本発明の実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定されず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、以下に説明する本発明の構成において、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態では、高画質で、かつ高信頼性を付与することを目的とした表示装置、及び表示装置の作製方法を、図1乃至図7、図9、及び図10を用いて詳細に説明する。
図10(A)は本発明に係る表示パネルの構成を示す上面図であり、絶縁表面を有する基板2700上に画素2702をマトリクス状に配列させた画素領域2701、走査線入力端子2703、信号線入力端子2704、リファレンス回路2705が形成されている。画素数は種々の規格に従って設ければ良く、XGAであれば1024×768×3(RGB)、UXGAであれば1600×1200×3(RGB)、フルスペックハイビジョンに対応させるのであれば1920×1080×3(RGB)とすれば良い。
画素2702は、走査線入力端子2703から延在する走査線と、信号線入力端子2704から延在する信号線とが交差することで、マトリクス状に配設される。画素2702のそれぞれには、スイッチング素子とそれに接続する画素電極層が備えられている。スイッチング素子の代表的な一例はTFTであり、TFTのゲート電極層側が走査線と、ソース若しくはドレイン側が信号線と接続されることにより、個々の画素を外部から入力する信号によって独立して制御可能としている。
図10(A)は、走査線及び信号線へ入力する信号を、外付けの駆動回路により制御する表示パネルの構成を示しているが、COG(Chip on Glass)方式によりドライバICを基板上に実装しても良い。また他の実装形態としてTAB(Tape Automated Bonding)方式を用いてもよい。
また、図10(B)に示すように走査線駆動回路2713を基板2700上に形成することもできる。図10(B)において、画素領域2701は、信号線入力端子2704と接続した図10(A)と同様に外付けの駆動回路により制御する。また、図10(C)で示すように、画素領域2701、走査線駆動回路2713と、信号線駆動回路2714を基板2700上に一体形成することもできる。
図10(A)乃至(C)には、バイポーラトランジスタを有するリファレンス回路2705が同一基板2700上に設けられており、本実施の形態では、リファレンス回路2705は、画素の発光素子に電流を供給して駆動する駆動トランジスタの温度依存性を補償するリファレンス回路として用いることができる。バイポーラトランジスタを使用したリファレンス電流生成回路は温度に対する依存性が非常に小さいため、駆動トランジスタの駆動電流を温度に依存せず一定にするためのリファレンス回路として効果がある。
絶縁表面を有する透光性の基板上に、単結晶半導体基板より単結晶半導体層を設ける方法を図6(A)乃至(D)及び図7(A)乃至(C)を用いて説明する。
図6(A)に示す半導体基板101は清浄化されており、その表面から電界で加速されたイオンを所定の深さに照射し、分離層103を形成する。イオンの照射は支持基板に転置する単結晶半導体層の厚さを考慮して行われる。当該単結晶半導体層の厚さは1μm以上3μm以下が好ましい。イオンを照射する際の加速電圧はこのような厚さを考慮して、半導体基板101に照射されるようにする。
半導体基板101として、代表的にはp型若しくはn型の単結晶シリコン基板(シリコンウエハー)が用いられる。また、他の単結晶半導体基板としては、シリコン、ゲルマニウム、その他ガリウムヒ素、インジウムリンなどの化合物半導体の基板も適用することができる。本実施の形態は、単結晶半導体基板の所定の深さに水素又はフッ素をイオン照射して添加し、その後熱処理を行って表層の単結晶シリコン層を剥離するイオン照射剥離法で形成するが、ポーラスシリコン上に単結晶シリコンをエピタキシャル成長させた後、ポーラスシリコン層をウオータージェットで分離する方法を適用しても良い。
分離層は、イオンをイオンドーピング法やイオン注入法によって照射すればよい。分離層は水素、ヘリウム若しくはフッ素に代表されるハロゲンのイオンを添加することで形成される。ハロゲン元素としてフッ素イオンを照射する場合にはソースガスとしてBF3を用いれば良い。なお、イオン注入法とはイオン化したガスを質量分離して半導体に照射する方式をいう。
単結晶シリコン基板にフッ素イオンのようなハロゲンイオンを照射した場合、添加されたフッ素が、シリコン結晶格子内のシリコン原子をノックアウトする(追い出す)ことによって空白部分を効果的に作り出し、分離層に微小な空洞を作る。この場合、比較的低温の熱処理によって分離層に形成された微小な空洞の体積変化が起こり、分離層に沿って分離することにより薄い単結晶半導体層を形成することができる。フッ素イオンを照射した後に、水素イオンを照射して空洞内に水素を含ませるようにしても良い。半導体基板から薄い半導体層を剥離するために形成する分離層は、分離層に形成された微小な空洞の体積変化を利用して分離をするので、このようにフッ素イオンや水素イオンの作用を有効利用することが好ましい。
また、一又は複数の同一の原子から成る質量数の異なるイオンを照射してもよい。例えば、水素イオンを照射する場合には、H+、H2 +、H3 +イオンを含ませると共に、H3 +イオンの割合を高めておくことが好ましい。水素イオンを照射する場合には、H+、H2 +、H3 +イオンを含ませると共に、H3 +イオンの割合を高めておくと照射効率を高めることができ、照射時間を短縮することができる。このような構成とすることで、剥離を容易に行うことができる。
分離層の形成に当たってはイオンを高ドーズ条件で照射する必要があり、半導体基板101の表面が粗くなってしまう場合がある。そのためイオンが照射される表面に窒化シリコン膜若しくは窒化酸化シリコン膜などによりイオン照射に対する保護膜を50nm乃至200nmの厚さで設けておいても良い。また、半導体基板101を脱脂洗浄し、表面の酸化膜を除去して熱酸化を行ってもよい。熱酸化としては通常のドライ酸化でも良いが、酸化雰囲気中にハロゲンを添加した酸化を行うことが好ましい。例えば、酸素に対しHClを0.5〜10体積%(好ましくは3体積%)の割合で含む雰囲気中で、700℃以上の温度で熱処理を行う。好適には950℃〜1100℃の温度で熱酸化を行うと良い。処理時間は0.1〜6時間、好ましくは0.5〜1時間とすれば良い。形成される酸化膜の膜厚としては、10nm〜1000nm(好ましくは50nm〜200nm)、例えば100nmの厚さとする。
ハロゲンを含むものとしてはHClの他に、HF、NF3、HBr、Cl2、ClF3、BCl3、F2、Br2、ジクロロエチレンなどから選ばれた一種又は複数種を適用することができる。
このような温度範囲で熱処理を行うことで、ハロゲン元素によるゲッタリング効果を得ることができる。ゲッタリングとしては、特に金属不純物を除去する効果がある。すなわち、塩素の作用により、金属などの不純物が揮発性の塩化物となって気相中へ離脱して除去される。半導体基板101の表面を化学的機械研磨(CMP)処理をしたものに対しては有効である。また、水素は半導体基板101と形成される酸化膜の界面の欠陥を補償して界面の局在準位密度を低減する作用を奏し、半導体基板101と酸化膜との界面が不活性化されて電気的特性が安定化する。
この熱処理により形成される酸化膜中にハロゲンを含ませることができる。ハロゲン元素は1×1017/cm3〜5×1020/cm3の濃度で含まれることにより金属などの不純物を捕獲して半導体基板101の汚染を防止する保護膜としての機能を発現させることができる。
次に、図6(B)で示すように支持基板と接合を形成する面に接合面を有する絶縁層(接合層)104として酸化シリコン膜を形成する。酸化シリコン膜としては有機シランガスを用いて化学気相成長法により作製される酸化シリコン膜が好ましい。その他に、シランガスを用いて化学気相成長法により作製される酸化シリコン膜を適用することもできる。化学気相成長法による成膜では、単結晶半導体基板に形成した分離層103から脱ガスが起こらない温度として、例えば350℃以下の成膜温度が適用される。また、単結晶若しくは多結晶半導体基板から単結晶半導体層を剥離する熱処理は、成膜温度よりも高い熱処理温度が適用される。
絶縁層104は平滑面を有し親水性表面を形成する。この絶縁層104として酸化シリコン膜が適している。特に有機シランガスを用いて化学気相成長法により作製される酸化シリコン膜が好ましい。有機シランガスとしては、珪酸エチル(TEOS:化学式Si(OC2H5)4)、トリメチルシラン(TMS:(CH3)3SiH)、テトラメチルシラン(化学式Si(CH3)4)、テトラメチルシクロテトラシロキサン(TMCTS)、オクタメチルシクロテトラシロキサン(OMCTS)、ヘキサメチルジシラザン(HMDS)、トリエトキシシラン(SiH(OC2H5)3)、トリスジメチルアミノシラン(SiH(N(CH3)2)3)等のシリコン含有化合物を用いることができる。その他に、シランガスを用いて化学気相成長法により作製される酸化シリコン膜を適用することもできる。化学気相成長法による成膜では、半導体基板に形成した分離層103から脱ガスが起こらない温度として、例えば350℃以下の成膜温度が適用される。また、単結晶若しくは多結晶半導体基板から単結晶半導体層を剥離する熱処理は、成膜温度よりも高い熱処理温度が適用される。
上記平滑面を有し親水性表面を形成する絶縁層104は5nm乃至500nmの厚さで設けられる。この厚さであれば、被成膜表面の表面荒れを平滑化すると共に、当該膜の成長表面の平滑性を確保することが可能である。また、接合する基板との歪みを緩和することができる。支持基板100にも同様の酸化シリコン膜を設けておいても良い。すなわち、支持基板100に単結晶半導体層102を接合するに際し、接合を形成する面の一方若しくは双方に、好ましくは有機シランを原材料として成膜した酸化シリコン膜でなる絶縁層104設けることで強固な接合を形成することができる。
図6(C)は支持基板100と半導体基板101の絶縁層104が形成された面とを密接させ、この両者を接合させる態様を示す。接合を形成する面は、十分に清浄化しておく。そして、支持基板100と絶縁層104を対向させて、一箇所を外部から押しつけると、局所的に接合面同士の距離が縮まる事によるファン・デル・ワールス力の強まりや水素結合の寄与によって、お互いに引きつけ合う。更に、隣接した領域でも対向する支持基板100と絶縁層104間の距離が縮まるので、ファン・デル・ワールス力が強く作用する領域や水素結合が関与する領域が広がる事によって、接合(ボンディングともいう)が進行し接合面全域に接合が広がる。
良好な接合を形成するために、表面を活性化しておいても良い。例えば、接合を形成する面に原子ビーム若しくはイオンビームを照射する。原子ビーム若しくはイオンビームを利用する場合には、アルゴン等の不活性ガス中性原子ビーム若しくは不活性ガスイオンビームを用いることができる。その他に、プラズマ照射若しくはラジカル処理を行う。このような表面処理により200℃乃至400℃の温度であっても異種材料間の接合を形成することが容易となる。
半導体基板より単結晶半導体層を剥離する工程と、ガラス基板と単結晶半導体層とを強固に接合する工程とを別々の加熱処理で行ってもよいし、一回の加熱処理で同時に行ってもよい。
支持基板100と半導体基板101を絶縁層104を介して貼り合わせた後は、加熱処理又は加圧処理を行うことが好ましい。加熱処理又は加圧処理を行うことで接合強度を向上させることが可能となる。加圧処理においては、接合面に垂直な方向に圧力が加わるように行い、支持基板100及び半導体基板101の耐圧性を考慮して行う。
図6(D)において、支持基板100と半導体基板101を貼り合わせた後、加熱処理を行い分離層103を分離面として半導体基板101を支持基板100から分離する。例えば、400℃乃至600℃の熱処理を行うことにより、分離層103に形成された微小な空洞の体積変化が起こり、分離層103に沿って分離することが可能となる。本実施の形態においては、加熱処理の温度は、あらかじめ支持基板100に行った加熱処理より低い温度で行う。絶縁層104は支持基板100と接合しているので、支持基板100上には半導体基板101と同じ結晶性の単結晶半導体層102が残存することとなる。
図7は支持基板側に接合面を有する絶縁層を設けて単結晶半導体層を形成する工程を示す。図7(A)は酸化シリコン膜121が形成された半導体基板101に電界で加速されたイオンを所定の深さに照射し、分離層103を形成する工程を示している。イオンの照射は図6(A)の場合と同様である。半導体基板101の表面に酸化シリコン膜121を形成しておくことでイオン照射によって表面がダメージを受け、平坦性が損なわれるのを防ぐことができる。また、酸化シリコン膜121によって、半導体基板101から形成される単結晶半導体層102に対する不純物の拡散防止効果を発現する。
図7(B)は、ブロッキング層105及び絶縁層104が形成された支持基板100と半導体基板101の酸化シリコン膜121が形成された面を密着させて接合を形成する工程を示している。絶縁層104と酸化シリコン膜121を対向させて、一箇所を外部から押しつけると、局所的に接合面同士の距離が縮まる事によるファン・デル・ワールス力の強まりや水素結合の寄与によって、お互いに引きつけ合う。更に、隣接した領域でも対向する絶縁層104と酸化シリコン膜121間の距離が縮まるので、ファン・デル・ワールス力が強く作用する領域や水素結合が関与する領域が広がる事によって、接合(ボンディングともいう)が進行し接合面全域に接合が広がる。
その後、図7(C)で示すように半導体基板101を剥離する。単結晶半導体層を剥離する熱処理は図6(D)の場合と同様にして行う。接合剥離工程における加熱処理の温度は、支持基板100にあらかじめ行われた加熱処理以下とする。このようにして図7(C)で示す半導体基板を得ることができる。
支持基板100としては、絶縁表面を有する透光性の基板を用いることができ、例えば、アルミノシリケートガラス、アルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスの如き無アルカリガラスと呼ばれる電子工業用に使われる各種ガラス基板を適用することができる。また、石英ガラスでもよい。すなわち、一辺が1メートルを超える基板上に単結晶半導体層を形成することができる。このような大面積基板を使って液晶ディスプレイのような表示装置のみならず、半導体集積回路を製造することができる。
以上の工程で示したように、絶縁表面を有する透光性の基板である支持基板100の上にブロッキング層105、絶縁層104が設けられ、単結晶半導体層である単結晶半導体層102が形成されている(図2(A)参照。)。
単結晶半導体層102は、単結晶半導体であれば特に限定されず用いることができ、例えばn型又はp型の導電型を有する単結晶シリコン、化合物半導体(GaAs基板、InP基板、SiC基板等)などを用いることができる。単結晶半導体層は母体となる単結晶半導体基板を選択することによって決定することができる。
まず、単結晶半導体層102上に絶縁層108を形成する。ここでは、単結晶半導体層102として、p型の導電型を有する単結晶シリコンを用い、単結晶半導体層102上に絶縁層108を形成する。例えば、単結晶半導体層102に熱処理を行うことにより絶縁層108として、酸化シリコン膜と、酸化シリコン膜上にCVD法を用いて窒化シリコン膜の積層を形成する。本実施の形態では、絶縁層108として酸化シリコン膜を形成する。なお、単結晶半導体層102上に設ける絶縁層は単層又は3層以上の積層構造で設けてもよい。
次に、絶縁層108上に選択的にマスク111のパターンを形成し、マスク111をマスクとして不純物元素109としてn型を付与する不純物元素を添加し、nウェル110a、110bを形成する(図2(B)参照。)。n型を付与する不純物元素としては、リン(P)やヒ素(As)等を用いることができる。
次に、マスク111を除去し、絶縁層108上に、絶縁層112を形成する。本実施の形態では、絶縁層112としてCVD法を用いて窒化シリコン膜を形成する。
次に、絶縁層112上に選択的にマスクを形成し、マスクを用いて選択的にエッチングを行うことによって、単結晶半導体層102に選択的に凹部を形成する(図2(C)参照)。単結晶半導体層102、絶縁層108、112のエッチングとしては、プラズマを利用したドライエッチングにより行うことができる。
次に、マスクを除去した後、単結晶半導体層102に形成された凹部を充填するように絶縁層を形成する。絶縁層は、CVD法やスパッタリング法を用いて、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン等の絶縁材料を用いて形成する。ここでは、絶縁層として、常圧CVD法または減圧CVD法によりTEOS(テトラエチルオルソシリケート)ガスを用いて酸化シリコン層を形成する。
次に、研削処理、研磨処理又はCMP(Chemical Mechanical Polishing)処理を行うことによって、単結晶半導体層102の表面を露出させる。単結晶半導体層102の表面を露出させることにより、単結晶半導体層102の凹部に、素子分離領域として機能する絶縁層114a、114b、114cが設けられる(図3(A)参照。)。なお、絶縁層114a、114b、114cは、単結晶半導体層102の表面に形成された絶縁層が研削処理、研磨処理又はCMP処理により除去されることにより得られたものである。
なお、本実施の形態では、単結晶半導体層102としてp型の導電型を有する半導体基板より分離、接合した単結晶半導体層を用いているため、p型の導電型を付与する不純物元素の添加を行っていないが、p型を付与する不純物元素を添加することによりpウェルを形成してもよい。p型を付与する不純物元素としては、ボロン(B)やアルミニウム(Al)やガリウム(Ga)等を用いることができる。
一方、n型の導電型を有する単結晶半導体層を用いる場合には、p型を付与する不純物元素を添加してpウェルを形成してもよい。
次に、絶縁層115a、絶縁層115bをそれぞれ形成する(図3(B)参照。)。絶縁層115a、絶縁層115bは、単結晶半導体層102に対して高密度プラズマ処理を行うことで形成する。高密度プラズマ処理は、まず、希ガス、酸素及び水素を含む第1の供給ガスを用いて行った後、希ガス及び酸素を含む第2の供給ガスに切り替えて行う。第1の供給ガスは、希ガス:酸素:水素の流量比率が100:1:1〜200:1:1の範囲で供給することが好ましい。また、第1の供給ガスを用いた高密度プラズマ処理では、膜厚8nm以上の絶縁層を形成することが好ましい。第2の供給ガスは希ガス:酸素の流量比率が100:1〜200:1の範囲で供給することが好ましい。なお、第2の供給ガスにおいて、酸素に対する比率が5分の1の範囲であれば、水素が含まれていてもよい。また、第2の供給ガスを用いた高密度プラズマ処理時間は60sec以上行うことが好ましい。
高密度プラズマ処理は、マイクロ波(代表的には2.45GHz)等の高周波で励起され、電子密度が1×1011cm−3以上で、プラズマの電子温度が1.5eV以下のプラズマを利用する。具体的には、電子密度が1×1011cm−3以上1×1013cm−3以下で、プラズマの電子温度が0.5eV以上1.5eV以下のプラズマを利用することが好ましい。
供給ガスとして用いる希ガス供給源としては、ヘリウム(He)、ネオン(Ne)、アルゴン(Ar)、クリプトン(Kr)、キセノン(Xe)の少なくとも1つを用いることができる。酸素供給源としては、酸素(O2)、オゾン(O3)、亜酸化窒素(N2O)、一酸化窒素(NO)、二酸化窒素(NO2)を用いることができる。水素供給源としては、水素(H2)、水(H2O)又は過酸化水素(H2O2)を用いることができる。なお、供給ガスに希ガスを用いる場合、形成された絶縁層に希ガスが含まれる場合がある。
本実施の形態では、第1の供給ガスとしてArガス500〜1000sccm、O2ガス5sccm、H2ガス5sccmを供給して高密度プラズマ処理を行い、膜厚8nmの絶縁層を形成する。また、第2の供給ガスとしてArガス500〜1000sccm、O2ガス5sccmを供給し、60sec以上の処理を行う。そして、膜厚8nm以上20nm以下の酸化シリコンを含む絶縁層115a、115bを形成する。
なお、単結晶半導体層に形成された絶縁層115a、絶縁層115bは、後に完成するトランジスタにおいてゲート絶縁層として機能する。
本発明において、配線層若しくは電極層を形成する導電層や、所定のパターンを形成するためのマスクなどを、液滴吐出法のような選択的にパターンを形成できる方法により形成してもよい。液滴吐出(噴出)法(その方式によっては、インクジェット法とも呼ばれる。)は、特定の目的に調合された組成物の液滴を選択的に吐出(噴出)して所定のパターン(導電層や絶縁層など)を形成することができる。この際、被形成領域にぬれ性や密着性を制御する処理を行ってもよい。また、パターンが転写、または描写できる方法、例えば印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)なども用いることができる。
本実施の形態において、用いるマスクは、エポキシ樹脂、アクリル樹脂、フェノール樹脂、ノボラック樹脂、メラミン樹脂、ウレタン樹脂等の樹脂材料を用いる。また、ベンゾシクロブテン、パリレン、フッ化アリーレンエーテル、ポリイミドなどの有機材料、シロキサン系ポリマー等の重合によってできた化合物材料等を用いることもできる。或いは、感光剤を含む市販のレジスト材料を用いてもよく、例えば、ポジ型レジスト、ネガ型レジストなどを用いてもよい。液滴吐出法を用いる場合、いずれの材料を用いるとしても、その表面張力と粘度は、溶媒の濃度を調整する、界面活性剤等を加えるなどによって適宜調整する。
次いで、絶縁層115a、115b上にゲート電極層116a、116b、ゲート電極層117を形成する。ゲート電極層116a、116b、ゲート電極層117は導電膜を形成し、フォトリソグラフィ等を用いたマスクによって導電膜を選択的にエッチングして形成すればよい。導電膜は、スパッタリング法、蒸着法、CVD法等の手法により形成することができる。導電膜はタンタル(Ta)、タングステン(W)、チタン(Ti)、モリブデン(Mo)、アルミニウム(Al)、銅(Cu)、クロム(Cr)、ネオジム(Nd)から選ばれた元素、又は前記元素を主成分とする合金材料もしくは化合物材料で形成すればよい。また、導電膜としてリン等の不純物元素をドーピングした多結晶シリコン膜に代表される半導体膜や、AgPdCu合金を用いてもよい。また、単層構造に限定されず、2層や3層構造といった積層構造でもよい。例えば、窒化タンタル膜とタングステン膜の積層などを用いることができる。またゲート電極層116a、116b、ゲート電極層117は側面にテーパー形状を有してもよい。テーパー形状を有することによって、その上に積層する膜の被覆性が向上し、欠陥が軽減されるので信頼性が向上する。
次に、ゲート電極層117を覆うマスク156を形成し、マスク156、及びゲート電極層116a、116bをマスクとして、n型を付与する不純物元素159を添加し、第1のn型不純物領域142a、第1のn型不純物領域142b、第1のn型不純物領域142cを形成する(図3(C)参照。)。本実施の形態では、n型を付与する不純物元素としてリン(P)を用いる。
次に、ゲート電極層116a、116bを覆うマスク157を形成し、マスク157、及びゲート電極層117をマスクとして、p型を付与する不純物元素158を添加し、第1のp型不純物領域140a、第1のp型不純物領域140bを形成する(図4(A)参照。)。本実施の形態では、p型を付与する不純物元素としてボロン(B)を用いる。
n型を付与する不純物元素としては、リン(P)やヒ素(As)等を用いることができる。p型を付与する不純物元素としては、ボロン(B)やアルミニウム(Al)やガリウム(Ga)等を用いることができる。ここで形成される第1のn型不純物領域142a、第1のn型不純物領域142b、第1のn型不純物領域142c、第1のp型不純物領域140a、第1のp型不純物領域140bの一部は、後に形成されるLDD(LightlyDoped Drain)領域を構成する。
次に、ゲート電極層116a、116b、ゲート電極層117の側面に接するサイドウォールともいわれる絶縁層145a、145b、145c、145d、145e、145fを形成する。絶縁層145a、145b、145c、145d、145e、145fは、CVD法やスパッタリング法により、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化酸化シリコン等の窒素又は酸素を含む無機材料や有機樹脂などの有機材料を用いて、単層又は積層構造の絶縁層を形成し、当該絶縁層を、垂直方向を主体とした異方性エッチングにより選択的にエッチングして、ゲート電極層116a、116b、ゲート電極層117の側面に接するように形成することができる。なお、絶縁層145a、145b、145c、145d、145e、145fは、LDD領域を形成する際のドーピング用のマスクとして用いる。また、本実施の形態では、絶縁層145a、145b、145c、145d、145e、145fを形成する際に、絶縁層115a、115bも選択的にエッチングし、絶縁層146a、146b、146cを形成する。絶縁層146a、146b、146cはゲート絶縁層として機能する。
次に、ゲート電極層117及び絶縁層145e、145fを覆うマスク153を形成する。マスク153、ゲート電極層116a、116b、絶縁層145a、145b、145c、145dをマスクとして高濃度のn型を付与する不純物元素152を選択的に添加し、高濃度のn型不純物領域である第2のn型不純物領域144、147a、147b、147cと、低濃度のn型不純物領域である第3のn型不純物領域148a、148b、148c、148dを形成する(図4(C)参照。)。画素領域206において、第2のn型不純物領域147a、147b、147cはソース領域又はドレイン領域として機能し、第3のn型不純物領域148a、148b、148c、148dはLDD領域として機能する。また、第3のn型不純物領域148a、148bの間にチャネル形成領域130aが、第3のn型不純物領域148c、148dの間にチャネル形成領域130bが形成される。また、リファレンス回路209に高濃度のn型不純物領域である第2のn型不純物領域144が形成される。
次に、ゲート電極層116a、116b、及び絶縁層145a、145b、145c、145dを覆うマスク155を形成する。マスク155、ゲート電極層117、絶縁層145e、145fをマスクとして高濃度のp型を付与する不純物元素154を選択的に添加し、高濃度のp型不純物領域である第2のp型不純物領域160、161、163a、163bと、低濃度のp型不純物領域である第3のp型不純物領域162a、162bを形成する(図5(A)参照。)。画素領域206において、第2のp型不純物領域163a、163bはソース領域又はドレイン領域として機能し、第3のp型不純物領域162a、162bはLDD領域として機能する。また、第3のp型不純物領域162a、162bの間にチャネル形成領域131が形成される。また、リファレンス回路209に高濃度のp型不純物領域である第2のp型不純物領域160、161が形成される。
本実施の形態では、ゲート電極層及び単結晶半導体層を覆うパッシベーション膜として絶縁膜132を形成する。絶縁膜132を水素を含む絶縁膜とし本実施の形態では、絶縁膜132として水素を含む絶縁膜を形成する。絶縁膜132は、スパッタ法、またはプラズマCVDを用いた窒化珪素膜、窒化酸化珪素膜、酸化窒化珪素膜、酸化珪素膜などを用いることができ、他の珪素を含む絶縁膜を単層または3層以上の積層構造として用いても良い。
絶縁膜132を水素を含む絶縁膜として、窒素雰囲気中で、300〜550℃で1〜12時間の熱処理を行い、半導体層を水素化する工程を行ってもよい。好ましくは、400〜500℃(例えば、410℃で1時間)で行う。この工程により、水素を含む絶縁膜に含まれる水素により半導体層のダングリングボンドを終端することができる。
次に、画素領域206において、発光素子が形成される領域と重畳する単結晶半導体層を除去し、開口169を形成する。これは、発光素子より放射される光を支持基板100より取り出すためである。開口169は少なくとも光を遮断する単結晶半導体層を除去できればよく、透光性であれば接合面を有する絶縁層やブロッキング層は残存してよい。本実施の形態では、ブロッキング層105をエッチングストッパーとし、単結晶半導体層及び接合面を有する絶縁層を選択的に除去する。エッチングは、ウェットエッチングでもドライエッチングでもよく、両方用いてもよい。
次いで、層間絶縁層を形成する。本実施の形態では、絶縁層181を形成する(図5(C)参照。)。本実施の形態では、開口169を絶縁層181によって充填するため、絶縁層181は湿式法を用いて平坦化するように形成することが好ましい。また、乾式法を用いて絶縁層を、開口169を充填するように形成した後、平坦化のためのエッチングを行ってもよい。絶縁層181は、発光素子より放射された光を透過させる必要があるため、透光性を有する。絶縁層181は、スパッタ法、またはプラズマCVDを用いた窒化珪素膜、窒化酸化珪素膜、酸化窒化珪素膜、酸化珪素膜でもよく、他の珪素を含む絶縁膜を単層または3層以上の積層構造として用いても良い。
絶縁層181としては他に窒化アルミニウム(AlN)、酸化窒化アルミニウム(AlON)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AlNO)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素(CN)その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。また、シロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテン、ポリシラザンを用いることができる。平坦性のよい塗布法によってされる塗布膜を用いてもよい。
絶縁層181は、ディップ、スプレー塗布、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター、CVD法、蒸着法等を採用することができる。液滴吐出法により絶縁層181を形成してもよい。液滴吐出法を用いた場合には材料液を節約することができる。また、液滴吐出法のようにパターンが転写、または描写できる方法、例えば印刷法(スクリーン印刷やオフセット印刷などパターンが形成される方法)なども用いることができる。
次いで、レジストからなるマスクを用いて絶縁層181に単結晶半導体層に達するコンタクトホール(開口部)を形成する。エッチングは、用いる材料の選択比によって、一回で行っても複数回行っても良い。エッチングによって、絶縁層181を除去し、リファレンス回路209においては、第2のp型不純物領域160、161、第2のn型不純物領域144、画素領域206においてはソース領域又はドレイン領域である第2のp型不純物領域163a、第2のp型不純物領域163b、第2のn型不純物領域147a、第2のn型不純物領域147bに達する開口部を形成する。エッチングは、ウェットエッチングでもドライエッチングでもよく、両方用いてもよい。ウェットエッチングのエッチャントは、フッ素水素アンモニウム及びフッ化アンモニウムを含む混合溶液のようなフッ酸系の溶液を用いるとよい。エッチング用ガスとしては、Cl2、BCl3、SiCl4もしくはCCl4などを代表とする塩素系ガス、CF4、SF6もしくはNF3などを代表とするフッ素系ガス又はO2を適宜用いることができる。また用いるエッチング用ガスに不活性気体を添加してもよい。添加する不活性元素としては、He、Ne、Ar、Kr、Xeから選ばれた一種または複数種の元素を用いることができる。
開口部を覆うように導電膜を形成し、導電膜をエッチングして配線層170a、170b、170c、171a、171b、172a、172bを形成する。リファレンス回路209において、配線層170a、170b、170cは、第2のp型不純物領域160、161、第2のn型不純物領域144にそれぞれ電気的に接続する。また、画素領域206において、配線層171a、171b、172a、172bは、各ソース領域又はドレイン領域の一部とそれぞれ電気的に接続する。
配線層は、PVD法、CVD法、蒸着法等により導電膜を成膜した後、所望の形状にエッチングして形成することができる。また、液滴吐出法、印刷法、電解メッキ法等により、所定の場所に選択的に導電層を形成することができる。更にはリフロー法、ダマシン法を用いても良い。ソース電極層又はドレイン電極層の材料は、Ag、Au、Cu、Ni、Pt、Pd、Ir、Rh、W、Al、Ta、Mo、Cd、Zn、Fe、Ti、Zr、Ba等の金属、及びSi、Ge、又はその合金、若しくはその窒化物を用いて形成する。また、これらの積層構造としても良い。本実施の形態では、チタン(Ti)を膜厚60nm形成し、窒化チタン膜を膜厚40nm形成し、アルミニウムを膜厚700nm形成し、チタン(Ti)を膜厚200nm形成して積層構造とし、所望な形状に加工する。
以上の工程でリファレンス回路209に、バイポーラトランジスタ174、画素領域206に、Loff領域にn型不純物領域を有するマルチチャネル型のnチャネル型トランジスタであるトランジスタ175、p型不純物領域を有するpチャネル型トランジスタであるトランジスタ176を有するアクティブマトリクス基板を作製することができる(図5(C)参照。)。
リファレンス回路209に形成するバイポーラトランジスタ174においてnウェル110a中の高濃度のp型不純物領域である第2のp型不純物領域161は、エミッタとして振る舞い、nウェル110aはベースとして振る舞う。p型の導電型を有する単結晶半導体層102はコレクタの役割を果たす。
図1は、本実施の形態の表示装置であり、FPCの貼り付け部である外部端子接続領域202、駆動回路領域204、画素領域206、リファレンス回路209である。外部端子接続領域202には、外部端子と接続する端子電極層178が設けられている。
次に、ソース電極層又はドレイン電極層と接するように、第1の電極層185(画素電極層ともいう。)を形成する。第1の電極層185は陽極、または陰極として機能し、Ti、Ni、W、Cr、Pt、Zn、Sn、In、またはMoから選ばれた元素、または窒化チタン、TiSiXNY、WSiX、窒化タングステン、WSiXNY、NbNなどの前記元素を主成分とする合金材料もしくは化合物材料を主成分とする膜またはそれらの積層膜を総膜厚100nm〜800nmの範囲で用いればよい。
本実施の形態では、表示素子として発光素子を用い、発光素子からの光を第1の電極層185側から取り出す構造のため、第1の電極層185が透光性を有する。第1の電極層185として、透明導電膜を形成し、所望の形状にエッチングすることで第1の電極層185を形成する。
本発明においては、透光性電極層である第1の電極層185に、具体的には透光性を有する導電性材料からなる透明導電膜を用いればよく、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物などを用いることができる。勿論、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化ケイ素を添加したインジウム錫酸化物(ITSO)なども用いることができる。
また、透光性を有さない金属膜のような材料であっても膜厚を薄く(好ましくは、5nm〜30nm程度の厚さ)して光を透過可能な状態としておくことで、第1の電極層185から光を放射することが可能となる。また、第1の電極層185に用いることのできる金属薄膜としては、チタン、タングステン、ニッケル、金、白金、銀、アルミニウム、マグネシウム、カルシウム、リチウム、およびそれらの合金からなる導電膜などを用いることができる。
第1の電極層185は、蒸着法、スパッタ法、CVD法、印刷法、ディスペンサ法または液滴吐出法などを用いて形成することができる。本実施の形態では、第1の電極層185として、酸化タングステンを含むインジウム亜鉛酸化物を用いてスパッタリング法によって作製する。第1の電極層185は、好ましくは総膜厚100nm〜800nmの範囲で用いればよい。
第1の電極層185は、その表面が平坦化されるように、CMP法、ポリビニルアルコール系の多孔質体で拭浄し、研磨しても良い。またCMP法を用いた研磨後に、第1の電極層185の表面に紫外線照射、酸素プラズマ処理などを行ってもよい。
第1の電極層185を形成後、加熱処理を行ってもよい。この加熱処理により、第1の電極層185中に含まれる水分は放出される。よって、第1の電極層185は脱ガスなどを生じないため、第1の電極層上に水分によって劣化しやすい発光材料を形成しても、発光材料は劣化せず、信頼性の高い表示装置を作製することができる。
次に、第1の電極層185の端部、ソース電極層又はドレイン電極層を覆う絶縁層186(隔壁、障壁などと呼ばれる)を形成する(図1(A)参照。)。また絶縁層186に絶縁層181と同材料を用い、同方法で形成すると、製造コストを削減することができる。また、塗布成膜装置やエッチング装置などの装置の共通化によるコストダウンが図れる。
絶縁層186は、酸化珪素、窒化珪素、酸化窒化珪素、酸化アルミニウム、窒化アルミニウム、酸素含有量が窒素含有量よりも多い酸化窒化アルミニウム、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素、ポリシラザン、その他の無機絶縁性材料を含む物質から選ばれた材料で形成することができる。シロキサンを含む材料を用いてもよい。また、有機絶縁性材料を用いてもよく、有機材料としては、感光性、非感光性どちらでも良く、ポリイミド、アクリル、ポリアミド、ポリイミドアミド、レジスト又はベンゾシクロブテンを用いることができる。また、オキサゾール樹脂を用いることもでき、例えば光硬化型ポリベンゾオキサゾールなどを用いることができる。絶縁層186は曲率半径が連続的に変化する形状が好ましく、上に形成される発光物質を含む層である電界発光層188、第2の電極層189の被覆性が向上する。
また、さらに信頼性を向上させるため、電界発光層188の形成前に真空加熱を行って脱気を行うことが好ましい。例えば、有機化合物材料の蒸着を行う前に、基板に含まれるガスを除去するために減圧雰囲気や不活性雰囲気で200〜400℃、好ましくは250〜350℃の加熱処理を行うことが望ましい。またそのまま大気に晒さずに電界発光層188を真空蒸着法や、減圧下の液滴吐出法で形成することが好ましい。この熱処理で、第1の電極層となる導電膜や絶縁層(隔壁)に含有、付着している水分を放出することができる。この加熱処理は、真空を破らず、真空のチャンパー内を基板が輸送できるのであれば、先の加熱工程と兼ねることもでき、先の加熱工程を絶縁層(隔壁)形成後に、一度行えばよい。ここでは、層間絶縁膜と絶縁層(隔壁)とを高耐熱性を有する物質で形成すれば信頼性向上のための加熱処理工程を十分行うことができる。
第1の電極層185の上には電界発光層188が形成される。なお、図1では一画素しか図示していないが、本実施の形態ではR(赤)、G(緑)、B(青)の各色に対応した電界発光層を作り分けている。電界発光層188は、第1の電極層185上に、有機化合物と無機化合物を混合することにより、それぞれ単独では得られない高いキャリア注入性、キャリア輸送性という機能が得られる層が設けられている。
赤色(R)、緑色(G)、青色(B)の発光を示す材料(低分子または高分子材料など)は、液滴吐出法により形成することもできる。
次に、電界発光層188の上に導電膜からなる第2の電極層189が設けられる。第2の電極層189としては、仕事関数の小さい材料(Al、Ag、Li、Ca、またはこれらの合金MgAg、MgIn、AlLi、CaF2、または窒化カルシウム)を用いればよい。こうして第1の電極層185、電界発光層188及び第2の電極層189からなる発光素子190が形成される。
図1に示した本実施の形態の表示装置において、発光素子190から放射した光の透過領域の単結晶半導体層は除去されているので、発光素子190から発した光は、第1の電極層185側から、図1中の矢印の方向に透過して射出される。
第2の電極層189を覆うようにしてパッシベーション膜を設けることは有効である。パッシベーション膜としては、窒化珪素、酸化珪素、酸化窒化珪素(SiON)、窒化酸化珪素(SiNO)、窒化アルミニウム(AlN)、酸化窒化アルミニウム(AlON)、窒素含有量が酸素含有量よりも多い窒化酸化アルミニウム(AlNO)または酸化アルミニウム、ダイアモンドライクカーボン(DLC)、窒素含有炭素(CN)を含む絶縁膜からなり、該絶縁膜を単層もしくは組み合わせた積層を用いることができる。また、シロキサン樹脂を用いてもよい。
この際、カバレッジの良い膜をパッシベーション膜として用いることが好ましく、炭素膜、特にDLC膜を用いることは有効である。DLC膜は室温から100℃以下の温度範囲で成膜可能であるため、耐熱性の低い電界発光層188の上方にも容易に成膜することができる。DLC膜は、プラズマCVD法(代表的には、RFプラズマCVD法、マイクロ波CVD法、電子サイクロトロン共鳴(ECR)CVD法、熱フィラメントCVD法など)、燃焼炎法、スパッタ法、イオンビーム蒸着法、レーザ蒸着法などで形成することができる。成膜に用いる反応ガスは、水素ガスと、炭化水素系のガス(例えばCH4、C2H2、C6H6など)とを用い、グロー放電によりイオン化し、負の自己バイアスがかかったカソードにイオンを加速衝突させて成膜する。また、CN膜は反応ガスとしてC2H4ガスとN2ガスとを用いて形成すればよい。DLC膜は酸素に対するブロッキング効果が高く、電界発光層188の酸化を抑制することが可能である。そのため、この後に続く封止工程を行う間に電界発光層188が酸化するといった問題を防止できる。
このように発光素子190が形成された支持基板100と、封止基板195とをシール材192によって固着し、発光素子を封止する(図1参照。)。本発明の表示装置においては、シール材192と絶縁層186とを接しないように離して形成する。このようにシール材と、絶縁層186とを離して形成すると、絶縁層186に吸湿性の高い有機材料を用いた絶縁材料を用いても、水分が侵入しにくく、発光素子の劣化が防止でき、表示装置の信頼性が向上する。シール材192としては、代表的には可視光硬化性、紫外線硬化性または熱硬化性の樹脂を用いるのが好ましい。例えば、ビスフェノールA型液状樹脂、ビスフェノールA型固形樹脂、含ブロムエポキシ樹脂、ビスフェノールF型樹脂、ビスフェノールAD型樹脂、フェノール型樹脂、クレゾール型樹脂、ノボラック型樹脂、環状脂肪族エポキシ樹脂、エピビス型エポキシ樹脂、グリシジルエステル樹脂、グリジシルアミン系樹脂、複素環式エポキシ樹脂、変性エポキシ樹脂等のエポキシ樹脂を用いることができる。なお、シール材で囲まれた領域には充填材193を充填してもよく、窒素雰囲気下で封止することによって、窒素等を封入してもよい。本実施の形態は、下面射出型のため、充填材193は透光性を有する必要はないが、充填材193を透過して光を取り出す構造の場合は、透光性を有する必要がある。代表的には可視光硬化、紫外線硬化または熱硬化のエポキシ樹脂を用いればよい。以上の工程において、本実施の形態における、発光素子を用いた表示機能を有する表示装置が完成する。また充填材は、液状の状態で滴下し、表示装置内に充填することもできる。
EL表示パネル内には素子の水分による劣化を防ぐため、乾燥剤を設置される。本実施の形態では、発光素子より放射される光を妨げないように、封止基板195側に乾燥剤を設ける。
なお、本実施の形態では、ガラス基板で発光素子を封止した場合を示すが、封止の処理とは、発光素子を水分から保護するための処理であり、カバー材で機械的に封入する方法、熱硬化性樹脂又は紫外光硬化性樹脂で封入する方法、金属酸化物や窒化物等のバリア能力が高い薄膜により封止する方法のいずれかを用いる。カバー材としては、ガラス、セラミックス、プラスチックもしくは金属を用いることができるが、カバー材側に光を放射させる場合は透光性でなければならない。また、カバー材と上記発光素子が形成された基板とは熱硬化性樹脂又は紫外光硬化性樹脂等のシール材を用いて貼り合わせられ、熱処理又は紫外光照射処理によって樹脂を硬化させて密閉空間を形成する。この密閉空間の中に酸化バリウムに代表される吸湿材を設けることも有効である。この吸湿材は、シール材の上に接して設けても良いし、発光素子よりの光を妨げないような、隔壁の上や周辺部に設けても良い。さらに、カバー材と発光素子の形成された基板との空間を熱硬化性樹脂若しくは紫外光硬化性樹脂で充填することも可能である。この場合、熱硬化性樹脂若しくは紫外光硬化性樹脂の中に酸化バリウムに代表される吸湿材を添加しておくことは有効である。
図1に示す本実施の形態の表示装置は、ソース電極層又はドレイン電極層として機能する配線層172bと第1の電極層185とが直接接して電気的な接続を行う構成であるが、第1の電極層185と配線層172とを他の配線層を介して電気的に接続する構成としてもよい。また、図1では、配線層172bの上に第1の電極層185が一部積層するように接続しているが、先に第1の電極層185を形成し、その第1の電極層185上に接するように配線層172bを形成する構成でもよい。
本実施の形態では、外部端子接続領域202において、端子電極層178に異方性導電層196によってFPC194を接続し、外部と電気的に接続する構造とする。また表示装置の上面図である図1(A)で示すように、本実施の形態において作製される表示装置は信号線駆動回路を有する駆動回路領域204のほかに、走査線駆動回路を有する駆動回路領域208が設けられている。
本実施の形態では、上記のような回路で形成するが、本発明はこれに限定されず、駆動回路としてICチップを前述したCOG方式やTAB方式によって実装したものでもよい。また、ゲート線駆動回路、ソース線駆動回路は複数であっても単数であっても良い。
また、本発明の表示装置において、画面表示の駆動方法は特に限定されず、例えば、点順次駆動方法や線順次駆動方法や面順次駆動方法などを用いればよい。代表的には、線順次駆動方法とし、時分割階調駆動方法や面積階調駆動方法を適宜用いればよい。また、表示装置のソース線に入力する映像信号は、アナログ信号であってもよいし、デジタル信号であってもよく、適宜、映像信号に合わせて駆動回路などを設計すればよい。
さらに、ビデオ信号がデジタルの表示装置において、画素に入力されるビデオ信号が定電圧(CV)のものと、定電流(CC)のものとがある。ビデオ信号が定電圧のもの(CV)には、発光素子に印加される電圧が一定のもの(CVCV)と、発光素子に印加される電流が一定のもの(CVCC)とがある。また、ビデオ信号が定電流のもの(CC)には、発光素子に印加される電圧が一定のもの(CCCV)と、発光素子に印加される電流が一定のもの(CCCC)とがある。
以上のように画素領域206と同一基板上に、バイポーラトランジスタ174を有するリファレンス回路209を有することができる。
本実施の形態に示す表示装置の一例を図9に示すブロック図及び回路図を用いて説明する。図9(A)は、表示装置のブロック図であり、D/Aコンバーター601には外部からビデオのデジタル信号と、リファレンス回路602から出力されるリファレンス電流Irefが入力され、D/Aコンバーター601はアナログ電圧を出力し、上記アナログ電圧は画素603のスイッチ604を介して駆動トランジスタ605のゲートに印加される。
図9(B)においてそれぞれの回路をより具体的に説明する。リファレンス回路602はPNPバイポーラトランジスタ611、612、pチャネル型トランジスタ607、608、616、nチャネル型トランジスタ609、610、抵抗613、614、615から構成されている。対をなすpチャネル型トランジスタ607、608とnチャネル型トランジスタ609、610はそれぞれ同じ電流特性とサイズを有しており、飽和領域で動作している。また、抵抗613、614、615の抵抗値とPNPバイポーラトランジスタ611、612のサイズを適切に選択することで、温度に依存しない定電流を生成することができる。pチャネル型トランジスタ616は、607、608とのサイズ(半導体層のチャネル幅の大きさ)の比率で、発光素子(EL素子)によるEL表示で一階調を表現するために必要な1画素当たりの電流をリファレンス電流Irefとして出力する。
D/Aコンバーター601はpチャネル型トランジスタ617、618とnチャネル型トランジスタ626、スイッチ623で一つのユニット631を形成しており、pチャネル型トランジスタ617、618は画素603の発光素子606の駆動トランジスタ605と同じ電流特性とサイズを有しており、飽和領域で動作している。nチャネル型トランジスタ625はリファレンス回路602が出力するリファレンス電流Irefを入力しており、飽和領域で動作している。nチャネル型トランジスタ626もnチャネル型トランジスタ625と同じ電流特性とサイズを有しており、飽和領域で動作している。pチャネル型トランジスタ617の電流をpチャネル型トランジスタ629に流すかどうかを、ビデオのデジタル信号によりスイッチ623のオンとオフを切り替えている。
上記ユニット631がD/Aコンバーター601内にN個同様に配置されている。
nチャネル型トランジスタ627、628も同じ電流特性とサイズを有しており、飽和領域で動作している。pチャネル型トランジスタ629はゲートとドレイン端子が接続されたものになっている。pチャネル型トランジスタ629は画素603の発光素子606の駆動トランジスタ605と同じ電流特性とサイズを有しており、飽和領域で動作している。バッファ630の入力はpチャネル型トランジスタ629のゲートとドレイン端子に接続されており、上記ゲートとドレイン端子の電圧を画素603のスイッチ604を介して駆動トランジスタ605のゲートに印加する。
上記構成あれば、温度に依存せず所望の電流を発光素子に流すことができる。
リファレンス回路209及び画素領域206のトランジスタの半導体層は、上記単結晶半導体基板より転置された単結晶半導体層を用いており、その膜厚は1μm以上3μm以下が好ましい。上記膜厚であると、画素領域及びリファレンス回路においてCMOSを形成すると同工程でリファレンス回路においてバイポーラトランジスタ(同工程で作製できることから寄生バイポーラトランジスタとも呼ばれる)を形成することができるリファレンス回路は、画素の発光素子に電流を供給して駆動する駆動トランジスタの温度依存性を補償するリファレンス回路として用いることができる。バイポーラトランジスタを使用したリファレンス電流生成回路は温度に対する依存性が非常に小さいため、駆動トランジスタの駆動電流を温度に依存せず一定にするためのリファレンス回路として効果がある。
以上のように本実施の形態の表示装置は、単結晶半導体基板より分離、接合され、支持基板上に設けられた単結晶半導体層を用いることによって、均一な特性を有するトランジスタとすることができる。
さらに、バイポーラトランジスタを有するリファレンス回路を有することにより、画素の発光素子に電流を供給して駆動する駆動トランジスタの温度依存性を補償することができる。
従って、表示ムラや画質低下などを防止した高画質かつ高信頼性を付与した表示装置を提供することができる。
(実施の形態2)
本発明を適用して発光素子を有する表示装置を形成することができるが、該発光素子から発せられる光は、下面放射、上面放射、両面放射のいずれかを行う。本実施の形態では、両面放射型の視認性の優れた高画質の表示機能を有し、かつ高信頼性を付与することを目的とした表示装置の例を、図8を用いて説明する。
図8に示す表示装置は、絶縁表面を有する透光性の基板である素子基板1600、ブロッキング層1601、接合面を有する絶縁層1604、単結晶半導体層1602、トランジスタ1655、トランジスタ1665、トランジスタ1675、トランジスタ1685、バイポーラトランジスタ1640、第1の電極層1617、電界発光層1619、第2の電極層1620、充填材1622、シール材1632、絶縁膜1611、絶縁膜1612、絶縁層1614、封止基板1625、端子電極層1681、異方性導電層1682、FPC1683によって構成されている。表示装置は、外部端子接続領域242、リファレンス回路249、駆動回路領域244、画素領域246を有している。充填材1622は、液状の組成物の状態で、滴下法によって形成することができる。滴下法によって充填材が形成された素子基板1600と封止基板1625を張り合わせて発光表示装置を封止する。
図8の表示装置は、両面放射型であり、矢印の方向に素子基板1600側からも、封止基板1625側からも光を放射する構造である。よって、第1の電極層1617及び第2の電極層1620として透光性電極層を用いる。
本実施の形態においては、透光性電極層である第1の電極層1617及び第2の電極層1620に、具体的には透光性を有する導電性材料からなる透明導電膜を用いればよく、酸化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物などを用いることができる。勿論、インジウム錫酸化物(ITO)、インジウム亜鉛酸化物(IZO)、酸化ケイ素を添加したインジウム錫酸化物(ITSO)なども用いることができる。
また、透光性を有さない金属膜のような材料であっても膜厚を薄く(好ましくは、5nm〜30nm程度の厚さ)して光を透過可能な状態としておくことで、第1の電極層1617及び第2の電極層1620から光を放射することが可能となる。また、第1の電極層1617及び第2の電極層1620に用いることのできる金属薄膜としては、チタン、タングステン、ニッケル、金、白金、銀、アルミニウム、マグネシウム、カルシウム、リチウム、およびそれらの合金からなる導電膜などを用いることができる。
以上のように、図8の表示装置は、発光素子1605より放射される光が、第1の電極層1617及び第2の電極層1620両方を通過して、両面から光を放射する構成となる。
発光素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくはアクティブマトリクス方式で駆動することができる。また、デジタル駆動、アナログ駆動どちらでも適用可能である。
封止基板にカラーフィルタ(着色層)を形成してもよい。カラーフィルタ(着色層)は、蒸着法や液滴吐出法によって形成することができ、カラーフィルタ(着色層)を用いると、高精細な表示を行うこともできる。カラーフィルタ(着色層)により、各RGBの発光スペクトルにおいてブロードなピークが鋭いピークになるように補正できるからである。
単色の発光を示す材料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行うことができる。カラーフィルタ(着色層)や色変換層は、例えば封止基板に形成し、素子基板へ張り合わせればよい。
もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータイプの表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示部が適しており、主に文字や記号を表示することができる。
図8に示す本実施の形態の表示装置に設けられるトランジスタは、実施の形態1で示したトランジスタと同様に作製することができる。実施の形態1における駆動回路領域204が、本実施の形態において図8の駆動回路領域244に対応し、実施の形態1における画素領域206が、本実施の形態において図8の画素領域246に対応し、実施の形態1におけるリファレンス回路209が、本実施の形態において図8のリファレンス回路249に対応している。しかし本実施の形態はこれに限定されず、シリサイドを有するトランジスタや、サイドウォール構造を有さないトランジスタを用いて、発光素子を有する表示装置を作製することもできる。シリサイドを有する構造であると、ソース領域及びドレイン領域の低抵抗化が可能であり、表示装置の高速化が可能である。また、低電圧での動作が可能であるため、消費電力を低減することが可能である。
単結晶半導体層を用いることにより、画素領域と駆動回路領域を同一基板上に一体形成することができる。その場合、画素領域のトランジスタと、駆動回路領域のトランジスタとは同時に形成される。
従って、本発明の表示装置は、高画質かつ高信頼性が付与された表示装置とすることができる。
本実施の形態は、上記の実施の形態1と適宜組み合わせることができる。
(実施の形態3)
本実施の形態では、高画質であり、かつ高信頼性も付加することを目的した表示装置の例について説明する。詳しくは表示素子に発光素子を用いる発光表示装置について説明する。
本実施の形態では、本発明の表示装置の表示素子として適用することのできる発光素子の構成を、図13を用いて説明する。
図13は発光素子の素子構造であり、第1の電極層870と第2の電極層850との間に、EL層860が挟持されている発光素子である。EL層860は、図示した通り、第1の層804、第2の層803、第3の層802から構成されている。図13において第2の層803は発光層であり、第1の層804及び第3の層802は機能層である。
第1の層804は、第2の層803に正孔(ホール)を輸送する機能を担う層である。図13では第1の層804に含まれる正孔注入層は、正孔注入性の高い物質を含む層である。モリブデン酸化物やバナジウム酸化物、ルテニウム酸化物、タングステン酸化物、マンガン酸化物等を用いることができる。この他、フタロシアニン(略称:H2Pc)や銅フタロシアニン(CuPC)等のフタロシアニン系の化合物、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス(N−{4−[N−(3−メチルフェニル)−N−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)等の芳香族アミン化合物、或いはポリ(エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PEDOT/PSS)等の高分子等によっても第1の層804を形成することができる。
また、正孔注入層として、有機化合物と無機化合物とを複合してなる複合材料を用いることができる。特に、有機化合物と、有機化合物に対して電子受容性を示す無機化合物とを含む複合材料は、有機化合物と無機化合物との間で電子の授受が行われ、キャリア密度が増大するため、正孔注入性、正孔輸送性に優れている。
また、正孔注入層として有機化合物と無機化合物とを複合してなる複合材料を用いた場合、電極層とオーム接触をすることが可能となるため、仕事関数に関わらず電極層を形成する材料を選ぶことができる。
複合材料に用いる無機化合物としては、遷移金属の酸化物であることが好ましい。また元素周期表における第4族乃至第8族に属する金属の酸化物を挙げることができる。具体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため好ましい。中でも特に、酸化モリブデンは大気中で安定であり、吸湿性が低く、扱いやすいため好ましい。
複合材料に用いる有機化合物としては、芳香族アミン化合物、カルバゾール誘導体、芳香族炭化水素、高分子化合物(オリゴマー、デンドリマー、ポリマー等)など、種々の化合物を用いることができる。なお、複合材料に用いる有機化合物としては、正孔輸送性の高い有機化合物であることが好ましい。具体的には、10−6cm2/Vs以上の正孔移動度を有する物質であることが好ましい。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。以下では、複合材料に用いることのできる有機化合物を具体的に列挙する。
例えば、芳香族アミン化合物としては、N,N’−ジ(p−トリル)−N,N’−ジフェニル−p−フェニレンジアミン(略称:DTDPPA)、4,4’−ビス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ビフェニル(略称:DPAB)、4,4’−ビス(N−{4−[N−(3−メチルフェニル)−N−フェニルアミノ]フェニル}−N−フェニルアミノ)ビフェニル(略称:DNTPD)、1,3,5−トリス[N−(4−ジフェニルアミノフェニル)−N−フェニルアミノ]ベンゼン(略称:DPA3B)等を挙げることができる。
複合材料に用いることのできるカルバゾール誘導体としては、具体的には、3−[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA1)、3,6−ビス[N−(9−フェニルカルバゾール−3−イル)−N−フェニルアミノ]−9−フェニルカルバゾール(略称:PCzPCA2)、3−[N−(1−ナフチル)−N−(9−フェニルカルバゾール−3−イル)アミノ]−9−フェニルカルバゾール(略称:PCzPCN1)等を挙げることができる。
また、4,4’−ジ(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)、9−[4−(N−カルバゾリル)]フェニル−10−フェニルアントラセン(略称:CzPA)、1,4−ビス[4−(N−カルバゾリル)フェニル]−2,3,5,6−テトラフェニルベンゼン等を用いることができる。
また、複合材料に用いることのできる芳香族炭化水素としては、例えば、2−tert−ブチル−9,10−ジ(2−ナフチル)アントラセン(略称:t−BuDNA)、2−tert−ブチル−9,10−ジ(1−ナフチル)アントラセン、9,10−ビス(3,5−ジフェニルフェニル)アントラセン(略称:DPPA)、2−tert−ブチル−9,10−ビス(4−フェニルフェニル)アントラセン(略称:t−BuDBA)、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−ジフェニルアントラセン(略称:DPAnth)、2−tert−ブチルアントラセン(略称:t−BuAnth)、9,10−ビス(4−メチル−1−ナフチル)アントラセン(略称:DMNA)、2−tert−ブチル−9,10−ビス[2−(1−ナフチル)フェニル]アントラセン、9,10−ビス[2−(1−ナフチル)フェニル]アントラセン、2,3,6,7−テトラメチル−9,10−ジ(1−ナフチル)アントラセン、2,3,6,7−テトラメチル−9,10−ジ(2−ナフチル)アントラセン、9,9’−ビアントリル、10,10’−ジフェニル−9,9’−ビアントリル、10,10’−ビス(2−フェニルフェニル)−9,9’−ビアントリル、10,10’−ビス[(2,3,4,5,6−ペンタフェニル)フェニル]−9,9’−ビアントリル、アントラセン、テトラセン、ルブレン、ペリレン、2,5,8,11−テトラ(tert−ブチル)ペリレン等が挙げられる。また、この他、ペンタセン、コロネン等も用いることができる。このように、1×10−6cm2/Vs以上の正孔移動度を有し、炭素数14〜42である芳香族炭化水素を用いることがより好ましい。
なお、複合材料に用いることのできる芳香族炭化水素は、ビニル骨格を有していてもよい。ビニル基を有している芳香族炭化水素としては、例えば、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(略称:DPVBi)、9,10−ビス[4−(2,2−ジフェニルビニル)フェニル]アントラセン(略称:DPVPA)等が挙げられる。
また、ポリ(N−ビニルカルバゾール)(略称:PVK)やポリ(4−ビニルトリフェニルアミン)(略称:PVTPA)等の高分子化合物を用いることもできる。
図13では第1の層804に含まれる正孔輸送層を形成する物質としては、正孔輸送性の高い物質、具体的には、芳香族アミン(すなわち、ベンゼン環−窒素の結合を有するもの)の化合物であることが好ましい。広く用いられている材料として、4,4’−ビス[N−(3−メチルフェニル)−N−フェニルアミノ]ビフェニル、その誘導体である4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(以下、NPBと記す)、4,4’,4’’−トリス(N,N−ジフェニル−アミノ)トリフェニルアミン、4,4’,4’’−トリス[N−(3−メチルフェニル)−N−フェニルアミノ]トリフェニルアミンなどのスターバースト型芳香族アミン化合物が挙げられる。ここに述べた物質は、主に10−6cm2/Vs以上の正孔移動度を有する物質である。但し、電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、正孔輸送層は、単層のものだけでなく、上記物質の混合層、あるいは二層以上積層したものであってもよい。
第3の層802は、第2の層803に電子を輸送、注入する機能を担う層である。図13では第3の層802に含まれる電子輸送層について説明する。電子輸送層は、電子輸送性の高い物質を用いることができる。例えば、トリス(8−キノリノラト)アルミニウム(略称:Alq)、トリス(4−メチル−8−キノリノラト)アルミニウム(略称:Almq3)、ビス(10−ヒドロキシベンゾ[h]キノリナト)ベリリウム(略称:BeBq2)、ビス(2−メチル−8−キノリノラト)(4−フェニルフェノラト)アルミニウム(略称:BAlq)など、キノリン骨格またはベンゾキノリン骨格を有する金属錯体等からなる層である。また、この他ビス[2−(2−ヒドロキシフェニル)ベンゾオキサゾラト]亜鉛(略称:Zn(BOX)2)、ビス[2−(2−ヒドロキシフェニル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ)2)などのオキサゾール系、チアゾール系配位子を有する金属錯体なども用いることができる。さらに、金属錯体以外にも、2−(4−ビフェニリル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(略称:PBD)や、1,3−ビス[5−(p−tert−ブチルフェニル)−1,3,4−オキサジアゾール−2−イル]ベンゼン(略称:OXD−7)、3−(4−ビフェニリル)−4−フェニル−5−(4−tert−ブチルフェニル)−1,2,4−トリアゾール(略称:TAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(略称:BCP)なども用いることができる。ここに述べた物質は、主に10−6cm2/Vs以上の電子移動度を有する物質である。なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質を電子輸送層として用いても構わない。また、電子輸送層は、単層のものだけでなく、上記物質からなる層が二層以上積層したものとしてもよい。
図13では第3の層802に含まれる電子注入層について説明する。電子注入層は、電子注入性の高い物質を用いることができる。電子注入層としては、フッ化リチウム(LiF)、フッ化セシウム(CsF)、フッ化カルシウム(CaF2)等のようなアルカリ金属又はアルカリ土類金属又はそれらの化合物を用いることができる。例えば、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属又はそれらの化合物を含有させたもの、例えばAlq中にマグネシウム(Mg)を含有させたもの等を用いることができる。なお、電子注入層として、電子輸送性を有する物質からなる層中にアルカリ金属又はアルカリ土類金属を含有させたものを用いることにより、電極層からの電子注入が効率良く行われるためより好ましい。
次に、発光層である第2の層803について説明する。発光層は発光機能を担う層であり、発光性の有機化合物を含む。また、無機化合物を含む構成であってもよい。発光層は、種々の発光性の有機化合物、無機化合物を用いて形成することができる。ただし、発光層は、膜厚は10nm〜100nm程度が好ましい。
発光層に用いられる有機化合物としては、発光性の有機化合物であれば特に限定されることはなく、例えば、9,10−ジ(2−ナフチル)アントラセン(略称:DNA)、9,10−ジ(2−ナフチル)−2−tert−ブチルアントラセン(略称:t−BuDNA)、4,4’−ビス(2,2−ジフェニルビニル)ビフェニル(略称:DPVBi)、クマリン30、クマリン6、クマリン545、クマリン545T、ペリレン、ルブレン、ペリフランテン、2,5,8,11−テトラ(tert−ブチル)ペリレン(略称:TBP)、9,10−ジフェニルアントラセン(略称:DPA)、5,12−ジフェニルテトラセン、4−(ジシアノメチレン)−2−メチル−6−[p−(ジメチルアミノ)スチリル]−4H−ピラン(略称:DCM1)、4−(ジシアノメチレン)−2−メチル−6−[2−(ジュロリジン−9−イル)エテニル]−4H−ピラン(略称:DCM2)、4−(ジシアノメチレン)−2,6−ビス[p−(ジメチルアミノ)スチリル]−4H−ピラン(略称:BisDCM)等が挙げられる。また、ビス[2−(4’,6’−ジフルオロフェニル)ピリジナト−N,C2’]イリジウム(ピコリナート)(略称:FIrpic)、ビス{2−[3’,5’−ビス(トリフルオロメチル)フェニル]ピリジナト−N,C2’}イリジウム(ピコリナート)(略称:Ir(CF3ppy)2(pic))、トリス(2−フェニルピリジナト−N,C2’)イリジウム(略称:Ir(ppy)3)、ビス(2−フェニルピリジナト−N,C2’)イリジウム(アセチルアセトナート)(略称:Ir(ppy)2(acac))、ビス[2−(2’−チエニル)ピリジナト−N,C3’]イリジウム(アセチルアセトナート)(略称:Ir(thp)2(acac))、ビス(2−フェニルキノリナト−N,C2’)イリジウム(アセチルアセトナート)(略称:Ir(pq)2(acac))、ビス[2−(2’−ベンゾチエニル)ピリジナト−N,C3’]イリジウム(アセチルアセトナート)(略称:Ir(btp)2(acac))などの燐光を放出できる化合物用いることもできる。
発光層を一重項励起発光材料の他、金属錯体などを含む三重項励起材料を用いても良い。例えば、赤色の発光性の画素、緑色の発光性の画素及び青色の発光性の画素のうち、輝度半減時間が比較的短い赤色の発光性の画素を三重項励起発光材料で形成し、他を一重項励起発光材料で形成する。三重項励起発光材料は発光効率が良いので、同じ輝度を得るのに消費電力が少なくて済むという特徴がある。すなわち、赤色画素に適用した場合、発光素子に流す電流量が少なくて済むので、信頼性を向上させることができる。低消費電力化として、赤色の発光性の画素と緑色の発光性の画素とを三重項励起発光材料で形成し、青色の発光性の画素を一重項励起発光材料で形成しても良い。人間の視感度が高い緑色の発光素子も三重項励起発光材料で形成することで、より低消費電力化を図ることができる。
また、発光層においては、上述した発光を示す有機化合物だけでなく、さらに他の有機化合物が添加されていてもよい。添加できる有機化合物としては、例えば、先に述べたTDATA、MTDATA、m−MTDAB、TPD、NPB、DNTPD、TCTA、Alq3、Almq3、BeBq2、BAlq、Zn(BOX)2、Zn(BTZ)2、BPhen、BCP、PBD、OXD−7、TPBI、TAZ、p−EtTAZ、DNA、t−BuDNA、DPVBiなどの他、4,4’−ビス(N−カルバゾリル)ビフェニル(略称:CBP)、1,3,5−トリス[4−(N−カルバゾリル)フェニル]ベンゼン(略称:TCPB)などを用いることができるが、これらに限定されることはない。なお、このように有機化合物以外に添加する有機化合物は、有機化合物を効率良く発光させるため、有機化合物の励起エネルギーよりも大きい励起エネルギーを有し、かつ有機化合物よりも多く添加されていることが好ましい(それにより、有機化合物の濃度消光を防ぐことができる)。あるいはまた、他の機能として、有機化合物と共に発光を示してもよい(それにより、白色発光なども可能となる)。
発光層は、発光波長帯の異なる発光層を画素毎に形成して、カラー表示を行う構成としても良い。典型的には、R(赤)、G(緑)、B(青)の各色に対応した発光層を形成する。この場合にも、画素の光放射側にその発光波長帯の光を透過するフィルターを設けた構成とすることで、色純度の向上や、画素領域の鏡面化(映り込み)の防止を図ることができる。フィルターを設けることで、従来必要であるとされていた円偏光板などを省略することが可能となり、発光層から放射される光の損失を無くすことができる。さらに、斜方から画素領域(表示画面)を見た場合に起こる色調の変化を低減することができる。
発光層で用いることのできる材料は低分子系有機発光材料でも高分子系有機発光材料でもよい。高分子系有機発光材料は低分子系に比べて物理的強度が高く、素子の耐久性が高い。また塗布により成膜することが可能であるので、素子の作製が比較的容易である。
発光色は、発光層を形成する材料で決まるため、これらを選択することで所望の発光を示す発光素子を形成することができる。発光層の形成に用いることができる高分子系の電界発光材料は、ポリパラフェニレンビニレン系、ポリパラフェニレン系、ポリチオフェン系、ポリフルオレン系が挙げられる。
ポリパラフェニレンビニレン系には、ポリ(パラフェニレンビニレン) [PPV] の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレンビニレン) [RO−PPV]、ポリ(2−(2’−エチル−ヘキソキシ)−5−メトキシ−1,4−フェニレンビニレン)[MEH−PPV]、ポリ(2−(ジアルコキシフェニル)−1,4−フェニレンビニレン)[ROPh−PPV]等が挙げられる。ポリパラフェニレン系には、ポリパラフェニレン[PPP]の誘導体、ポリ(2,5−ジアルコキシ−1,4−フェニレン)[RO−PPP]、ポリ(2,5−ジヘキソキシ−1,4−フェニレン)等が挙げられる。ポリチオフェン系には、ポリチオフェン[PT]の誘導体、ポリ(3−アルキルチオフェン)[PAT]、ポリ(3−ヘキシルチオフェン)[PHT]、ポリ(3−シクロヘキシルチオフェン)[PCHT]、ポリ(3−シクロヘキシル−4−メチルチオフェン)[PCHMT]、ポリ(3,4−ジシクロヘキシルチオフェン)[PDCHT]、ポリ[3−(4−オクチルフェニル)−チオフェン][POPT]、ポリ[3−(4−オクチルフェニル)−2,2ビチオフェン][PTOPT]等が挙げられる。ポリフルオレン系には、ポリフルオレン[PF]の誘導体、ポリ(9,9−ジアルキルフルオレン)[PDAF]、ポリ(9,9−ジオクチルフルオレン)[PDOF]等が挙げられる。
発光層で用いられる無機化合物としては、有機化合物の発光を消光しにくい無機化合物であれば何であってもよく、種々の金属酸化物や金属窒化物を用いることができる。特に、周期表第13族または第14族の金属酸化物は、有機化合物の発光を消光しにくいため好ましく、具体的には酸化アルミニウム、酸化ガリウム、酸化ケイ素、酸化ゲルマニウムが好適である。ただし、これらに限定されることはない。
なお、発光層は、上述した有機化合物と無機化合物の組み合わせを適用した層を、複数積層して形成していてもよい。また、他の有機化合物あるいは他の無機化合物をさらに含んでいてもよい。発光層の層構造は変化しうるものであり、特定の電子注入領域や発光領域を備えていない代わりに、電子注入用の電極層を備えたり、発光性の材料を分散させて備えたりする変形は、本発明の趣旨を逸脱しない範囲において許容されうるものである。
上記のような材料で形成した発光素子は、順方向にバイアスすることで発光する。発光素子を用いて形成する表示装置の画素は、単純マトリクス方式、若しくはアクティブマトリクス方式で駆動することができる。いずれにしても、個々の画素は、ある特定のタイミングで順方向バイアスを印加して発光させることとなるが、ある一定期間は非発光状態となっている。この非発光時間に逆方向のバイアスを印加することで発光素子の信頼性を向上させることができる。発光素子では、一定駆動条件下で発光強度が低下する劣化や、画素内で非発光領域が拡大して見かけ上輝度が低下する劣化モードがあるが、順方向及び逆方向にバイアスを印加する交流的な駆動を行うことで、劣化の進行を遅くすることができ、発光表示装置の信頼性を向上させることができる。また、デジタル駆動、アナログ駆動どちらでも適用可能である。
よって、封止基板にカラーフィルタ(着色層)を形成してもよい。カラーフィルタ(着色層)は、蒸着法や液滴吐出法によって形成することができ、カラーフィルタ(着色層)を用いると、高精細な表示を行うこともできる。カラーフィルタ(着色層)により、各RGBの発光スペクトルにおいてブロードなピークが鋭いピークになるように補正できるからである。
単色の発光を示す材料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行うことができる。カラーフィルタ(着色層)や色変換層は、例えば封止基板に形成し、素子基板へ張り合わせればよい。
もちろん単色発光の表示を行ってもよい。例えば、単色発光を用いてエリアカラータイプの表示装置を形成してもよい。エリアカラータイプは、パッシブマトリクス型の表示部が適しており、主に文字や記号を表示することができる。
第1の電極層870及び第2の電極層850は仕事関数を考慮して材料を選択する必要があり、そして第1の電極層870及び第2の電極層850は、画素構成によりいずれも陽極(電位が高い電極層)、又は陰極(電位が低い電極層)となりうる。駆動用薄膜トランジスタの極性がpチャネル型である場合、図13(A)のように第1の電極層870を陽極、第2の電極層850を陰極とするとよい。また、駆動用薄膜トランジスタの極性がnチャネル型である場合、図13(B)のように、第1の電極層870を陰極、第2の電極層850を陽極とすると好ましい。第1の電極層870および第2の電極層850に用いることのできる材料について述べる。第1の電極層870、第2の電極層850が陽極として機能する場合は仕事関数の大きい材料(具体的には4.5eV以上の材料)が好ましく、第1の電極層、第2の電極層850が陰極として機能する場合は仕事関数の小さい材料(具体的には3.5eV以下の材料)が好ましい。しかしながら、第1の層804の正孔注入、正孔輸送特性や、第3の層802の電子注入性、電子輸送特性が優れているため、第1の電極層870、第2の電極層850共に、ほとんど仕事関数の制限を受けることなく、種々の材料を用いることができる。
図13(A)、(B)における発光素子は、第1の電極層870より光を取り出す構造のため、第2の電極層850は、必ずしも光透光性を有する必要はない。第2の電極層850としては、Ti、Ni、W、Cr、Pt、Zn、Sn、In、Ta、Al、Cu、Au、Ag、Mg、Ca、LiまたはMoから選ばれた元素、または窒化チタン、TiSiXNY、WSiX、窒化タングステン、WSiXNY、NbNなどの前記元素を主成分とする合金材料もしくは化合物材料を主成分とする膜またはそれらの積層膜を総膜厚100nm〜800nmの範囲で用いればよい。
また、第2の電極層850に第1の電極層870で用いる材料のような透光性を有する導電性材料を用いると、第2の電極層850からも光を取り出す構造となり、発光素子から放射される光は、第1の電極層870と第2の電極層850との両方より放射される両面放射構造とすることができる。
なお、第1の電極層870や第2の電極層850の種類を変えることで、本発明の発光素子は様々なバリエーションを有する。
図13(B)は、EL層860が、第1の電極層870側から第3の層802、第2の層803、第1の層804の順で構成されているケースである。
なお、EL層860に有機化合物と無機化合物が混合させて設ける場合、その形成方法としては種々の手法を用いることができる。例えば、有機化合物と無機化合物の両方を抵抗加熱により蒸発させ、共蒸着する手法が挙げられる。その他、有機化合物を抵抗加熱により蒸発させる一方で、無機化合物をエレクトロンビーム(EB)により蒸発させ、共蒸着してもよい。また、有機化合物を抵抗加熱により蒸発させると同時に、無機化合物をスパッタリングし、両方を同時に堆積する手法も挙げられる。その他、湿式法により成膜してもよい。
第1の電極層870および第2の電極層850の作製方法としては、抵抗加熱による蒸着法、EB蒸着法、スパッタリング法、CVD法、スピンコート法、印刷法、ディスペンサ法または液滴吐出法などを用いることができる。
本実施の形態は、実施の形態1及び実施の形態2と適宜組み合わせることができる。
このように、本発明を用いると、高画質であり、かつ信頼性の高い発光素子を有する表示装置を提供することができる。
(実施の形態4)
本実施の形態では、高画質であり、かつ高い信頼性を付与することを目的とした発光素子を有する表示装置の他の例を説明する。本実施の形態では、本発明の表示装置における発光素子に適用することのできる他の構成を、図11及び図12を用いて説明する。
エレクトロルミネセンスを利用する発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分類される。前者は、発光材料の粒子をバインダ中に分散させた電界発光層を有し、後者は、発光材料の薄膜からなる電界発光層を有している点に違いはあるが、高電界で加速された電子を必要とする点では共通である。なお、得られる発光のメカニズムとしては、ドナー準位とアクセプター準位を利用するドナー−アクセプター再結合型発光と、金属イオンの内殻電子遷移を利用する局在型発光とがある。一般的に、分散型無機ELではドナー−アクセプター再結合型発光、薄膜型無機EL素子では局在型発光である場合が多い。
本発明で用いることのできる発光材料は、母体材料と発光中心となる不純物元素とで構成される。含有させる不純物元素を変化させることで、様々な色の発光を得ることができる。発光材料の作製方法としては、固相法や液相法(共沈法)などの様々な方法を用いることができる。また、噴霧熱分解法、複分解法、プレカーサーの熱分解反応による方法、逆ミセル法やこれらの方法と高温焼成を組み合わせた方法、凍結乾燥法などの液相法なども用いることができる。
固相法は、母体材料と、不純物元素又は不純物元素を含む化合物を秤量し、乳鉢で混合、電気炉で加熱、焼成を行い反応させ、母体材料に不純物元素を含有させる方法である。焼成温度は、700〜1500℃が好ましい。温度が低すぎる場合は固相反応が進まず、温度が高すぎる場合は母体材料が分解してしまうからである。なお、粉末状態で焼成を行ってもよいが、ペレット状態で焼成を行うことが好ましい。比較的高温での焼成を必要とするが、簡単な方法であるため、生産性がよく大量生産に適している。
液相法(共沈法)は、母体材料又は母体材料を含む化合物と、不純物元素又は不純物元素を含む化合物を溶液中で反応させ、乾燥させた後、焼成を行う方法である。発光材料の粒子が均一に分布し、粒径が小さく低い焼成温度でも反応が進むことができる。
発光材料に用いる母体材料としては、硫化物、酸化物、窒化物を用いることができる。硫化物としては、例えば、硫化亜鉛(ZnS)、硫化カドミウム(CdS)、硫化カルシウム(CaS)、硫化イットリウム(Y2S3)、硫化ガリウム(Ga2S3)、硫化ストロンチウム(SrS)、硫化バリウム(BaS)等を用いることができる。また、酸化物としては、例えば、酸化亜鉛(ZnO)、酸化イットリウム(Y2O3)等を用いることができる。また、窒化物としては、例えば、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)等を用いることができる。さらに、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)等も用いることができ、硫化カルシウム−ガリウム(CaGa2S4)、硫化ストロンチウム−ガリウム(SrGa2S4)、硫化バリウム−ガリウム(BaGa2S4)、等の3元系の混晶であってもよい。
局在型発光の発光中心として、マンガン(Mn)、銅(Cu)、サマリウム(Sm)、テルビウム(Tb)、エルビウム(Er)、ツリウム(Tm)、ユーロピウム(Eu)、セリウム(Ce)、プラセオジウム(Pr)などを用いることができる。なお、フッ素(F)、塩素(Cl)などのハロゲン元素が添加されていてもよい。上記ハロゲン元素は電荷補償として機能することができる。
一方、ドナー−アクセプター再結合型発光の発光中心として、ドナー準位を形成する第1の不純物元素及びアクセプター準位を形成する第2の不純物元素を含む発光材料を用いることができる。第1の不純物元素は、例えば、フッ素(F)、塩素(Cl)、アルミニウム(Al)等を用いることができる。第2の不純物元素としては、例えば、銅(Cu)、銀(Ag)等を用いることができる。
ドナー−アクセプター再結合型発光の発光材料を固相法を用いて合成する場合、母体材料と、第1の不純物元素又は第1の不純物元素を含む化合物と、第2の不純物元素又は第2の不純物元素を含む化合物をそれぞれ秤量し、乳鉢で混合した後、電気炉で加熱、焼成を行う。母体材料としては、上述した母体材料を用いることができ、第1の不純物元素又は第1の不純物元素を含む化合物としては、例えば、フッ素(F)、塩素(Cl)、硫化アルミニウム(Al2S3)等を用いることができ、第2の不純物元素又は第2の不純物元素を含む化合物としては、例えば、銅(Cu)、銀(Ag)、硫化銅(Cu2S)、硫化銀(Ag2S)等を用いることができる。焼成温度は、700〜1500℃が好ましい。温度が低すぎる場合は固相反応が進まず、温度が高すぎる場合は母体材料が分解してしまうからである。なお、粉末状態で焼成を行ってもよいが、ペレット状態で焼成を行うことが好ましい。
また、固相反応を利用する場合の不純物元素として、第1の不純物元素と第2の不純物元素で構成される化合物を組み合わせて用いてもよい。この場合、不純物元素が拡散されやすく、固相反応が進みやすくなるため、均一な発光材料を得ることができる。さらに、余分な不純物元素が入らないため、純度の高い発光材料が得ることができる。第1の不純物元素と第2の不純物元素で構成される化合物としては、例えば、塩化銅(CuCl)、塩化銀(AgCl)等を用いることができる。
なお、これらの不純物元素の濃度は、母体材料に対して0.01〜10atom%であればよく、好ましくは0.05〜5atom%の範囲である。
薄膜型無機ELの場合、電界発光層は、上記発光材料を含む層であり、抵抗加熱蒸着法、電子ビーム蒸着(EB蒸着)法等の真空蒸着法、スパッタリング法等の物理気相成長法(PVD)、有機金属CVD法、ハイドライド輸送減圧CVD法等の化学気相成長法(CVD)、原子層エピタキシ法(ALE)等を用いて形成することができる。
図11(A)乃至(C)に発光素子として用いることのできる薄膜型無機EL素子の一例を示す。図11(A)乃至(C)において、発光素子は、第1の電極層50、電界発光層52、第2の電極層53を含む。
図11(B)及び図11(C)に示す発光素子は、図11(A)の発光素子において、電極層と電界発光層間に絶縁層を設ける構造である。図11(B)に示す発光素子は、第1の電極層50と電界発光層52との間に絶縁層54を有し、図11(C)に示す発光素子は、第1の電極層50と電界発光層52との間に絶縁層54a、第2の電極層53と電界発光層52との間に絶縁層54bとを有している。このように絶縁層は電界発光層を挟持する一対の電極層のうち一方の間にのみ設けてもよいし、両方の間に設けてもよい。また絶縁層は単層でもよいし複数層からなる積層でもよい。
また、図11(B)では第1の電極層50に接するように絶縁層54が設けられているが、絶縁層と電界発光層の順番を逆にして、第2の電極層53に接するように絶縁層54を設けてもよい。
分散型無機ELの場合、粒子状の発光材料をバインダ中に分散させ膜状の電界発光層を形成する。粒子状に加工する。発光材料の作製方法によって、十分に所望の大きさの粒子が得られない場合は、乳鉢等で粉砕などによって粒子状に加工すればよい。バインダとは、粒状の発光材料を分散した状態で固定し、電界発光層としての形状に保持するための物質である。発光材料は、バインダによって電界発光層中に均一に分散し固定される。
分散型無機ELの場合、電界発光層の形成方法は、選択的に電界発光層を形成できる液滴吐出法や、印刷法(スクリーン印刷やオフセット印刷など)、スピンコート法などの塗布法、ディッピング法、ディスペンサ法などを用いることもできる。膜厚は特に限定されることはないが、好ましくは、10〜1000nmの範囲である。また、発光材料及びバインダを含む電界発光層において、発光材料の割合は50wt%以上80wt%以下とするよい。
図12(A)乃至(C)に発光素子として用いることのできる分散型無機EL素子の一例を示す。図12(A)における発光素子は、第1の電極層60、電界発光層62、第2の電極層63の積層構造を有し、電界発光層62中にバインダによって保持された発光材料61を含む。
本実施の形態に用いることのできるバインダとしては、有機材料や無機材料を用いることができ、有機材料及び無機材料の混合材料を用いてもよい。有機材料としては、シアノエチルセルロース系樹脂のように、比較的誘電率の高いポリマーや、ポリエチレン、ポリプロピレン、ポリスチレン系樹脂、シリコーン樹脂、エポキシ樹脂、フッ化ビニリデンなどの樹脂を用いることができる。また、芳香族ポリアミド、ポリベンゾイミダゾール(polybenzimidazole)などの耐熱性高分子、又はシロキサン樹脂を用いてもよい。なお、シロキサン樹脂とは、Si−O−Si結合を含む樹脂に相当する。シロキサンは、シリコン(Si)と酸素(O)との結合で骨格構造が構成される。置換基として、少なくとも水素を含む有機基(例えばアルキル基、芳香族炭化水素)が用いられる。置換基として、フルオロ基を用いてもよい。または置換基として、少なくとも水素を含む有機基と、フルオロ基とを用いてもよい。また、ポリビニルアルコール、ポリビニルブチラールなどのビニル樹脂、フェノール樹脂、ノボラック樹脂、アクリル樹脂、メラミン樹脂、ウレタン樹脂、オキサゾール樹脂(ポリベンゾオキサゾール)等の樹脂材料を用いてもよい。これらの樹脂に、チタン酸バリウム(BaTiO3)やチタン酸ストロンチウム(SrTiO3)などの高誘電率の微粒子を適度に混合して誘電率を調整することもできる。
バインダに含まれる無機材料としては、酸化珪素(SiOx)、窒化珪素(SiNx)、酸素及び窒素を含む珪素、窒化アルミニウム(AlN)、酸素及び窒素を含むアルミニウムまたは酸化アルミニウム(Al2O3)、酸化チタン(TiO2)、BaTiO3、SrTiO3、チタン酸鉛(PbTiO3)、ニオブ酸カリウム(KNbO3)、ニオブ酸鉛(PbNbO3)、酸化タンタル(Ta2O5)、タンタル酸バリウム(BaTa2O6)、タンタル酸リチウム(LiTaO3)、酸化イットリウム(Y2O3)、酸化ジルコニウム(ZrO2)、ZnSその他の無機材料を含む物質から選ばれた材料で形成することができる。有機材料に、誘電率の高い無機材料を含ませる(添加等によって)ことによって、発光材料及びバインダよりなる電界発光層の誘電率をより制御することができ、より誘電率を大きくすることができる。
作製工程において、発光材料はバインダを含む溶液中に分散されるが本実施の形態に用いることのできるバインダを含む溶液の溶媒としては、バインダ材料が溶解し、電界発光層を形成する方法(各種ウエットプロセス)及び所望の膜厚に適した粘度の溶液を作製できるような溶媒を適宜選択すればよい。有機溶媒等を用いることができ、例えばバインダとしてシロキサン樹脂を用いる場合は、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート(PGMEAともいう)、3−メトシキ−3メチル−1−ブタノール(MMBともいう)などを用いることができる。
図12(B)及び図12(C)に示す発光素子は、図12(A)の発光素子において、電極層と電界発光層間に絶縁層を設ける構造である。図12(B)に示す発光素子は、第1の電極層60と電界発光層62との間に絶縁層64を有し、図12(C)に示す発光素子は、第1の電極層60と電界発光層62との間に絶縁層64a、第2の電極層63と電界発光層62との間に絶縁層64bとを有している。このように絶縁層は電界発光層を挟持する一対の電極層のうち一方の間にのみ設けてもよいし、両方の間に設けてもよい。また絶縁層は単層でもよいし複数層からなる積層でもよい。
また、図12(B)では第1の電極層60に接するように絶縁層64が設けられているが、絶縁層と電界発光層の順番を逆にして、第2の電極層63に接するように絶縁層64を設けてもよい。
図11(B)(C)における絶縁層54、54a、54b、図12(B)(C)における絶縁層64、64a、64bのような絶縁層は、特に限定されることはないが、絶縁耐圧が高く、緻密な膜質であることが好ましく、さらには、誘電率が高いことが好ましい。例えば、酸化シリコン(SiO2)、酸化イットリウム(Y2O3)、酸化チタン(TiO2)、酸化アルミニウム(Al2O3)、酸化ハフニウム(HfO2)、酸化タンタル(Ta2O5)、チタン酸バリウム(BaTiO3)、チタン酸ストロンチウム(SrTiO3)、チタン酸鉛(PbTiO3)、窒化シリコン(Si3N4)、酸化ジルコニウム(ZrO2)等やこれらの混合膜又は2種以上の積層膜を用いることができる。これらの絶縁膜は、スパッタリング、蒸着、CVD等により成膜することができる。また、絶縁層はこれら絶縁材料の粒子をバインダ中に分散して成膜してもよい。バインダ材料は、電界発光層に含まれるバインダと同様な材料、方法を用いて形成すればよい。膜厚は特に限定されることはないが、好ましくは10〜1000nmの範囲である。
本実施の形態で示す発光素子は、電界発光層を挟持する一対の電極層間に電圧を印加することで発光が得られるが、直流駆動又は交流駆動のいずれにおいても動作することができる。
本実施の形態は、実施の形態1及び実施の形態2と適宜組み合わせることができる。
本発明を用いると、高画質であり、かつ信頼性の高い表示装置を提供することができる。
(実施の形態5)
本発明によって形成される表示装置によって、テレビジョン装置を完成させることができる。高画質であり、かつ高信頼性を付与することを目的としたテレビジョン装置の例を説明する。
図18はテレビジョン装置(ELテレビジョン装置等)の主要な構成を示すブロック図を示している。表示パネルには、TFTを形成し、画素領域1901と走査線駆動回路1903を基板上に一体形成し信号線駆動回路1902を別途ドライバICとして実装する場合、また画素領域1901と信号線駆動回路1902と走査線駆動回路1903を基板上に一体形成する場合などがあるが、どのような形態としても良い。
その他の外部回路の構成として、映像信号の入力側では、チューナ1904で受信した信号のうち、映像信号を増幅する映像信号増幅回路1905と、そこから出力される信号を赤、緑、青の各色に対応した色信号に変換する映像信号処理回路1906と、その映像信号をドライバICの入力仕様に変換するためのコントロール回路1907などからなっている。コントロール回路1907は、走査線側と信号線側にそれぞれ信号が出力する。デジタル駆動する場合には、信号線側に信号分割回路1908を設け、入力デジタル信号をm個に分割して供給する構成としても良い。
チューナ1904で受信した信号のうち、音声信号は、音声信号増幅回路1909に送られ、その出力は音声信号処理回路1910を経てスピーカ1913に供給される。制御回路1911は受信局(受信周波数)や音量の制御情報を入力部1912から受け、チューナ1904や音声信号処理回路1910に信号を送出する。
表示モジュールを、図15(A)、(B)に示すように、筐体に組みこんで、テレビジョン装置を完成させることができる。FPCまで取り付けられた図1のような表示パネルのことを一般的にはEL表示モジュールともいう。よって図1のようなEL表示モジュールを用いると、ELテレビジョン装置を完成することができる。表示モジュールにより主画面2003が形成され、その他付属設備としてスピーカー部2009、操作スイッチなどが備えられている。このように、本発明によりテレビジョン装置を完成させることができる。
また、位相差板や偏光板を用いて、外部から入射する光の反射光を遮断するようにしてもよい。また上面放射型の表示装置ならば、隔壁となる絶縁層を着色しブラックマトリクスとして用いてもよい。この隔壁は液滴吐出法などによっても形成することができ、顔料系の黒色樹脂や、ポリイミドなどの樹脂材料に、カーボンブラック等を混合させてもよく、その積層でもよい。液滴吐出法によって、異なった材料を同領域に複数回吐出し、隔壁を形成してもよい。位相差板としてはλ/4板とλ/2板とを用い、光を制御できるように設計すればよい。構成としては、TFT素子基板側から順に、発光素子、封止基板(封止材)、位相差板(λ/4、λ/2)、偏光板という構成になり、発光素子から放射された光は、これらを通過し偏光板側より外部に放射される。この位相差板や偏光板は光が放射される側に設置すればよく、両面放射される両面放射型の表示装置であれば両方に設置することもできる。また、偏光板の外側に反射防止膜を有していても良い。これにより、より高繊細で精密な画像を表示することができる。
図15(A)に示すように、筐体2001に表示素子を利用した表示用パネル2002が組みこまれ、受信機2005により一般のテレビ放送の受信をはじめ、モデム2004を介して有線又は無線による通信ネットワークに接続することにより一方向(送信者から受信者)又は双方向(送信者と受信者間、又は受信者間同士)の情報通信をすることもできる。テレビジョン装置の操作は、筐体に組みこまれたスイッチ又は別体のリモコン操作機2006により行うことが可能であり、このリモコン装置にも出力する情報を表示する表示部2007が設けられていても良い。
また、テレビジョン装置にも、主画面2003の他にサブ画面2008を第2の表示用パネルで形成し、チャネルや音量などを表示する構成が付加されていても良い。この構成において、主画面2003を視野角の優れたEL表示用パネルで形成し、サブ画面を低消費電力で表示可能な液晶表示用パネルで形成しても良い。また、低消費電力化を優先させるためには、主画面2003を液晶表示用パネルで形成し、サブ画面をEL表示用パネルで形成し、サブ画面は点滅可能とする構成としても良い。本発明を用いると、このような大型基板を用いて、多くのTFTや電子部品を用いても、高画質であり、かつ信頼性の高い表示装置とすることができる。
図15(B)は例えば20〜80インチの大型の表示部を有するテレビジョン装置であり、筐体2010、操作部であるキーボード部2012、表示部2011、スピーカー部2013等を含む。本発明は、表示部2011の作製に適用される。図15(B)の表示部は、わん曲可能な物質を用いているので、表示部がわん曲したテレビジョン装置となっている。このように表示部の形状を自由に設計することができるので、所望な形状のテレビジョン装置を作製することができる。
本発明により、視認性の優れた高画質な表示機能を有する信頼性の高い表示装置を、複雑な工程を必要とせずに高い信頼性を付与して作製することができる。よって高性能、高信頼性のテレビジョン装置を生産性よく作製することができる。
勿論、本発明はテレビジョン装置に限定されず、パーソナルコンピュータのモニタをはじめ、鉄道の駅や空港などにおける情報表示盤や、街頭における広告表示盤など大面積の表示媒体としても様々な用途に適用することができる。
(実施の形態6)
本実施の形態を図16を用いて説明する。本実施の形態は、実施の形態1乃至5で作製する表示装置を有するパネルを用いたモジュールの例を示す。本実施の形態では、高画質であり、かつ高信頼性を付与することを目的とした表示装置を有するモジュールの例を説明する。
図16(A)に示す情報端末のモジュールは、プリント配線基板946に、コントローラ901、中央処理装置(CPU)902、メモリ911、電源回路903、音声処理回路929及び送受信回路904や、その他、抵抗、バッファ、容量素子等の素子が実装されている。また、パネル900がフレキシブル配線基板(FPC)908を介してプリント配線基板946に接続されている。
パネル900には、発光素子が各画素に設けられた画素領域905と、前記画素領域905が有する画素を選択する第1の走査線駆動回路906a、第2の走査線駆動回路906bと、選択された画素にビデオ信号を供給する信号線駆動回路907とが設けられている。
プリント配線基板946に備えられたインターフェース(I/F)909を介して、各種制御信号の入出力が行われる。また、アンテナとの間の信号の送受信を行なうためのアンテナ用ポート910が、プリント配線基板946に設けられている。
なお、本実施の形態ではパネル900にプリント配線基板946がFPC908を介して接続されているが、必ずしもこの構成に限定されない。COG(Chip on Glass)方式を用い、コントローラ901、音声処理回路929、メモリ911、CPU902または電源回路903をパネル900に直接実装させるようにしても良い。また、プリント配線基板946には、容量素子、バッファ等の各種素子が設けられ、電源電圧や信号にノイズがのったり、信号の立ち上がりが鈍ったりすることを防いでいる。
図16(B)は、図16(A)に示したモジュールのブロック図を示す。このモジュール999は、メモリ911としてVRAM932、DRAM925、フラッシュメモリ926などが含まれている。VRAM932にはパネルに表示する画像のデータが、DRAM925には画像データまたは音声データが、フラッシュメモリには各種プログラムが記憶されている。
電源回路903では、パネル900、コントローラ901、CPU902、音声処理回路929、メモリ911、送受信回路931に与える電源電圧が生成される。またパネルの仕様によっては、電源回路903に電流源が備えられている場合もある。
CPU902は、制御信号生成回路920、デコーダ921、レジスタ922、演算回路923、RAM924、CPU用のインターフェース935などを有している。インターフェース935を介してCPU902に入力された各種信号は、一旦、レジスタ922に保持された後、演算回路923、デコーダ921などに入力される。演算回路923では、入力された信号に基づき演算を行ない、各種命令を送る場所を指定する。一方、デコーダ921に入力された信号はデコードされ、制御信号生成回路920に入力される。制御信号生成回路920は入力された信号に基づき、各種命令を含む信号を生成し、演算回路923において指定された場所、具体的にはメモリ911、送受信回路931、音声処理回路929、コントローラ901などに送る。
メモリ911、送受信回路931、音声処理回路929、コントローラ901は、それぞれ受けた命令に従って動作する。以下その動作について簡単に説明する。
入力手段930から入力された信号は、インターフェース909を介してプリント配線基板946に実装されたCPU902に送られる。制御信号生成回路920は、ポインティングデバイスやキーボードなどの入力手段930から送られてきた信号に従い、VRAM932に格納してある画像データを所定のフォーマットに変換し、コントローラ901に送付する。
コントローラ901は、パネルの仕様に合わせてCPU902から送られてきた画像データを含む信号にデータ処理を施し、パネル900に供給する。またコントローラ901は、電源回路903から入力された電源電圧やCPU902から入力された各種信号をもとに、Hsync信号、Vsync信号、クロック信号CLK、交流電圧(AC Cont)、切り替え信号L/Rを生成し、パネル900に供給する。
送受信回路904では、アンテナ933において電波として送受信される信号が処理されており、具体的にはアイソレータ、バンドパスフィルタ、VCO(Voltage Controlled Oscillator)、LPF(Low Pass Filter)、カプラ、バランなどの高周波回路を含んでいる。送受信回路904において送受信される信号のうち音声情報を含む信号が、CPU902からの命令に従って、音声処理回路929に送られる。
CPU902の命令に従って送られてきた音声情報を含む信号は、音声処理回路929において音声信号に復調され、スピーカー928に送られる。またマイク927から送られてきた音声信号は、音声処理回路929において変調され、CPU902からの命令に従って、送受信回路904に送られる。
コントローラ901、CPU902、電源回路903、音声処理回路929、メモリ911を、本実施の形態のパッケージとして実装することができる。本実施の形態は、アイソレータ、バンドパスフィルタ、VCO(Voltage Controlled Oscillator)、LPF(Low Pass Filter)、カプラ、バランなどの高周波回路以外であれば、どのような回路にも応用することができる。
(実施の形態7)
本実施の形態を図16及び図17を用いて説明する。図17は、この実施の形態6で作製するモジュールを含む無線を用いた持ち運び可能な小型電話機(携帯電話)の一態様を示している。パネル900はハウジング1001に脱着自在に組み込んでモジュール999と容易に組み合わせできるようにしている。ハウジング1001は組み入れる電子機器に合わせて、形状や寸法を適宜変更することができる。
パネル900を固定したハウジング1001はプリント配線基板946に嵌着されモジュールとして組み立てられる。プリント配線基板946には、コントローラ、CPU、メモリ、電源回路、その他、抵抗、バッファ、容量素子等が実装されている。さらに、マイクロフォン994及びスピーカー995を含む音声処理回路、送受信回路などの信号処理回路993が備えられている。パネル900はFPC908を介してプリント配線基板946に接続される。
このようなモジュール999、入力手段998、バッテリ997は筐体996に収納される。パネル900の画素領域は筐体996に形成された開口窓から視認できように配置されている。
図17で示す筐体996は、電話機の外観形状を一例として示している。しかしながら、本実施の形態に係る電子機器は、その機能や用途に応じてさまざまな態様に変容し得る。以下に示す実施の形態で、その態様の一例を説明する。
(実施の形態8)
本発明を適用して、様々な表示装置を作製することができる。即ち、それら表示装置を表示部に組み込んだ様々な電子機器に本発明を適用できる。本実施の形態では、高画質であり、かつ高信頼性を付与することを目的とした表示装置を有する電子機器の例を説明する。
その様な本発明に係る電子機器として、テレビジョン装置(単にテレビ、又はテレビジョン受信機ともよぶ)、デジタルカメラ、デジタルビデオカメラ等のカメラ、携帯電話装置(単に携帯電話機、携帯電話ともよぶ)、PDA等の携帯情報端末、携帯型ゲーム機、コンピュータ用のモニタ、コンピュータ、カーオーディオ等の音響再生装置、家庭用ゲーム機等の記録媒体を備えた画像再生装置(具体的にはDigital Versatile Disc(DVD)等が挙げられる。その具体例について、図14を参照して説明する。
図14(A)に示す携帯情報端末機器は、本体9201、表示部9202等を含んでいる。表示部9202は、本発明の表示装置を適用することができる。その結果、高画質であり、かつ信頼性の高い携帯情報端末機器を提供することができる。
図14(B)に示すデジタルビデオカメラは、表示部9701、表示部9702等を含んでいる。表示部9701は本発明の表示装置を適用することができる。その結果、高画質であり、かつ信頼性の高いデジタルビデオカメラを提供することができる。
図14(C)に示す携帯電話機は、本体9101、表示部9102等を含んでいる。表示部9102は、本発明の表示装置を適用することができる。その結果、高画質であり、かつ信頼性の高い携帯電話機を提供することができる。
図14(D)に示す携帯型のテレビジョン装置は、本体9301、表示部9302等を含んでいる。表示部9302は、本発明の表示装置を適用することができる。その結果、高画質であり、かつ信頼性の高い携帯型のテレビジョン装置を提供することができる。またテレビジョン装置としては、携帯電話機などの携帯端末に搭載する小型のものから、持ち運びをすることができる中型のもの、また、大型のもの(例えば40インチ以上)まで、幅広いものに、本発明の表示装置を適用することができる。
図14(E)に示す携帯型のコンピュータは、本体9401、表示部9402等を含んでいる。表示部9402は、本発明の表示装置を適用することができる。その結果、高画質であり、かつ信頼性の高い携帯型のコンピュータを提供することができる。
また、本発明の表示装置は、照明装置として用いることもできる。本発明を適用した表示装置は、小型の電気スタンドや室内の大型な照明装置として用いることもできる。さらに、本発明の表示装置を液晶表示装置のバックライトとして用いることもできる。本発明の表示装置を液晶表示装置のバックライトとして用いることにより、液晶表示装置の表示ムラのない高画質化かつ高性能化を達成することができる。また、本発明の表示装置は、面発光の照明装置であり大面積化も可能であるため、バックライトの大面積化が可能であり、液晶表示装置の大面積化も可能になる。さらに、本発明の表示装置は薄型であるため、液晶表示装置の薄型化も可能となる。
このように、本発明の表示装置により、高画質であり、かつ信頼性の高い電子機器を提供することができる。