JP2004307701A - Highly thixotropic ultraviolet curable resin composition - Google Patents

Highly thixotropic ultraviolet curable resin composition Download PDF

Info

Publication number
JP2004307701A
JP2004307701A JP2003104975A JP2003104975A JP2004307701A JP 2004307701 A JP2004307701 A JP 2004307701A JP 2003104975 A JP2003104975 A JP 2003104975A JP 2003104975 A JP2003104975 A JP 2003104975A JP 2004307701 A JP2004307701 A JP 2004307701A
Authority
JP
Japan
Prior art keywords
resin composition
weight
curable resin
inorganic filler
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003104975A
Other languages
Japanese (ja)
Inventor
Haruyoshi Kuwabara
治由 桑原
Toshio Shiobara
利夫 塩原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003104975A priority Critical patent/JP2004307701A/en
Publication of JP2004307701A publication Critical patent/JP2004307701A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly thixotropic ultraviolet curable resin composition, excellent in sealing properties and shape-maintaining properties after coating, which can be used as a sealing material. <P>SOLUTION: The highly thixotropic ultraviolet curable composition has a viscosity of not more than 100 Pa s at 25°C, a thixotropy in the range of 4-7 with the viscosity ratio of 0.1 rpm/1 rpm (25°C) and a ratio of the contact angles before and after being left for 30 minutes (before being left/after being left) not less than 0.7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、特に電荷結合検出器(以下、CCDと記す)、有機EL素子、LED、液晶面等のシール材として用いられ、とりわけCCDを外部環境から保護するために好適に用いられる、優れたシール性を発現する高チキソ性紫外線硬化型樹脂組成物に関するものである。
【0002】
【従来の技術】
昨今、デジタルカメラの普及及びこの鮮明度である画素数の増加に伴い、上記CCDの小型化及び薄型化が求められている。
【0003】
基材が小型になると、シール材を基材に塗布する際、その線幅が微細になり、線と線の間隔が短い場合や、ガラス等との接着糊代面積が小さい場合、シール材には、これまで以上に塗布形状に対して厳しく管理する必要が生じてくる。
【0004】
一方、このCCDは、ビジュアルに関する素子であるため、その視覚部であるガラスの曇り等は厳禁であり、ガラス、セラミック、プラスチックで構成された中空パッケージ内は、水分及び酸素等は厳禁である。しかし、従来の接着剤は、CCD等のシール材として使用した場合、塗布からUV硬化に至る時間で塗布形状が大きく変動し、シール材がガラス設置後のパッケージの側面にはみだしたり、パッケージとガラスとの接着周辺部に形成される箍(フィレット)部が、安定性よく形成されない場合が多く、そのため、温度サイクル等でシール部にクラックが入ったり、場合によっては、ガラスが破壊するといった問題が生じている。この種の不良を解決するには、パッケージとガラスとの接着周辺部に形成される箍(フィレット)部が、熱衝撃に耐え得る形状、かつ水分等を透過しにくい形状となるものでなければならず、このような接着剤が求められている。
【0005】
なお、この発明に関連する先行技術文献としては、下記のものがある。
【特許文献1】
特開2000−86746号公報
【特許文献2】
特開2001−139933号公報
【0006】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みなされたもので、シール性に優れ、塗布後の形状維持性を付与した高チキソ性紫外線硬化型樹脂組成物を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者は、上記目的を達成するために鋭意検討を重ねた結果、特に(a)液状エポキシ樹脂、(b)無機質充填剤、及び(c)光カチオン重合開始剤を含む、紫外線硬化型樹脂組成物の25℃における粘度を100Pa・s以下、0.1rpm/1rpmの粘度比(25℃)であるチキソトロピー指数を4〜7、接触角の30分放置前後の比(放置後/放置前)を0.7以上に形成した場合、またこの際、(b)成分を組成物全体の10重量%以上40重量%以下で配合し、更に上記無機質充填剤のうち、非反応性有機ケイ素化合物で表面処理された平均粒子径が0.01〜0.1μmである無機質充填剤を組成物全体の1重量%以上5重量%以下含有させることにより、塗布後の形状維持性が非常に良好な高チキソ性紫外線硬化型樹脂組成物が得られ、これを用いたシール材は、接着性に優れていることを見出し、本発明をなすに至ったものである。
【0008】
従って、本発明は、下記の高チキソ性紫外線硬化型樹脂組成物を提供する。
〔1〕25℃における粘度が100Pa・s以下、0.1rpm/1rpmの粘度比(25℃)であるチキソトロピー指数が4以上7以下、かつ接触角の30分放置前後の比(放置後/放置前)が0.7以上であることを特徴とする高チキソ性紫外線硬化型樹脂組成物。
〔2〕(a)液状エポキシ樹脂、(b)無機質充填剤、及び(c)光カチオン重合開始剤を含有することを特徴とする〔1〕記載の高チキソ性紫外線硬化型樹脂組成物。
〔3〕上記(b)無機質充填剤の含有量が、組成物全体の10重量%以上40重量%以下であることを特徴とする〔2〕記載の高チキソ性紫外線硬化型樹脂組成物。
〔4〕上記(b)無機質充填剤中に、非反応性有機ケイ素化合物で表面処理された平均粒子径が0.01〜0.1μmである無機質充填剤を組成物全体の1重量%以上5重量%以下含有してなることを特徴とする〔2〕又は〔3〕記載の高チキソ性紫外線硬化型樹脂組成物。
【0009】
【発明の実施の形態】
以下、本発明につき更に詳しく説明する。
本発明の高チキソ性紫外線硬化型樹脂組成物は、25℃における粘度が100Pa・s以下、好ましくは10〜70Pa・s、0.1rpm/1rpmの粘度比(25℃)であるチキソトロピー指数が4以上7以下、好ましくは5〜6.5、かつ接触角の30分放置前後の比(放置後/放置前)が0.7以上、好ましくは0.8〜1.0のものである。
【0010】
ここで、チキソトロピー指数が4以上7以下、特に5〜6.5という適度な値を有している場合、CCD等のセラミックパッケージに塗布した際、流動性がなく、形状保持性が良好なものである。また、放置後/放置前の接触角の比が0.7以上、特に0.8〜1.0という適度な値を有している場合、CCD等のセラミックパッケージにシール材として塗布した際、塗布した樹脂組成物が自重で流れないので形状保持性を有し、図1に示したように、CCD等のセラミックパッケージ10とガラス12との間に樹脂組成物(シール材)14のシール層が良好な厚みを持って均一に形成され、良好なシール効果を発揮し、また、図2に示したように、CCD等のセラミックパッケージ10への塗布後にガラス12を設置してフィレットを形成するとき、樹脂組成物(シール材)14のフィレット部断面を良好な三角形に形成でき、これにより系外からの水分の混入を防止することができるものである。
【0011】
これに対し、粘度が100Pa・sを超える場合には、CCD等のセラミックパッケージへの塗布の際、ニードル(通常、内径0.2〜0.5mm)の目詰まりを生ずる問題がある。チキソトロピー指数が小さすぎると、樹脂組成物の流動性が大きくなり、形状が保持できなくなるため、CCD等のセラミックパッケージへの塗布の際、通常、0.5〜3mm幅のシール部からのはみ出しに由来するシール部の剥離のような不具合が発生するし、チキソトロピー指数が大きすぎると、図3に示したように、樹脂組成物の流動性がなくなり、形状保持性には優れるものの、CCD等のセラミックパッケージ10への塗布後にガラス12を設置する際、ガラスの浮き等の現象からシール部の面積が小さくなるという問題が生じる。また、接触角の30分放置前後の比(放置後/放置前)が小さすぎると、図4に示したように、樹脂組成物の自重による流動がおこるため、CCD等のセラミックパッケージ10への塗布後にガラス12を設置する際、塗布した樹脂組成物14が自重によりパッケージ側面へ流れてしまい、フィレット部の形状が悪くなってシールが不完全になり、気密性が悪くなる。
【0012】
ここで、粘度の測定は、一般にE型やB型等の測定機器が使用されているが、本発明においては、ブルックフィールド社製のE型粘度計を採用し、コーンにNo.51のディスクを用い、25℃における1rpmの粘度を測定したものである。また、チキソトロピー指数は、上記と同様の方法により25℃における0.1rpmの粘度と1rpmの粘度とを測定し、これらの比(0.1rpm/1rpm)で規定した。通常、チキソ性のあるものはこの比が大きくなり、流動性の高いものほど1に近くなる。更に、接触角は、滴下法(ガラス板に樹脂組成物を1滴滴下し、1分静置後の接触角を測定する(放置前)。更に30分静置後の接触角を測定する(放置後)。)にて行い、画像処理にて接触角を測定し、30分放置前後(放置前(1分後)と30分放置後)の比(放置後/放置前)で規定した。なお、測定温度は室温(25℃)である。
【0013】
本発明の高チキソ性紫外線硬化型樹脂組成物は、(a)液状エポキシ樹脂、(b)無機質充填剤、及び(c)光カチオン重合開始剤を含有するものであることが好ましい。
【0014】
本発明に用いられる(a)液状エポキシ樹脂は、1分子中に2個以上のエポキシ基があればいかなるものでも使用可能であるが、特にビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、シクロペンタジエン型エポキシ樹脂などが例示される。これらの中でも室温で液状のエポキシ樹脂が望ましい。また、下記構造のエポキシ樹脂も使用することができる。
【0015】
【化1】

Figure 2004307701
【0016】
また、用いられるエポキシ樹脂の全塩素含有量は、1500ppm以下、好ましくは1000ppm以下であることが望ましい。更に、100℃で50%エポキシ樹脂濃度における20時間での抽出水塩素が10ppm以下であることが好ましい。全塩素含有量が1500ppmを超え、また抽出水塩素が10ppmを超える量では、シール材の信頼性、特に耐湿性に悪影響を与えるおそれがある。
【0017】
本発明においては、液状エポキシ樹脂を用いるが、これは低粘度であり、組成物を低粘度化し、作業性を向上することができ、かつ基材に対する接着性を向上させることが可能となる。
【0018】
なお、上記エポキシ樹脂の配合量は、組成物全体の60〜90重量%が好ましく、特に70〜80重量%であることが好ましい。
【0019】
本発明の組成物には、膨張係数を小さくする目的から、従来より知られている各種の無機質充填剤(b)を添加する。無機質充填剤としては、例えば、シリカ、タルク、アルミナ、雲母、炭酸カルシウムなどが使用される。また粒子径は、平均粒子径が0.01〜5μmであることが望ましい。
【0020】
この場合、本発明においては、平均粒子径が0.1μmを超え5μm以下、好ましくは1〜3μmで、かつ最大粒子径が10μm以下、好ましくは8μm以下の無機質充填剤と、平均粒子径が0.01〜0.1μmである無機質充填剤とを併用することが好ましい。
なお、無機質充填剤の平均粒子径が大きすぎるとシリンジ内で沈降する場合がある。また、最大粒子径が大きすぎると内径の小さいノズルの場合、目詰まりする場合がある。
【0021】
無機質充填剤の含有量は、組成物全体の10重量%以上40重量%以下含まれることが好ましく、特に20重量%以上30重量%以下の範囲が好ましい。10重量%未満では膨張係数が大きく、冷熱テストにおいてクラックの発生を誘発させるおそれがあり、40重量%を超えると粘度が高くなり、作業性の低下をもたらす場合がある。この場合、上記平均粒子径が0.01〜0.1μmの無機質充填剤の配合量は、組成物全体の1重量%以上5重量%以下とすることが好ましく、この量が多すぎると組成物の粘度が高くなりすぎて、塗布量が不安定になる場合がある。
なお、本発明において、平均粒子径及び最大粒子径は、レーザー回折法により測定した場合の値である。
【0022】
上記平均粒子径0.01〜0.1μmの無機質充填剤を用いる場合、これを非反応性有機ケイ素化合物で表面処理したものを使用することが好ましい。本発明において、上記平均粒子径が0.1μmを超え5μm以下、特に1〜3μmの無機質充填剤に加え、非反応性有機ケイ素化合物で表面処理した平均粒子径0.01〜0.1μmの無機質充填剤を組成物全体の1重量%以上5重量%以下の割合で併用することにより、樹脂組成物のチキソトロピー指数、放置後/放置前の接触角の比等を上述した適度の範囲に制御することができる。
【0023】
ここで、非反応性官能基を有する有機ケイ素化合物としては、CHSi(OCH)、(CHSiOCH、PhSi(OCH、PhSiCH(OCH、{(CHSi}NH、CHCHSi(OCHなどが代表的なものとして例示される。なお、Phはフェニル基を示す。
上記無機質充填剤を非反応性有機ケイ素化合物で表面処理する方法としては、特に限定されるものではなく、従来公知の方法により行うことができる。
【0024】
この非反応性有機ケイ素化合物で表面処理された無機質充填剤の含有量は、組成物全体の1重量%以上5重量%以下が好ましく、更には2重量%以上3重量%以下が好ましい。上記無機質充填剤の含有量が少なすぎるとチキソトロピー指数が小さくなる場合があり、多すぎるとチキソトロピー指数が大きくなる場合がある。
【0025】
なお、本発明に用いられる平均粒子径が0.01〜0.1μmの無機質充填剤以外の無機質充填剤も、シリカ等の充填剤表面に存在するOH基が親水性である場合、樹脂との濡れ性がよくないので、更にγ−グリシドキシプロピルトリメトキシシラン等の表面処理剤を用いて表面処理を施すことができる。或いは、かかる表面処理剤を別途組成物中に配合することもできる。
【0026】
更に、本発明においては、光カチオン重合開始剤(c)を配合するが、これは光により樹脂の重合を開始する化合物であり、このような機能を有する化合物であれば特に限定はなく、いずれでも使用することができる。光カチオン重合開始剤の好ましい例としては、下記式(1)で表される構造を有するオニウム塩を挙げることができる。このオニウム塩は、光反応し、ルイス酸を放出する化合物である。
Figure 2004307701
【0027】
式(1)において、カチオンはオニウムイオンであり、Yは、S、Se、Te、P、As、Sb、Bi、O、I、Br、Cl又はNであり、R、R、R及びRは同一又は異なる有機基であり、a、b、c及びdはそれぞれ0〜3の整数であって、(a+b+c+d)はYの価数に等しい。
【0028】
ここで、R〜Rの有機基としては、例えばフェニル基、ビフェニル基、ナフチル基等のアリール基、C〜C18のアルキル基によりモノ及びポリ置換されたアリール基、フェノキシフェニル基、チオフェニルフェニル基等が例示される。
【0029】
Mは、ハロゲン化錯体{MXn+m}の中心原子を構成する金属又はメタロイドであり、例えばB、P、As、Sb、Fe、Sn、Bi、Al、Ca、In、Ti、Zn、Sc、V、Cr、Mn、Co等である。Xは、例えばF、Cl、Br等のハロゲン原子であり、mはハロゲン化物錯体イオンの正味の電荷であり、nはMの原子価である。
【0030】
式(1)において、オニウムイオンの具体例としては、ジフェニルヨードニウム、4−メトキシジフェニルヨードニウム、ビス(4−メチルフェニル)ヨードニウム、ビス(4−tert−ブチルフェニル)ヨードニウム、ビス(ドデシルフェニル)ヨードニウム、トリフェニルスルフォニウム、ジフェニル−4−チオフェノキシフェニルスルフォニウム、ビス{4−(ジフェニルスルフォニオ)−フェニル}スルフィド、ビス{4−(ジ(4−(2−ヒドロキシエチル)フェニル)スルフォニオ)−フェニル}スルフィド、η−2,4−(シクロペンタジフェニル){1,2,3,4,5,6−η−(メチルエチル)ベンゼン}−鉄(1+)等が挙げられる。
【0031】
式(1)において陰イオンの具体例としては、テトラフルオロボレート、ヘキサフルオロホスフェート、ヘキサフルオロアンチモネート、ヘキサフルオロアルセネート、ヘキサクロロアンチモネート等が挙げられる。これらの光カチオン重合開始剤は、1種単独で又は2種以上を組み合わせて使用することができる。
【0032】
なお、これら光カチオン重合開始剤は、該成分とエポキシ樹脂成分との合計量の0.1〜10重量%、特に1〜3重量%の範囲で添加することが好適である。添加量が0.1重量%に満たないと硬化性が低下する場合があり、10重量%を超えると硬化性に優れるが、保存性が低下する場合がある。
【0033】
本発明の紫外線硬化型樹脂組成物には、更に必要に応じ、接着向上用炭素官能性シラン、酸化防止剤、その他の添加剤を本発明の目的を損なわない範囲において配合することができる。
【0034】
本発明の紫外線硬化型樹脂組成物は、例えば、エポキシ樹脂、無機質充填剤及び光カチオン重合開始剤を、同時に又は別々に、必要により加熱処理を加えながら撹拌、溶解、混合、分散させることにより得ることができる。これらの混合、撹拌、分散等の装置は特に限定されないが、撹拌、加熱装置を備えたライカイ機、3本ロール、ボールミル、プラネタリーミキサー等を用いることができる。これら装置を適宜組み合わせてもよい。
【0035】
本発明の紫外線硬化型樹脂組成物は、CCD用セラミックパッケージ、LED用パッケージ、有機EL用パッケージ、液晶面などのシール材等として好適に使用され、各パーツに樹脂組成物をディスペンサ等により塗布後、相手部材(ガラス等)を取り付けて、紫外線を照射することにより硬化し得るものである。上記樹脂組成物の成形硬化方法、硬化条件などは、公知の方法、条件を採用することができるが、硬化条件としてより具体的には、高圧水銀ランプによるUV照射(500〜15,000mJ/cm)とすることが好ましい。
【0036】
【実施例】
以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
【0037】
[実施例1〜6]
液状エポキシ樹脂として水添ビスフェノールA型エポキシ樹脂(YX8000:油化シェル社製)及びビスフェノールA型エポキシ樹脂(RE310:日本化薬社製)、無機質充填剤としてタルク(LMP−100:富士タルク社製、平均粒子径5.4μm)及びヘキサメチルシラザン(SE31:信越化学工業社製)で表面処理したフュームドシリカ(平均粒子径0.012μm)を表1に基づく配合で、更にγ−グリシドキシプロピルトリメトキシシラン(KBM−403:信越化学工業社製)を有機成分合計量の1重量%、光カチオン重合開始剤(SP−170:旭電化工業社製)を有機成分合計量の2重量%添加し、均一に混練することによりエポキシ樹脂組成物を得た。
【0038】
得られたエポキシ樹脂組成物を用いて、25℃における粘度をブルックフィールド社製E型粘度計にてコーンにNo.51のディスクを用い、1rpmの回転数で測定した。また、チキソトロピー指数を、上記粘度測定と同様の方法にて0.1rpmの粘度(25℃)と1rpmの粘度(25℃)との比(0.1rpm/1rpm)により求めた。接触角は滴下法(測定温度:25℃)で測定し、滴下1分後(放置前)の値、及び30分放置前後(放置前と滴下30分放置後)の比(放置後/放置前)を求めた。
【0039】
更に、接着強度は図5に示すように、二枚のガラス板1を組成物2を介して配置し、UV照射を2,500mJ/cmの条件で行って組成物を硬化させ、プレッシャークッカーテスト72Hr後(121℃/2atm)、プッシュプル法(図1に示す矢印方向に1mm/sec)にて測定した。
【0040】
一方、この組成物のシール性を測定するためのデバイスは、得られたエポキシ樹脂組成物を、ディスペンサーを用いてセラミックパッケージ周辺部に塗布し、ガラスを貼り合わせた後、上記と同様のUV照射条件にて、シールを行った。得られたデバイスは、図6で示されるものであり、図6中の1はガラス板、2はエポキシ樹脂組成物、3はCCD用セラミックパッケージである。このデバイスを用いてフィレット部の形状を目視にて観察し、更に−40℃〜100℃の耐熱衝撃試験を行い、10サイクル毎の剥離状況を100サイクルまで観察し、剥離したサイクルを確認した。
組成物の特性(粘度、チキソトロピー指数、接触角)及び信頼性評価結果(接着強度、フィレット部の形状、シール性(耐熱衝撃試験))を表1に併記する。
【0041】
[比較例1〜4]
組成比が表1のように異なる他は、実施例と同じようにエポキシ樹脂組成物を調製し、実施例と同様にして測定した特性(粘度、チキソトロピー指数、接触角)及び信頼性評価結果(接着強度、フィレット部の形状、シール性(耐熱衝撃試験))を表1に併記する。
【0042】
【表1】
Figure 2004307701
*1:有機成分合計量に対する割合
*2:組成物合計量に対する割合
*3:液状にならず
【0043】
【発明の効果】
本発明の高チキソ性紫外線硬化型樹脂組成物は、非常にシール性が良好で、塗布後の形状維持性が良好であり、シール材として有用なものである。
【図面の簡単な説明】
【図1】セラミックパッケージに本発明組成物によるシール層を介してガラスを設置した状態の断面図である。
【図2】セラミックパッケージに本発明組成物によるフィレット部を形成してガラスを設置した状態の断面図である。
【図3】セラミックパッケージにチキソトロピー指数が大きすぎる組成物のシール層を介してガラスを設置した状態の断面図である。
【図4】セラミックパッケージに放置後/放置前の接触角の比が小さすぎる組成物によるフィレット部を形成してガラスを設置した状態の断面図である。
【図5】本発明の実施例における接着強度測定の説明図である。
【図6】本発明の実施例におけるシール性評価に用いたデバイスの概略斜視図である。
【符号の説明】
1 ガラス板
2 シール材(紫外線硬化型樹脂組成物)
3 CCD用セラミックパッケージ
10 セラミックパッケージ
12 ガラス
14 樹脂組成物(シール材)[0001]
TECHNICAL FIELD OF THE INVENTION
INDUSTRIAL APPLICABILITY The present invention is particularly used as a sealing material for a charge-coupled detector (hereinafter referred to as a CCD), an organic EL element, an LED, a liquid crystal surface, etc., and is particularly preferably used for protecting a CCD from an external environment. The present invention relates to a highly thixotropic ultraviolet curable resin composition exhibiting sealing properties.
[0002]
[Prior art]
In recent years, with the spread of digital cameras and the increase in the number of pixels that have sharpness, there has been a demand for smaller and thinner CCDs.
[0003]
When the size of the base material is reduced, when the seal material is applied to the base material, the line width becomes fine, and when the distance between the lines is short, or when the area of the adhesive paste between the glass and the like is small, the seal material is used. Requires more strict control over the coating shape than before.
[0004]
On the other hand, since the CCD is an element relating to visuals, it is strictly prohibited that the visual part of the glass is fogged, and that moisture and oxygen are strictly prohibited in a hollow package made of glass, ceramic, or plastic. However, when a conventional adhesive is used as a sealing material for a CCD or the like, the shape of the applied material fluctuates greatly during the time from application to UV curing, and the sealing material protrudes from the side of the package after the glass is installed, or the package and the glass are not sealed. In many cases, the holding (fillet) formed at the periphery of the adhesive is not formed with good stability. Therefore, there is a problem that the seal is cracked due to a temperature cycle or the glass is broken in some cases. Has occurred. In order to solve this kind of failure, it is necessary that the shape of the retainer (fillet) formed at the periphery of the bonding between the package and the glass is such that it has a shape that can withstand thermal shock and a shape that does not easily transmit moisture and the like. Rather, such an adhesive is required.
[0005]
Prior art documents related to the present invention include the following.
[Patent Document 1]
JP 2000-86746 A [Patent Document 2]
JP 2001-139933 A
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a highly thixotropic ultraviolet curable resin composition having excellent sealing properties and imparting shape retention after application.
[0007]
[Means for Solving the Problems]
The present inventors have made intensive studies to achieve the above object, and as a result, in particular, an ultraviolet curable resin containing (a) a liquid epoxy resin, (b) an inorganic filler, and (c) a photocationic polymerization initiator. The composition has a viscosity at 25 ° C. of 100 Pa · s or less, a thixotropy index of 0.1 to 1 rpm at a viscosity ratio of 25 rpm (25 ° C.) of 4 to 7, and a contact angle before and after leaving for 30 minutes (after leaving / before leaving). Is formed to 0.7 or more, and at this time, the component (b) is blended in an amount of 10% by weight or more and 40% by weight or less of the whole composition, and further, among the inorganic fillers, a non-reactive organosilicon compound is used. By containing a surface-treated inorganic filler having an average particle diameter of 0.01 to 0.1 μm in an amount of 1% by weight or more and 5% by weight or less of the whole composition, the shape retention after coating is very good. Thixotropic UV curable resin set Object is obtained, the sealing material using the same, found that an excellent adhesive property, in which the present invention has been accomplished.
[0008]
Therefore, the present invention provides the following highly thixotropic ultraviolet curable resin composition.
[1] The viscosity at 25 ° C. is 100 Pa · s or less, the thixotropic index, which is a viscosity ratio of 0.1 rpm / 1 rpm (25 ° C.), is 4 or more and 7 or less, and the ratio of the contact angle before and after leaving for 30 minutes (after / after leaving) (3) The highly thixotropic ultraviolet-curable resin composition, wherein (a) is 0.7 or more.
[2] The highly thixotropic ultraviolet curable resin composition according to [1], which comprises (a) a liquid epoxy resin, (b) an inorganic filler, and (c) a photocationic polymerization initiator.
[3] The high thixotropic ultraviolet curable resin composition according to [2], wherein the content of the inorganic filler (b) is 10% by weight or more and 40% by weight or less of the whole composition.
[4] In the inorganic filler (b), an inorganic filler surface-treated with a non-reactive organic silicon compound and having an average particle diameter of 0.01 to 0.1 μm is used in an amount of 1% by weight or more of the entire composition. The highly thixotropic ultraviolet-curable resin composition according to [2] or [3], which is contained in an amount of not more than 10% by weight.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The high thixotropic ultraviolet-curable resin composition of the present invention has a viscosity at 25 ° C of 100 Pa · s or less, preferably 10 to 70 Pa · s, and a viscosity ratio of 0.1 rpm / 1 rpm (25 ° C) having a thixotropic index of 4. The ratio is 7 or less, preferably 5 to 6.5, and the ratio of contact angle before and after leaving for 30 minutes (after leaving / before leaving) is 0.7 or more, preferably 0.8 to 1.0.
[0010]
Here, when the thixotropy index has an appropriate value of 4 or more and 7 or less, especially 5 to 6.5, when applied to a ceramic package such as a CCD, there is no fluidity and good shape retention. It is. When the ratio of the contact angle after leaving / before leaving has an appropriate value of 0.7 or more, particularly 0.8 to 1.0, when applied as a sealing material to a ceramic package such as a CCD, Since the applied resin composition does not flow under its own weight, it has shape retention properties. As shown in FIG. 1, a sealing layer of a resin composition (sealant) 14 between a ceramic package 10 such as a CCD and glass 12 Are uniformly formed with a good thickness, exhibit a good sealing effect, and, as shown in FIG. 2, form a fillet by placing a glass 12 after application to a ceramic package 10 such as a CCD. At this time, the cross section of the fillet portion of the resin composition (sealant) 14 can be formed into a good triangle, thereby preventing the entry of moisture from outside the system.
[0011]
On the other hand, when the viscosity exceeds 100 Pa · s, there is a problem that clogging of the needle (usually, an inner diameter of 0.2 to 0.5 mm) occurs at the time of application to a ceramic package such as a CCD. If the thixotropy index is too small, the fluidity of the resin composition becomes large, and the shape cannot be maintained. Therefore, when the resin composition is applied to a ceramic package such as a CCD, the resin composition usually protrudes from a seal portion having a width of 0.5 to 3 mm. Defects such as peeling of the resulting seal portion occur, and if the thixotropy index is too large, the fluidity of the resin composition is lost as shown in FIG. When the glass 12 is placed after being applied to the ceramic package 10, there is a problem that the area of the seal portion is reduced due to a phenomenon such as floating of the glass. If the contact angle before and after standing for 30 minutes (after / before leaving) is too small, the resin composition flows due to its own weight as shown in FIG. When the glass 12 is installed after the application, the applied resin composition 14 flows to the side surface of the package due to its own weight, and the shape of the fillet portion is deteriorated, the sealing is incomplete, and the airtightness is deteriorated.
[0012]
Here, a measuring instrument such as E type or B type is generally used for measuring the viscosity, but in the present invention, an E type viscometer manufactured by Brookfield is used, and No. 1 is used for the cone. The viscosity of 1 rpm at 25 ° C. was measured using 51 disks. The thixotropic index was determined by measuring the viscosity at 0.1 rpm and the viscosity at 1 rpm at 25 ° C. in the same manner as described above, and defining the ratio (0.1 rpm / 1 rpm). In general, the ratio is larger for those having thixotropic properties, and is closer to 1 for those having higher fluidity. Further, the contact angle is determined by a dropping method (a drop of a resin composition is dropped on a glass plate and the contact angle is measured after standing for 1 minute (before standing). The contact angle is measured after standing still for 30 minutes ( The contact angle was measured by image processing, and the contact angle was determined by the ratio (after leaving / before leaving) before and after leaving for 30 minutes (before leaving (after 1 minute) and after leaving for 30 minutes). The measurement temperature is room temperature (25 ° C.).
[0013]
The highly thixotropic ultraviolet-curable resin composition of the present invention preferably contains (a) a liquid epoxy resin, (b) an inorganic filler, and (c) a cationic photopolymerization initiator.
[0014]
As the liquid epoxy resin (a) used in the present invention, any one can be used as long as it has two or more epoxy groups in one molecule. In particular, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolak Epoxy resin, cresol novolak epoxy resin, naphthalene epoxy resin, biphenyl epoxy resin, cyclopentadiene epoxy resin, and the like. Of these, epoxy resins that are liquid at room temperature are desirable. Further, an epoxy resin having the following structure can also be used.
[0015]
Embedded image
Figure 2004307701
[0016]
Also, the total chlorine content of the epoxy resin used is desirably 1500 ppm or less, preferably 1000 ppm or less. Further, it is preferable that the extracted water chlorine in 20 hours at 100 ° C. and 50% epoxy resin concentration is 10 ppm or less. If the total chlorine content exceeds 1500 ppm and the amount of extracted water chlorine exceeds 10 ppm, the reliability of the sealing material, particularly the moisture resistance, may be adversely affected.
[0017]
In the present invention, a liquid epoxy resin is used, which has a low viscosity, makes it possible to lower the viscosity of the composition, improve workability, and improve adhesiveness to a substrate.
[0018]
In addition, the compounding quantity of the said epoxy resin is preferable 60-90 weight% of the whole composition, and it is especially preferable that it is 70-80 weight%.
[0019]
To the composition of the present invention, various conventionally known inorganic fillers (b) are added for the purpose of reducing the expansion coefficient. As the inorganic filler, for example, silica, talc, alumina, mica, calcium carbonate and the like are used. The average particle diameter of the particles is preferably 0.01 to 5 μm.
[0020]
In this case, in the present invention, an inorganic filler having an average particle diameter of more than 0.1 μm and 5 μm or less, preferably 1 to 3 μm, and a maximum particle diameter of 10 μm or less, preferably 8 μm or less, It is preferable to use together with an inorganic filler having a diameter of 0.01 to 0.1 μm.
If the average particle diameter of the inorganic filler is too large, it may settle in the syringe. On the other hand, if the maximum particle diameter is too large, the nozzle may be clogged in the case of a nozzle having a small inner diameter.
[0021]
The content of the inorganic filler is preferably from 10% by weight to 40% by weight of the whole composition, and particularly preferably from 20% by weight to 30% by weight. If it is less than 10% by weight, the coefficient of expansion is large, which may induce cracks in a thermal test. If it exceeds 40% by weight, the viscosity becomes high and the workability may be reduced. In this case, the amount of the inorganic filler having an average particle size of 0.01 to 0.1 μm is preferably 1% by weight or more and 5% by weight or less of the whole composition. May become too high and the coating amount may be unstable.
In the present invention, the average particle diameter and the maximum particle diameter are values measured by a laser diffraction method.
[0022]
When an inorganic filler having an average particle diameter of 0.01 to 0.1 μm is used, it is preferable to use a surface-treated inorganic filler having a non-reactive organic silicon compound. In the present invention, in addition to the inorganic filler having an average particle size of more than 0.1 μm and 5 μm or less, particularly an inorganic filler having an average particle size of 0.01 to 0.1 μm, which is surface-treated with a non-reactive organosilicon compound, in addition to an inorganic filler of 1 to 3 μm. By using a filler in an amount of 1% by weight or more and 5% by weight or less of the entire composition, the thixotropic index of the resin composition, the ratio of the contact angle after leaving / before leaving, and the like are controlled within the above-mentioned appropriate ranges. be able to.
[0023]
Here, as the organosilicon compound having a non-reactive functional group, CH 3 Si (OCH 3 ), (CH 3 ) 3 SiOCH 3 , PhSi (OCH 3 ) 3 , PhSiCH 3 (OCH 3 ) 2 , {(CH 3) 3 Si} 2 NH, such as CH 3 CH 2 Si (OCH 3 ) 3 is illustrated as a representative. Ph represents a phenyl group.
The method for surface-treating the inorganic filler with a non-reactive organosilicon compound is not particularly limited, and can be performed by a conventionally known method.
[0024]
The content of the inorganic filler surface-treated with the non-reactive organosilicon compound is preferably 1% by weight or more and 5% by weight or less, more preferably 2% by weight or more and 3% by weight or less of the whole composition. If the content of the inorganic filler is too small, the thixotropy index may decrease, and if it is too large, the thixotropy index may increase.
[0025]
In addition, the inorganic filler other than the inorganic filler having an average particle diameter of 0.01 to 0.1 μm used in the present invention also includes a resin when the OH group present on the filler surface such as silica is hydrophilic. Since the wettability is not good, surface treatment can be further performed using a surface treatment agent such as γ-glycidoxypropyltrimethoxysilane. Alternatively, such a surface treatment agent can be separately compounded in the composition.
[0026]
Furthermore, in the present invention, a cationic photopolymerization initiator (c) is compounded, which is a compound that initiates polymerization of the resin by light, and is not particularly limited as long as it is a compound having such a function. But can be used. Preferred examples of the cationic photopolymerization initiator include an onium salt having a structure represented by the following formula (1). This onium salt is a compound that reacts with light and releases a Lewis acid.
Figure 2004307701
[0027]
In the formula (1), the cation is an onium ion, Y is S, Se, Te, P, As, Sb, Bi, O, I, Br, Cl, or N 2 , and R 1 , R 2 , R 3 and R 4 are the same or different organic groups, a, b, c and d are each an integer of 0 to 3, and (a + b + c + d) is equal to the valence of Y.
[0028]
Here, as the organic group of R 1 to R 4 , for example, an aryl group such as a phenyl group, a biphenyl group, and a naphthyl group, an aryl group mono- and poly-substituted by a C 1 to C 18 alkyl group, a phenoxyphenyl group, Examples thereof include a thiophenylphenyl group.
[0029]
M is a metal or metalloid constituting the central atom of the halide complex {MX n + m }, for example, B, P, As, Sb, Fe, Sn, Bi, Al, Ca, In, Ti, Zn, Sc, V , Cr, Mn, Co and the like. X is a halogen atom such as F, Cl, Br, etc., m is the net charge of the halide complex ion, and n is the valence of M.
[0030]
In the formula (1), specific examples of the onium ion include diphenyliodonium, 4-methoxydiphenyliodonium, bis (4-methylphenyl) iodonium, bis (4-tert-butylphenyl) iodonium, bis (dodecylphenyl) iodonium, Triphenylsulfonium, diphenyl-4-thiophenoxyphenylsulfonium, bis {4- (diphenylsulfonio) -phenyl} sulfide, bis {4- (di (4- (2-hydroxyethyl) phenyl) sulfonio) - phenyl} sulfide, eta 5-2,4-(cyclopentadienyl diphenyl) {1,2,3,4,5,6-.eta. (methylethyl) benzene} - iron (1+), and the like.
[0031]
In the formula (1), specific examples of the anion include tetrafluoroborate, hexafluorophosphate, hexafluoroantimonate, hexafluoroarsenate, hexachloroantimonate and the like. These photocationic polymerization initiators can be used alone or in combination of two or more.
[0032]
The cationic photopolymerization initiator is preferably added in the range of 0.1 to 10% by weight, particularly 1 to 3% by weight of the total amount of the component and the epoxy resin component. If the amount is less than 0.1% by weight, the curability may decrease. If the amount exceeds 10% by weight, the curability is excellent, but the storage stability may decrease.
[0033]
The UV-curable resin composition of the present invention may further contain, if necessary, a carbon-functional silane for improving adhesion, an antioxidant, and other additives as long as the object of the present invention is not impaired.
[0034]
The ultraviolet-curable resin composition of the present invention is obtained, for example, by stirring, dissolving, mixing, and dispersing an epoxy resin, an inorganic filler, and a photocationic polymerization initiator simultaneously or separately, while adding a heat treatment as needed. be able to. The apparatus for mixing, stirring, dispersing and the like is not particularly limited, but a raikai machine equipped with a stirring and heating device, a three-roll mill, a ball mill, a planetary mixer, or the like can be used. These devices may be appropriately combined.
[0035]
The ultraviolet-curable resin composition of the present invention is suitably used as a sealing material for a ceramic package for CCD, a package for LED, a package for organic EL, a liquid crystal surface, and the like, and the resin composition is applied to each part by a dispenser or the like. It can be cured by irradiating ultraviolet rays with a mating member (glass or the like) attached. Known methods and conditions can be used for the molding and curing methods and curing conditions of the resin composition. More specifically, the curing conditions are, for example, UV irradiation with a high-pressure mercury lamp (500 to 15,000 mJ / cm). 2 ) is preferable.
[0036]
【Example】
Hereinafter, the present invention will be described specifically with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.
[0037]
[Examples 1 to 6]
Hydrogenated bisphenol A type epoxy resin (YX8000: manufactured by Yuka Shell Co., Ltd.) and bisphenol A type epoxy resin (RE310: manufactured by Nippon Kayaku Co., Ltd.) as a liquid epoxy resin, and talc (LMP-100: manufactured by Fuji Talc Co., Ltd.) as an inorganic filler Fumed silica (average particle diameter 0.012 μm) surface-treated with hexamethylsilazane (SE31: manufactured by Shin-Etsu Chemical Co., Ltd.), and γ-glycidoxy. Propyltrimethoxysilane (KBM-403: manufactured by Shin-Etsu Chemical Co., Ltd.) is 1% by weight of the total amount of organic components, and photocationic polymerization initiator (SP-170: manufactured by Asahi Denka Kogyo Co., Ltd.) is 2% by weight of the total amount of organic components. The mixture was added and kneaded uniformly to obtain an epoxy resin composition.
[0038]
Using the obtained epoxy resin composition, the viscosity at 25 ° C. was measured by a Brookfield E-type viscometer to give No. to the cone. The measurement was performed at 1 rpm using 51 disks. In addition, the thixotropic index was determined by the same method as the above viscosity measurement by the ratio (0.1 rpm / 1 rpm) of the viscosity (25 ° C.) of 0.1 rpm to the viscosity (25 ° C.) of 1 rpm. The contact angle was measured by a dropping method (measurement temperature: 25 ° C.), the value after 1 minute after dropping (before leaving), and the ratio between before and after leaving for 30 minutes (before leaving and after leaving for 30 minutes) (after leaving / before leaving) ).
[0039]
Further, as shown in FIG. 5, the adhesive strength was such that two glass plates 1 were arranged with the composition 2 interposed therebetween, and UV irradiation was performed under the condition of 2,500 mJ / cm 2 to cure the composition. After 72 hours of the test (121 ° C./2 atm), the measurement was performed by the push-pull method (1 mm / sec in the direction of the arrow shown in FIG. 1).
[0040]
On the other hand, a device for measuring the sealing property of this composition is obtained by applying the obtained epoxy resin composition to the periphery of a ceramic package using a dispenser, bonding glass, and then applying the same UV irradiation as described above. Sealing was performed under the conditions. The resulting device is shown in FIG. 6, where 1 is a glass plate, 2 is an epoxy resin composition, and 3 is a ceramic package for CCD. Using this device, the shape of the fillet portion was visually observed, a thermal shock test at −40 ° C. to 100 ° C. was performed, and the peeling state every 10 cycles was observed up to 100 cycles to confirm the peeled cycle.
Table 1 also shows the properties (viscosity, thixotropy index, contact angle) and reliability evaluation results (adhesive strength, fillet shape, sealability (thermal shock test)) of the composition.
[0041]
[Comparative Examples 1-4]
An epoxy resin composition was prepared in the same manner as in the example, except that the composition ratio was different as shown in Table 1, and the properties (viscosity, thixotropy index, contact angle) and reliability evaluation result (measured in the same manner as in the example) Table 1 also shows the adhesive strength, the shape of the fillet portion, and the sealability (thermal shock test).
[0042]
[Table 1]
Figure 2004307701
* 1: Ratio to total amount of organic components * 2: Ratio to total amount of composition * 3: Does not become liquid
【The invention's effect】
The highly thixotropic ultraviolet-curable resin composition of the present invention has very good sealing properties, good shape retention after application, and is useful as a sealing material.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a state in which glass is placed on a ceramic package via a sealing layer made of the composition of the present invention.
FIG. 2 is a cross-sectional view showing a state where a fillet portion made of the composition of the present invention is formed on a ceramic package and glass is installed.
FIG. 3 is a cross-sectional view showing a state in which glass is placed on a ceramic package via a sealing layer of a composition having a too large thixotropic index.
FIG. 4 is a cross-sectional view showing a state in which a fillet portion made of a composition having an excessively small contact angle after leaving / before leaving in a ceramic package is formed and glass is placed.
FIG. 5 is an explanatory diagram of an adhesive strength measurement in an example of the present invention.
FIG. 6 is a schematic perspective view of a device used for evaluation of sealing performance in an example of the present invention.
[Explanation of symbols]
1 Glass plate 2 Sealing material (ultraviolet curable resin composition)
3 Ceramic Package for CCD 10 Ceramic Package 12 Glass 14 Resin Composition (Sealant)

Claims (4)

25℃における粘度が100Pa・s以下、0.1rpm/1rpmの粘度比(25℃)であるチキソトロピー指数が4以上7以下、かつ接触角の30分放置前後の比(放置後/放置前)が0.7以上であることを特徴とする高チキソ性紫外線硬化型樹脂組成物。The viscosity at 25 ° C. is 100 Pa · s or less, the thixotropic index (viscosity ratio of 0.1 rpm / 1 rpm (25 ° C.) is 4 or more and 7 or less), and the contact angle before and after leaving for 30 minutes (after leaving / before leaving) is: A highly thixotropic ultraviolet-curable resin composition having a ratio of 0.7 or more. (a)液状エポキシ樹脂、(b)無機質充填剤、及び(c)光カチオン重合開始剤を含有することを特徴とする請求項1記載の高チキソ性紫外線硬化型樹脂組成物。The highly thixotropic ultraviolet curable resin composition according to claim 1, comprising (a) a liquid epoxy resin, (b) an inorganic filler, and (c) a cationic photopolymerization initiator. 上記(b)無機質充填剤の含有量が、組成物全体の10重量%以上40重量%以下であることを特徴とする請求項2記載の高チキソ性紫外線硬化型樹脂組成物。The high thixotropic ultraviolet curable resin composition according to claim 2, wherein the content of the inorganic filler (b) is 10% by weight or more and 40% by weight or less of the whole composition. 上記(b)無機質充填剤中に、非反応性有機ケイ素化合物で表面処理された平均粒子径が0.01〜0.1μmである無機質充填剤を組成物全体の1重量%以上5重量%以下含有してなることを特徴とする請求項2又は3記載の高チキソ性紫外線硬化型樹脂組成物。In the above (b) inorganic filler, an inorganic filler surface-treated with a non-reactive organosilicon compound having an average particle diameter of 0.01 to 0.1 μm is contained in an amount of 1% by weight or more and 5% by weight or less of the whole composition. The highly thixotropic ultraviolet-curable resin composition according to claim 2 or 3, which is contained.
JP2003104975A 2003-04-09 2003-04-09 Highly thixotropic ultraviolet curable resin composition Pending JP2004307701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003104975A JP2004307701A (en) 2003-04-09 2003-04-09 Highly thixotropic ultraviolet curable resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003104975A JP2004307701A (en) 2003-04-09 2003-04-09 Highly thixotropic ultraviolet curable resin composition

Publications (1)

Publication Number Publication Date
JP2004307701A true JP2004307701A (en) 2004-11-04

Family

ID=33467616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003104975A Pending JP2004307701A (en) 2003-04-09 2003-04-09 Highly thixotropic ultraviolet curable resin composition

Country Status (1)

Country Link
JP (1) JP2004307701A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046035A (en) * 2005-01-26 2007-02-22 Sekisui Chem Co Ltd Encapsulant for organic electroluminescent device, method for producing organic electroluminescent display and organic electroluminescent display
JP2009079230A (en) * 2005-01-26 2009-04-16 Sekisui Chem Co Ltd Encapsulant for organic electroluminescent device, method for producing organic electroluminescent display and organic electroluminescent display
JP2011021183A (en) * 2009-06-15 2011-02-03 Sekisui Chem Co Ltd Photocurable resin composition, sealing agent for organic electroluminescence display elements, and organic electroluminescence display element
WO2011162055A1 (en) * 2010-06-25 2011-12-29 パナソニック電工株式会社 Epoxy resin composition and semiconductor device
JP2016184160A (en) * 2015-03-25 2016-10-20 積水化学工業株式会社 First and second liquids for two-liquid mixing system and method for manufacturing printed wiring board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046035A (en) * 2005-01-26 2007-02-22 Sekisui Chem Co Ltd Encapsulant for organic electroluminescent device, method for producing organic electroluminescent display and organic electroluminescent display
JP2009079230A (en) * 2005-01-26 2009-04-16 Sekisui Chem Co Ltd Encapsulant for organic electroluminescent device, method for producing organic electroluminescent display and organic electroluminescent display
JP2011021183A (en) * 2009-06-15 2011-02-03 Sekisui Chem Co Ltd Photocurable resin composition, sealing agent for organic electroluminescence display elements, and organic electroluminescence display element
WO2011162055A1 (en) * 2010-06-25 2011-12-29 パナソニック電工株式会社 Epoxy resin composition and semiconductor device
JP2016184160A (en) * 2015-03-25 2016-10-20 積水化学工業株式会社 First and second liquids for two-liquid mixing system and method for manufacturing printed wiring board

Similar Documents

Publication Publication Date Title
KR20100061381A (en) Photocurable resin composition for sealing organic el device
WO2011027815A1 (en) Organic el element sealing member
KR20070103204A (en) Photocuarable resin composition having high thermal conductivity
JP5828835B2 (en) Thermally conductive moisture curable resin composition
KR102504140B1 (en) Sealing liquid epoxy resin composition and electronic component device
TW201815885A (en) Photocurable fluoropolyether rubber composition and cured product thereof
TW201627394A (en) Curable composition, method for producing curable composition, and semiconductor device
JP2017105883A (en) Liquid resin composition, die attach method using the composition, and semiconductor device having cured product of the composition
TW201302903A (en) Thermosetting resin composition and application thereof
JP2017039802A (en) Material for protecting semiconductor element and semiconductor device
WO2010041708A1 (en) Heat-conductive moisture-curable resin composition
TWI739902B (en) Sealant for organic electroluminescent display element
JP6051557B2 (en) Epoxy resin liquid sealing material for underfill and electronic component device
JP2007284475A (en) Ultraviolet-curing type end sealing material
JP2004307701A (en) Highly thixotropic ultraviolet curable resin composition
WO2021241129A1 (en) Sealant for display devices
JP6443293B2 (en) Radiation curable silicone composition and method for producing antistatic release film using the same
JP2007070411A (en) Highly adhesive ultraviolet-curable resin composition
JP2004083642A (en) Ultraviolet curing type low-modulus resin composition
JP3912521B2 (en) Heat resistant UV curable resin composition
JP2004269554A (en) Ultraviolet curing type resin adhesive
CN109219773B (en) Sealing agent for liquid crystal display element, vertical conduction material, liquid crystal display element, and cured product
JP6961921B2 (en) Resin composition for underfill material and electronic component equipment using it and its manufacturing method
WO2018181536A1 (en) Adhesive composition and structural body
JP2006160970A (en) Heat-resistant and ultraviolet-curable resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070620