JP5160717B2 - 対称的な並列導体のコイルアンテナを有するプラズマリアクタ - Google Patents

対称的な並列導体のコイルアンテナを有するプラズマリアクタ Download PDF

Info

Publication number
JP5160717B2
JP5160717B2 JP2002508822A JP2002508822A JP5160717B2 JP 5160717 B2 JP5160717 B2 JP 5160717B2 JP 2002508822 A JP2002508822 A JP 2002508822A JP 2002508822 A JP2002508822 A JP 2002508822A JP 5160717 B2 JP5160717 B2 JP 5160717B2
Authority
JP
Japan
Prior art keywords
antenna
conductors
plasma reactor
plasma
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002508822A
Other languages
English (en)
Other versions
JP2004509429A5 (ja
JP2004509429A (ja
Inventor
ジョン ホランド
ヴァレンティン エヌ トドロウ
マイケル バーンズ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Applied Materials Inc
Original Assignee
Applied Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US09/611,345 external-priority patent/US6462481B1/en
Priority claimed from US09/611,170 external-priority patent/US6694915B1/en
Priority claimed from US09/611,168 external-priority patent/US6414648B1/en
Priority claimed from US09/611,169 external-priority patent/US6685798B1/en
Priority claimed from US09/610,800 external-priority patent/US6409933B1/en
Application filed by Applied Materials Inc filed Critical Applied Materials Inc
Publication of JP2004509429A publication Critical patent/JP2004509429A/ja
Publication of JP2004509429A5 publication Critical patent/JP2004509429A5/ja
Application granted granted Critical
Publication of JP5160717B2 publication Critical patent/JP5160717B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Drying Of Semiconductors (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【0001】
(発明の背景)
半導体のマイクロエレクトロニック回路を製造するために使用されるプラズマリアクタは、処理ガスから形成されるプラズマを維持するためにRF誘導結合された磁界を用いることができる。このようなプラズマは、エッチング及び堆積プロセスを行なうのに有用である。一般に、高周波RFソース電力信号がリアクタチャンバの天井近くにあるコイルアンテナに与えられる。チャンバ内のペデスタル上の半導体ウエハまたはワークピースの支持体は、そこへ与えられるバイアスRF信号を有する。コイルアンテナに供給される信号の電力は、チャンバ内のプラズマイオン密度を主に決定するが、一方、ウエハに与えられるバイアス信号の電力はウエハ表面のイオンエネルギーを決定する。この様なコイルアンテナのもつ1つの問題は、例えばアークのようなプラズマにおいて好ましくない影響を誘発する、アンテナの両端に比較的大きな電圧降下があることである。この影響は、コイルアンテナのリアクタンスが周波数に比例するので、コイルアンテナに与えられるソース電力信号の周波数が増大するに従ってより激しくなる。幾つかのリアクタにおいて、この問題は、周波数を例えば約2MHzの低い範囲に制限することによって解決される。都合の悪いことには、このような低い周波数においては、RF電力のプラズマへの結合は余り効率的でない。10MHz〜20MHzの範囲の周波数で、安定した高い密度のプラズマ放電を達成することはしばしば容易である。低い周波数(例えば、2MHz)で動作する他の欠点は、インピーダンスマッチング回路網としてこれらの素子の要素の大きさは非常に大きく、従って、邪魔であるし、費用もかかる。
【0002】
コイルアンテナの有する他の問題は、アンテナへの効率的な誘導結合は、一般に大きな磁気フラックスの密度を形成するコイルの巻き数を増大することによって達成されることである。これは、コイルの誘導性リアクタンスを増大し、(主にプラズマ抵抗から成る)回路の抵抗が一定のままであるので、回路のQ(回路のリアクタンスと抵抗の比)が増加する。これは、変化するチャンバの状態にわたって、インピーダンスマッチングを維持するこのの不安定性及び困難性を次々に導く。コイルのインダクタンスは非常に大きいので、ストレーキャパシタンスと結合して、自己共振がコイルに与えられたRF信号の周波数の近くで発生した場合に、不安定性が特に起きる。
【0003】
これらの問題は、「Inductively Coupled Plasma Reactor With Symmetrical Parallel Multiple Coils Having A Common RF Terminal:共通のRF端子を有する対称的な並列マルチコイルを有する誘導結合されたプラズマリアクタ」の名称で、Xue-Yu Qian他に与えられ、1999年7月6日に発行された米国特許5,919,389号に記載されているように、外側に多数インターリーブした対称的にスパイラル状に配列された導体を有する誘導性コイルアンテナの発明によって解決されている。アンテナをインターリーブした対称的パターン内で多数の導体に分割することによって、電圧降下が減少される。何故ならば、それがアンテナの複数導体に分割されるからである。従って、ソース電力信号の周波数は、従来のコイルアンテナにおけるように制限されない。この形式のコイルアンテナは、この明細書において、“インターリーブされた”コイルアンテナと呼ばれる。このようなインターリーブされたコイルアンテナは、平坦なパンケーキ形状ばかりでなく、ドーム形状や、側壁の周りに円筒状のスカートを有するドーム形状、またはチャンバの側壁の周りに円筒状のスカートを有する平坦なパンケーキ形状を有するいろいろな構成として開示されている(米国特許5,919,389号)。
【0004】
チャンバの天井の上に置かれているコイルアンテナの1つの制限(従来の形式ばかりでなくインターリーブされた形式も)は、アンテナの隣接する導体間の相互インダクタンスが一般に水平方向にある(一般にRF電力がプラズマに誘導的に結合されなければならない垂直方向に直角である)ことである。これは、プラズマへのパワーデポジションの空間制御を制限する1つの重要なファクターである。本発明の目的は、誘導性結合の空間制御におけるこの制限を克服することである。
【0005】
一般に、内側と外側のコイルアンテナの場合、それらは、物理的に、(それぞれの半径に限られるよりはむしろ)半径方向に、即ち水平に配置されるので、それらの半径方向の位置はそれに従って拡散される。これは、特に水平の真の“パンケーキ”形状である。従って、内側と外側アンテナ間に供給されたRF電力の相対的な配分を変えることによって、プラズマイオン分布の半径方向の分布を変える能力が制限される。この問題は、特に、大きな直径(例えば、300mm)を有する半導体ウエハを処理する場合に重大である。これは、ウエハの大きさが増加するに従って、全体のウエハ表面を横切って均一なプラズマイオン密度を維持することがより困難になるからである。プラズマイオン密度の半径方向の分布は、オーバヘッドアンテナから与えられる磁界の半径方向の分布を調整することによって容易に整えられる。それはプラズマイオン密度を決定するこの磁界である。従って、ウエハの大きさが増加するに従って、印加されたRF磁界の半径方向の分布を整えるか、または調整する能力が必要である。よって、内側と外側アンテナ間に加えられたRF電力の分布の影響を増大することが必要であり、特に、内側と外側アンテナの各々を別々の、または非常に狭い半径方向の位置へ制限することによってこれを達成することが必要である。
【0006】
内側と外側コイルアンテナを使用する場合に遭遇する他の問題は、一般に、外側アンテナが内側アンテナより著しく大きなインダクタンスをもっている(外側の半径の距離が長いため)ので、それらは大きく異なるインピーダンスを有することである。その結果、2つのコイルのインピーダンスは同じでない。この問題は、チャンバの大きさが増加して大きな半導体ウエハを収容するに従ってより深刻である。この問題を取り巻く1つの方法は、内側と外側アンテナを駆動するために、独立したRF電源を使用することである。各々の電源がそれ自体のインピーダンスマッチング回路網を有しているので、内側と外側アンテナ間のインピーダンスの不均衡は問題ではない。しかし、2つの独立した電源を同相に保つことが困難または実際的でないので、それらのRF電流が同相または逆相でなくなるに従って、2つのアンテナによって発生されるRF磁界間の有益及び無益な干渉の発生により、望ましくない影響が発生するという他の問題が起こる。この問題は、本発明の1つの特徴に従って、異なるRF電力レベルをその2つの出力ヘ分配する能力を有する単一の、新規な、二重出力RF電源を用いることによる克服される。しかし、この単一のRF電源の場合、内側と外側アンテナのインピーダンス間の不均衡は、再び問題である。従って、いずれかの誘導性結合を犠牲にすることなく、内側と外側コイルのインピーダンスの少なくとも均等化を容易にすることが必要である。
【0007】
(発明の概要)
本発明の1つの実施の形態は、半導体ワークピースを処理するためのプラズマリアクタにおいて実現される。このリアクタは、側壁及び天井を有する真空チャンバ、チャンバ内に、一般に天井に面するワークピース支持ペデスタル、プロセスガスをチャンバへ供給することができるガス入口及び天井の上に置かれるソレノイドのインターリーブされた並列導体のコイルアンテナを含み、さらに、軸対称から少なくともほぼ一様に横に変位したそれぞれの同軸ヘリカルソレノイドにおいて天井にほぼ垂直な対称軸の周りに巻かれた第1の複数導体を含んでいる。各々のヘリカルソレノイドは、対称軸に平行な方向に他のヘリカルソレノイドからオフセットされている。RFプラズマソース電源が複数導体の両端に接続される。
【0008】
他の実施の形態において、アンテナは、天井の上に置かれ、それぞれの同軸状に並んだヘリカルソレノイドにおいて、天井にほぼ垂直な対称軸の周りに巻かれた第1の複数導体を含むソレノイドのセグメント化された並列導体コイルアンテナであり、各々のヘリカルソレノイドは、軸対称に垂直な方向に最も近い他のヘリカルソレノイドから複数導体の約導体幅の距離だけオフセットされており、それによって、各々のヘリカルソレノイドは、僅かに異なった直径を有する。
【0009】
いずれかの実施の形態において、リアクタは、さらに、天井の上に置かれ、第1のソレノイドのインターリーブされた並列導体コイルアンテナによって囲まれ、且つ、それより小さい横方向の大きさを有する内側アンテナを有し、それにより、第1の並列導体コイルアンテナは外側コイルアンテナとなる。1つの形態において、リアクタは、さらに、内側コイルアンテナに接続された第2のRFプラズマソース電源を有し、それにより、内側と外側アンテナに供給されるそれぞれのRF電力レベルは、内側と外側アンテナから供給されるRF磁界の半径方向の分布を制御するために差動的に調整することができる。しかし、好適な実施の形態においては、RFプラズマソース電源は、差動的に調整することができる電力レベルを有する2つのRF出力を有し、この2つのRF出力の一方は、外側アンテナに接続され、その他方は内側アンテナに接続され、それにより、内側と外側アンテナに供給されるそれぞれのRF電力レベルは、内側と外側アンテナから供給されたRF磁界の半径方向の分布を制御するために差動的に調整することができる。
【0010】
好ましくは、第1の並列複数導体の数は、第2の並列複数導体の数より大きく、且つ、それに従って、第1の並列複数導体の長さは、外側アンテナの誘導性リアクタンスを内側のアンテナのそれの少なくとも近づけるように、短くされる。
【0011】
また、内側アンテナが並列導体アンテナであるならば、好ましくは、第1の並列複数導体の数は、第2の並列複数導体の数より大きく、且つ、第1の並列複数導体の長さは、それに従って、第1の並列複数導体の長さは、外側アンテナの誘導性リアクタンスを内側アンテナの誘導性リアクタンスに少なくとも近づけるように、短くされる。
【0012】
外側アンテナの第1の複数導体の横方向の変位は、好ましくは、一様であり、且つ、内側アンテナの第2の複数導体の横方向の変位は、好ましくは、一様であり、それにより、内側と外側アンテナは、導体の厚さに相当する幅のそれぞれの狭い環状内に制限され、それにより、供給されたRF磁界の半径方向の分布に関して内側と外側アンテナの差の影響を最大にする。
【0013】
(好適な実施の形態の詳細な説明)
ソレノイドのインターリーブされたコイルアンテナ
図1を参照すると、プラズマへの誘導性結合の効率は、ソレノイドのマルチ導体のインターリーブされたコイルアンテナとしてアンテナ100を構成することによって、増大される。図示された実施の形態において、ソレノイドのアンテナ100は、垂直の真っ直ぐな円筒、または仮想の円筒状表面または位置を規定し、その対称軸は、リアクタの真空チャンバ101の対称軸と一致する。好ましくは、更に、それは処理のために受取られるワークピースの対称軸と一致する。図1において、リアクタチャンバ101は円筒上の側壁105と平坦な天井110によって画定される。ウエハ支持ペデスタル115は、リアクタチャンバ101内に設けられ、チャンバの天井に面して向けられ、チャンバの対称軸にその中心が置かれる。真空ポンプ120がチャンバの排気出口に接続される。プロセスガスの供給源125は、ガス入口130を介してプロセスガスをリアクタチャンバ内部に供給する。プロセスガスは、例えば、ポリシリコンエッチング用のハロゲン化物ガス、二酸化シリコンエッチング用のフルオロカーボンガス、またはシリコンの化学気相堆積プロセス用のシランを含むことができる。または、ガスは、例えば、金属エッチング用の塩素含有ガスを含むことができる。ガスの入り口130は、単一のパイプとして図1に示されているが、しかし実際には、より精巧な構造、例えば多数の入口を介して実現される。
【0014】
アンテナからチャンバへ誘導されるRF電力の影響の下で、これらのガスはワークピースを処理するためのプラズマを支える。実行されるプラズマプロセスは、エッチングばかりでなく、適当な先駆ガスを用いる堆積、例えば化学気相堆積を含むことができる。
【0015】
ペデスタル115は、インピーダンスマッチング回路網140を介してバイアスRF電源145に結合される導電性電極115aを有する。チャンバ側壁105はアルミニウムのような金属であり、一方、天井110はクォーツのような誘電体であることができる。本発明の他の実施の形態においては、天井は平坦でなく、ドーム形状またはコニカル形状であることができる。さらに、天井110は、誘電体以外の半導体であってもよい。天井の半導体材料は、それがアンテナばかりでなく電極からのRF誘導性磁界に対して窓として働くように最適な導電率を有している。この目的のために最適な導電率の決め方は、"Parallel Plate Electrode Plasma Reactor Having An Inductive Antenna Coupling Power Through a Parallel Plate Electrode:平行板電極を介して電力を給電する誘導性アンテナを有する平行板電極プラズマリアクタ"の名称でKenneth S. Collinsに与えられ、2000年6月20日に発行された米国特許第6,077,384号に記載されている。本件の場合、天井100が電極として用いられているが、それは接地される(点線で示されている)か、またはマッチング回路網150を介してRF電源155に接続されることができる(同様に、点線で示されている)。チャンバ及び/またはアンテナは、円筒型状以外の形状を有することができ、たとえば、それは矩形であっても、正方形の断面を有していても良い。ワークピースも円形以外の形状であってもよく、例えば、それらは正方形または他の外形で良い。処理されるべきワークピースは、半導体ウエハでも良いし、またはそれらはマスクレチクルのような他のものであってもよい。
【0016】
インターリーブされたソレノイドコイルアンテナ100は、如何なる数のインターリーブされた導体を含むことができる。図1の実施の形態において、コイルアンテナは、3つのインターリーブされた対称的に配置された導体160、163、166から成っている。アンテナの複数導体は、互いにほぼ平行なそれぞれのヘリカスパスに沿って置いてある。各々のへリックスは、同じ仮想の直立円筒面にしたがって、ソレノイド構成を形成している。図示されているように、ヘリカル導体160、163、166は、垂直方向に互いに一様に離されている。より一般的には、導体は、チャンバのほぼ対称軸の方向に、互いに実質的に一様に離されている。それらの電力の入力タップ160a、163a、166aは、それぞれ、インピーダンスマッチング回路網170を介してRFプラズマソース電源175に接続されている。それらの戻りタップ160b、163b、166bは、それぞれグランドに接続(接地)されている。図示されているように、電力(入力)タップ160a、163a、166aは、好ましくは、仮想円形の同じ水平面にあり、一様な間隔で仮想円形の周囲に沿って配置されていいて、3つの導体の場合、それは120度である。より一般的には、前述された面はチャンバの対称軸を横切っている。同様に、戻りタップ160b、163b、166bは、同一面にあり、一様の間隔で配置されている。この実施の形態において、各々の導体160、163、166のヘリカルパスは、タップ160a、163a、166aが同一平面にあるが、導体間でほぼ一様な軸変位を実現するために軸方向に充分な傾斜を有している。他の実施の形態では、タップは同一面にある必要はない。
【0017】
図1の実施の形態において、各々の導体の電力タップと戻りタップは、軸方向に整列されている(ここでは、チャンバの軸が垂直に向くように示されているので、垂直に整列されている)。例えば、導体160の電力タップ160aと戻りタップ160bは軸方向に整列されている。好ましくは、巻線の接地された端部は、高電位をプラズマに近づけないために、図1に示されるようにチャンバ天井に最も近づけてあり、それにより、アークが起きる傾向及び望ましくない容量性結合の影響を最小にする。
【0018】
主な利点は、誘導性結合が単一導体以外の複数導体(例えば、3つの導体160、163、166)によってもたらされ、その結果誘導性結合の同じ量に対して、長さの短い導体を用いることができる。この特徴は、各々の導体に沿う電位降下を大きく減少し、容量性結合を有利に減少する。
【0019】
この図示された実施の形態において、アンテナ100は、円筒状のリアクタチャンバの側壁105の対称軸の周りに対称的に配置される。従って、例えば、入力タップ160a、163a、166aは、円筒形の側壁105の対称軸から及び互いに等しく間隔が開けられている。同様に、アンテナ100の下部にある出力(戻り)タップ100b、163b、166bも円筒形の側壁105の対称軸から及び互いに等しく間隔が開けられている。さらに、各々の導体160、163、166は、対称軸の回りに互いに実質的に同じ間隔が開けられた実質的に同じ形状であり、また実質的に同じ長さである。好ましくは、それぞれの導体の入力と出力のタップ(例えば、入力と出力のタップ160a、160b)は、互いに垂直に整列されている(即ち、円筒状の側壁105の対称軸に沿っている)。
【0020】
ソレノイドコイルがどうして良好な結合を与えるか
本発明の図示された実施の形態のソレノイドの特徴は、各々の導体セグメントが対称軸の方向にその最も近い隣の導体セグメントから離されているので、アンテナのプラズマへの結合を増加する。この方法で、導体セグメント間の相互結合へ寄与する磁力線は軸方向にあるので、それらはリアクタチャンバ内でプラズマに向かって有効に達する。従って、プラズマへの結合は、コイルがチャンバ軸に垂直な方向に相互結合を有していて、平坦である設計に比べて増加される。図1の実施の形態において、3つの導体160、136、166は、互いに軸方向に離されているので、最も近い隣の導体間の相互インダクタンスは、一般にチャンバの軸方向にある。
【0021】
多数のインターリーブされた導体を有する内側と外側のソレノイドコイルアンテナ
図2−4は、内側と外側ソレノイドアンテナを有するリアクタの斜視図、上面図及び縦断面図を示し、それぞれのアンテナは、図1に示された形式のインターリーブされた多数の導体を有する。内側ソレノイドドアンテナ210は、2つのインターリーブされた導体215、220(図1に示された3つとは異なる)を有する。しかし、他の実施の形態では、これらのインターリーブされた導体より大きな数の導体が設けられてもよい。電力タップ(端子)215a、220aは、互いに180度の角度離されて配置されており、戻りタップ215b、220bも同様である。図1の実施の形態におけるように、図2のそれぞれの導体215、220の電力及び戻り端子は、垂直に整列されている。他の実施の形態では、それらは軸整列されていなくても良い。また、図1の実施の形態におけるように、図2において、電力タップ215a、220aは軸を横切った上部面にあるが、戻りタップ215b、220bは軸を横切った下部面にある。図示された位置において、これら横切った両方の面は水平である。導体215、220の各々は、充分な傾斜を有してへリックス状に巻かれており、電力タップ215a、220aの180度の角度離間は、図2に示された導体215、220間で軸方向のオフセットを与えるのに充分である。
【0022】
外側アンテナ230は、上部水平面において120度間隔の電力タップ235a、240a、245a及び下部水平面において120度間隔の戻りタップ235b、240b、245bを有する3つのインターリーブされた平行導体235、240、245を有している。プラズマイオン密度の半径方向の分布の調整を容易にするために、内側と外側アンテナ210、230のそれぞれ1つに供給された電力レベルは、別々に又は作動的に調整可能でなければならない。この目的のために、図2はそれぞれのインピーダンスマッチング回路網260、265を介して内側と外側のアンテナ210、230に結合された2つの個別のRF電源250、255を示している。個別の電源を用いる1つの問題は、それらの出力信号が同相及び逆相をさまよう傾向にあることである。代わりに、図4は内側と外側のアンテナ210、230に接続された差動的に調整可能な2つの出力を有する共通のRF電源270を示す。二重出力RF電源270は本明細書の後の方で説明される。その主な利点は、内側と外側のアンテナ210、230に供給される別々に調整可能なRF信号は同相であるが、しかし、それぞれの電力レベルは互いに関して調整することができる。多重コイルアンテナの革新的な設計は、多重コイル間のインピーダンスマッチングとバランス、及び共通電源の使用を容易にする。
【0023】
図4の立断面図は、内側と外側アンテナ210、230の個々の半径方向の形状が如何に天井110の小さな領域にあるかを示しており、残りの領域は、大部分の天井の上に温度制御素子の配置用の充分なスペースを提供している。特に、例えば、温度制御素子は、内側と外側アンテナ210、230の下にない部分の天井110の上面に接触して熱伝導スペーサ286、288を有することができる。内側のスペーサ286は、内側アンテナ210によって囲まれ直立固体円筒であり、一方、外側のスペーサは、内側と外側アンテナ210、230によって囲まれた個体環状体である。冷却板290が熱伝導スペーサ286、288の上面に接して置かれ、冷却板を通して延びる冷却液が循環する冷却路292を有する。さらに、スペーサ286、288は、天井110に面して加熱ランプ294を収容するための中空のスペースを有することもできる。
【0024】
ソレノイドの内側 / 外側アンテナが如何にプラズマイオン密度の半径方向の分布の調整を増大するか
平坦な(“パンケーキ状”)形式の内側と外側アンテナは、比較的大きな水平の環状体を横切って分布されるようになるので、それらの放射電力のデポジションの“ロケーション”は個々に定義されていない。例えば、内側アンテナの外側巻線のあるものは、外側アンテナの内側巻線の近くにある。従って、内側アンテナの最も外側巻線に流れるこれらのRF電流は、外側アンテナの内側巻線の結合に影響する。同様に、外側アンテナの最も内側の巻線に流れるRF電流は、内側アンテナの外側巻線の結合に影響する。結果として、内側と外側アンテナの位置的効果は拡散され、半径方向の電力分布は、ソレノイドコイルに供給されるRF電力を単に調整することによって容易に制御することができない。これは、それらが、内側と外側アンテナに供給される電力レベル間に与えられた相違に対するRF磁界の半径方向の分布(及び、従って、プラズマイオン密度の半径方向の分布)をシフトすることができる程度減少する。
【0025】
逆に、図2-4に示された実施の形態において、複数導体がほぼ垂直方向に(即ち、より一般的には、チャンバ軸の方向に)互いにオフセットされているソレノイドの内側と外側アンテナ210、230は、薄い導体それ自体の半径方向の幅を超える半径方向の幅を実際にもたない。これは、水平面(即ち、より一般的には、チャンバの軸を横切る面)において、内側と外側アンテナ210、230は、円形のラインが薄い2つの個々の同心円として現れていることを明らかに示している図3の実施の形態において最もよくわかる。従って、例えば、外側アンテナ230に供給されるRF電力の全てが外側アンテナの単一の個々の半径位置からチャンバへ放射するので、上述した従来のアンテナにおけるように内部の半径方向の位置で浪費されることがない。内側アンテナ210へ供給されるRF電力の全てが内側アンテナ210の単一の個別半径から放射する点で、内側アンテナについても正しい。従って、外側の半径方向の位置において浪費されることがない。結果的に、内側と外側アンテナ210、230の供給された電力レベルにおける相違の与えられた範囲に対して、プラズマイオン密度の半径方向の分布におけるシフトとが従来の場合におけるより非常に大きいことが理解される。
【0026】
この特徴は、チャンバのサイズが大きな半導体ウエハのサイズを収容するために上方に向かって大きくされるに従って、大きな利点を提供する。ウエハのサイズが大きくなるに従って、全体のウエハ表面にわたって一様なプラズマイオン密度を維持し、且つウエハ表面にわたってプラズマイオン密度の分布を調整することが困難になる。プラズマイオン密度の半径方向の分布は与えられた誘導磁界の半径方向の分布によって大部分決まる。したがって、プラズマイオン密度の半径方向の分布は、オーバヘッドアンテナから与えられる誘導磁界の半径方向の分布を調整することによって、容易に形成される。ウエハのサイズが大きくなるにしたがって、供給されるRF誘導磁界の半径方向の分布を形成し又は調整する大きな能力は、前に可能であった以上に必要とされる。この必要性は、(a)内側と外側アンテナの各々を別々の、または非常に狭い半径方向の位置に制限することによって、及び(b)このアンテナを複数の対称に配列された導体として設けることによって、内側と外側アンテナ間に与えれたRF電力の配分の効果を増大することによって得られる。これは、いろいろな直径のアンテナの著しく増大されたインピーダンスマッチング、及び電力配分能力に対する基礎を提供するばかりでなく、以下に詳細に説明されるように、電圧降下及び望ましくない容量性結合の影響を最小にする。
【0027】
内側と外側アンテナのインピーダンスはどのようにマッチングされるか
本明細書において上述されたように、外側アンテナ230の大きな寸法は、内側アンテナ210の導体長より長く、したがって大きな誘導性リアクタンスを示す。これは、リアクタチャンバを横切って一様な電位差を維持することにおいて問題を生じ、もし、共通のRF電源が用いられるならば、インピーダンスのマッチング問題を生じる。本発明の1つの特徴は、外側アンテナと比較して、内側アンテナのインターリーブされたコイルの複数導体の長さ及び数を調整することによって、この問題を解決している。特に、外側導体は、内側導体より大きな数のそれぞれのインターリーブされた導体として与えられる。さらに、外側導体の各々は、比例して短い。内側と外側アンテナ間のインターリーブされた導体の数及び導体長の割合は、内側と外側アンテナのインピーダンス間の不均衡を減少するのに充分である。
【0028】
従って、この問題は、外側アンテナ230における導体の各々のインダクタンス(長さ)を減少することによって、本発明の特徴の1つとして解決される。同時に生じる、外側アンテナ230の全体の誘導性結合の減少を避けるために、それぞれの導体の数は、内側アンテナ210よりも外側アンテナ230において多く設けられる。特に、内側アンテナ210が180度に設けられたタップを有する2つのみの導体を有しているのに対して、外側アンテナ230は、図2-4に示されるように、120度毎に設けられたタップを有す3つの導体を有している。他のアンテナに対してより大きな数の導体は、それぞれの短い導体長を補償するために誘導結合を増大する。更に、短い導体の各々は、同様な、単一の導体アンテナの使用と比較して、非常に減少された電圧降下を示す。
【0029】
第1の一体化された実施の形態
図5は、多数のソレノイドのオーバヘッドアンテナを有する第1の一体化された実施の形態を示し、各々は複数のインターリーブされた導体を有する。内側のソレノイドアンテナ510は、180度間隔で電力タップ515a、520aを有する一対のインターリーブされた導体515、520を有する。外側のソレノイドアンテナ525は、対称軸に関して90度間隔で電力タップ530a、535a、540a、545aを有する4つのインターリーブされた導体530、535、540、545を有する。それぞれのインターリーブされた導体は、設けられたアンテナの残りの導体にほぼ平行である。内側アンテナ510の上にある内側の円形電力バス550は、内側アンテナの電力タップ515a、520aに接続されている。同様に、外側の円形電力バス552は、外側アンテナの電力タップ530a、535a、540a、545aに接続されている。外側アンテナ525の下にあり、90度間隔で設けられた4つのアーム560、562、564、566の組は、それぞれの接地されたタップを円形の接地されたハウジング570に接続する。180度間隔にある互いに反対側にある2つのアーム560、564は、内側アンテナの接地されたタップ515b、520bにそれぞれ接続され、且つ、外側アンテナの接地されたタップ530b、545bに接続されている。残りの2つの反対側にあるアーム562,566は外側アンテナの接地されたタップ535b、545bに接続されている。図5に与えられたアンテナの複数導体の各々の1つに対して、電力タップと接地されたタップは、軸方向に整列している。
【0030】
さらに、双方の内側と外側アンテナの電力及び接地タップは、共直線であり、軸整列している。しかし、それらは整列されている必要がない他の実施の形態が可能である。多数の導体及び対称的な設計は、それぞれのコイル内に及び多数のコイル間で、このような整列されたタップの使用を容易にし、アンテナへのRF電力の入力を非常に簡単にし、また、クロストーク、ストレーリアクタンス、及びプラズマにおける不均一性の可能性を最小にする。
【0031】
セグメント化され、並べられたソレノイド導体
図6A及び図6Bは、複数導体がインターリーブ(例えば、図1に示された形式におけるように)されていない単一のソレノイド導体コイルアンテナを示すが、平行に並べられた導体610、620にセグメント化されており、したがって、それぞれ並べらたセグメント化された導体からなると考えられるソレノイドアンテナを形成する。図6Bの上面図は、チャンバの軸の方向に軸に沿って配置されるか、又は図示されるように垂直配置されるよりは、むしろセグメント化された導体がどのように並べられているかを示す。与えられたアンテナのインターリーブされた実施の形態におけるように、並べられた複数導体が互いに実質的に平行なヘリカル経路に沿って軸の周りに対称的に配列されている。導体610、620の一方が他方よりやや大きなヘリカル半径を有しているので、導体610は内側のセグメントであり、導体620は外側のセグメントである。並べられた導体610、620は、単一のアンテナとして機能する。何故ならば、それらは共に接近した間隔で配置されているからである。例えば、図示された実施の形態では、それらは、導体610、620の厚さの20分の1程度以内の半径方向の距離だけ間隔が開けられている。幾つかの実現例では、この距離は、導体の厚さの30倍程度大きいか、又は導体の厚さのほんの何分の1程度の小ささである。
【0032】
図7Aは、図6A及び図6Bに示された形式の2つのソレノイドのセグメント化され、並べられた複数導体アンテナが、図5の内側と外側アンテナの代わりに内側と外側としてどのように用いられているかを示している。図7Aにおいて、内側アンテナ710は、上部の電力タップ712a、714a及び下部の戻りタップ712b、714bを有する一対の並べられたソレノイド導体712、714から成る。外側アンテナ730は、4つの並べられたソレノイド導体735、740、745、750から成り、各々は、内側アンテナ710の数より少ない数の導体を有している。それらの電力タップ735a、740a、745a、750aは上部にあり、それらの戻りタップ735b、740b、745b、750bは、下部にある。内側と外側アンテナ710、730は、好ましくは、それらの電力レベルが差動的に調整されるように、異なる電力の出力端子へ接続される。これは、以下に説明されるように、別々の電源または別々に又は差動的に調整可能な出力を有する共通電源を用いて達成されることができる。
【0033】
図7Bは、図7Aの実施の形態における変形例を示し、図7Aの実施の形態におけるように平坦とは異なるリアクタチャンバの天井がドーム形状であり、セグメント化されたソレノイドの内側と外側アンテナが図7Bのドーム形状の天井110に沿っている。したがって、内側アンテナ710の各々のソレノイド状コイル712、714及び外側アンテナ730のそれぞれのソレノイド状コイル735、740は、コニカル状のへリックス又はヘリカルなドーム形状に巻かれており、各々の下側巻線712、714、735、740は、コイルの上側巻線より大きな直径を有している。好ましくは、コイル712、714、735、740が巻かれる前のコニカル表面は、図7Bのドーム形状の天井110と一致している。
【0034】
内側と外側の平坦なコイルアンテナのチューニング
図8は、内側と外側のインターリーブされたコイルアンテナの平坦な形態は、それらのインピーダンスをマッチングに近づけるように、アンテナをチューニングするために如何に変形されるかを示している。図5の実施の形態におけるように、図8の内側アンテナは、2つのインターリーブされた導体815、820を有し、一方、外側アンテナ825は、4つのインターリーブされた導体830、835、840、845を有している。内側アンテナの電力タップ815a、820aは共通に接続され、一方、接地タップ815b、820bは180度の間隔で設けられいる。外側アンテナの電力タップ830a、835a、840a、845aは90度の間隔で設けられ、外側アンテナの接地タップ830b、835b、840b、845bも同様に90度の間隔で設けられている。図5の実施の形態におけるように、図8の内側と外側アンテナはほぼインピーダンスマッチングされている。何故ならば、外側アンテナは、内側アンテナとして個々の導体の2倍多く設けられており、その長さは、外側アンテナの全体の誘導結合を犠牲にすることなくそれらのそれぞれのインダクタンスを減少するように比例して短くされているからである。
【0035】
上述したように、内側と外側の多数導体アンテナ810、825間の良好なインピーダンスマッチングは、双方のアンテナのために共通の電源を用いるために、電力のプラズマへの優れた結合及びより実用的な適用を含む多くの望ましい利点を容易にする。改善されたインピーダンスマッチングの同じ原理が、ソレノイド及び平坦な形状ばかりでなく、インターリーブされ、且つセグメント化されたものを含み、形状に無関係に、それぞれが多数の導体を有する複数のアンテナを含むる誘導性ソースへ適用することができる。
【0036】
ドーム天井を有するソレノイドのインターリーブされたアンテナ
図9は、天井110がドーム形状であるプラズマリアクタが如何に図5の円筒形ソレノイドの内側と外側アンテナ510、525を有するかを示している。図9において、外側アンテナ525は、ドーム天井の外側部分に載置され、したがって、内側アンテナ510より幾らか低いレベルに設けられている。
【0037】
図10は、図9の変形例を示し、外側アンテナ525は、ドーム形状の天井110の外側部分の傾斜及びほぼ垂直な表面に一致しているアンテナであるように変形されている。
【0038】
図11は、図9の変形例を示し、外側巻線525のソレノイドは、断面がドーム形状の天井110の表面に垂直であるように、逆コニカルの部分形状を有するアンテナであるように変形されている。
【0039】
図12は、図10の変形例を示し、内側アンテナ510がQian他に付与された前述の特許に記載されている形式の平坦なインターリーブされたコイルアンテナ1200によって置き換えられている。
【0040】
図13は、図9の変形例を示し、外側アンテナ525が天井110の上に置かれるよりもチャンバの側壁105を囲むように、チャンバの円筒形の側壁105のレベルに置かれている。
【0041】
平坦な天井に設けられたソレノイドのインターリーブされたアンテナ
図14は、天井が平坦である図13の変形例を示す。
図15は、図14の変形例を示し、内側アンテナが図12の平坦なインターリーブされた並列導体コイルアンテナ1200である。
【0042】
インターリーブ化とセグメント化の組合せ
図16は、図1を参照して説明したインターリーブ化及び図6aを参照して説明したセグメント化の両方を有する単一のソレノイド状コイルアンテナ1600を示す。図16のアンテナは、2つのインターリーブされた並列導体1610、1620を有する内側のセグメント1605を有する。この内側のセグメント1605は、実質的に図1のインターリーブされたソレノイドコイルの2つの導体の例である。図16のアンテナは、さらに、内側セグメント1605を囲む外側セグメント1630を有する。また、外側のセグメントも、2つのインターリーブされた並列導体1640、1650を有する。外側セグメント1630も図1のインターリーブされたソレノイドコイルの2つの導体の例である。図16における導体のそれぞれの上端は電力タップであり、それらの全てがインピーダンスマッチング回路網1660を介してRF電源1670に接続されている。図16における導体のそれぞれの下端は、グランドに接続される戻りタップである。
【0043】
図17は、外側アンテナ525が図16のアンテナ1600で置き換えられているほかは、図5の実施の形態と同様の本発明の他の実施の形態を示す。図17の内側アンテナ510は、図5を参照して説明したものと同じである。
【0044】
図17は、図16の縦断面図よりアンテナ1600の詳細な図を与える斜視図である。図17は、内側セグメント導体1610の電力及び接地タップ161a、1610bが垂直に整列され、且つ内側セグメントの他の内側アンテナ導体1620の垂直に整列された電力と接地タップ1620a、1620bから180度だけオフセットされていることを示す。同様に、外側セグメントの導体1640の電力と接地タップ1640a、1640bが垂直に整列され、且つ外側セグメントの他の導体1650の垂直に整列された電力と接地タップ1650a、1650bから180度だけオフセットされていることを示す。さらに、内側セグメント1605のタップは、外側セグメント1630のタップに対して90度の位置に配置されている。
【0045】
内側アンテナ510の上にある内側環状電力バス1750は、内側アンテナ510の電力タップの各々にRF電力を供給する。外側アンテナの内側と外側セグメント1605、1630の両方の上にある外側環状電力バス1760は、セグメント1605、1630の電力タップの各々にRF電力を供給する。
【0046】
複数の差動的に調整可能な出力を有するRF電源
少なくとも2つの差動的に調整可能な電力出力を有するRF電源は、この明細書において前述されており、"Inductively Coupled Plasma Source with Controllable Power Deposition"の名称で、Barnes他によって2000年4月6日に出願され、出願中の米国特許出願第09/544,377に記載されている。この記載は、レファレンスによってここに取り込まれる。図18は、二重出力を有するこのような電源の1つの実施の形態を示す。図18において、RF電源1800は、インピーダンスマッチング回路網1815を介して直列キャパシタ1820と可変並列キャパシタ1825に接続されたRF発生器1810を有する。電源1800の第1のRF出力端子1830はマッチング回路網1815と直列キャパシタ1820間に接続され、一方、第2のRF出力端子1840は、直列キャパシタ1820の反対側に接続される。可変並列キャパシタ1825を調整することは、その調整に依存して、多くの電力を一方の出力端子又は他方の出力端子へ配分する。したがって、2つの出力端子における電力レベルは、差動的に調整できる。図18に示されるように、第1の出力端子1830は、内側アンテナに接続され、一方、他方の出力端子1840は図5の外側アンテナに接続される。図19において、端子1830、1840は図7の内側と外側のセグメント化された並列導体アンテナ710、130にそれぞれ接続されている。図20において、出力端子1830、1840は、図8の内側と外側のインターリーブされたコイルアンテナ810、825にそれぞれ接続されている。より一般的には、図18の二重出力電源は、内側アンテナに接続された端子1830及び外側アンテナに接続された端子1840を有する内側と外側アンテナを有するあらゆるプラズマリアクタで用いられることができる。これは、図9乃至図15を参照して上述した外側と内側アンテナを有するリアクタのそれぞれに当てはまる。
【0047】
電源は、2つより多くのアンテナを有するリアクタと共に使用する2つより多い差動的に調整可能な出力を有することもできる。例えば、図21は、3つのアンテナ、即ち、内側アンテナ2110、中間アンテナ2120、及び外側アンテナ2130を有するリアクタを示す。これら3つのアンテナの各々は、適当なコイルアンテナのいずれの形式、例えば、平坦なまたはソレノイド状の単一導体コイルアンテナ、平坦又はソレノイド状のインターリーブされた並列導体アンテナ、ソレノイド状のセグメント化された並列導体アンテナ、又は前述の形式の異なるものの組合せであってもよい。しかし、図21の実施の形態では、内側アンテナ2110は、図2のソレノイド状のインターリーブした並列導体アンテナであり、中間アンテナ2120は、図16のセグメント化され、インターリーブされた並列導体アンテナ1600である。さらに、外側アンテナ2130は、図16のセグメント化され、インターリーブされた並列導体アンテナ1600の大きな変更である。
【0048】
図22は、3つのプラズマリアクタ、例えば21図の3つのアンテナのあるプラズマリアクタと共に使用する3つの差動的に調整可能な出力端子を有するRF電源を示す。図22のRF電源は、マッチング回路網2215、第1と第2の直列キャパシタ2220、2230、及び第1と第2の可変並列キャパシタ2240、2250を有するRF電力発生器2210を示す。第1の可変並列キャパシタ2240は、第1の直列キャパシタと接地の双方に接続され、また第2の可変並列キャパシタ2250は、第2の直列キャパシタ2230と接地の双方に接続される。第1の出力端子2260は、マッチング回路網2215と第1の直列キャパシタ2220の間に接続される。第2の出力端子2265は、第1の並列キャパシタ2240と第2の直列キャパシタ2230の間に接続される。第3の出力端子2270は、第2の直列キャパシタ2230の他方の側に接続される。好ましくは、第1の出力端子2260は、図21の内側アンテナ2110の電力タップに接続され、第2の出力端子2265は中間アンテナ2110の電力タップに接続され、及び第3の出力端子2270は、外側アンテナ2130の電力タップに接続される。
【0049】
図23は、図22の3端子RF電源の変形を示し、第1の直列及び並列キャパシタ2220、2240は、第2の直列及び並列キャパシタ2230、2250に並列に接続される。
【0050】
実際に、可変並列キャパシタ2240、2250は、供給されたRF磁界またはプラズマイオン密度の所望の半径方向の分布が得られるまで、内側、中間及び外側アンテナへ異なるRF電力レベルを分配するように調整される。得られるべき特定の半径方向の分布は行われているプロセスに依存する。例えば、あるプロセスは一様な分布を必要とする。他のプロセス、例えば、アルミニウムのエッチングは、供給されるRF磁界の適当な不均一な半径方向の分布を選択することによって補償されるウエハ表面にわたって不均一なガスまたはイオン分布を生成する。この選択は、可変並列キャパシタ2230、2250の調整により達成される。
【0051】
図24は、図1の実施の形態の変形を示し、コイル導体160、163、166を含むコイルアンテナ100が図1の実施の形態におけるように円形とは異なって対称軸の周りにある矩形である。この実施の形態は、平坦なパネルディスプレイ等を処理するのにより良く適合される。
【0052】
開示された実施の形態の利点
プラズマリアクタの性能を低下させたこの分野の多くの問題は今解決された。本発明のソレノイドの特徴は、各々の導体セグメントがほぼ軸方向にその最も近い隣にある導体セグメントから置き換えられているので、アンテナの効率を増加する。この方法で、導体セグメント間の相互結合に寄与することができる磁力線は、垂直方向にあるので、それらはリアクタチャンバ内のプラズマへ向かって有利に到達する。したがって、プラズマへの結合は、コイルがチャンバ軸に垂直な方向で相互結合している平坦である設計に対して増大される。
【0053】
垂直なソレノイドのインターリーブされた複数導体の内側と外側アンテナは、薄い導体自体の幅を超えて殆ど半径方向の幅をもたない。したがって、例えば、外側アンテナへ供給されるRF電力の大部分は、外側アンテナの単一な個々の半径からチャンバへ放射するので、上述した従来のアンテナにおけるように内部の半径方向の位置において“浪費”されない。内側アンテナに供給されるRF電極の大部分が内側アンテナの単一の個々の半径から放射する点において内側アンテナについては正しい。従って、外側の半径方向の位置において浪費されることがない。結果的に、内側と外側アンテナに関して供給される電力レベルの相違の与えられた範囲に対して、プラズマイオン密度の半径方向の分布において従来の場合に可能であるより非常に大きなシフトが実現される。
【0054】
本発明のこの特徴は、非常に大きなウエハ表面にわたって均一な及び/又は調整可能なプラズマイオン分布を与える点において特に有利である。したがって、チャンバサイズは、内側と外側アンテナ構造を用いて、大きな直径のウエハまで容易に大きくできる。更に、非常に大きな数のアンテナ、例えば内側と外側アンテナ間に中間アンテナを用いることによって、非常に大きなものが得られる。
【0055】
内側と外側アンテナのインピーダンス間の不均衡の問題は、内側と外側アンテナのインターリーブされたコイルにおける複数導体の長さおよび数を調整することによって克服される。外側アンテナは、内側アンテナより多くの数のインターリーブされた導体にセグメント化される。さらに、外側アンテナの各々の導体は、それに比例して短い。内側と外側アンテナ間のインターリーブされた導体の数及び導体の長さの割合は、内側と外側アンテナのインピーダンス間の不均衡を減少するのに充分である。従って、この問題は、内側アンテナに対して外側アンテナのそれぞれの導体のインダクタンス(長さ)を減少することによって解決される。外側アンテナの全体の誘導性結合における付随の減少を避けるために、内側アンテナより非常に多くの個々の導体が外側アンテナに設けられる。非常に大きな数の個々のアンテナは、外側アンテナの短くされた導体の長さを補償するために誘導性結合を増大する。内側と外側アンテナがマッチングされ、またはほぼマッチングされることについては、両方のアンテナを駆動する共通の電源がインピーダンスマッチングの問題に遭遇することなく用いられることができる。本発明の図示された実施の形態は、プラズマイオン密度の半径方向の分布の調整を可能にする差動的に調整可能な電力レベルを有する多重出力の共通電源を用いる。
【0056】
インターリーブされた複数導体アンテナに変わるものとして、セグメント化された複数導体アンテナは、インターリーブされた導体アンテナの利点を有しており、ソレノイドまたはドーム形状を有する上述したいろいろな形状において実現される。更に、セグメント化された形状は、上述され、図示された実施の形態にしたがってインターリーブされた形状と組合されることができる。
【0057】
上述されたソレノイドのインターリーブされ、セグメント化された導体アンテナは、好ましくは、一方の面(例えば、上部)に共通面の電力タップ、及び他方の面(例えば、下部)に共通面の戻りタップを有する。与えられたアンテナの複数導体のそれぞれ1つに対して、その電力タップと戻りタップが垂直に整列(または、より一般的にはコイルアンテナの軸に沿って整列)されるのが有利であり、したがって、アンテナの形状を有利に簡単化することができる。
【0058】
したがって、第1に、前述の利点の幾つか及び実際には全てが同じプラズマソースにおいて同時に与えられる。
【0059】
本発明は、図示された実施の形態を特に参照することによって詳細に説明されたが、それらの変形や変更は、本発明の真の精神及び範囲から逸脱することなく行われることができることを理解されるべきである。
【図面の簡単な説明】
【図1】 単一の、ソレノイドのインターリーブされた複数導体コイルアンテナを有する本発明の第1の実施の形態を示す。
【図2】 内側と外側ソレノイドのインターリーブされた複数導体コイルアンテナを有する本発明の第2の実施の形態の斜視図を示す。
【図3】 内側と外側ソレノイドのインターリーブされた複数導体コイルアンテナを有する本発明の第2の実施の形態の上面図を示す。
【図4】 内側と外側ソレノイドのインターリーブされた複数導体コイルアンテナを有する本発明の第2の実施の形態の断面図を示す。
【図5】 内側と外側ソレノイドのインターリーブされた導体コイルアンテナを有する本発明の第1の好適な実施の形態の斜視図を示す。
【図6A】 単一の、ソレノイドのセグメント化された複数導体コイルアンテナを有する本発明の他の実施の形態の斜視図を示す。
【図6B】 単一の、ソレノイドのセグメント化された複数導体コイルアンテナを有する本発明の他の実施の形態の上面図を示す。
【図7A】 内側と外側ソレノイドのセグメント化された導体アンテナを有する本発明の他の実施の形態を示す。
【図7B】 コイルアンテナがドーム形状と一致する、図7Aの本発明の実施の変形例を示す。
【図8】 外側の平坦なインターリーブされた導体コイルアンテナを含み、その導体の長さが内側コイルアンテナのインピーダンスをほぼマッチングするように同調されている本発明の他の実施の形態を示す。
【図9】 リアクタチャンバのドーム形状の天井を有するプラズマリアクタと共に、ソレノイドの、インターリーブされた導体コイルアンテナの1つの形状を示す。
【図10】 リアクタチャンバのドーム形状の天井を有するプラズマリアクタと共に、ソレノイドの、インターリーブされた導体コイルアンテナの他の形状を示す。
【図11】 リアクタチャンバのドーム形状の天井を有するプラズマリアクタと共に、ソレノイドの、インターリーブされた導体コイルアンテナの他の形状を示す。
【図12】 リアクタチャンバのドーム形状の天井を有するプラズマリアクタと共に、ソレノイドの、インターリーブされた導体コイルアンテナの他の形状を示す。
【図13】 リアクタチャンバのドーム形状の天井を有するプラズマリアクタと共に、ソレノイドの、インターリーブされた導体コイルアンテナの更に他の形状を示す。
【図14】 平坦なチャンバの天井を有するプラズマリアクタと共に、ソレノイドのインターリーブされた複数導体コイルアンテナの1つの形状を示す。
【図15】 平坦なチャンバの天井を有するプラズマリアクタト共に、ソレノイドの、インターリーブされた複数導体コイルアンテナの他の形状を示す。
【図16】 単一のソレノイドコイルアンテナにおける複数導体のインターリーブ化とセイグメント化を組合せた本発明の実施の形態を示す。
【図17】 外側アンテナがインターリーブ化とセグメント化された導体を有する図16に示された形式のソレノイドコイルアンテナである、内側と外側コイルアンテナを有する本発明の好適な実施の形態を示す。
【図18】 図5の内側と外側コイルアンテナにそれぞれ接続された差動調整可能な2つの出力を有する単一電源を示す。
【図19】 図7の内側と外側コイルアンテナに接続された図18の二重出力を有する電源を示す。
【図20】 図8の内側と外側コイルアンテナにそれぞれ接続された図18の二重出力を有する電源を示す。
【図21】 内側、中間、及び外側のソレノイドの複数導体コイルアンテナを有する本発明の他の実施の形態を示す。
【図22】 図21のリアクタと共に使用するための差動的に調整可能な三重出力を有する電源の第1の実施の形態を示す。
【図23】 図21のリアクタと共に使用するための差動的に調整可能な三重出力を有する電源の第2の実施の形態を示す。
【図24】 コイルアンテナが円形以外の方形である図1の他の実施の形態を示す。

Claims (15)

  1. ワークピースを処理するためにRF電源の供給と共に使用するプラズマリアクタであって、
    天井を有し、対称を規定する真空チャンバと、
    前記チャンバ内のワークピース支持ペデスタルと、
    前記天井の中間部分上に置かれ、各々が同軸ヘリカルソレノイド形状で前記対称軸の周りに巻かれて、互いに重なって配置された第1の複数導体によって構成される第1のソレノイドのコイルアンテナと、
    を備え、
    前記複数導体は、前記対称軸から少なくともほぼ一様に横方向に間隔を空け、前記複数導体は、ほぼ対称軸の方向に互いに間隔を空け、且つ、前記複数導体の各々は、RFソース電源の両端に接続されることを特徴とするプラズマリアクタ。
  2. 前記コイルアンテナは、前記対称軸にほぼ垂直な上面と下面の間にあり、各導体によって規定されたヘリカルソレノイド形状は、前記上面近くの導体の上部点、及び
    前記下面近くの導体の下部点において終端されており、前記RF電源は、前記導体の各々の前記上部点及び下部点の両端に接続されていることを特徴とする請求項1に記載のプラズマリアクタ。
  3. 前記上部点は、前記RF電源の出力端子に接続され、且つ前記下部点は、前記天井近くの電位を減少するように接地されていることを特徴とする請求項2に記載のプラズマリアクタ。
  4. 前記上部点は、nがコイルアンテナの前記複数導体の数である場合に、
    約360/nによって互いに角度的に変位されていることを特徴とする請求項2に記載のプラズマリアクタ。
  5. 前記下部点は、nがコイルアンテナの前記複数導体の数である場合に、約360/nによって互いに角度的に変位されていることを特徴とする請求項4に記載のプラズマリアクタ。
  6. 前記上部点は同一平面にあり、且つ、前記上面にあることを特徴とする請求項5に記載のプラズマリアクタ。
  7. 前記下部点は同一平面にあり、且つ、前記下面にあることを特徴とする請求項6に記載のプラズマリアクタ。
  8. さらに、前記天井の上に置かれ、前記第1のソレノイドのコイルアンテナによって囲まれ、且つそれより小さな横の広がりを有する内側コイルアンテナを有し、それにより、前記第1のソレノイドのコイルアンテナは、外側のコイルアンテナとなることを特徴とする請求項1に記載のプラズマリアクタ。
  9. さらに、前記内側のコイルアンテナに接続された第2のRFプラズマソース電源を有し、それにより、前記内側と外側アンテナに供給されるそれぞれのRF電力レベルは、前記内側と外側アンテナから供給されたRF磁界の半径方向の分布を制御するために差動的に調整可能であることを特徴とする請求項8に記載のプラズマリアクタ。
  10. 前記第1のRFプラズマソース電源は、差動的に調整可能な電力レベルを有する2つのRF出力を有し、前記2つのRF出力の一方は、前記外側アンテナに接続され、その他方は内側アンテナに接続されており、それにより、前記内側と外側アンテナに供給されたそれぞれのRF電力レベルは、内側と外側アンテナから供給されるRF磁界の半径方向の分布を制御するために差動的に調整可能であることを特徴とする請求項8に記載のプラズマリアクタ。
  11. 前記第1の複数導体の数は、前記第2の複数導体の数より大きく、且つ前記第1の複数導体の長さは、それに従って、前記外側アンテナの誘導性リアクタンスを前記内側アンテナの誘導性リアクタンスに少なくとも近づくように短くされることを特徴とする請求項8に記載のプラズマリアクタ。
  12. 前記内側アンテナは、前記天井の上に置かれ、且つ前記外側アンテナの変位より小さい、前記対称軸から少なくともほぼ一様な横に変位した同軸ヘリカルソレノイド形状で前記対称軸の周りに巻かれた第2の複数導体が互いに重なって構成される第2のソレノイドの導体コイルアンテナを有し、各ヘリカルソレノイドの導体は、前記対称軸に平行な方向に他のヘリカルソレノイドの導体から互いに間隔を空けていることを特徴とする請求項8に記載のプラズマリアクタ。
  13. 前記外側アンテナの前記第1の複数導体の数は、前記内側アンテナの前記第2の複数導体の数より大きいことを特徴とする請求項12に記載のプラズマリアクタ。
  14. さらに、差動的に調整可能な電力レベルを有する2つのRF出力のあるRFプラズマソース電源を有し、前記2つのRF出力の一方は前記外側アンテナに接続され、且つ他方は内側アンテナに接続され、それにより前記内側と外側アンテナに供給されるそれぞれのRF電力レベルは、前記内側と外側アンテナから供給されるRF磁界の半径方向の分布を制御するために作動的に調整可能であることを特徴とする請求項13に記載のプラズマリアクタ。
  15. 前記RFプラズマソース電源は、
    出力端子と戻り端子を有するRF電力発生器と、
    直列キャパシタと、
    前記RF電力発生器の出力端子と前記直列キャパシタの一方の側間に接続されたインピーダンスマッチング素子と、
    前記直列キャパシタの他方の側及び前記戻り端子間に接続された可変並列キャパシタと、
    前記インピーダンスマッチング素子と前記直列キャパシタ間の接続点に接続された第1の出力ノードと、
    前記直列キャパシタと前記可変並列キャパシタ間の接続点に接続された第2の出力ノードと、
    を有することを特徴とする請求項14に記載のプラズマリアクタ。
JP2002508822A 2000-07-06 2001-06-29 対称的な並列導体のコイルアンテナを有するプラズマリアクタ Expired - Lifetime JP5160717B2 (ja)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US09/611,169 2000-07-06
US09/611,345 US6462481B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetric parallel conductor coil antenna
US09/611,170 US6694915B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetrical parallel conductor coil antenna
US09/610,800 2000-07-06
US09/611,168 2000-07-06
US09/611,170 2000-07-06
US09/611,345 2000-07-06
US09/611,168 US6414648B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetric parallel conductor coil antenna
US09/611,169 US6685798B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetrical parallel conductor coil antenna
US09/610,800 US6409933B1 (en) 2000-07-06 2000-07-06 Plasma reactor having a symmetric parallel conductor coil antenna
PCT/US2001/020717 WO2002005308A2 (en) 2000-07-06 2001-06-29 A plasma reactor having a symmetric parallel conductor coil antenna

Publications (3)

Publication Number Publication Date
JP2004509429A JP2004509429A (ja) 2004-03-25
JP2004509429A5 JP2004509429A5 (ja) 2008-08-14
JP5160717B2 true JP5160717B2 (ja) 2013-03-13

Family

ID=27541986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002508822A Expired - Lifetime JP5160717B2 (ja) 2000-07-06 2001-06-29 対称的な並列導体のコイルアンテナを有するプラズマリアクタ

Country Status (3)

Country Link
EP (1) EP1301938A2 (ja)
JP (1) JP5160717B2 (ja)
WO (1) WO2002005308A2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150122063A (ko) * 2014-04-22 2015-10-30 김일욱 헬리컬공명플라즈마 안테나 및 이를 구비하는 플라즈마 발생 장치
JP2018524767A (ja) * 2015-06-15 2018-08-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Bcdおよびエッチング深さ特性を改善するためのソースrf電力分割内側コイル

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3820188B2 (ja) * 2002-06-19 2006-09-13 三菱重工業株式会社 プラズマ処理装置及びプラズマ処理方法
CN1298198C (zh) * 2002-07-26 2007-01-31 株式会社普来马特 低纵横比电感耦合等离子发生器
US6852639B2 (en) 2002-07-31 2005-02-08 Infineon Technologies Ag Etching processing method for a material layer
KR100486724B1 (ko) 2002-10-15 2005-05-03 삼성전자주식회사 사행 코일 안테나를 구비한 유도결합 플라즈마 발생장치
JP2006216903A (ja) * 2005-02-07 2006-08-17 Hitachi High-Technologies Corp プラズマ処理装置
CN101136279B (zh) 2006-08-28 2010-05-12 北京北方微电子基地设备工艺研究中心有限责任公司 电感耦合线圈及电感耦合等离子体装置
WO2008065744A1 (fr) 2006-11-28 2008-06-05 Samco Inc. Appareil de traitement au plasma
US8956500B2 (en) * 2007-04-24 2015-02-17 Applied Materials, Inc. Methods to eliminate “M-shape” etch rate profile in inductively coupled plasma reactor
JP5229995B2 (ja) * 2008-04-07 2013-07-03 株式会社アルバック アンテナ、交流回路、及びプラズマ処理装置
JP5551343B2 (ja) * 2008-05-14 2014-07-16 東京エレクトロン株式会社 誘導結合プラズマ処理装置
JP5231308B2 (ja) * 2009-03-31 2013-07-10 東京エレクトロン株式会社 プラズマ処理装置
US20110094994A1 (en) * 2009-10-26 2011-04-28 Applied Materials, Inc. Inductively coupled plasma apparatus
US20110094683A1 (en) * 2009-10-26 2011-04-28 Applied Materials, Inc. Rf feed structure for plasma processing
JP5851682B2 (ja) * 2010-09-28 2016-02-03 東京エレクトロン株式会社 プラズマ処理装置
KR101202957B1 (ko) 2010-10-19 2012-11-20 주성엔지니어링(주) 플라즈마 발생용 안테나 및 이를 포함하는 기판처리장치
CN105408984B (zh) 2014-02-06 2019-12-10 应用材料公司 用于启用轴对称以用于改进的流动传导性和均匀性的在线去耦合等离子体源腔室硬件设计
JP2015159118A (ja) * 2015-03-26 2015-09-03 東京エレクトロン株式会社 プラズマ処理装置
KR101932117B1 (ko) 2017-08-11 2018-12-24 피에스케이 주식회사 기판 처리 장치, 기판 처리 방법 및 플라즈마 발생 유닛
US11521828B2 (en) * 2017-10-09 2022-12-06 Applied Materials, Inc. Inductively coupled plasma source
KR101972783B1 (ko) * 2017-10-13 2019-08-16 주식회사 유진테크 Icp 안테나 및 이를 포함하는 플라즈마 처리 장치
KR20220094272A (ko) * 2020-12-28 2022-07-06 세메스 주식회사 기판 처리 장치

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS577100A (en) * 1980-06-16 1982-01-14 Nippon Electron Optics Lab Plasma generator
EP0468742B1 (en) * 1990-07-24 1996-03-27 Varian Australia Pty. Ltd. Inductively coupled plasma spectroscopy
US6074512A (en) * 1991-06-27 2000-06-13 Applied Materials, Inc. Inductively coupled RF plasma reactor having an overhead solenoidal antenna and modular confinement magnet liners
US5231334A (en) * 1992-04-15 1993-07-27 Texas Instruments Incorporated Plasma source and method of manufacturing
JP3105403B2 (ja) * 1994-09-14 2000-10-30 松下電器産業株式会社 プラズマ処理装置
US5753044A (en) * 1995-02-15 1998-05-19 Applied Materials, Inc. RF plasma reactor with hybrid conductor and multi-radius dome ceiling
EP0710055B1 (en) * 1994-10-31 1999-06-23 Applied Materials, Inc. Plasma reactors for processing semi-conductor wafers
US5919382A (en) * 1994-10-31 1999-07-06 Applied Materials, Inc. Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
US5688357A (en) * 1995-02-15 1997-11-18 Applied Materials, Inc. Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
US6252354B1 (en) * 1996-11-04 2001-06-26 Applied Materials, Inc. RF tuning method for an RF plasma reactor using frequency servoing and power, voltage, current or DI/DT control
US6028395A (en) * 1997-09-16 2000-02-22 Lam Research Corporation Vacuum plasma processor having coil with added conducting segments to its peripheral part
US6028285A (en) * 1997-11-19 2000-02-22 Board Of Regents, The University Of Texas System High density plasma source for semiconductor processing

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150122063A (ko) * 2014-04-22 2015-10-30 김일욱 헬리컬공명플라즈마 안테나 및 이를 구비하는 플라즈마 발생 장치
KR101712263B1 (ko) * 2014-04-22 2017-03-03 김일욱 헬리컬공명플라즈마 안테나 및 이를 구비하는 플라즈마 발생 장치
JP2018524767A (ja) * 2015-06-15 2018-08-30 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Bcdおよびエッチング深さ特性を改善するためのソースrf電力分割内側コイル

Also Published As

Publication number Publication date
WO2002005308A2 (en) 2002-01-17
EP1301938A2 (en) 2003-04-16
WO2002005308A3 (en) 2002-06-20
JP2004509429A (ja) 2004-03-25

Similar Documents

Publication Publication Date Title
JP5160717B2 (ja) 対称的な並列導体のコイルアンテナを有するプラズマリアクタ
US6414648B1 (en) Plasma reactor having a symmetric parallel conductor coil antenna
US6685798B1 (en) Plasma reactor having a symmetrical parallel conductor coil antenna
US6462481B1 (en) Plasma reactor having a symmetric parallel conductor coil antenna
US6694915B1 (en) Plasma reactor having a symmetrical parallel conductor coil antenna
US6409933B1 (en) Plasma reactor having a symmetric parallel conductor coil antenna
US5919382A (en) Automatic frequency tuning of an RF power source of an inductively coupled plasma reactor
KR100645469B1 (ko) 유도적으로 결합된 플라즈마 발생 시스템을 위한 다중코일 안테나
US6507155B1 (en) Inductively coupled plasma source with controllable power deposition
EP0727807B1 (en) Plasma reactor
TWI554160B (zh) Plasma processing device and plasma processing method
KR101870791B1 (ko) 플라즈마 처리 장치
JP2007157696A (ja) プラズマリアクタ内のイオン密度、イオンエネルギー分布及びイオン解離の独立した制御
TW201330048A (zh) 具有相位控制之高效能三線圈感應耦合電漿源
CN102421238A (zh) 等离子体处理装置
KR20040018343A (ko) 복수의 권선들을 갖는 코일을 구비하는 유도성 플라즈마프로세서 및 플라즈마 밀도의 제어방법
TWI805611B (zh) 電感耦合的電漿源的改進
JP7416986B2 (ja) コイル構造およびプラズマ処理装置
WO2002084698A1 (en) Inductively coupled plasma source with controllable power distribution
KR20040023792A (ko) 유도성 플라즈마 프로세서용 적층 rf 여기 코일
US8956500B2 (en) Methods to eliminate “M-shape” etch rate profile in inductively coupled plasma reactor
KR100332257B1 (ko) 플라즈마 처리장치
KR20020029589A (ko) 플라즈마 생성 장치

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121213

R150 Certificate of patent or registration of utility model

Ref document number: 5160717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term