform Wu appears is detected, and the response time t42 (corresponding to the third injection response time) is calculated in the same manner as in step S30.

ここで、応答時間t12および応答時間t32についての圧力変化の伝播経路K12、K32は、経路長が同じである。これに対し、応答時間t42についての伝播経路K42の長さは、伝播経路K12、K32に比べて長い。そこで、次のステップS33では、この長さの違いに基づき応答時間t42を補正する。例えば、ECU30のメモリ(記憶手段)に予め記憶させておいた所定の係数Cw(経路長情報)を応答時間t42に乗算して算出している。前記係数Cwには、経路長の違い(差分)を表した比率(例えば、経路K12の長さ/経路K42の長さ)を用いてもよいし、予め実施しておいた試験結果に基づき設定した値を用いてもよい。   Here, the pressure change propagation paths K12 and K32 for the response time t12 and the response time t32 have the same path length. On the other hand, the length of the propagation path K42 for the response time t42 is longer than the propagation paths K12 and K32. Therefore, in the next step S33, the response time t42 is corrected based on the difference in length. For example, the response time t42 is multiplied by a predetermined coefficient Cw (path length information) stored in advance in the memory (storage means) of the ECU 30. For the coefficient Cw, a ratio (for example, the length of the route K12 / the length of the route K42) representing a difference (difference) in the route length may be used, or set based on a test result performed in advance. The value may be used.

次に、ステップS34において、ステップS30,S31,S33で算出した3つの応答時間t12,t32,t42を比較する。そして、いずれか1つの応答時間が、他の2つの応答時間に比べて大きく異なる値になっているか否かを判定する。例えば、3つの応答時間の平均を算出し、その平均に対する偏差を3つの応答時間t12,t32,t42の各々について算出する。そして、前記偏差が所定以上に大きくなっていれば、該当する応答時間は他の2つに比べて大きく異なっていると判定する。   Next, in step S34, the three response times t12, t32, and t42 calculated in steps S30, S31, and S33 are compared. Then, it is determined whether any one response time has a value significantly different from the other two response times. For example, an average of three response times is calculated, and a deviation from the average is calculated for each of the three response times t12, t32, and t42. If the deviation is larger than a predetermined value, it is determined that the corresponding response time is significantly different from the other two.

そして、3つの応答時間のうち前記偏差が所定以上になっているものが存在していれば(S34:YES)、ステップS35に進み、その応答時間に該当する噴射弁に対して、弁体12の応答性が悪くなる異常が生じていると異常診断する。一方、いずれの応答時間にも偏差が所定以上になっているものが存在していなければ(S34:NO)、ステップS36に進み、全ての噴射弁に対して弁体12の応答性が正常であると診断する。   If any of the three response times has a deviation equal to or greater than a predetermined value (S34: YES), the process proceeds to step S35, and the valve body 12 is selected for the injection valve corresponding to the response time. Diagnose that there is an abnormality that makes the responsiveness worse. On the other hand, if none of the response times has a deviation greater than or equal to the predetermined value (S34: NO), the process proceeds to step S36, and the responsiveness of the valve body 12 is normal for all the injection valves. Diagnose it.

なお、上記ステップS30,S31,S32の各々が、第2噴射時応答時間算出手段、第3噴射時応答時間算出手段、および第4噴射時応答時間算出手段に相当するとともに、波形取得手段に相当する。   Each of the steps S30, S31, S32 corresponds to a second injection time response time calculation means, a third injection time response time calculation means, and a fourth injection time response time calculation means, and also corresponds to a waveform acquisition means. To do.

以上により、本実施形態によれば、各々の応答時間t12,t32,t42を検出して比較することにより、いずれかのセンサ無し噴射弁10(#1,#3,#4)での燃料噴射状態に異常が生じているか否かを診断する。そのため、実際に使用されている燃料性状や燃料温度が変化して伝播時間が変化したとしても、センサ無し噴射弁10(#1,#3,#4)での異常有無を正確に診断できる。よって、全ての燃料噴射弁10に燃圧センサ22を搭載させることなく、少なくとも1つの燃料噴射弁10に燃圧センサ22を搭載させることで、センサ無し噴射弁での噴射状態(異常有無)を正確に診断できる。   As described above, according to the present embodiment, the fuel injection at any of the sensorless injection valves 10 (# 1, # 3, # 4) is performed by detecting and comparing the response times t12, t32, t42. Diagnose whether the condition is abnormal. Therefore, even if the fuel property or fuel temperature actually used changes and the propagation time changes, the presence or absence of abnormality in the sensorless injector 10 (# 1, # 3, # 4) can be accurately diagnosed. Therefore, by mounting the fuel pressure sensor 22 on at least one fuel injection valve 10 without mounting the fuel pressure sensor 22 on all the fuel injection valves 10, the injection state (abnormality presence / absence) of the sensorless injection valve can be accurately determined. Can be diagnosed.

(他の実施形態)
本発明は上記実施形態の記載内容に限定されず、以下のように変更して実施してもよい。また、各実施形態の特徴的構成をそれぞれ任意に組み合わせるようにしてもよい。
(Other embodiments)
The present invention is not limited to the description of the above embodiment, and may be modified as follows. Moreover, you may make it combine the characteristic structure of each embodiment arbitrarily, respectively.

・図8の伝播時間算出手段34において算出した伝播時間を、燃料の温度と関連付けて学習しておき、噴射率パラメータ算出手段31aでは、その学習値に基づき噴射率パラメータを算出するようにしてもよい。   The propagation time calculated by the propagation time calculation unit 34 in FIG. 8 is learned in association with the temperature of the fuel, and the injection rate parameter calculation unit 31a calculates the injection rate parameter based on the learned value. Good.

10(#2)…第1燃料噴射弁、10(#3)…前記第2燃料噴射弁、10(#1)…前記第3燃料噴射弁、22(#2)…第1燃圧センサ、22(#3)…第2燃圧センサ、42…コモンレール(蓄圧分配容器)、S10…第1の波形取得手段、S13,34…伝播時間算出手段、S20…第2の波形取得手段、S22,31a…推定手段、S30…第2噴射時応答時間算出手段(波形取得手段)、S31…第3噴射時応答時間算出手段(波形取得手段)、S32…第4噴射時応答時間算出手段(波形取得手段)、S34…異常診断手段。   10 (# 2) ... 1st fuel injection valve, 10 (# 3) ... 2nd fuel injection valve, 10 (# 1) ... 3rd fuel injection valve, 22 (# 2) ... 1st fuel pressure sensor, 22 (# 3) ... second fuel pressure sensor, 42 ... common rail (accumulation distribution container), S10 ... first waveform acquisition means, S13, 34 ... propagation time calculation means, S20 ... second waveform acquisition means, S22, 31a ... Estimating means, S30 ... second injection response time calculating means (waveform acquiring means), S31 ... third injection response time calculating means (waveform acquiring means), S32 ... fourth injection response time calculating means (waveform acquiring means) , S34 ... abnormality diagnosis means.

Claims (4)

内燃機関の第1気筒に備えられた第1燃料噴射弁、第2気筒に備えられた第2燃料噴射弁、および第3気筒に備えられた第3燃料噴射弁と、
前記第1燃料噴射弁、前記第2燃料噴射弁、および前記第3燃料噴射弁の各々へ、蓄圧した高圧燃料を分配する蓄圧分配容器と、
前記第1燃料噴射弁に設けられた第1燃圧センサ、および前記第2燃料噴射弁に設けられた第2燃圧センサと、
を備える燃料噴射システムに適用され、
前記第1燃料噴射弁での燃料噴射時に前記第1燃圧センサにより検出される圧力変化とその検出時刻との関係を表した噴射気筒波形、および前記第1燃料噴射弁での燃料噴射時に前記第2燃圧センサにより検出される圧力変化とその検出時刻との関係を表した非噴射気筒波形を取得する第1の波形取得手段と、
前記第1の波形取得手段により取得された前記噴射気筒波形と前記非噴射気筒波形との位相差に基づき、第1燃料噴射弁で生じた燃料圧力変化が前記蓄圧分配容器を通じて前記第2燃料噴射弁まで伝播されるのに要する伝播時間を算出する伝播時間算出手段と、
前記第3燃料噴射弁での燃料噴射時に前記第1燃圧センサまたは前記第2燃圧センサにより検出される圧力変化とその検出時刻との関係を表した推定用非噴射気筒波形を取得する第2の波形取得手段と、
前記第2の波形取得手段により取得された推定用非噴射気筒波形、および前記伝播時間算出手段により算出された前記伝播時間に基づき、前記第3燃料噴射弁での燃料噴射状態を推定する推定手段と、
を備えることを特徴とする燃料噴射状態推定装置。
A first fuel injection valve provided in the first cylinder of the internal combustion engine, a second fuel injection valve provided in the second cylinder, and a third fuel injection valve provided in the third cylinder;
A pressure accumulation and distribution container for distributing the accumulated high-pressure fuel to each of the first fuel injection valve, the second fuel injection valve, and the third fuel injection valve;
A first fuel pressure sensor provided in the first fuel injection valve, and a second fuel pressure sensor provided in the second fuel injection valve;
Applied to a fuel injection system comprising:
An injection cylinder waveform representing a relationship between a change in pressure detected by the first fuel pressure sensor at the time of fuel injection at the first fuel injection valve and a detection time thereof, and the first time at the time of fuel injection at the first fuel injection valve. A first waveform acquisition means for acquiring a non-injection cylinder waveform representing a relationship between a pressure change detected by the two fuel pressure sensors and a detection time thereof;
Based on the phase difference between the injection cylinder waveform acquired by the first waveform acquisition means and the non-injection cylinder waveform, the fuel pressure change generated in the first fuel injection valve is transmitted through the pressure accumulation distribution container to the second fuel injection. Propagation time calculation means for calculating the propagation time required to propagate to the valve;
A second non-injection cylinder waveform for estimation representing a relationship between a change in pressure detected by the first fuel pressure sensor or the second fuel pressure sensor and a detection time at the time of fuel injection by the third fuel injection valve; Waveform acquisition means;
Estimation means for estimating a fuel injection state at the third fuel injection valve based on the estimation non-injection cylinder waveform acquired by the second waveform acquisition means and the propagation time calculated by the propagation time calculation means. When,
A fuel injection state estimation device comprising:
前記第1燃料噴射弁から前記蓄圧分配容器を通じて前記第2燃料噴射弁に至るまでの燃料経路長を第1の経路長とし、前記第3燃料噴射弁から前記蓄圧分配容器を通じて前記第1燃料噴射弁または前記第2燃料噴射弁に至るまでの燃料経路長を第2の経路長とした場合において、
前記第1の経路長と前記第2の経路長とが同じであることを特徴とする請求項1に記載の燃料噴射状態推定装置。
The fuel path length from the first fuel injection valve to the second fuel injection valve through the pressure accumulation distribution container is defined as a first path length, and the first fuel injection from the third fuel injection valve through the pressure accumulation distribution container is performed. In the case where the fuel path length up to the valve or the second fuel injection valve is the second path length,
The fuel injection state estimation device according to claim 1, wherein the first path length and the second path length are the same.
前記第1燃料噴射弁から前記蓄圧分配容器を通じて前記第2燃料噴射弁に至るまでの燃料経路長を第1の経路長とし、前記第3燃料噴射弁から前記蓄圧分配容器を通じて前記第1燃料噴射弁または前記第2燃料噴射弁に至るまでの燃料経路長を第2の経路長とし、前記第1の経路長と前記第2の経路長とが異なる場合において、
前記第1の経路長と前記第2の経路長との差分、或いは前記差分と相関のある物理量を経路長情報として記憶する記憶手段を備え、
前記推定手段は、前記伝播時間および前記経路長情報に基づいて前記推定を実施することを特徴とする請求項1に記載の燃料噴射状態推定装置。
The fuel path length from the first fuel injection valve to the second fuel injection valve through the pressure accumulation distribution container is defined as a first path length, and the first fuel injection from the third fuel injection valve through the pressure accumulation distribution container is performed. A fuel path length up to the valve or the second fuel injection valve is a second path length, and the first path length and the second path length are different,
Storage means for storing a difference between the first path length and the second path length, or a physical quantity correlated with the difference as path length information;
The fuel injection state estimation apparatus according to claim 1, wherein the estimation unit performs the estimation based on the propagation time and the path length information.
内燃機関の第1気筒に備えられた第1燃料噴射弁、第2気筒に備えられた第2燃料噴射弁、第3気筒に備えられた第3燃料噴射弁、および第4気筒に備えられた第4燃料噴射弁と、
前記第1燃料噴射弁、前記第2燃料噴射弁、前記第3燃料噴射弁、および前記第4燃料噴射弁の各々へ、蓄圧した高圧燃料を分配する蓄圧分配容器と、
前記第1燃料噴射弁に設けられた燃圧センサと、
を備える燃料噴射システムに適用され、
前記第2燃料噴射弁での燃料噴射時に前記燃圧センサにより検出される圧力変化を第2噴射時波形として取得し、前記第3燃料噴射弁での燃料噴射時に前記燃圧センサにより検出される圧力変化を第3噴射時波形として取得し、前記第4燃料噴射弁での燃料噴射時に前記燃圧センサにより検出される圧力変化を第4噴射時波形として取得する波形取得手段と、
前記第2燃料噴射弁へ噴射開始または噴射終了を指令してから、当該指令に伴い前記第2噴射時波形に変化が生じるまでの時間である第2噴射時応答時間を算出する第2噴射時応答時間算出手段と、
前記第3燃料噴射弁へ噴射開始または噴射終了を指令してから、当該指令に伴い前記第3噴射時波形に変化が生じるまでの時間である第3噴射時応答時間を算出する第3噴射時応答時間算出手段と、
前記第4燃料噴射弁へ噴射開始または噴射終了を指令してから、当該指令に伴い前記第4噴射時波形に変化が生じるまでの時間である第4噴射時応答時間を算出する第4噴射時応答時間算出手段と、
前記第2噴射時応答時間、前記第3噴射時応答時間および前記第4噴射時応答時間の比較に基づき、前記第2燃料噴射弁、前記第3燃料噴射弁および前記第4燃料噴射弁での燃料噴射状態に異常が生じているか否かを診断する異常診断手段と、
を備えることを特徴とする燃料噴射状態推定装置。
The first fuel injection valve provided in the first cylinder of the internal combustion engine, the second fuel injection valve provided in the second cylinder, the third fuel injection valve provided in the third cylinder, and the fourth cylinder. A fourth fuel injection valve;
An accumulator distribution container for distributing the accumulated high-pressure fuel to each of the first fuel injection valve, the second fuel injection valve, the third fuel injection valve, and the fourth fuel injection valve;
A fuel pressure sensor provided in the first fuel injection valve;
Applied to a fuel injection system comprising:
A pressure change detected by the fuel pressure sensor at the time of fuel injection at the second fuel injection valve is acquired as a second injection waveform, and a pressure change detected by the fuel pressure sensor at the time of fuel injection by the third fuel injection valve. Waveform acquisition means for acquiring a change in pressure detected by the fuel pressure sensor at the time of fuel injection at the fourth fuel injection valve as a waveform at the time of fourth injection,
Second injection time for calculating a second injection response time, which is the time from when the second fuel injection valve is commanded to start or end of injection to when the second injection waveform changes according to the command. Response time calculation means;
Third injection time for calculating a third injection time response time, which is a time from when the third fuel injection valve is commanded to start or end of injection to when a change occurs in the third time injection waveform in accordance with the command. Response time calculation means;
At the time of the fourth injection for calculating the response time at the time of the fourth injection, which is the time from when the fourth fuel injection valve is commanded to start or end the injection to when the fourth injection waveform changes according to the command. Response time calculation means;
Based on the comparison of the second injection time response time, the third injection time response time, and the fourth injection time response time, the second fuel injection valve, the third fuel injection valve, and the fourth fuel injection valve An abnormality diagnosis means for diagnosing whether an abnormality has occurred in the fuel injection state;
A fuel injection state estimation device comprising:
JP2011090043A 2011-04-14 2011-04-14 Fuel injection state estimation device Active JP5293765B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011090043A JP5293765B2 (en) 2011-04-14 2011-04-14 Fuel injection state estimation device
DE102012102907.5A DE102012102907B4 (en) 2011-04-14 2012-04-03 Fuel injection state determination device
CN201210109369.7A CN102733974B (en) 2011-04-14 2012-04-13 Fuel injection condition estimation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011090043A JP5293765B2 (en) 2011-04-14 2011-04-14 Fuel injection state estimation device

Publications (2)

Publication Number Publication Date
JP2012219802A JP2012219802A (en) 2012-11-12
JP5293765B2 true JP5293765B2 (en) 2013-09-18

Family

ID=46935715

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011090043A Active JP5293765B2 (en) 2011-04-14 2011-04-14 Fuel injection state estimation device

Country Status (3)

Country Link
JP (1) JP5293765B2 (en)
CN (1) CN102733974B (en)
DE (1) DE102012102907B4 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6020387B2 (en) * 2013-08-23 2016-11-02 株式会社デンソー Pressure sensor responsiveness learning device
JP6432563B2 (en) * 2016-06-29 2018-12-05 トヨタ自動車株式会社 Control device for internal combustion engine
CN109116830B (en) * 2018-08-10 2021-09-17 北汽福田汽车股份有限公司 Method and system for predicting fault
FR3092143B1 (en) * 2019-01-28 2022-02-25 Continental Automotive Method for determining a quantity of fuel injected into an internal combustion engine
JP7120132B2 (en) * 2019-04-10 2022-08-17 トヨタ自動車株式会社 Control device for internal combustion engine

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1047137A (en) * 1996-08-05 1998-02-17 Nippon Soken Inc Control method for fuel injection timing of internal combustion engine and its device
JP3849366B2 (en) * 1999-09-03 2006-11-22 いすゞ自動車株式会社 Common rail fuel injection system
JP4577348B2 (en) * 2007-10-24 2010-11-10 株式会社デンソー Internal combustion engine control device and internal combustion engine control system
JP4631937B2 (en) * 2008-06-18 2011-02-16 株式会社デンソー Learning device and fuel injection system
US20090326788A1 (en) * 2008-06-25 2009-12-31 Honda Motor Co., Ltd. Fuel injection device
JP4996580B2 (en) * 2008-10-30 2012-08-08 本田技研工業株式会社 Fuel injection device
JP4737314B2 (en) * 2009-03-25 2011-07-27 株式会社デンソー Fuel injection state detection device
JP5136617B2 (en) * 2010-09-17 2013-02-06 株式会社デンソー Fuel injection waveform calculation device
JP5394432B2 (en) * 2011-04-01 2014-01-22 株式会社日本自動車部品総合研究所 Fuel state estimation device

Also Published As

Publication number Publication date
CN102733974A (en) 2012-10-17
JP2012219802A (en) 2012-11-12
DE102012102907A1 (en) 2012-10-18
DE102012102907B4 (en) 2017-06-08
CN102733974B (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP4424395B2 (en) Fuel injection control device for internal combustion engine
JP5394432B2 (en) Fuel state estimation device
JP5195842B2 (en) Pressure reducing valve controller
JP4840288B2 (en) Fuel injection apparatus and adjustment method thereof
JP5287915B2 (en) Fuel injection state estimation device
JP5293765B2 (en) Fuel injection state estimation device
JP5723244B2 (en) Fuel injection control device
JP5321606B2 (en) Fuel injection control device
JP2013007341A (en) Fuel-injection-condition estimating apparatus
JP4211610B2 (en) Fuel injection control device for internal combustion engine
JP5003796B2 (en) Fuel injection state detection device
JP2012077653A (en) Fuel injection state detection device
JP2012002177A (en) Fuel injection control device of internal combustion engine
JP6040877B2 (en) Fuel injection state estimation device
EP1338781A2 (en) Accumulation type fuel injection system
JP5278472B2 (en) Abnormality diagnosis device for fuel injection valve
JP2011252418A (en) Fuel injection system for internal combustion engine
JP5024430B2 (en) Fuel injection control device
US8849592B2 (en) Fuel-injection condition detector
JP5126296B2 (en) Fuel injection state detection device
JP2015040535A (en) Responsiveness learning device of pressure sensor
JP4735620B2 (en) Injection amount learning device
JP5168325B2 (en) Fuel injection state detection device
JP6028603B2 (en) Fuel injection state estimation device
JP5392277B2 (en) Fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R151 Written notification of patent or utility model registration

Ref document number: 5293765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250