JP5161924B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP5161924B2
JP5161924B2 JP2010145399A JP2010145399A JP5161924B2 JP 5161924 B2 JP5161924 B2 JP 5161924B2 JP 2010145399 A JP2010145399 A JP 2010145399A JP 2010145399 A JP2010145399 A JP 2010145399A JP 5161924 B2 JP5161924 B2 JP 5161924B2
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
semiconductor element
substrate
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010145399A
Other languages
Japanese (ja)
Other versions
JP2012007106A (en
JP2012007106A5 (en
Inventor
直樹 金川
洋平 西村
俊幸 牧田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2010145399A priority Critical patent/JP5161924B2/en
Priority to CN201180031200.8A priority patent/CN102959006B/en
Priority to PCT/JP2011/061511 priority patent/WO2011162055A1/en
Publication of JP2012007106A publication Critical patent/JP2012007106A/en
Publication of JP2012007106A5 publication Critical patent/JP2012007106A5/en
Application granted granted Critical
Publication of JP5161924B2 publication Critical patent/JP5161924B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Die Bonding (AREA)
  • Epoxy Resins (AREA)

Description

本発明は、半導体素子を基板に実装するにあたって、サイドフィル樹脂として好適に用いられるエポキシ樹脂組成物を用いて半導体素子を基板に実装して形成された半導体装置に関するものである。 The present invention, when a semiconductor element is mounted on the substrate, to a semiconductor device formed by mounting the substrate a semiconductor element using a suitable epoxy resin composition used as side fill resin.

従来、BGA(Ball Grid Array)等の半導体素子2をバンプ7によりプリント配線板等の基板3に実装する二次実装においては、実装箇所を樹脂で補強することは行われていなかったが、近年のように半導体装置4の軽薄短小化が進むと、樹脂による補強なしでは、落下や曲げなどについて十分な機械的強度が得られなくなってきている。そのため、図3に示すように、半導体素子2と基板3との隙間にエポキシ樹脂組成物等のアンダーフィル樹脂5を浸透させて充填することが行われている(例えば、特許文献1参照)。   Conventionally, in secondary mounting in which a semiconductor element 2 such as a BGA (Ball Grid Array) is mounted on a substrate 3 such as a printed wiring board with bumps 7, the mounting location has not been reinforced with a resin. As described above, as the semiconductor device 4 becomes lighter, thinner, and smaller, sufficient mechanical strength with respect to dropping, bending, and the like cannot be obtained without reinforcement with resin. Therefore, as shown in FIG. 3, underfill resin 5 such as an epoxy resin composition is infiltrated and filled in the gap between the semiconductor element 2 and the substrate 3 (see, for example, Patent Document 1).

しかし、アンダーフィル樹脂5の浸透には長時間を要する。また、半導体装置4の検査中や使用中に不良品が発見されたとしても、アンダーフィル樹脂5は半導体素子2と基板3との隙間の全体にわたって充填されて硬化しているので、半導体素子2を基板3から取り外して良品と取り替えることが困難である。つまり、リペア性が低いという問題がある。   However, it takes a long time for the underfill resin 5 to penetrate. Even if a defective product is found during inspection or use of the semiconductor device 4, the underfill resin 5 is filled and cured over the entire gap between the semiconductor element 2 and the substrate 3. Is difficult to remove from the substrate 3 and replace it with a non-defective product. That is, there is a problem that repairability is low.

そこで、最近では、図1に示すように、半導体素子2と基板3との隙間にアンダーフィル樹脂5を浸透させるのではなく、エポキシ樹脂組成物等をサイドフィル樹脂6として用いて半導体素子2の周囲又はその一部(図1では半導体素子2の四隅)のみに塗布し硬化させることによって、半導体素子2と基板3とを接着することが行われている。   Therefore, recently, as shown in FIG. 1, the underfill resin 5 is not infiltrated into the gap between the semiconductor element 2 and the substrate 3, but an epoxy resin composition or the like is used as the sidefill resin 6. The semiconductor element 2 and the substrate 3 are bonded together by applying and curing only around the periphery or a part thereof (four corners of the semiconductor element 2 in FIG. 1).

特開2002−170910号公報JP 2002-170910 A

しかし、図1に示すサイドフィル樹脂6の場合には、図3に示すアンダーフィル樹脂5の場合に比べて必然的に半導体素子2及び基板3との接触面積が小さくなるので、アンダーフィル樹脂5と同じ組成の樹脂を用いたのでは機械的強度が低くなるという問題がある。   However, in the case of the side fill resin 6 shown in FIG. 1, the contact area between the semiconductor element 2 and the substrate 3 is inevitably smaller than that of the underfill resin 5 shown in FIG. When using a resin having the same composition as the above, there is a problem that the mechanical strength is lowered.

また、従来のサイドフィル樹脂6では、塗布形状の保持性が低いという問題もある。すなわち、図1のようにサイドフィル樹脂6を半導体素子2の周囲又はその一部のみに塗布していても、硬化のための加熱によって一時的に粘度が低下すると、半導体素子2と基板3との隙間に浸透することになる。そうすると、当初の塗布形状が変化し、これに伴って接着強度が不均一化することによって、半導体装置4の品質が不安定化するものである。   In addition, the conventional side fill resin 6 has a problem that the coating shape retainability is low. That is, even if the side fill resin 6 is applied around the semiconductor element 2 or only a part thereof as shown in FIG. 1, if the viscosity is temporarily reduced by heating for curing, the semiconductor element 2 and the substrate 3 Will penetrate into the gap. As a result, the initial application shape changes, and along with this, the adhesive strength becomes non-uniform, thereby destabilizing the quality of the semiconductor device 4.

本発明は上記の点に鑑みてなされたものであり、高い機械的強度を得ることができると共にリペア性にも優れている半導体装置を提供することを目的とするものである。 The present invention has been made in view of the above, it is an object to provide a semiconductor device which is excellent in repairability it is possible to obtain a mechanical strength have high.

本発明に係る半導体装置は、半導体素子を基板に実装して形成された半導体装置において、室温で液状のエポキシ樹脂組成物を前記半導体素子の四隅において前記半導体素子の側面から前記基板の表面にかけて平面視L字状に塗布し硬化させることによって前記半導体素子と前記基板とが接着されており、前記エポキシ樹脂組成物が、エポキシ樹脂、硬化剤、無機充填材を含有し、前記無機充填材として、平均アスペクト比が2〜150の鱗片状無機物が、前記エポキシ樹脂組成物全量に対して0.1〜30質量%含有されていると共に、前記エポキシ樹脂組成物のチクソ指数が3.0〜8.0であることを特徴とするものである。 The semiconductor device according to the present invention is a semiconductor device formed by mounting a semiconductor element on a substrate, and a flat epoxy resin composition that is liquid at room temperature from the side surface of the semiconductor element to the surface of the substrate at the four corners of the semiconductor element. The semiconductor element and the substrate are bonded by applying and curing in an L-shape , and the epoxy resin composition contains an epoxy resin, a curing agent, an inorganic filler, and the inorganic filler, The scale-like inorganic substance having an average aspect ratio of 2 to 150 is contained in an amount of 0.1 to 30% by mass with respect to the total amount of the epoxy resin composition, and the thixo index of the epoxy resin composition is 3.0 to 8. It is characterized by zero.

前記半導体装置において、前記無機充填材が、マイカ及びタルクから選ばれるものであることが好ましい。 In the semiconductor device , the inorganic filler is preferably selected from mica and talc.

前記半導体装置において、前記無機充填材が、シランカップリング剤で表面処理されていることが好ましい。 In the semiconductor device , the inorganic filler is preferably surface-treated with a silane coupling agent.

本発明によれば、半導体素子を基板に実装するにあたって、サイドフィル樹脂として使用する場合、アンダーフィル樹脂に比べて少量の使用であっても高い機械的強度を得ることができると共に、塗布形状の保持性を高く得ることができるものである。 By the present invention lever, when mounting the semiconductor element on the substrate, when used as side fill resin, it is possible to obtain a high mechanical strength even in small quantities of use in comparison with the underfill resin, coating shape It is possible to obtain a high retaining property.

本発明に係る半導体装置の一例を示すものであり、(a)は概略断面図、(b)は概略平面図である。1 shows an example of a semiconductor device according to the present invention, in which (a) is a schematic sectional view and (b) is a schematic plan view. 落錘衝撃試験の様子を示す説明図である。It is explanatory drawing which shows the mode of a falling weight impact test. 従来の半導体装置の一例を示すものであり、(a)は概略断面図、(b)は概略平面図である。An example of the conventional semiconductor device is shown, (a) is a schematic sectional drawing, (b) is a schematic plan view.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

本発明に係るエポキシ樹脂組成物1は、エポキシ樹脂、硬化剤、無機充填材を含有し、室温(25℃)で液状のものである。   The epoxy resin composition 1 according to the present invention contains an epoxy resin, a curing agent, and an inorganic filler, and is liquid at room temperature (25 ° C.).

エポキシ樹脂としては、1分子中に1個以上のグリシジル基を有する化合物であれば特に限定されるものではないが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、これらの水素添加型エポキシ樹脂、ナフタレン環含有エポキシ樹脂、脂環式エポキシ樹脂、ポリアルキレングリコール型エポキシ樹脂等から選ばれるものを用いることができる。   The epoxy resin is not particularly limited as long as it is a compound having one or more glycidyl groups in one molecule. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, and hydrogenated epoxies thereof. Those selected from resins, naphthalene ring-containing epoxy resins, alicyclic epoxy resins, polyalkylene glycol type epoxy resins and the like can be used.

硬化剤としては、エポキシ樹脂と反応可能なものであれば特に限定されるものではないが、例えば、フェノール類、酸無水物類、アミン類、イミダゾール類、ポリチオール類、シアネート類等から選ばれるものを用いることができる。硬化剤の含有量は、エポキシ樹脂組成物1全量に対して10〜55質量%であることが好ましい。   The curing agent is not particularly limited as long as it can react with the epoxy resin, but is selected from, for example, phenols, acid anhydrides, amines, imidazoles, polythiols, cyanates and the like. Can be used. It is preferable that content of a hardening | curing agent is 10-55 mass% with respect to the epoxy resin composition 1 whole quantity.

無機充填材としては、平均アスペクト比(長径/短径)が2〜150の鱗片状無機物を用いる。鱗片状無機物の平均アスペクト比が2よりも小さい場合には、エポキシ樹脂組成物1の硬化物が衝撃エネルギーを吸収して摩擦熱に変換する効果を十分に得ることができない上に、半導体装置4の製造時においてエポキシ樹脂組成物1がアンダーフィル樹脂5として半導体素子2と基板3との隙間に浸透しやすくなる。逆に、鱗片状無機物の平均アスペクト比が150よりも大きい場合には、衝撃エネルギーの吸収効果や、半導体素子2と基板3との隙間への浸透抑制効果については期待できるものの、エポキシ樹脂組成物1をシリンジなどから吐出させて所望の形状に塗布する際に糸引きが発生したり、粘度やチクソ性が上がりすぎて吐出自体が困難となったりする。さらに鱗片状無機物の平均アスペクト比が大きすぎると、均一に分散されたエポキシ樹脂組成物1を調製することも困難となる。なお、無機充填材の平均アスペクト比は、次のようにして算出することができる。まずエポキシ樹脂、硬化剤、無機充填材を配合してエポキシ樹脂組成物1を調製し、これを硬化させることによって、厚さ約5mmの板を成形する。次にこの板を厚さ方向と平行に切断し、切断面を電子顕微鏡で撮影して5箇所の切断面を選択する。そして、合計100個の無機充填材について長径及び短径を測定し、その比の値を平均することによって、平均アスペクト比を算出することができる。また、無機充填材の平均粒径は3〜20μmであることが好ましく、この平均粒径は例えばレーザ回折式粒度分布測定装置等により測定することができる。   As the inorganic filler, a scaly inorganic substance having an average aspect ratio (major axis / minor axis) of 2 to 150 is used. When the average aspect ratio of the scale-like inorganic material is smaller than 2, the cured product of the epoxy resin composition 1 cannot sufficiently obtain the effect of absorbing impact energy and converting it into frictional heat, and the semiconductor device 4 The epoxy resin composition 1 easily penetrates into the gap between the semiconductor element 2 and the substrate 3 as the underfill resin 5 at the time of manufacture. On the contrary, when the average aspect ratio of the scaly inorganic substance is larger than 150, the effect of absorbing impact energy and the effect of suppressing penetration into the gap between the semiconductor element 2 and the substrate 3 can be expected, but the epoxy resin composition When 1 is discharged from a syringe or the like and applied in a desired shape, stringing may occur, or the viscosity and thixotropy may increase and discharge itself may be difficult. Furthermore, when the average aspect ratio of the scale-like inorganic substance is too large, it is difficult to prepare the uniformly dispersed epoxy resin composition 1. The average aspect ratio of the inorganic filler can be calculated as follows. First, an epoxy resin, a curing agent, and an inorganic filler are blended to prepare an epoxy resin composition 1 and cured to form a plate having a thickness of about 5 mm. Next, this plate is cut in parallel with the thickness direction, and the cut surface is photographed with an electron microscope to select five cut surfaces. And an average aspect-ratio can be calculated by measuring a major axis and a minor axis about a total of 100 inorganic fillers, and averaging the value of the ratio. Moreover, it is preferable that the average particle diameter of an inorganic filler is 3-20 micrometers, and this average particle diameter can be measured with a laser diffraction type particle size distribution measuring apparatus etc., for example.

上記のように無機充填材としては、平均アスペクト比が2〜150の鱗片状無機物であれば特に限定されるものではないが、例えば、結晶シリカ、溶融シリカ、フュームドシリカ、アルミナ、クレー、マイカ、タルク、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、ガラス等から選ばれるものを用いることができる。中でも無機充填材はマイカ及びタルクから選ばれるものであることが好ましい。マイカ及びタルクは軟質無機物であり、このような軟質無機物は、シリカやアルミナ等の硬質無機物に比べて、衝撃エネルギーの吸収効果が高く、エポキシ樹脂組成物1の硬化物にクラックが発生するのを抑制することができると共に、半導体素子2や基板3へのエネルギーの伝播を低減することができるものである。   As described above, the inorganic filler is not particularly limited as long as it is a scaly inorganic substance having an average aspect ratio of 2 to 150. For example, crystalline silica, fused silica, fumed silica, alumina, clay, mica , Talc, aluminum hydroxide, magnesium hydroxide, calcium carbonate, glass and the like can be used. Among them, the inorganic filler is preferably selected from mica and talc. Mica and talc are soft inorganic substances, and such soft inorganic substances have a higher impact energy absorption effect than hard inorganic substances such as silica and alumina, and cracks are generated in the cured product of the epoxy resin composition 1. In addition to being able to be suppressed, the propagation of energy to the semiconductor element 2 and the substrate 3 can be reduced.

また、無機充填材はシランカップリング剤で表面処理されていることが好ましい。ここで、シランカップリング剤としては、特に限定されるものではないが、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン等のエポキシシラン、γ−アミノプロピルトリエトキシシラン、N−β(アミノエチル)γ−アミノプロピルトリメトキシシラン、N−β(アミノエチル)γ−アミノプロピルメチルジメトキシシラン、γ−アミノプロピルトリメトキシシラン、γ−ウレイドプロピルトリエトキシシラン等のアミノシラン、3−メルカプトプロピルトリメトキシシラン等のメルカプトシラン、p−スチリルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリス(β−メトキシエトキシ)シラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン等のビニルシラン、さらに、エポキシ系、アミノ系、ビニル系の高分子タイプのシラン等から選ばれるものを用いることができる。このようなシランカップリング剤を用いて乾式法、湿式法、インテグラルブレンド法等により無機充填材を表面処理すると、無機充填材とエポキシ樹脂及び硬化剤からなる樹脂成分との密着力を向上させることができ、エポキシ樹脂組成物1の硬化物にクラックが発生するのを抑制することができると共に、硬化物と半導体素子2及び基板3との界面での密着力を向上させることができるものである。シランカップリング剤の含有量は、エポキシ樹脂組成物1全量に対して0.1〜0.3質量%であることが好ましい。   The inorganic filler is preferably surface-treated with a silane coupling agent. Here, the silane coupling agent is not particularly limited. For example, γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl). ) Epoxy silane such as ethyltrimethoxysilane, γ-aminopropyltriethoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, N-β (aminoethyl) γ-aminopropylmethyldimethoxysilane, γ- Aminosilanes such as aminopropyltrimethoxysilane and γ-ureidopropyltriethoxysilane, mercaptosilanes such as 3-mercaptopropyltrimethoxysilane, p-styryltrimethoxysilane, vinyltrichlorosilane, vinyltris (β-methoxyethoxy) silane, vinyltol Silane, vinyltriethoxysilane, .gamma.-methacryloxypropyltrimethoxysilane vinyl silane or the like, an epoxy-based, amino-based, can be used those selected from the silane polymer type vinyl. When the inorganic filler is surface-treated with such a silane coupling agent by a dry method, a wet method, an integral blend method, etc., the adhesion between the inorganic filler and the resin component composed of an epoxy resin and a curing agent is improved. It is possible to suppress the occurrence of cracks in the cured product of the epoxy resin composition 1 and to improve the adhesion at the interface between the cured product, the semiconductor element 2 and the substrate 3. is there. It is preferable that content of a silane coupling agent is 0.1-0.3 mass% with respect to the epoxy resin composition 1 whole quantity.

また、平均アスペクト比が2〜150の鱗片状無機物は、エポキシ樹脂組成物1全量に対して0.1〜30質量%含有する。上記鱗片状無機物の含有量が0.1質量%未満であると、エポキシ樹脂組成物1の硬化物が衝撃エネルギーを吸収して摩擦熱に変換する効果を十分に得ることができない上に、半導体装置4の製造時においてエポキシ樹脂組成物1がアンダーフィル樹脂5として半導体素子2と基板3との隙間に浸透しやすくなる。逆に、上記鱗片状無機物の含有量が30質量%を超えると、硬化物の靭性が損なわれ、硬くて脆くなり、クラックが発生しやすくなる。   Moreover, the scale-like inorganic substance with an average aspect ratio of 2-150 contains 0.1-30 mass% with respect to the epoxy resin composition 1 whole quantity. If the content of the scale-like inorganic substance is less than 0.1% by mass, the cured product of the epoxy resin composition 1 cannot sufficiently obtain an effect of absorbing impact energy and converting it into frictional heat, and also a semiconductor. When the device 4 is manufactured, the epoxy resin composition 1 easily penetrates into the gap between the semiconductor element 2 and the substrate 3 as the underfill resin 5. On the other hand, when the content of the scale-like inorganic substance exceeds 30% by mass, the toughness of the cured product is impaired, it becomes hard and brittle, and cracks are likely to occur.

そして、本発明に係るエポキシ樹脂組成物1は、上記のエポキシ樹脂、硬化剤及び無機充填材を配合し、これをプラネタリーミキサーやホモディスパーにより分散・混合することによって調製することができる。このようにして得られたエポキシ樹脂組成物1のチクソ指数は3.0〜8.0である。エポキシ樹脂組成物1のチクソ指数が3.0未満であると、塗布形状の保持性が不十分である。逆に、エポキシ樹脂組成物1のチクソ指数が8.0を超えると、塗布する際に糸引きが発生して作業性が悪化する。なお、エポキシ樹脂組成物1のチクソ指数は、25℃においてB型粘度計等の回転粘度計を用い、ローターが低回転数及び高回転数(低回転数の8〜10倍)で回転しているときの粘度を測定し、これらの粘度の比(低回転数のときの粘度/高回転数のときの粘度)として算出することができる。   And the epoxy resin composition 1 which concerns on this invention can be prepared by mix | blending said epoxy resin, a hardening | curing agent, and an inorganic filler, and disperse | distributing and mixing this with a planetary mixer or a homodisper. The thixo index of the epoxy resin composition 1 thus obtained is 3.0 to 8.0. When the thixo index of the epoxy resin composition 1 is less than 3.0, the coating shape is not sufficiently retained. On the contrary, if the thixo index of the epoxy resin composition 1 exceeds 8.0, stringing occurs during coating, and workability deteriorates. In addition, the thixo index of the epoxy resin composition 1 was determined by using a rotational viscometer such as a B-type viscometer at 25 ° C., and the rotor rotating at a low rotational speed and a high rotational speed (8 to 10 times the low rotational speed). The viscosity can be measured and calculated as the ratio of these viscosities (viscosity at low rotational speed / viscosity at high rotational speed).

また、本発明の目的を損なわない限り、エポキシ樹脂組成物1には、エポキシ樹脂、硬化剤及び無機充填材以外に必要に応じて他の物質を配合することができる。このような物質としては、特に限定されるものではないが、例えば、アミン類、ポリアミド類、イミダゾール類やルイス酸等の硬化促進剤、分散安定剤、難燃剤、低弾性化剤、チクソ性付与剤、着色剤、希釈剤等を用いることができる。このうちチクソ性付与剤は、チクソ指数の調整に用いることができる。   Moreover, unless the objective of this invention is impaired, another substance can be mix | blended with the epoxy resin composition 1 as needed other than an epoxy resin, a hardening | curing agent, and an inorganic filler. Such materials are not particularly limited, but include, for example, amines, polyamides, curing accelerators such as imidazoles and Lewis acids, dispersion stabilizers, flame retardants, low elasticity agents, and thixotropic properties. An agent, a colorant, a diluent and the like can be used. Of these, the thixotropic agent can be used to adjust the thixo index.

図1は本発明に係る半導体装置4の一例を示すものであり、これは半導体素子2を基板3に実装して形成されたものである。ここで、半導体素子2としては、BGA(Ball Grid Array)、FBGA(Fine pitch Ball GridArray)、CSP(Chip Size(Scale)Package)等を用いることができる。また基板3としては、FR−4等の有機樹脂基板、セラミック基板、金属ベース基板、ガラス基板等のプリント配線板を用いることができる。そして、フリップチップ実装等により半導体素子2を基板3に実装した後に、本発明に係るエポキシ樹脂組成物1をサイドフィル樹脂6として半導体素子2の周囲又はその一部に塗布する。図1では半導体素子2の四隅において、半導体素子2の側面から基板3の表面にかけて、平面視L字状にエポキシ樹脂組成物1を塗布するようにしているが、これに限定されるものではない。その後、硬化炉の中でエポキシ樹脂組成物1を硬化させることによって、半導体素子2と基板3とがエポキシ樹脂組成物1の硬化物で接着された半導体装置4を製造することができる。ここで、硬化のための加熱によって一時的にエポキシ樹脂組成物1の粘度が低下すると、このエポキシ樹脂組成物1が半導体素子2と基板3との隙間に浸透する可能性がある。しかし、この可能性は従来のアンダーフィル樹脂5を使用する場合に比べて非常に低く、本発明に係るエポキシ樹脂組成物1をサイドフィル樹脂6として使用する場合には、せいぜい半導体素子2の側面から0.2mm程度浸透するだけであり、この程度の浸透であれば塗布形状の保持性は高いといえる。また、本発明に係るエポキシ樹脂組成物1によれば、アンダーフィル樹脂5に比べて少量の使用であっても、半導体装置4の通常の使用状態においては高い機械的強度を得ることができるものである。さらに、本発明に係るエポキシ樹脂組成物1は、半導体素子2の周囲又はその一部のみに塗布し硬化させるようにしており、半導体素子2と基板3との隙間の全体にわたって充填させるようにはしていないので、半導体装置4の検査中や使用中に不良品が発見された場合、容易に半導体素子2を基板3から取り外して良品と取り替えることができ、リペア性にも優れているものである。   FIG. 1 shows an example of a semiconductor device 4 according to the present invention, which is formed by mounting a semiconductor element 2 on a substrate 3. Here, as the semiconductor element 2, BGA (Ball Grid Array), FBGA (Fine pitch Ball Grid Array), CSP (Chip Size (Scale) Package), or the like can be used. Further, as the substrate 3, a printed wiring board such as an organic resin substrate such as FR-4, a ceramic substrate, a metal base substrate, and a glass substrate can be used. And after mounting the semiconductor element 2 on the board | substrate 3 by flip chip mounting etc., the epoxy resin composition 1 which concerns on this invention is apply | coated to the circumference | surroundings or a part of the semiconductor element 2 as the side fill resin 6. FIG. In FIG. 1, the epoxy resin composition 1 is applied in an L shape in plan view from the side surface of the semiconductor element 2 to the surface of the substrate 3 at the four corners of the semiconductor element 2, but is not limited thereto. . Thereafter, by curing the epoxy resin composition 1 in a curing furnace, the semiconductor device 4 in which the semiconductor element 2 and the substrate 3 are bonded with a cured product of the epoxy resin composition 1 can be manufactured. Here, when the viscosity of the epoxy resin composition 1 is temporarily lowered by heating for curing, the epoxy resin composition 1 may penetrate into the gap between the semiconductor element 2 and the substrate 3. However, this possibility is very low as compared with the case where the conventional underfill resin 5 is used. When the epoxy resin composition 1 according to the present invention is used as the sidefill resin 6, the side surface of the semiconductor element 2 is at most. Therefore, it can be said that the coating shape retainability is high. Moreover, according to the epoxy resin composition 1 according to the present invention, even when used in a small amount as compared with the underfill resin 5, high mechanical strength can be obtained in the normal use state of the semiconductor device 4. It is. Furthermore, the epoxy resin composition 1 according to the present invention is applied to the periphery of the semiconductor element 2 or only a part of the semiconductor element 2 and cured, and the entire gap between the semiconductor element 2 and the substrate 3 is filled. Therefore, when a defective product is found during inspection or use of the semiconductor device 4, the semiconductor element 2 can be easily removed from the substrate 3 and replaced with a non-defective product. is there.

以下、本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be specifically described by way of examples.

エポキシ樹脂として、ビスフェノールF型エポキシ樹脂である東都化成(株)製「YDF8170」(エポキシ当量160)、ビスフェノールA型エポキシ樹脂である東都化成(株)製「YD8125」(エポキシ当量175)、ナフタレン環含有エポキシ樹脂である大日本インキ化学工業(株)製「HP4032D」(エポキシ当量141)を用いた。   As epoxy resins, “YDF8170” (epoxy equivalent 160) manufactured by Toto Kasei Co., Ltd., which is a bisphenol F type epoxy resin, “YD8125” (epoxy equivalent 175) manufactured by Toto Kasei Co., Ltd., which is a bisphenol A type epoxy resin, naphthalene ring “HP4032D” (epoxy equivalent 141) manufactured by Dainippon Ink & Chemicals, Inc., which is a contained epoxy resin, was used.

また硬化剤として、アリル化フェノールである明和化成(株)製「MEH8000H」(OH基当量141)、酸無水物であるジャパンエポキシレジン(株)製「エピキュアYH306」(酸無水物当量234)、ポリアミン系硬化剤である(株)ADEKA製「EH4070S」を用いた。   Further, as curing agents, allylated phenol Meiwa Kasei Co., Ltd. “MEH8000H” (OH group equivalent 141), acid anhydride Japan Epoxy Resin Co., Ltd. “Epicure YH306” (acid anhydride equivalent 234), “EH4070S” manufactured by ADEKA Corporation, which is a polyamine curing agent, was used.

また無機充填材として、電気化学工業(株)製の溶融シリカ(平均粒径6μm、平均アスペクト比2、鱗片状無機物)、アルミナである河合石灰工業(株)製「セラシュールBMF」(平均粒径5μm、平均アスペクト比50、鱗片状無機物)、タルクである松村産業(株)製「ハイフィラータルク♯12」(平均粒径5μm、平均アスペクト比80、鱗片状無機物)、マイカである(株)山口雲母工業所製「TM−20」(平均粒径18μm、平均アスペクト比150、鱗片状無機物)、溶融球状シリカであるMRCユニテック(株)製「QS6」(平均粒径6μm、平均アスペクト比1)を用いた。   Moreover, as an inorganic filler, fused silica (average particle diameter 6 μm, average aspect ratio 2, scale-like inorganic substance) manufactured by Denki Kagaku Kogyo Co., Ltd., “Cerasur BMF” (average particle manufactured by Kawai Lime Industry Co., Ltd.) which is alumina. Diameter 5 μm, average aspect ratio 50, scaly inorganic substance), “High filler talc # 12” (average particle diameter 5 μm, average aspect ratio 80, scaly inorganic substance) manufactured by Matsumura Sangyo Co., Ltd., which is talc, mica ) “TM-20” (average particle size 18 μm, average aspect ratio 150, scaly inorganic substance) manufactured by Yamaguchi Mica Industry, “QS6” (average particle size 6 μm, average aspect ratio) manufactured by MRC Unitech Co., Ltd., which is fused spherical silica. 1) was used.

さらに、マイクロカプセル型潜在性硬化促進剤である旭化成(株)製「HXA3792」、低弾性化剤としてシリコーンゴムであるGE東芝シリコーン(株)製「XE14−A8491」、着色剤としてカーボンである三菱化学(株)製「MA100」、チクソ性付与剤としてフュームドシリカである日本アエロジル(株)製「RY200」、シランカップリング剤であるモメンティブ・パフォーマンス・マテリアルズ製「A186」、無機イオン交換体として両イオン交換タイプである東亞合成(株)製「IXE−600」を用いた。   Furthermore, “HXA3792” manufactured by Asahi Kasei Co., Ltd., which is a microcapsule type latent curing accelerator, “XE14-A8491” manufactured by GE Toshiba Silicone Co., Ltd., which is a silicone rubber as a low elasticity agent, and Mitsubishi, which is carbon as a colorant. “MA100” manufactured by Chemical Co., Ltd. “RY200” manufactured by Nippon Aerosil Co., Ltd., which is fumed silica as a thixotropic agent, “A186” manufactured by Momentive Performance Materials, a silane coupling agent, and inorganic ion exchanger As an example, “IXE-600” manufactured by Toagosei Co., Ltd., which is an ion exchange type, was used.

そして、上記のエポキシ樹脂、硬化剤及び無機充填材等を下記[表1]に示す配合量(質量部)で配合し、これをプラネタリーミキサーやホモディスパーにより分散・混合することによって、実施例1〜8及び比較例1〜3の室温で液状のエポキシ樹脂組成物1を調製した。なお、実施例8ではインテグラルブレンド法により無機充填材をシランカップリング剤で表面処理した。   The above-mentioned epoxy resin, curing agent, inorganic filler and the like are blended in the blending amounts (parts by mass) shown in the following [Table 1], and this is dispersed and mixed by a planetary mixer or a homodisper. The epoxy resin composition 1 which was liquid at room temperature of 1-8 and Comparative Examples 1-3 was prepared. In Example 8, the inorganic filler was surface-treated with a silane coupling agent by an integral blend method.

次に、下記(1)〜(6)の項目について各エポキシ樹脂組成物1の評価を行った。   Next, each epoxy resin composition 1 was evaluated for the following items (1) to (6).

(1)粘度
室温(25℃)においてB型粘度計を用いて粘度を測定した。粘度の測定は、No.7ローターを用いて回転数を20rpmに設定して行ったが、測定限界を超える場合には回転数を10rpm、さらに5rpmに下げて測定を行った。
(1) Viscosity Viscosity was measured at room temperature (25 ° C.) using a B-type viscometer. The measurement of viscosity is No. The number of rotations was set to 20 rpm using 7 rotors, but when the measurement limit was exceeded, the number of rotations was reduced to 10 rpm and further to 5 rpm, and the measurement was performed.

(2)チクソ指数
室温(25℃)においてB型粘度計を用いて、低回転数及び高回転数のときの粘度を測定し、これらの粘度の比としてチクソ指数を算出した。粘度の測定は、No.7ローターを用いて回転数を2.5rpm及び20rpmに設定して行ったが、測定限界を超える場合には回転数を1rpm及び10rpm、さらに0.5rpm及び5rpmに下げて測定を行ってチクソ指数を算出した。
(2) Thixo Index Using a B-type viscometer at room temperature (25 ° C.), the viscosity at low and high rotation speeds was measured, and the thixo index was calculated as the ratio of these viscosities. The measurement of viscosity is No. The number of rotations was set to 2.5 rpm and 20 rpm using 7 rotors, but when the measurement limit was exceeded, the rotation number was reduced to 1 rpm and 10 rpm, further reduced to 0.5 rpm and 5 rpm, and the thixo index was measured. Was calculated.

(3)ゲル化時間
ホットプレートの温度を150±2℃に設定し、このホットプレート上に約1gのエポキシ樹脂組成物1を載置し、これを1秒間隔で攪拌して攪拌不能になるまでの時間を測定し、これをゲル化時間とした。
(3) Gelation time The temperature of the hot plate is set to 150 ± 2 ° C., about 1 g of the epoxy resin composition 1 is placed on this hot plate, and this is stirred at intervals of 1 second to make stirring impossible. Was measured as the gelation time.

(4)ガラス転移温度(Tg)
エポキシ樹脂組成物1を120℃、1時間の条件で硬化させ、幅5mm×長さ50mm×厚さ0.2mmに切り出して、これを試験片として用いた。この試験片について、DMA法によりガラス転移温度(Tg)を測定した。DMA法による測定は、粘弾性スペクトルメーターを用い、曲げモードで行った。測定条件は、周波数:10Hz、昇温速度:5℃/分、測定温度:−60〜280℃とした。
(4) Glass transition temperature (Tg)
The epoxy resin composition 1 was cured at 120 ° C. for 1 hour, cut into a width of 5 mm, a length of 50 mm, and a thickness of 0.2 mm, and used as a test piece. About this test piece, the glass transition temperature (Tg) was measured by DMA method. The measurement by the DMA method was performed in a bending mode using a viscoelastic spectrum meter. The measurement conditions were a frequency: 10 Hz, a heating rate: 5 ° C./min, and a measurement temperature: −60 to 280 ° C.

(5)線膨張係数
エポキシ樹脂組成物1を120℃、1時間の条件で硬化させ、3mm×3mm×長さ15mmに切り出して、これを試験片として用いた。この試験片について、熱分析装置を用いてTMA法により線膨張係数を測定した。測定条件は、昇温速度:5℃/分、測定温度:30〜260℃とした。
(5) Linear expansion coefficient The epoxy resin composition 1 was cured at 120 ° C. for 1 hour, cut into 3 mm × 3 mm × length 15 mm, and used as a test piece. About this test piece, the linear expansion coefficient was measured by TMA method using the thermal analyzer. The measurement conditions were temperature rising rate: 5 ° C./min and measurement temperature: 30 to 260 ° C.

(6)曲げ弾性率
エポキシ樹脂組成物1を120℃、1時間の条件で硬化させ、幅10mm×長さ80mm×厚さ3mmに切り出して、これを試験片として用いた。この試験片について、室温(25℃)において万能引張圧縮試験機による3点曲げ試験を行って曲げ弾性率を測定した。測定条件は、試験速度:2mm/分、支点間距離:48mmとした。
(6) Flexural modulus The epoxy resin composition 1 was cured at 120 ° C. for 1 hour, cut into a width of 10 mm, a length of 80 mm and a thickness of 3 mm, and used as a test piece. The test piece was subjected to a three-point bending test using a universal tensile and compression tester at room temperature (25 ° C.) to measure the flexural modulus. The measurement conditions were a test speed: 2 mm / min and a distance between fulcrums: 48 mm.

次に、下記(7)〜(10)の項目について評価を行うため、各エポキシ樹脂組成物1を用いて評価用の半導体装置4を製造した。半導体素子2としては、14mm□FBGA(552I/O,0.4mmピッチ,ボールサイズ250μm)を用い、基板3としては、FR−4(厚さ0.6mm)を用いた。そして、フリップチップ実装により半導体素子2を基板3に実装した後に、エポキシ樹脂組成物1をサイドフィル樹脂6として用い、図1に示すように、半導体素子2の四隅において半導体素子2の側面から基板3の表面にかけて平面視L字状にエポキシ樹脂組成物1を塗布した。その後、硬化炉の中で室温(25℃)から120℃まで5分間かけて昇温し、さらに120℃で8分間保持するプロファイルに基づいてエポキシ樹脂組成物1を硬化させることによって半導体装置4を製造した。   Next, in order to evaluate the following items (7) to (10), a semiconductor device 4 for evaluation was manufactured using each epoxy resin composition 1. As the semiconductor element 2, 14 mm □ FBGA (552 I / O, 0.4 mm pitch, ball size 250 μm) was used, and as the substrate 3, FR-4 (thickness 0.6 mm) was used. Then, after mounting the semiconductor element 2 on the substrate 3 by flip chip mounting, the epoxy resin composition 1 is used as the side fill resin 6, and the substrate is formed from the side surface of the semiconductor element 2 at the four corners of the semiconductor element 2 as shown in FIG. The epoxy resin composition 1 was applied to the surface of 3 in an L shape in plan view. Thereafter, the temperature is raised from room temperature (25 ° C.) to 120 ° C. in a curing furnace over 5 minutes, and the epoxy resin composition 1 is cured based on a profile that is held at 120 ° C. for 8 minutes. Manufactured.

(7)リペア性
半導体装置4を3個ずつ用いてリペア性を評価した。リペアは、熱風式リペア機(ホーザン(株)製)を用いて硬化物の温度が150℃となるような熱風を半導体装置4に吹き付けながら、竹串を用いて硬化物を基板から剥がし取ることによって行った。基板3側に硬化物が10体積%以上残っている場合は「×」、硬化物が10体積%未満であっても基板3側に薄く薄膜状の残渣として認められる場合は「△」、これらのいずれにも該当しない場合は「○」と判定してリペア性の評価を行った。なお、3個の半導体装置4について全て異なる判定がされることはなく、過半数の判定を下記[表1]に示す。
(7) Repairability Repairability was evaluated using three semiconductor devices 4 each. For repair, use a hot air type repair machine (manufactured by Hozan Co., Ltd.) to blow off the cured product from the substrate using a bamboo skewer while blowing hot air to the semiconductor device 4 so that the temperature of the cured product is 150 ° C. Went by. If the cured product remains on the substrate 3 side by 10% by volume or more, “x”, and if the cured product is less than 10% by volume, if it is recognized as a thin thin film residue on the substrate 3 side, “△”, these When it did not correspond to any of these, it evaluated as "(circle)" and the repair property was evaluated. Note that all three semiconductor devices 4 are not judged differently, and the majority judgment is shown in [Table 1] below.

(8)樹脂入り込み性
半導体装置4を3個ずつ用いて樹脂入り込み性(半導体素子2と基板3との隙間への浸透性)を評価した。具体的には、熱風式リペア機(ホーザン(株)製)を用いてバンプ7の温度が280℃を超えるような熱風を半導体装置4に吹き付け、金属製のヘラを用いて半導体素子2を基板3から剥がし取った後、半導体素子2の側面から浸透したエポキシ樹脂組成物1の先端部分までの距離(浸透距離)を計測することによって、樹脂入り込み性を評価した。浸透距離は3個の半導体装置4の平均値として算出した。浸透距離が0に近いほど樹脂入り込み性が低く、塗布形状の保持性が高いといえる。濡れ性が悪すぎる場合には、半導体素子2の側面にエポキシ樹脂組成物1が接触せず、十分な補強効果を期待することができないので、「×」と判定した。
(8) Resin penetration property The resin penetration property (penetration into the gap between the semiconductor element 2 and the substrate 3) was evaluated using three semiconductor devices 4 each. Specifically, using a hot air repair machine (manufactured by Hozan Co., Ltd.), hot air such that the temperature of the bumps 7 exceeds 280 ° C. is blown to the semiconductor device 4, and the semiconductor element 2 is mounted on the substrate using a metal spatula. After peeling off from 3, the resin penetration was evaluated by measuring the distance (penetration distance) to the tip of the epoxy resin composition 1 that had penetrated from the side surface of the semiconductor element 2. The permeation distance was calculated as an average value of the three semiconductor devices 4. It can be said that the closer the penetration distance is to 0, the lower the resin penetration property and the higher the retention of the applied shape. When the wettability was too bad, the epoxy resin composition 1 was not in contact with the side surface of the semiconductor element 2, and a sufficient reinforcing effect could not be expected.

(9)衝撃強度
半導体装置4を20個ずつ用いて落錘衝撃試験を行い、衝撃強度を評価した。具体的には、落錘衝撃試験は、図2に示すような落錘衝撃試験機を用いて行った。すなわち、半導体素子2を下側に向けて基板3が自由に撓むようにして半導体装置4を治具8に固定し、衝撃箇所のバラツキが出ないように基板3の上面から20cmの高さから基板3の上面に向けて100gの杭状錘9を繰り返し落下させた。そして、半導体装置4は常時通電状態とし、抵抗値の変化をテスター10でモニタリングして瞬断が発生するまでの落錘回数(瞬断発生回数)を計測した。また、杭状錘9を10回落下させるごとに半導体装置4を治具8から取り外し、硬化物にクラックが発生しているか否かを光学顕微鏡で観察することによって、クラックが発生するまでの落錘回数(クラック発生回数)を計測した。瞬断発生回数及びクラック発生回数は20個の半導体装置4の平均値として算出した。
(9) Impact strength A drop weight impact test was performed using 20 semiconductor devices 4 at a time, and the impact strength was evaluated. Specifically, the drop weight impact test was performed using a drop weight impact tester as shown in FIG. That is, the semiconductor device 4 is fixed to the jig 8 so that the substrate 3 is freely bent with the semiconductor element 2 facing downward, and the substrate 3 is lifted from a height of 20 cm from the upper surface of the substrate 3 so as not to cause variation in impact location. A pile-shaped weight 9 of 100 g was repeatedly dropped toward the upper surface of. Then, the semiconductor device 4 was always energized, and the change in resistance value was monitored by the tester 10 to measure the number of falling weights (the number of instantaneous interruption occurrences) until an instantaneous interruption occurred. Further, every time the pile-shaped weight 9 is dropped 10 times, the semiconductor device 4 is removed from the jig 8, and the cured product is observed with an optical microscope to determine whether or not the crack has occurred. The number of weights (number of crack occurrences) was measured. The number of instantaneous interruption occurrences and the number of crack occurrences were calculated as average values of 20 semiconductor devices 4.

(10)温度サイクル(TC)性
半導体装置4を20個ずつ用いて温度サイクル試験を行い、温度サイクル(TC)性を評価した。具体的には、気相中において−25℃で5分間、125℃で5分間を1サイクルとする温度変化を半導体装置4に与え、1000サイクルまで100サイクルごとに半導体装置4の動作確認を抵抗値の測定により行い、試験開始から10%以上抵抗値が上昇したものを動作不良と判定した。そして、20個の半導体装置4のうち動作不良となったものが10個に達したときのサイクル数を計測した。
(10) Temperature Cycle (TC) Property A temperature cycle test was performed using 20 semiconductor devices 4 at a time, and the temperature cycle (TC) property was evaluated. Specifically, in the gas phase, the semiconductor device 4 is subjected to a temperature change in which one cycle is −25 ° C. for 5 minutes and 125 ° C. for 5 minutes, and the operation check of the semiconductor device 4 is performed every 100 cycles up to 1000 cycles. The measurement was performed by measuring the value, and when the resistance value increased by 10% or more from the start of the test, it was determined as an operation failure. Then, the number of cycles when 20 of the 20 semiconductor devices 4 that had malfunctioned reached 10 was measured.

上記(1)〜(10)の項目について評価結果を下記[表1]に示す。   The evaluation results for the items (1) to (10) are shown in [Table 1] below.

Figure 0005161924
Figure 0005161924

上記[表1]から明らかなように、実施例1〜8は、比較例1〜3に比べて、高い機械的強度を得ることができ、塗布形状の保持性を高く得ることができることが確認された。また実施例2〜4、6〜8から、無機充填材としてマイカやタルクを用いたり、無機充填材をシランカップリング剤で表面処理したりすると、機械的強度をさらに高めることができることが確認された。   As is clear from the above [Table 1], it is confirmed that Examples 1 to 8 can obtain high mechanical strength and high retention of the coated shape as compared with Comparative Examples 1 to 3. It was done. Further, from Examples 2 to 4 and 6 to 8, it was confirmed that when mica or talc was used as the inorganic filler or the inorganic filler was surface-treated with a silane coupling agent, the mechanical strength could be further increased. It was.

一方、平均アスペクト比が小さい球状無機物を用いた比較例1や、鱗片状無機物を用いていてもその含有量が少なすぎる比較例2では、機械的強度が低くなることが確認された。また鱗片状無機物の含有量が多すぎる比較例3では、チクソ指数が上昇しすぎて濡れ性が悪化し、半導体素子2の側面にエポキシ樹脂組成物1を十分に接触させることができないことが確認された。   On the other hand, it was confirmed that in Comparative Example 1 using a spherical inorganic material having a small average aspect ratio and in Comparative Example 2 in which the content is too small even when using a scaly inorganic material, the mechanical strength is low. Further, in Comparative Example 3 in which the content of the scale-like inorganic substance is too large, it was confirmed that the thixo index increased too much and the wettability deteriorated, and the epoxy resin composition 1 could not be sufficiently brought into contact with the side surface of the semiconductor element 2. It was done.

1 エポキシ樹脂組成物
2 半導体素子
3 基板
4 半導体装置
DESCRIPTION OF SYMBOLS 1 Epoxy resin composition 2 Semiconductor element 3 Board | substrate 4 Semiconductor device

Claims (3)

半導体素子を基板に実装して形成された半導体装置において、室温で液状のエポキシ樹脂組成物を前記半導体素子の四隅において前記半導体素子の側面から前記基板の表面にかけて平面視L字状に塗布し硬化させることによって前記半導体素子と前記基板とが接着されており、前記エポキシ樹脂組成物が、エポキシ樹脂、硬化剤、無機充填材を含有し、前記無機充填材として、平均アスペクト比が2〜150の鱗片状無機物が、前記エポキシ樹脂組成物全量に対して0.1〜30質量%含有されていると共に、前記エポキシ樹脂組成物のチクソ指数が3.0〜8.0であることを特徴とする半導体装置。 In a semiconductor device formed by mounting a semiconductor element on a substrate, an epoxy resin composition that is liquid at room temperature is applied and cured in an L shape in plan view from the side surface of the semiconductor element to the surface of the substrate at the four corners of the semiconductor element. The semiconductor element and the substrate are bonded to each other, and the epoxy resin composition contains an epoxy resin, a curing agent, an inorganic filler, and the inorganic filler has an average aspect ratio of 2 to 150. The scale-like inorganic substance is contained in an amount of 0.1 to 30% by mass based on the total amount of the epoxy resin composition, and the thixo index of the epoxy resin composition is 3.0 to 8.0. Semiconductor device. 前記無機充填材が、マイカ及びタルクから選ばれるものであることを特徴とする請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein the inorganic filler is selected from mica and talc. 前記無機充填材が、シランカップリング剤で表面処理されていることを特徴とする請求項1又は2に記載の半導体装置。   The semiconductor device according to claim 1, wherein the inorganic filler is surface-treated with a silane coupling agent.
JP2010145399A 2010-06-25 2010-06-25 Semiconductor device Active JP5161924B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010145399A JP5161924B2 (en) 2010-06-25 2010-06-25 Semiconductor device
CN201180031200.8A CN102959006B (en) 2010-06-25 2011-05-19 Epoxy resin composition and semiconductor device
PCT/JP2011/061511 WO2011162055A1 (en) 2010-06-25 2011-05-19 Epoxy resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010145399A JP5161924B2 (en) 2010-06-25 2010-06-25 Semiconductor device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012269042A Division JP5608211B2 (en) 2012-12-10 2012-12-10 Semiconductor device

Publications (3)

Publication Number Publication Date
JP2012007106A JP2012007106A (en) 2012-01-12
JP2012007106A5 JP2012007106A5 (en) 2012-09-13
JP5161924B2 true JP5161924B2 (en) 2013-03-13

Family

ID=45371252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010145399A Active JP5161924B2 (en) 2010-06-25 2010-06-25 Semiconductor device

Country Status (3)

Country Link
JP (1) JP5161924B2 (en)
CN (1) CN102959006B (en)
WO (1) WO2011162055A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5237328B2 (en) * 2010-05-26 2013-07-17 パナソニック株式会社 Liquid epoxy resin composition for reinforcing secondary mounting of FBGA package and FBGA package
JP2016037529A (en) * 2014-08-06 2016-03-22 信越化学工業株式会社 Liquid epoxy resin composition and heat sink, and adhesive for stiffener
JP2017105883A (en) * 2015-12-07 2017-06-15 信越化学工業株式会社 Liquid resin composition, die attach method using the composition, and semiconductor device having cured product of the composition
WO2017204012A1 (en) * 2016-05-27 2017-11-30 オリンパス株式会社 Adhesive composition, ultrasonic transducer, endoscopic device, and ultrasonic endoscopic device
JP6838941B2 (en) * 2016-05-27 2021-03-03 オリンパス株式会社 Ultrasonic oscillator and ultrasonic endoscope device
JP7018126B2 (en) * 2018-04-20 2022-02-09 富士フイルム株式会社 A heat conductive layer, a photosensitive layer, a photosensitive composition, a method for manufacturing the heat conductive layer, and a laminate and a semiconductor device.

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172899A (en) * 1987-12-28 1989-07-07 Yokohama Rubber Co Ltd:The Damping material
JP3966686B2 (en) * 2000-11-30 2007-08-29 ソニーケミカル&インフォメーションデバイス株式会社 Connecting material
JP3804464B2 (en) * 2001-03-27 2006-08-02 松下電工株式会社 Resin composition for forming semiconductor sealing frame and method for forming semiconductor sealing frame
JP4265174B2 (en) * 2002-08-27 2009-05-20 パナソニック電工株式会社 Liquid sealing material and semiconductor device
JP3740116B2 (en) * 2002-11-11 2006-02-01 三菱電機株式会社 Molded resin encapsulated power semiconductor device and manufacturing method thereof
JP2004269616A (en) * 2003-03-06 2004-09-30 Sumitomo Bakelite Co Ltd Resin composition and cover lay for flexible printed wiring board using the same
JP2004307701A (en) * 2003-04-09 2004-11-04 Shin Etsu Chem Co Ltd Highly thixotropic ultraviolet curable resin composition
JP4529534B2 (en) * 2004-04-28 2010-08-25 東レ株式会社 Thermosetting resin composition for fiber reinforced composite materials
JP2006066814A (en) * 2004-08-30 2006-03-09 Kyocera Chemical Corp Electronic component
JP4231874B2 (en) * 2005-02-14 2009-03-04 双葉電子工業株式会社 IC chip coating material for fluorescent display tube and fluorescent display tube
JP4858672B2 (en) * 2005-04-28 2012-01-18 信越化学工業株式会社 Manufacturing method of sealing material for COB mounting
TWI444406B (en) * 2006-01-12 2014-07-11 Nippon Steel & Sumikin Chem Co An aromatic ether type polymer, a method for producing the same, and a polymer composition
JP4934334B2 (en) * 2006-03-20 2012-05-16 三菱樹脂株式会社 Double-sided copper-clad board
JP5217143B2 (en) * 2006-10-10 2013-06-19 信越化学工業株式会社 Thixotropic sealing material and lead wire exposure prevention method
JP2008177521A (en) * 2006-12-22 2008-07-31 Shin Etsu Chem Co Ltd Sealing material for mounting and semiconductor device
JP4780041B2 (en) * 2007-06-07 2011-09-28 住友ベークライト株式会社 Resin paste for semiconductor and semiconductor device
JP2009046565A (en) * 2007-08-18 2009-03-05 Konica Minolta Medical & Graphic Inc Curable composition
EP2267081B1 (en) * 2008-03-07 2014-01-22 Asahi Organic Chemicals Industry Co., Ltd. Heat-curable resin composition, fiber-reinforced molding material and molded article

Also Published As

Publication number Publication date
CN102959006B (en) 2015-02-25
JP2012007106A (en) 2012-01-12
WO2011162055A1 (en) 2011-12-29
CN102959006A (en) 2013-03-06

Similar Documents

Publication Publication Date Title
US7982322B2 (en) Liquid resin composition for electronic part sealing, and electronic part apparatus utilizing the same
JP5161924B2 (en) Semiconductor device
JP5163912B2 (en) Epoxy resin composition and semiconductor device
JP5598343B2 (en) Liquid epoxy resin composition for semiconductor encapsulation and semiconductor device
JP5228426B2 (en) Liquid resin composition for electronic component sealing and electronic component device using the same
JP5968137B2 (en) Liquid encapsulant and electronic parts using it
JP2013256547A (en) Liquid sealing resin composition and semiconductor package
JP2007182562A (en) Liquid resin composition for electronic element and electronic element device
JP2004331908A (en) Liquid state epoxy resin composition and flip chip type semiconductor device
JP5608211B2 (en) Semiconductor device
JP5579764B2 (en) Liquid epoxy resin composition for underfill and semiconductor device sealed with the composition
JP6115929B2 (en) Epoxy resin composition
JP7167912B2 (en) Liquid encapsulating resin composition, electronic component device, and method for manufacturing electronic component device
JP2009256466A (en) Adhesive for electronic part
JP2012082281A (en) Liquid epoxy resin composition and semiconductor device
JP2010077234A (en) Liquid epoxy resin composition and semiconductor device
JP2012012431A (en) Fluid resin composition and semiconductor apparatus
JP4737364B2 (en) Liquid epoxy resin composition and semiconductor device
JP2007231146A (en) Liquid epoxy resin composition and semiconductor device
JP2008247951A (en) Liquid epoxy resin composition for protecting semiconductor device, cured epoxy resin, method for producing semiconductor device and semiconductor device
JPWO2005080502A1 (en) Liquid epoxy resin composition for underfill and semiconductor device sealed using the composition
JP2005350618A (en) Liquefied epoxy resin composition and semiconductor device
JP2015225913A (en) Die bonding material resin composition and semiconductor device
US20040155334A1 (en) Epoxy resin composition and semiconductor device
JP6039837B2 (en) Liquid encapsulant and electronic parts using it

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120118

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120730

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120730

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121214

R150 Certificate of patent or registration of utility model

Ref document number: 5161924

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3