JP5159365B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
JP5159365B2
JP5159365B2 JP2008044392A JP2008044392A JP5159365B2 JP 5159365 B2 JP5159365 B2 JP 5159365B2 JP 2008044392 A JP2008044392 A JP 2008044392A JP 2008044392 A JP2008044392 A JP 2008044392A JP 5159365 B2 JP5159365 B2 JP 5159365B2
Authority
JP
Japan
Prior art keywords
conductivity type
trench
layer
buried layer
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008044392A
Other languages
Japanese (ja)
Other versions
JP2009206144A (en
Inventor
雅幸 橋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008044392A priority Critical patent/JP5159365B2/en
Priority to TW098105461A priority patent/TWI438899B/en
Priority to KR1020090014333A priority patent/KR101543792B1/en
Priority to US12/380,144 priority patent/US8053820B2/en
Priority to CN2009100081332A priority patent/CN101521222B/en
Publication of JP2009206144A publication Critical patent/JP2009206144A/en
Priority to US13/200,252 priority patent/US8598026B2/en
Application granted granted Critical
Publication of JP5159365B2 publication Critical patent/JP5159365B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1037Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure and non-planar channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/0619Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE] with a supplementary region doped oppositely to or in rectifying contact with the semiconductor containing or contacting region, e.g. guard rings with PN or Schottky junction
    • H01L29/0623Buried supplementary region, e.g. buried guard ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

本発明は、半導体装置およびその製造方法に関する。特に、トレンチを有するMOSトランジスタに関するものであり、埋め込み層を用いて駆動能力の向上を図るものである。   The present invention relates to a semiconductor device and a manufacturing method thereof. In particular, the present invention relates to a MOS transistor having a trench, and uses a buried layer to improve driving capability.

MOSトランジスタは電子部品において中核を担う素子であって、MOSトランジスタの小型化、低消費電力あるいは高駆動能力化は、重要な課題となっている。MOSトランジスタを高駆動能力化する方法の1つとして、ゲート幅を広くしてオン抵抗を低減させる方法があるが、ゲート幅を広くするとMOSトランジスタの占有面積が大きくなるという問題があった。そこで、これまでにもトレンチを利用してMOSトランジスタの専有面積の増加を抑えながらゲート幅を広くする技術が提案されている。   MOS transistors are the core elements of electronic components, and miniaturization, low power consumption, and high drive capability of MOS transistors are important issues. One method for increasing the driving capability of a MOS transistor is to increase the gate width to reduce the on-resistance, but there is a problem that the area occupied by the MOS transistor increases when the gate width is increased. Thus, there has been proposed a technique for widening the gate width while suppressing an increase in the area occupied by the MOS transistor by using a trench.

従来の半導体装置について図4を基に説明する。   A conventional semiconductor device will be described with reference to FIG.

図4(A)の斜視図に示すように、MOSトランジスタ幅方向(W方向)にトレンチ13を有しており、表面でのゲート電極15の幅に対して、実効的なゲート幅の長さが長くなるので、MOSトランジスタの耐圧を低下させずに単位面積あたりのオン抵抗を低減することができる。   As shown in the perspective view of FIG. 4A, the trench 13 is provided in the MOS transistor width direction (W direction), and the effective gate width is longer than the width of the gate electrode 15 on the surface. Therefore, the on-resistance per unit area can be reduced without lowering the breakdown voltage of the MOS transistor.

図4(B)はそのMOSトランジスタの平面模式図である。トレンチ13の断面をA-A'、トレンチ13を有しない領域の断面をB-B'として、断面図を図4(C)および図4(D)にそれぞれ示す。図4(C)に示される領域は通常のプレーナー型MOSトランジスタになるので、電流がソース高濃度拡散層16からドレイン高濃度拡散層17に流れる場合には、電流経路は図中矢印Aのようになる。一方で、トレンチ13を有する図4(D)に示される領域ではMOSトランジスタ幅方向の奥行き側面において電流は矢印B、底部においては矢印Cで得られる。(例えば、特許文献1参照)
特開2006−49826号公報
FIG. 4B is a schematic plan view of the MOS transistor. The cross section of the trench 13 is shown as AA ′, the cross section of the region not having the trench 13 is BB ′, and cross sections are shown in FIGS. Since the region shown in FIG. 4C is a normal planar type MOS transistor, when a current flows from the source high concentration diffusion layer 16 to the drain high concentration diffusion layer 17, the current path is as indicated by an arrow A in the figure. become. On the other hand, in the region shown in FIG. 4D having the trench 13, the current is obtained by the arrow B at the depth side surface in the MOS transistor width direction and by the arrow C at the bottom. (For example, see Patent Document 1)
JP 2006-49826 A

しかしながら、従来技術では、より高駆動能力化を目指すためにトランジスタのL長を縮小する場合、実効的なチャネル長の距離の差が顕著になり、図4(D)の経路Cと図4(C)の経路Aでは、経路Aで示される平面領域が支配的になり、底部Cではほとんど流れなくなる。これにより、トレンチ13を深く形成して実効的なゲート幅の長さを長くしてオン抵抗を減少させる策をとっても、駆動能力が得られないという問題がある。あわせて、トランジスタのゲート長さ(L方向)を縮小できないため、面積を縮小できない障害も生じてしまう。   However, in the conventional technique, when the L length of the transistor is reduced in order to achieve higher driving capability, the difference in effective channel length distance becomes significant, and the path C in FIG. In the route A of C), the plane area indicated by the route A becomes dominant, and almost no flow occurs at the bottom C. As a result, there is a problem in that the driving ability cannot be obtained even if the trench 13 is formed deep to increase the effective gate width to reduce the on-resistance. At the same time, since the gate length (L direction) of the transistor cannot be reduced, there is a problem that the area cannot be reduced.

このように、図4(A)の構造では、トレンチの深さを深くする、あるいはゲート幅(W方向)を縮小させて実効的なゲート幅を長くしても、ゲート長さ(L長方向)を縮小できないため、想定したよりも駆動能力が得られない、さらには、トランジスタの面積縮小ができないという問題がある。これは、L長の縮小でトレンチ上面、側面および底面での実効的なチャネル長距離の差が顕著になってしまい、優先的にトレンチ上面で電流が流れやすくなるので、トレンチを有する特徴である底面での電流が減少するためである。   Thus, in the structure of FIG. 4A, even if the trench depth is increased or the gate width (W direction) is reduced to increase the effective gate width, the gate length (L length direction) ) Cannot be reduced, the driving ability cannot be obtained more than expected, and the area of the transistor cannot be reduced. This is a feature of having a trench because the reduction in L length makes the difference in effective channel length distance on the top, side and bottom surfaces of the trench noticeable, and current flows preferentially on the top surface of the trench. This is because the current at the bottom surface decreases.

そこで、本発明の目的は、トレンチを有する半導体装置のMOSトランジスタのL長を縮小してもトレンチ底面での電流経路が確保でき、想定した駆動能力が得られるようにすること、つまり駆動能力の減少を抑制することである。   Therefore, an object of the present invention is to ensure a current path at the bottom of the trench even when the L length of the MOS transistor of the semiconductor device having a trench is reduced, and to obtain an assumed drive capability, that is, drive capability. It is to suppress the decrease.

上記課題を解決するために、本発明は次の手段を用いた。
(1)第1導電型半導体基板と、前記第1導電型半導体基板上の所定の領域に形成された第2導電型埋め込み層と、前記第2導電型埋め込み層および前記第1導電型半導体基板の上に形成された第1導電型エピタキシャル成長層と、前記第1導電型エピタキシャル成長層に形成された、形成されるトランジスタのゲート幅方向に並んで配置された、その底部は前記第2導電型埋め込み層に達するトレンチと、ゲート絶縁膜を介して前記トレンチの内部及び上面と前記トレンチに隣接する第1導電型エピタキシャル成長層の表面部分に形成されたゲート電極と、前記ゲート電極の一方の側に形成された第2導電型のソース高濃度拡散層と、前記ゲート電極の他方の側に形成された第2導電型のドレイン高濃度拡散層と、を有する半導体装置とした。
(2)第1導電型半導体基板の所定の領域に第2導電型埋め込み層を形成する工程と、前記第2導電型埋め込み層および前記第1導電型半導体基板の上に第1導電型エピタキシャル成長層を形成する工程と、前記第1導電型エピタキシャル成長層に、形成されるトランジスタのゲート幅方向に並んで、その底部が前記第2導電型埋め込み層に達するようにトレンチを形成する工程と、ゲート絶縁膜を形成する工程と、前記ゲート絶縁膜を介して前記トレンチの内部及び上面と前記トレンチに隣接する第1導電型エピタキシャル成長層の表面部分にゲート電極を形成する工程と、前記ゲート電極の一方の側に第2導電型のソース高濃度拡散層、他方の側に第2導電型のドレイン高濃度拡散層とを形成する工程と、を含む半導体装置の製造方法とした。
In order to solve the above problems, the present invention uses the following means.
(1) A first conductivity type semiconductor substrate, a second conductivity type buried layer formed in a predetermined region on the first conductivity type semiconductor substrate, the second conductivity type buried layer, and the first conductivity type semiconductor substrate The first conductivity type epitaxial growth layer formed on the first conductivity type epitaxial growth layer and the transistor formed on the first conductivity type epitaxial growth layer are arranged side by side in the gate width direction. A trench reaching the layer, a gate electrode formed on the inside and upper surface of the trench and a surface portion of the first conductivity type epitaxial growth layer adjacent to the trench via a gate insulating film, and formed on one side of the gate electrode A second conductive type high concentration source diffusion layer and a second conductive type high concentration drain layer formed on the other side of the gate electrode. .
(2) forming a second conductive type buried layer in a predetermined region of the first conductive type semiconductor substrate; and a first conductive type epitaxial growth layer on the second conductive type buried layer and the first conductive type semiconductor substrate. Forming a trench in the first conductivity type epitaxial growth layer so as to be aligned in the gate width direction of the transistor to be formed so that the bottom portion reaches the second conductivity type buried layer, and gate insulation A step of forming a film, a step of forming a gate electrode inside and on the upper surface of the trench and a surface portion of the first conductivity type epitaxial growth layer adjacent to the trench through the gate insulating film, and one of the gate electrodes Forming a second conductivity type source high-concentration diffusion layer on the side and a second conductivity type drain high-concentration diffusion layer on the other side, and a method for manufacturing a semiconductor device, It was.

本発明は、トレンチを有するMOSトランジスタのL長を縮小しても駆動能力の減少を抑制可能であるという特徴である。トランジスタのL長と同じ距離かそれより短い距離の深さのトレンチを有すること、さらにトレンチの底部に埋め込み層を用いることで、ソース高濃度拡散層下端あるいはドレイン高濃度拡散層下端からトレンチ底面までの実効的なチャネル長を最短L長のトレンチ上面よりも短くすることである。これによって、上記ソースあるいはドレインの高濃度拡散層に接する側面から埋め込み層を用いてトレンチ底面での電流経路を保持させることで駆動能力を向上させる。したがって、ゲート長が縮小された場合でも駆動能力の減少を抑制する効果がある。   The present invention is characterized in that a reduction in driving capability can be suppressed even if the L length of a MOS transistor having a trench is reduced. By having a trench with a depth equal to or shorter than the L length of the transistor and using a buried layer at the bottom of the trench, from the bottom of the source high-concentration diffusion layer or the bottom of the drain high-concentration diffusion layer to the bottom of the trench Is to make the effective channel length shorter than the shortest L-long trench upper surface. Thus, the driving capability is improved by maintaining the current path at the bottom of the trench using the buried layer from the side surface in contact with the high concentration diffusion layer of the source or drain. Therefore, even when the gate length is reduced, there is an effect of suppressing a decrease in driving capability.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の第1の実施例の半導体装置を示す模式図である。図1(A)はトレンチ6を有するMOSトランジスタの平面模式図である。図中のトレンチ6以外のプレーナー型トランジスタの構造にあたるA-A'に沿った断面模式図を図1(B)に示す。図中のトレンチ6のB-B'に沿った断面模式図を図1(C)に示す。図1(B)では、第1導電型の半導体基板1の上の所定の領域にのみ部分的に第2導電型の埋め込み層2が形成され、その上には半導体基板と同じ導電型のエピタキシャル成長層3が形成されている。エピタキシャル成長層3の上表面にはゲート酸化膜7を介してゲート長がLであるゲート電極8が設けられている。そして、ゲート電極8のゲート長Lだけ離れて対面する領域には、一方の領域に第2導電型のソース高濃度拡散層9、そして他方には第2導電型のドレイン高濃度拡散層10が形成される。この場合のソース高濃度拡散層9とドレイン高濃度拡散層10との間の電流経路は図中の矢印Aである。   FIG. 1 is a schematic diagram showing a semiconductor device according to a first embodiment of the present invention. FIG. 1A is a schematic plan view of a MOS transistor having a trench 6. FIG. 1B shows a schematic cross-sectional view along AA ′ corresponding to the structure of the planar transistor other than the trench 6 in the drawing. FIG. 1C shows a schematic cross-sectional view taken along the line BB ′ of the trench 6 in the drawing. In FIG. 1B, a second conductivity type buried layer 2 is partially formed only in a predetermined region on the first conductivity type semiconductor substrate 1, and the same conductivity type epitaxial growth as that of the semiconductor substrate is formed thereon. Layer 3 is formed. A gate electrode 8 having a gate length L is provided on the upper surface of the epitaxial growth layer 3 via a gate oxide film 7. In a region facing the gate electrode 8 apart by the gate length L, the second conductivity type source high concentration diffusion layer 9 is provided in one region, and the second conductivity type drain high concentration diffusion layer 10 is provided in the other region. It is formed. In this case, the current path between the source high concentration diffusion layer 9 and the drain high concentration diffusion layer 10 is an arrow A in the figure.

図1(C)はトレンチ6を有する領域の断面図であり、第1導電型の半導体基板1の上に部分的に第2導電型の埋め込み層2が形成され、その上には半導体基板と同じ導電型のエピタキシャル成長層3が形成されている。エピタキシャル成長層3にはトレンチ6が埋め込み層2に接するように設けられている。ゲート長方向で埋め込み層2とトレンチ6の長さを比較すると、埋め込み層2の長さはトレンチ6の長さと同等以上であれば良い。トレンチ6の側面にはソース高濃度拡散層9およびドレイン高濃度拡散層10が形成され、トレンチ6内面とソース高濃度拡散層9表面とドレイン高濃度拡散層10表面にはゲート絶縁膜7が設けられており、トレンチ6の中にはゲート電極8が充填されている。この構造では、矢印Bで示す電流経路と、ソース高濃度拡散層9から矢印Dから埋め込み層2を経由して矢印Eからドレイン高濃度拡散層10に至る電流経路(以下、電流経路C'と呼ぶ)が考えられる。このとき、ソース高濃度拡散層9と埋め込み層2との距離(=ドレイン高濃度拡散層10と埋め込み層2との距離)がゲート長と同等以下の長さであれば、電流経路C'にも電流が流れやすくなる。このようにすることで、MOSトランジスタの駆動能力を向上させることができる。   FIG. 1C is a cross-sectional view of a region having a trench 6, in which a second conductivity type buried layer 2 is partially formed on a first conductivity type semiconductor substrate 1, and a semiconductor substrate and An epitaxial growth layer 3 of the same conductivity type is formed. The epitaxial growth layer 3 is provided with a trench 6 in contact with the buried layer 2. When the lengths of the buried layer 2 and the trench 6 are compared in the gate length direction, the length of the buried layer 2 may be equal to or greater than the length of the trench 6. A source high-concentration diffusion layer 9 and a drain high-concentration diffusion layer 10 are formed on the side surfaces of the trench 6, and a gate insulating film 7 is provided on the inner surface of the trench 6, the surface of the source high-concentration diffusion layer 9, and the surface of the drain high-concentration diffusion layer 10. The trench 6 is filled with a gate electrode 8. In this structure, a current path indicated by an arrow B and a current path from the source high-concentration diffusion layer 9 through the buried layer 2 to the drain high-concentration diffusion layer 10 from the arrow D (hereinafter referred to as current path C ′). Can be considered). At this time, if the distance between the source high-concentration diffusion layer 9 and the buried layer 2 (= the distance between the drain high-concentration diffusion layer 10 and the buried layer 2) is equal to or shorter than the gate length, the current path C ′ Even the current will flow easily. By doing so, the driving capability of the MOS transistor can be improved.

図2は第1の実施例の半導体装置を製造するための工程フロー図である。ここでは、図1(C)に対応する断面図を用いて説明する。   FIG. 2 is a process flow diagram for manufacturing the semiconductor device of the first embodiment. Here, description is made with reference to a cross-sectional view corresponding to FIG.

図2(A)において、まず第1導電型半導体基板、例えばP型半導体基板1、例えばホウ素添加した抵抗率20Ωcmから30Ωcmの不純物濃度の半導体基板の所定の領域に、第2導電型埋め込み層2を、例えばN型埋め込み層であれば砒素、燐、アンチモンなどの不純物を用いて濃度は例えば1×1018atoms/cm3程度の濃度くらいから1×1021atoms/cm3程度で形成する。なお、第2導電型埋め込み層2が例えばP型埋め込み層ならホウ素などの不純物を用いれば良い。次いで、埋め込み層2を間に挟むように、半導体基板1と埋め込み層2の上に第1導電型エピタキシャル成長層3を形成する。成長層の膜厚は例えば数μmから数十μmである。エピタキシャル成長層3の表面にはLOCOS法によりLOCOS酸化膜4を形成させる。 In FIG. 2A, first, a second conductivity type buried layer 2 is formed in a predetermined region of a first conductivity type semiconductor substrate, for example, a P type semiconductor substrate 1, for example, a semiconductor substrate having a boron-doped resistivity of 20 Ωcm to 30 Ωcm. For example, in the case of an N-type buried layer, an impurity such as arsenic, phosphorus, or antimony is formed with a concentration of, for example, about 1 × 10 18 atoms / cm 3 to about 1 × 10 21 atoms / cm 3 . For example, if the second conductivity type buried layer 2 is a P-type buried layer, an impurity such as boron may be used. Next, a first conductivity type epitaxial growth layer 3 is formed on the semiconductor substrate 1 and the buried layer 2 so as to sandwich the buried layer 2 therebetween. The film thickness of the growth layer is, for example, several μm to several tens μm. A LOCOS oxide film 4 is formed on the surface of the epitaxial growth layer 3 by the LOCOS method.

次に図2(B)に示すように、トレンチエッチングのためにマスク5でパターニングをおこなう。このマスク5は、例えば膜厚は数十nm〜数百nmの熱酸化膜、あるいは膜厚は数百nm〜1μmとした堆積酸化膜のどちらでも可能であり、熱酸化膜および堆積酸化膜の積層構造でも可能である。さらに、マスク5はレジスト膜あるいは窒化膜でも問題はない。パターニングされたマスク5を用いてエッチングによりトレンチ6を形成する。このとき、トレンチ6は埋め込み層2に接するように形成する。その後マスク5を除去した後、図2(C)に示すようにゲート絶縁膜7、例えば膜厚が数百〜数千Åの熱酸化膜を形成する。さらにここでは、上述の第2導電型埋め込み層2の濃度が中濃度から高濃度程度の場合、第2導電型埋め込み層2の表面において熱酸化膜厚が厚くなることから、自動的にゲート絶縁膜7と第2導電型埋め込み層2間での容量を低減させることが可能である。   Next, as shown in FIG. 2B, patterning is performed with a mask 5 for trench etching. The mask 5 can be, for example, a thermal oxide film having a film thickness of several tens of nm to several hundreds nm, or a deposited oxide film having a film thickness of several hundred nm to 1 μm. A laminated structure is also possible. Further, there is no problem even if the mask 5 is a resist film or a nitride film. A trench 6 is formed by etching using the patterned mask 5. At this time, the trench 6 is formed in contact with the buried layer 2. Then, after removing the mask 5, as shown in FIG. 2C, a gate insulating film 7, for example, a thermal oxide film having a film thickness of several hundreds to several thousands is formed. Further, here, when the concentration of the second conductivity type buried layer 2 is about medium to high, the thermal oxide film thickness is increased on the surface of the second conductivity type buried layer 2, so that the gate insulation is automatically performed. It is possible to reduce the capacitance between the film 7 and the second conductivity type buried layer 2.

次に、図2(D)に示すように多結晶シリコンゲート膜を好ましくは膜厚を100nm〜500nmで堆積し、プリデポあるいはイオン注入法により不純物を導入してゲート電極8とする。ここでの導電型は例えば第1導電型でも第2導電型でも可能である。それにレジスト膜9でパターニングして、図2(E)に示すようなトレンチ6を有するトランジスタ構造が整う。引き続き、図2(E)に示すように、セルフアライン法でソース領域およびドレイン領域を形成するための不純物添加を行う。ここでのセルフアライン法は本発明の本質とは関係ない。ソース領域およびドレイン領域の不純物添加は例えば導電型がN型なら例えば砒素あるいは燐を好ましくは1×1015atoms/cm2から1×1016atoms/cm2のドーズ量でイオン注入する。一方で、導電型がP型ならホウ素あるいはニフッ化ホウ素を好ましくは1×1015atoms/cm2から1×1016atoms/cm2のドーズ量でイオン注入する。さらに、ここでのソース領域およびドレイン領域への不純物添加は、トレンチ6を有しない同一チップ内のMOSトランジスタと同一条件で同時におこなうことが可能である。その後、図2(F)に示すように、800℃〜1000℃で数時間熱処理することで、ソース高濃度拡散層9およびドレイン高濃度拡散層10を形成させる。以上で第2導電型埋め込み層2とトレンチ6を有するMOSトランジスタが製造される。 Next, as shown in FIG. 2D, a polycrystalline silicon gate film is preferably deposited to a thickness of 100 nm to 500 nm, and an impurity is introduced by predeposition or ion implantation to form the gate electrode 8. The conductivity type here may be, for example, the first conductivity type or the second conductivity type. Then, patterning is performed with a resist film 9 to complete a transistor structure having a trench 6 as shown in FIG. Subsequently, as shown in FIG. 2E, an impurity is added for forming a source region and a drain region by a self-alignment method. The self-alignment method here has nothing to do with the essence of the present invention. For example, if the conductivity type is N-type, for example, arsenic or phosphorus is preferably ion-implanted at a dose of 1 × 10 15 atoms / cm 2 to 1 × 10 16 atoms / cm 2 . On the other hand, if the conductivity type is P type, boron or boron difluoride is preferably ion-implanted at a dose of 1 × 10 15 atoms / cm 2 to 1 × 10 16 atoms / cm 2 . Further, the addition of impurities to the source region and the drain region here can be performed simultaneously under the same conditions as those of the MOS transistor in the same chip that does not have the trench 6. Thereafter, as shown in FIG. 2 (F), a high-concentration source diffusion layer 9 and a high-concentration drain diffusion layer 10 are formed by heat treatment at 800 ° C. to 1000 ° C. for several hours. Thus, the MOS transistor having the second conductivity type buried layer 2 and the trench 6 is manufactured.

図3(A)は第2の実施例の半導体装置を示す模式図である。実施例1でも説明したように、トレンチ6と第2導電型埋め込み層2との位置関係は、トレンチ6側面の端部Gが第2導電型埋め込み層2の側面の端部Fより内側であることが望ましいが、ソース高濃度拡散層下端およびドレイン高濃度拡散層下端から第2導電型埋め込み層2までの距離Hがゲート長L'と同等以下の長さであれば、トレンチ6の底部の電流経路を優先的に電流が流れることになる。よって、トレンチ6側面の端部Gが第2導電型埋め込み層2の側面の端部Fより外側であっても、ソース高濃度拡散層下端およびドレイン高濃度拡散層下端から第2導電型埋め込み層2の側面の端部Fまでの距離Hがゲート長L'と同じかそれより短いという条件を満たせば、トレンチ6の底部にも電流が流れ、駆動能力が向上する。   FIG. 3A is a schematic diagram showing the semiconductor device of the second embodiment. As described in the first embodiment, the positional relationship between the trench 6 and the second conductivity type buried layer 2 is such that the end portion G on the side surface of the trench 6 is inside the end portion F on the side surface of the second conductivity type buried layer 2. However, if the distance H from the lower end of the source high concentration diffusion layer and the lower end of the drain high concentration diffusion layer to the second conductivity type buried layer 2 is equal to or shorter than the gate length L ′, Current flows preferentially through the current path. Therefore, even if the end portion G on the side surface of the trench 6 is outside the end portion F on the side surface of the second conductivity type buried layer 2, the second conductivity type buried layer is formed from the lower end of the source high concentration diffusion layer and the lower end of the drain high concentration diffusion layer. If the condition that the distance H to the end F of the side surface 2 is equal to or shorter than the gate length L ′ is satisfied, a current flows also to the bottom of the trench 6 and the driving capability is improved.

図3(B)はトレンチ6の長さと第2導電型埋め込み層2の長さが同じに形成されており、トレンチ6側面の端部Gが第2導電型埋め込み層2の側面の端部Fが同一直線状に揃っている態様を示している。この場合でもソース高濃度拡散層下端およびドレイン高濃度拡散層下端から第2導電型埋め込み層2までの距離Hがゲート長L'と同じかそれよりも短いという条件を満たせば、トレンチ6の底部にも電流が流れ、駆動能力が向上する。   3B, the length of the trench 6 and the length of the second conductive type buried layer 2 are formed to be the same, and the end G of the side surface of the trench 6 is the end F of the side surface of the second conductive type buried layer 2. Are shown in the same straight line. Even in this case, if the condition that the distance H from the lower end of the source high concentration diffusion layer and the lower end of the drain high concentration diffusion layer to the second conductivity type buried layer 2 is equal to or shorter than the gate length L ′ is satisfied, Current also flows, and the driving ability is improved.

以上説明したように、トレンチの底部に埋め込み層を設け、ソース高濃度拡散層およびドレイン高濃度拡散層と埋め込み層との距離を、ゲート長と同じかそれより短くすれば、トレンチ底部にも電流が流れ、半導体装置の駆動能力が向上する。   As described above, if a buried layer is provided at the bottom of the trench and the distances between the source high-concentration diffusion layer and the drain high-concentration diffusion layer and the buried layer are equal to or shorter than the gate length, the current also flows in the trench bottom. This improves the driving capability of the semiconductor device.

本発明の第1の実施例の半導体装置を示す模式的平面図および模式的断面図1 is a schematic plan view and a schematic cross-sectional view showing a semiconductor device according to a first embodiment of the present invention; 本発明の第1の実施例の半導体装置を製造するための工程フロー図Process flow chart for manufacturing the semiconductor device of the first embodiment of the present invention 本発明の第2の実施例の半導体装置を示す模式的断面図Schematic sectional view showing a semiconductor device according to a second embodiment of the present invention. 従来の半導体装置を示す模式図Schematic diagram showing a conventional semiconductor device

符号の説明Explanation of symbols

1、11 第1導電型半導体基板
2 第2導電型埋め込み層
3 第1導電型エピタキシャル成長層
4、12 LOCOS酸化膜
5 マスク
6、13 トレンチ
7、14 ゲート絶縁膜
8、15 ゲート電極
9、16 ソース高濃度拡散層
10、17 ドレイン高濃度拡散層
F 第2導電型埋め込み層の側面の端部
G トレンチ側面の端部
L、L' ゲート長
DESCRIPTION OF SYMBOLS 1, 11 1st conductivity type semiconductor substrate 2 2nd conductivity type buried layer 3 1st conductivity type epitaxial growth layer 4, 12 LOCOS oxide film 5 Mask 6, 13 Trench 7, 14 Gate insulating film 8, 15 Gate electrode 9, 16 Source High-concentration diffusion layers 10 and 17 Drain high-concentration diffusion layer F End portion G on the side surface of the second conductivity type buried layer End portion L and L 'on the side surface of the trench

Claims (7)

第1導電型半導体基板と、
前記第1導電型半導体基板上の所定の領域に形成された第2導電型埋め込み層と、
前記第2導電型埋め込み層および前記第1導電型半導体基板の上に形成された第1導電型エピタキシャル成長層と、
前記第1導電型エピタキシャル成長層に形成された、形成されるトランジスタのゲート幅方向に並んで配置された、その底部は前記第2導電型埋め込み層に達するトレンチと、
ゲート絶縁膜を介して前記トレンチの内部及び上面と前記トレンチに隣接する第1導電型エピタキシャル成長層の表面部分に形成されたゲート電極と、
前記ゲート電極の一方の側に形成された第2導電型のソース高濃度拡散層と、
前記ゲート電極の他方の側に形成された第2導電型のドレイン高濃度拡散層と、
を有する半導体装置。
A first conductivity type semiconductor substrate;
A second conductivity type buried layer formed in a predetermined region on the first conductivity type semiconductor substrate;
A first conductivity type epitaxial growth layer formed on the second conductivity type buried layer and the first conductivity type semiconductor substrate;
A trench formed in the first conductivity type epitaxial growth layer, arranged side by side in the gate width direction of the transistor to be formed, and a bottom portion of the trench reaching the second conductivity type buried layer;
A gate electrode formed on the inside and upper surface of the trench and a surface portion of the first conductivity type epitaxial growth layer adjacent to the trench via a gate insulating film;
A second conductivity type source high-concentration diffusion layer formed on one side of the gate electrode;
A second conductivity type drain high concentration diffusion layer formed on the other side of the gate electrode;
A semiconductor device.
前記トレンチの深さは形成されるトランジスタのゲート長より短いか同じである請求項1に記載の半導体装置。   The semiconductor device according to claim 1, wherein a depth of the trench is shorter than or equal to a gate length of a transistor to be formed. 前記トレンチの位置は、前記第2導電型埋め込み層の側面の端部より内側である請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein a position of the trench is on an inner side than an end of a side surface of the second conductivity type buried layer. 前記トレンチの位置は、前記第2導電型埋め込み層の側面の端部と同一面である請求項2記載の半導体装置。   The semiconductor device according to claim 2, wherein a position of the trench is flush with an end of a side surface of the second conductivity type buried layer. 前記トレンチの位置は、前記第2導電型ソース高濃度拡散層下端あるいはドレイン高濃度拡散層下端から前記第2導電型埋め込み層までの距離がトランジスタのゲート長よりも短い場合、前記第2導電型埋め込み層の側面の端部より外側に形成される請求項2に記載の半導体装置の製造方法   When the distance from the lower end of the second conductivity type source high-concentration diffusion layer or the lower end of drain high-concentration diffusion layer to the second conductivity type buried layer is shorter than the gate length of the transistor, the trench is located at the second conductivity type. The method for manufacturing a semiconductor device according to claim 2, wherein the semiconductor device is formed outside an end of a side surface of the buried layer. 前記第2導電型埋め込み層の濃度は1×1018atoms/cm3から1×1021atoms/cm3程度である請求項1ないし5のいずれか1項に記載の半導体装置。 6. The semiconductor device according to claim 1, wherein the concentration of the second conductivity type buried layer is about 1 × 10 18 atoms / cm 3 to 1 × 10 21 atoms / cm 3 . 第1導電型半導体基板の所定の領域に第2導電型埋め込み層を形成する工程と、
前記第2導電型埋め込み層および前記第1導電型半導体基板の上に第1導電型エピタキシャル成長層を形成する工程と、
前記第1導電型エピタキシャル成長層に、形成されるトランジスタのゲート幅方向に並んで、その底部が前記第2導電型埋め込み層に達するようにトレンチを形成する工程と、
ゲート絶縁膜を形成する工程と、
前記ゲート絶縁膜を介して前記トレンチの内部及び上面と前記トレンチに隣接する第1導電型エピタキシャル成長層の表面部分にゲート電極を形成する工程と、
前記ゲート電極の一方の側に第2導電型のソース高濃度拡散層、他方の側に第2導電型のドレイン高濃度拡散層とを形成する工程と、
を含む半導体装置の製造方法。
Forming a second conductivity type buried layer in a predetermined region of the first conductivity type semiconductor substrate;
Forming a first conductivity type epitaxial growth layer on the second conductivity type buried layer and the first conductivity type semiconductor substrate;
Forming a trench in the first conductivity type epitaxial growth layer so that the bottom of the first conductivity type epitaxial growth layer reaches the second conductivity type buried layer in the gate width direction of the transistor to be formed;
Forming a gate insulating film;
Forming a gate electrode on the inside and upper surface of the trench and the surface portion of the first conductivity type epitaxial growth layer adjacent to the trench through the gate insulating film;
Forming a second conductivity type source high-concentration diffusion layer on one side of the gate electrode and a second conductivity type drain high-concentration diffusion layer on the other side;
A method of manufacturing a semiconductor device including:
JP2008044392A 2008-02-26 2008-02-26 Semiconductor device and manufacturing method thereof Expired - Fee Related JP5159365B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2008044392A JP5159365B2 (en) 2008-02-26 2008-02-26 Semiconductor device and manufacturing method thereof
TW098105461A TWI438899B (en) 2008-02-26 2009-02-20 Semiconductor device and method of manufacturing the same
KR1020090014333A KR101543792B1 (en) 2008-02-26 2009-02-20 Semiconductor device and method of manufacturing the same
US12/380,144 US8053820B2 (en) 2008-02-26 2009-02-24 Semiconductor device and method of manufacturing the same
CN2009100081332A CN101521222B (en) 2008-02-26 2009-02-26 Semiconductor device and method of manufacturing the same
US13/200,252 US8598026B2 (en) 2008-02-26 2011-09-21 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008044392A JP5159365B2 (en) 2008-02-26 2008-02-26 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2009206144A JP2009206144A (en) 2009-09-10
JP5159365B2 true JP5159365B2 (en) 2013-03-06

Family

ID=41052708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008044392A Expired - Fee Related JP5159365B2 (en) 2008-02-26 2008-02-26 Semiconductor device and manufacturing method thereof

Country Status (5)

Country Link
US (2) US8053820B2 (en)
JP (1) JP5159365B2 (en)
KR (1) KR101543792B1 (en)
CN (1) CN101521222B (en)
TW (1) TWI438899B (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5436241B2 (en) * 2010-01-25 2014-03-05 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
CN102157433A (en) * 2011-03-10 2011-08-17 杭州电子科技大学 Manufacturing method of VC SOI nLDMOS (Vertical Channel Silicon-on-insulator n Lateral Double-diffused Metal Oxide Semiconductor) device unit with p-type buried layer
JP5852913B2 (en) * 2012-03-27 2016-02-03 ルネサスエレクトロニクス株式会社 Semiconductor device
JP5718265B2 (en) 2012-03-27 2015-05-13 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method of semiconductor device
KR102053354B1 (en) * 2013-07-17 2019-12-06 삼성전자주식회사 A semiconductor device having a buried channel array and method of manufacturing the same
CN104795325A (en) * 2014-01-17 2015-07-22 北大方正集团有限公司 Field effect transistor manufacturing method
KR102219504B1 (en) 2015-03-18 2021-02-25 한국전자통신연구원 Field effect power electronic device and method for fabricating the same
KR102510397B1 (en) 2017-09-01 2023-03-16 삼성디스플레이 주식회사 Thin film transistor and display device comprising the same
CN109962068B (en) * 2017-12-14 2020-09-08 联华电子股份有限公司 Memory unit

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05110083A (en) * 1991-10-15 1993-04-30 Oki Electric Ind Co Ltd Field effect transistor
JP3550019B2 (en) * 1997-03-17 2004-08-04 株式会社東芝 Semiconductor device
JP3405681B2 (en) * 1997-07-31 2003-05-12 株式会社東芝 Semiconductor device
US6472709B1 (en) * 1999-03-01 2002-10-29 General Semiconductor, Inc. Trench DMOS transistor structure having a low resistance path to a drain contact located on an upper surface
US6958513B2 (en) * 2003-06-06 2005-10-25 Chih-Hsin Wang Floating-gate memory cell having trench structure with ballistic-charge injector, and the array of memory cells
CN100570890C (en) * 2004-07-01 2009-12-16 精工电子有限公司 Use the horizontal semiconductor device and the manufacture method thereof of groove structure
JP5110776B2 (en) 2004-07-01 2012-12-26 セイコーインスツル株式会社 Manufacturing method of semiconductor device
JP4997694B2 (en) * 2004-10-07 2012-08-08 富士電機株式会社 Semiconductor device and manufacturing method thereof
US7476932B2 (en) * 2006-09-29 2009-01-13 The Boeing Company U-shape metal-oxide-semiconductor (UMOS) gate structure for high power MOS-based semiconductor devices

Also Published As

Publication number Publication date
KR101543792B1 (en) 2015-08-11
KR20090092231A (en) 2009-08-31
TWI438899B (en) 2014-05-21
US8053820B2 (en) 2011-11-08
CN101521222A (en) 2009-09-02
US20090224311A1 (en) 2009-09-10
CN101521222B (en) 2013-09-18
US8598026B2 (en) 2013-12-03
TW201001703A (en) 2010-01-01
JP2009206144A (en) 2009-09-10
US20120007174A1 (en) 2012-01-12

Similar Documents

Publication Publication Date Title
JP5159365B2 (en) Semiconductor device and manufacturing method thereof
JP6047297B2 (en) Semiconductor device
JP5567711B2 (en) Semiconductor device
TW200845391A (en) Semiconductor device and method of manufacturing the same
JP2008182106A (en) Semiconductor device
JP5432750B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5616720B2 (en) Semiconductor device and manufacturing method thereof
JP2010087133A (en) Semiconductor device and method for manufacturing the same
JP2008159916A (en) Semiconductor device
JP2007201391A (en) Semiconductor device
JP7195167B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2004247541A (en) Semiconductor device and its manufacturing method
TWI472032B (en) Semiconductor device and method of manufacturing the same
TW200910592A (en) Semiconductor device
JP2009016480A (en) Semiconductor device, and manufacturing method of semiconductor device
US8598651B2 (en) Semiconductor device with transistor having gate insulating film with various thicknesses and manufacturing method thereof
JP5165954B2 (en) Semiconductor device
JP2009146999A (en) Semiconductor device
JPWO2007034547A1 (en) Trench gate power MOSFET
JP2010056216A (en) Semiconductor device, and method of manufacturing the same
JP2009088220A (en) Method of manufacturing semiconductor device, and semiconductor device
JP2007115791A (en) Semiconductor device and method of manufacturing same
JP6243748B2 (en) Semiconductor device and manufacturing method thereof
JP2011210905A (en) Method for manufacturing semiconductor device
JP2009259968A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091108

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R150 Certificate of patent or registration of utility model

Ref document number: 5159365

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees