JP2011210905A - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device Download PDF

Info

Publication number
JP2011210905A
JP2011210905A JP2010076376A JP2010076376A JP2011210905A JP 2011210905 A JP2011210905 A JP 2011210905A JP 2010076376 A JP2010076376 A JP 2010076376A JP 2010076376 A JP2010076376 A JP 2010076376A JP 2011210905 A JP2011210905 A JP 2011210905A
Authority
JP
Japan
Prior art keywords
region
trench structure
trench
conductivity type
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010076376A
Other languages
Japanese (ja)
Inventor
Masayuki Hashitani
雅幸 橋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2010076376A priority Critical patent/JP2011210905A/en
Publication of JP2011210905A publication Critical patent/JP2011210905A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device of a MOS transistor having a trench structure facilitating an appropriate adjustment of a thereshold value of a channel region.SOLUTION: In a MOS transistor having a trench structure in which a concave region with its depth varied in a gate width direction and the concave region of a convex region are formed in the trench structure on a first conductive type semiconductor substrate, and a first conductive doped polysilicon film formed through a sacrifice oxide film formed along the surface of the first conductive type semiconductor substrate is embedded in the trench structure of the concave region and heat treated, diffusing impurities on an upper face of the convex region between the trench structures and on the side face and the bottom face of the concave part region of the trench structure. This facilitates a uniform impurity doping to a channel even for reduced trench pitches.

Description

本発明は、半導体装置の製造方法に関し、特に、トレンチ構造を有するMOSトランジスタに関するものであり、高駆動能力のためにトレンチピッチを縮小しても、均一な不純物添加が可能とする半導体装置の製造方法に関する。   The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a MOS transistor having a trench structure, and manufacture of a semiconductor device capable of uniform impurity addition even when the trench pitch is reduced for high driving capability. Regarding the method.

現在、電圧検出器(Voltage Detector)、定電圧レギュレータ(Voltage Regulator)あるいはスイッチングレギュレータ(Switching Regulator)などのパワーマネージメント半導体装置を構成するMOSトランジスタにおいては、低電圧動作、低消費電力あるいは高駆動能力化は重要な課題となっている。特に、MOSトランジスタを高駆動能力化する方法の1つとして、ゲート幅を長くしてオン抵抗を低減させる方法があるが、ゲート幅を長くするとMOSトランジスタの占有面積が大きくなるという問題があった。それに対し、トレンチ構造を有してMOSトランジスタの専有面積の増加を抑えながらゲート幅を長くする技術が提案されている。(例えば、特許文献1参照)   Currently, in a MOS transistor constituting a power management semiconductor device such as a voltage detector, a constant voltage regulator, or a switching regulator, low voltage operation, low power consumption, or high driving capability is achieved. Has become an important issue. In particular, as one method for increasing the driving capability of a MOS transistor, there is a method of reducing the on-resistance by increasing the gate width, but there is a problem that the area occupied by the MOS transistor increases when the gate width is increased. . On the other hand, a technique for increasing the gate width while having a trench structure and suppressing an increase in the area occupied by the MOS transistor has been proposed. (For example, see Patent Document 1)

以下、特許文献1を参考に、図4を用いて従来のトレンチ構造を有するMOSトランジスタの構造と動作を説明する。
図4(A)はトレンチ構造を有するMOSトランジスタの平面模式図である。構造を説明するために、図4(A)のD−D’間のゲート長さ方向の断面図を図4(B)に示す。また、図3(A)のE−E’間からF−F’間のゲート長さ方向の断面図を図4(C)に示す。さらに、図3(A)のG−G’間のゲート幅方向の断面図を図3(D)に示す。
The structure and operation of a conventional MOS transistor having a trench structure will be described below with reference to Patent Document 1 with reference to FIG.
FIG. 4A is a schematic plan view of a MOS transistor having a trench structure. FIG. 4B is a cross-sectional view in the gate length direction between DD ′ in FIG. 4A in order to describe the structure. FIG. 4C shows a cross-sectional view in the gate length direction from EE ′ to FF ′ in FIG. Further, FIG. 3D shows a cross-sectional view in the gate width direction between GG ′ in FIG.

はじめに、図4(B)は、トレンチ構造を有するMOSトランジスタにおいて、トレンチ構造の備えていない箇所の断面図になり、矢印AはMOSトランジスタとして基板表面を流れる電流である。その一方で、図4(C)は、電流の流れは例えば、矢印Bおよび矢印Cが存在し、矢印Bはゲート幅方向奥でトレンチ構造の凸部にて流れる電流を示しており、矢印Cはトレンチ構造の底面で流れる電流を示している。このように、トレンチ構造を有するMOSトランジスタはON状態において、表面およびその他のチャネルを通じて電流が流れるので高駆動能力が得られる。   First, FIG. 4B is a cross-sectional view of a portion having no trench structure in a MOS transistor having a trench structure, and an arrow A is a current flowing on the substrate surface as the MOS transistor. On the other hand, FIG. 4C shows, for example, an arrow B and an arrow C as the current flow. The arrow B indicates the current that flows at the convex portion of the trench structure in the back of the gate width direction. Indicates the current flowing at the bottom of the trench structure. As described above, in the MOS transistor having the trench structure, in the ON state, a current flows through the surface and other channels, so that high driving capability can be obtained.

あわせて、トレンチ構造を有するMOSトランジスタでは、図4(D)に示すように、トレンチ構造を深くし、かつ、トレンチ構造6のトレンチ構造間の凸部領域17の上面の幅と隣接するトレンチ構造の凹部領域18の底面の幅の距離(以下、トレンチピッチとする)を縮小することで平面的な素子面積を大きくすることなく、ゲート幅方向を大きくすることが可能であり、さらに高駆動能力が得られる。   In addition, in the MOS transistor having the trench structure, as shown in FIG. 4D, the trench structure is deepened and the trench structure adjacent to the width of the upper surface of the convex region 17 between the trench structures of the trench structure 6 is used. It is possible to increase the gate width direction without increasing the planar element area by reducing the distance of the width of the bottom surface of the recess region 18 (hereinafter referred to as the trench pitch), and further increase the driving capability. Is obtained.

しかしながら、高駆動能力にするため、例えば、トレンチピッチを縮小すると(例えば、0.7um)、図4(D)に示すトレンチ構造間の凸部17の第1導電型半導体基板内部がすべて空乏化するため、しきい値電圧が低くなり低電圧動作が可能になるが、第2導電型ソース高濃度層と第2導電型ドレイン高濃度拡散層の間でオフ時でのリーク電流が増加してしまう問題があった。これに対して、チャネル部への不純物添加にてしきい値を調整しようとしても、トレンチ構造間の凸部上面およびトレンチ構造の凹部側面と底面への均一な不純物添加が困難という問題があった。   However, in order to achieve high driving capability, for example, when the trench pitch is reduced (for example, 0.7 um), the first conductive type semiconductor substrate inside the convex portion 17 between the trench structures shown in FIG. As a result, the threshold voltage is lowered and low voltage operation is possible. However, the leakage current at the OFF time increases between the second conductivity type source high concentration layer and the second conductivity type drain high concentration diffusion layer. There was a problem. On the other hand, there is a problem that even if an attempt is made to adjust the threshold value by adding impurities to the channel portion, it is difficult to uniformly add impurities to the top surfaces of the convex portions between the trench structures and the side surfaces and bottom surfaces of the concave portions of the trench structures. .

特開2006−49826号公報JP 2006-49826 A

従来の高駆動能力を目指すトレンチ構造を有するMOSトランジスタにおいて、トレンチピッチの縮小、かつ、トレンチ構造を深くする手段がなされてきたが、とくにトレンチピッチの縮小は、トレンチ構造間の凸部基板内部がすべて空乏化するため、しきい値電圧が低くなりソース−ドレイン間のオフ時のリーク電流を増加させてしまうという問題があった。これに対して、チャネル領域への不純物添加にてしきい値を調整しようとしても、トレンチ構造間の凸部上面およびトレンチ構造の凹部側面と底面への均一な不純物添加は困難であり課題であった。   In a conventional MOS transistor having a trench structure aiming at high driving capability, means for reducing the trench pitch and deepening the trench structure have been made. In particular, the reduction of the trench pitch is caused by the inside of the convex substrate between the trench structures. Since all are depleted, there is a problem that the threshold voltage is lowered and the leakage current between the source and the drain is increased. On the other hand, even if it is attempted to adjust the threshold value by adding impurities to the channel region, it is difficult to uniformly add impurities to the top surfaces of the convex portions between the trench structures and the side surfaces and bottom surfaces of the concave portions of the trench structures. It was.

本発明は、上記問題に鑑み成されたもので、トレンチピッチが縮小されても均一に不純物添加することを目的とする。   The present invention has been made in view of the above problems, and an object thereof is to uniformly add impurities even when the trench pitch is reduced.

上記課題を解決するために、本発明は次の手段を用いた。
(1)第1導電型半導体基板にトレンチ構造を用いて形成されたゲート幅方向に断続的に深さが変化する凹部領域と凸部領域を有し、前記トレンチ構造の表面に沿って成膜されたゲート絶縁膜を介して形成されたゲート電極と、前記ゲート電極の一方の側に形成された第2導電型ソース高濃度拡散層と、前記ゲート電極の他方の側に形成された第2導電型ドレイン高濃度拡散層を備えた半導体装置の製造方法であり、前記ゲート幅方向に断続的に深さが変化するトレンチ構造の凹部領域の側面と底面、およびトレンチ構造間の凸部領域上面への不純物添加は、前記第1導電型半導体基板表面に沿って成膜した犠牲酸化膜を介して形成された第1導電型ドープドポリシリコン膜を前記凹部領域のトレンチ構造に埋め込み、第1導電型ドープドポリシリコン膜から前記ゲート幅方向に断続的に深さが変化するトレンチ構造の凹部領域の側面と底面、およびトレンチ構造間の凸部領域上面へ熱処理により不純物を拡散させる半導体装置の製造方法とする。
In order to solve the above problems, the present invention uses the following means.
(1) Formed along the surface of the trench structure, having a concave region and a convex region, the depth of which is intermittently changed in the gate width direction formed in the first conductivity type semiconductor substrate using the trench structure. A gate electrode formed through the gate insulating film, a second conductivity type source high-concentration diffusion layer formed on one side of the gate electrode, and a second layer formed on the other side of the gate electrode. A method of manufacturing a semiconductor device having a conductive drain high-concentration diffusion layer, wherein the side and bottom surfaces of a recessed region of a trench structure whose depth changes intermittently in the gate width direction, and the upper surface of a protruding region between the trench structures Impurities are added to the trench structure of the recess region by embedding a first conductivity type doped polysilicon film formed through a sacrificial oxide film formed along the surface of the first conductivity type semiconductor substrate. Conduction type doped port Side surface and the bottom surface of the recess region of the trench structure in which the silicon film intermittently depth to the gate width direction from the changes, and the method of manufacturing a semiconductor device to diffuse the impurities by heat treatment to the convex region upper surface between the trench structures.

(2)前記半導体装置のゲート幅方向に断続的に深さが変化する凹部領域と凸部領域の不純物添加は、前記第1導電型半導体基板表面に沿って成膜した犠牲酸化膜を介して形成された第1導電型ドープドポリシリコン膜を前記凹部領域のトレンチ構造に埋め込み、導電型がP型の場合、不純物拡散は850℃から950℃で熱処理する半導体装置の製造方法とする。 (2) Impurity addition of the concave region and the convex region whose depth intermittently changes in the gate width direction of the semiconductor device is performed through a sacrificial oxide film formed along the surface of the first conductivity type semiconductor substrate. The formed first conductivity type doped polysilicon film is buried in the trench structure of the recess region, and when the conductivity type is P type, the impurity diffusion is a method of manufacturing a semiconductor device in which heat treatment is performed at 850 ° C. to 950 ° C.

(3)前記半導体装置のゲート幅方向に断続的に深さが変化する凹部領域と凸部領域のトレンチ構造の凹部領域の底面の幅と隣接するトレンチ構造間の凸部領域の上面の幅を合わせたトレンチピッチは、0.6umから1.2umで、前記凹部領域を形成するトレンチ構造の深さは、1umから2umであることを特徴とする製造方法とする。 (3) The width of the bottom surface of the recess region of the trench structure of the recess region and the convex region of the recess region whose depth intermittently changes in the gate width direction of the semiconductor device and the width of the upper surface of the convex region between the adjacent trench structures The combined trench pitch is 0.6 μm to 1.2 μm, and the depth of the trench structure forming the recessed region is 1 μm to 2 μm.

上述したように、本発明の半導体装置の製造方法によれば、トレンチ構造間の凸部上面およびトレンチ構造の凹部側面と底面への均一な不純物添加が可能となり、チャネル領域のしきい値の適切な調整が可能となる。   As described above, according to the method for manufacturing a semiconductor device of the present invention, it is possible to uniformly add impurities to the top surfaces of the convex portions between the trench structures and the side surfaces and bottom surfaces of the concave portions of the trench structures, and the threshold value of the channel region is appropriately set. Adjustment is possible.

本発明の特徴を示す半導体装置の製造方法で得られた半導体装置の模式図The schematic diagram of the semiconductor device obtained by the manufacturing method of the semiconductor device which shows the feature of the present invention 本発明の実施例を示す模式的ゲート幅方向断面図による工程フローProcess flow by schematic gate width direction sectional view showing an embodiment of the present invention 本発明の実施例を示す模式的ゲート長さ方向断面図による工程フローProcess flow by schematic gate length direction sectional view showing an embodiment of the present invention 従来の半導体装置の断面図および動作特性を説明する模式図Cross-sectional view of conventional semiconductor device and schematic diagram explaining operating characteristics

以下、本発明の実施の形態を図面に基づいて説明する。
図1は本発明の半導体装置の製造方法の実施例によって得られた半導体装置の模式図である。図1(A)は模式的平面図、図1(B)は図1(A)のゲート幅方向のA−A’線に沿った断面模式図である。図1(C)は図1(A)のB−B’線およびC−C’線に沿って切断し取り出したときの斜視図であり、水平方向がゲート長さ方向、奥行きがゲート幅方向となる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view of a semiconductor device obtained by an embodiment of a semiconductor device manufacturing method of the present invention. 1A is a schematic plan view, and FIG. 1B is a schematic cross-sectional view taken along the line AA ′ in the gate width direction of FIG. FIG. 1C is a perspective view taken along the line BB ′ and CC ′ in FIG. 1A, where the horizontal direction is the gate length direction and the depth is the gate width direction. It becomes.

まず、図1(A)を利用して本発明の半導体装置の平面構造について説明する。LOCOS酸化膜2で囲まれた第1導電型の半導体基板上の領域には複数のトレンチ構造6が形成され、凸部領域と凹部領域が交互に配置されている。凸部領域と凹部領域の表面にはゲート絶縁膜11が通常熱酸化膜により形成される。凸部領域と凹部領域を連続して被覆するようにゲート電極14が配置され、ゲート電極11の一方の側には第2導電型のソース高濃度拡散層15、他方の側には第2導電型のドレイン高濃度拡散層16が形成されている。   First, the planar structure of the semiconductor device of the present invention will be described with reference to FIG. A plurality of trench structures 6 are formed in a region on the semiconductor substrate of the first conductivity type surrounded by the LOCOS oxide film 2, and convex regions and concave regions are alternately arranged. A gate insulating film 11 is usually formed of a thermal oxide film on the surface of the convex region and the concave region. The gate electrode 14 is disposed so as to continuously cover the convex region and the concave region, the second conductive type source high-concentration diffusion layer 15 is provided on one side of the gate electrode 11, and the second conductive material is provided on the other side. A type drain high concentration diffusion layer 16 is formed.

図1(B)はチャネル幅方向の模式的断面図であり、トレンチ構造6の交互に配置された凸部領域と凹部領域を示している。トレンチ構造6の表面近傍には拡散された第1導電型の不純物拡散層10が設けられ、トランジスタ特性を決定する。
図1(C)は凹部領域に沿って切断されたときの斜視図であり、凹部領域が構成するトランジスタを示している。
FIG. 1B is a schematic cross-sectional view in the channel width direction, and shows convex regions and concave regions alternately arranged in the trench structure 6. A diffused impurity diffusion layer 10 of the first conductivity type is provided in the vicinity of the surface of the trench structure 6 to determine transistor characteristics.
FIG. 1C is a perspective view when cut along the recessed region, and shows a transistor formed by the recessed region.

次に、工程フローを示す図2および図3を用いて、図1で示した半導体装置を製造する場合の本発明にかかる製造方法の実施例を説明する。   Next, an embodiment of the manufacturing method according to the present invention when manufacturing the semiconductor device shown in FIG. 1 will be described with reference to FIGS.

図2は本発明の半導体装置の製造方法の実施例を示す模式的断面図フローであり、図1(B)のゲート幅方向の断面模式図と同じ断面方向である。
図2(A)において、まず第1導電型半導体基板、例えばP型半導体基板1、例えばホウ素添加した抵抗率20Ωcmから30Ωcmの不純物濃度の半導体基板に、LOCOS法(Local Oxidation of Silicon)によって素子分離のためのLOCOS酸化膜2を形成させる。
FIG. 2 is a schematic cross-sectional view showing an embodiment of the method for manufacturing a semiconductor device of the present invention, which is the same cross-sectional direction as the cross-sectional schematic view in the gate width direction of FIG.
In FIG. 2A, first, a first conductivity type semiconductor substrate, for example, a P-type semiconductor substrate 1, for example, a boron-doped semiconductor substrate having a resistivity of 20 Ωcm to 30 Ωcm is isolated by LOCOS method (Local Oxidation of Silicon). A LOCOS oxide film 2 is formed.

次に、図2(B)に示すように、トレンチエッチングのためにハードマスク3および4のパターニングをおこなう。ここでのハードマスクは例えば、膜厚が数十nmの熱酸化膜、および膜厚が数十nm〜数百nmのCVD酸化膜の積層構造が好ましい。ただし、後のトレンチエッチングに十分な耐性が得られる膜厚ならば、どちらか一方の酸化膜だけでも可能である。さらに、ここでのハードマスクはレジスト膜あるいはシリコン窒化膜でも問題はない。次に、このハードマスクをレジスト膜5でパターニングして、下地のハードマスク3、4をパターニングする。次に、レジスト膜5を除去した後、図2(C)に示すように、ドライエッチングをおこなってトレンチ構造6を得る。なお、ここでのトレンチ構造の凹部領域の底面の幅と隣接するトレンチ構造間の凸部領域の上面の幅の距離であるトレンチピッチおよびトレンチ構造の深さは、トレンチピッチが0.6umから1.2umでトレンチ構造の深さが1umから2umであることが望ましい。   Next, as shown in FIG. 2B, the hard masks 3 and 4 are patterned for trench etching. The hard mask here is preferably a laminated structure of a thermal oxide film having a film thickness of several tens of nm and a CVD oxide film having a film thickness of several tens to several hundreds of nm. However, only one of the oxide films can be used as long as the film has a sufficient resistance to subsequent trench etching. Furthermore, there is no problem even if the hard mask here is a resist film or a silicon nitride film. Next, this hard mask is patterned with the resist film 5 to pattern the underlying hard masks 3 and 4. Next, after removing the resist film 5, as shown in FIG. 2C, dry etching is performed to obtain a trench structure 6. Here, the trench pitch, which is the distance between the width of the bottom surface of the concave region of the trench structure and the width of the upper surface of the convex region between adjacent trench structures, and the depth of the trench structure are from 0.6 um to 1 μm. It is desirable that the trench structure has a depth of 1 μm to 2 μm.

その後、ハードマスク3および4を除去した後、図2(D)に示すように、犠牲酸化膜7を例えば膜厚は数nmから数十nmの熱酸化にて形成し、その犠牲酸化膜を介してP型のドープドポリシリコン膜8を成膜する。ドープドポリシリコン膜8は、成膜時に既に不純物が導入されている多結晶シリコン膜であって、多結晶シリコンの成膜時にジボランなどの不純物ガスを導入することで成膜できる。本工程のドープドポリシリコン膜8は、減圧CVD装置などを用いて成膜することができる。   Thereafter, after removing the hard masks 3 and 4, as shown in FIG. 2D, a sacrificial oxide film 7 is formed by thermal oxidation of, for example, several nm to several tens nm, and the sacrificial oxide film is formed. Then, a P-type doped polysilicon film 8 is formed. The doped polysilicon film 8 is a polycrystalline silicon film into which impurities have already been introduced at the time of film formation, and can be formed by introducing an impurity gas such as diborane at the time of film formation of the polycrystalline silicon. The doped polysilicon film 8 in this step can be formed using a low pressure CVD apparatus or the like.

引き続き、図2(E)に示すように、レジスト膜9で後のチャネルへの不純物添加に必要なドープドポリシリコン膜を残し、不必要なドープドポリシリコン膜を除去するためのパターニングをおこなって、エッチングにてドープドポリシリコン膜を除去する。ここで、ドープドポリシリコン膜を残すのは、例えばNチャネル形トレンチ構造を有するMOSトランジスタである。   Subsequently, as shown in FIG. 2E, patterning for removing the unnecessary doped polysilicon film is performed while leaving the doped polysilicon film necessary for the addition of impurities to the channel in the resist film 9. Then, the doped polysilicon film is removed by etching. Here, what leaves the doped polysilicon film is, for example, a MOS transistor having an N-channel trench structure.

その後、図2(F)に示すように、レジスト膜9を除去して熱処理をおこなって、第1導電型不純物拡散層10を形成させる。ここでの例えばボロン系不純物(図では分別するために点柄で示す)をチャネル部へ熱拡散させる。ここで、第1導電型のドープドポリシリコン膜の熱処理は、例えばP型の場合、窒素雰囲気にて、850℃〜950℃で熱処理することで犠牲酸化膜7を介してトレンチ構造間の凸部領域の上面、およびトレンチ構造の凹部領域の側面と底面へと拡散可能である。   Thereafter, as shown in FIG. 2F, the resist film 9 is removed and heat treatment is performed to form the first conductivity type impurity diffusion layer 10. Here, for example, boron-based impurities (shown by dots for separation in the figure) are thermally diffused into the channel portion. Here, the heat treatment of the doped polysilicon film of the first conductivity type is, for example, in the case of the P type, the protrusion between the trench structures via the sacrificial oxide film 7 by heat treatment at 850 ° C. to 950 ° C. in a nitrogen atmosphere. It can diffuse to the upper surface of the partial region and the side and bottom surfaces of the recessed region of the trench structure.

なお、上述の図2(D)から図2(F)までの実施例は、第1導電型のドープドポリシリコン膜を用いてチャネル部への熱拡散をおこなっているが、第2導電型半導体基板による第2導電型ドープドポリシリコン膜でも可能である。   In the above-described embodiments shown in FIGS. 2D to 2F, the first conductivity type doped polysilicon film is used for thermal diffusion to the channel portion. A second conductivity type doped polysilicon film by a semiconductor substrate is also possible.

次に、図2(G)に示すように、先にドープドポリシリコン膜8をウエットエッチングによってすべて除去したのち、ウエットエッチングで犠牲酸化膜7もすべて除去する。   Next, as shown in FIG. 2G, after all the doped polysilicon film 8 is removed by wet etching, the sacrificial oxide film 7 is also removed by wet etching.

その後、図2(H)に示すように、ゲート絶縁膜11を例えば膜厚が数nm〜数十nmの熱酸化膜を形成し、それを介してノンドープの多結晶シリコン膜12を好ましくは膜厚を100nm〜500nmで成膜し、プリデポあるいはイオン注入法により不純物を導入してゲート電極とする。ここでの導電型は例えば第2導電型でもかまわない。   Thereafter, as shown in FIG. 2 (H), a thermal oxide film having a thickness of, for example, several nanometers to several tens of nanometers is formed on the gate insulating film 11, and the non-doped polycrystalline silicon film 12 is preferably formed thereon. A film is formed with a thickness of 100 nm to 500 nm, and impurities are introduced by predeposition or ion implantation to form a gate electrode. The conductivity type here may be the second conductivity type, for example.

以上の工程にて、トレンチ構造6を有し、例えばボロン系不純物10がトレンチ構造間の凸部領域の上面、およびトレンチ構造の凹部領域の側面と底面に均一に不純物添加され、ゲート絶縁膜11を介して不純物添加された多結晶シリコン膜12が成膜されている構造が整う。   Through the above steps, the trench structure 6 is provided, and, for example, boron-based impurities 10 are uniformly doped into the upper surface of the convex region between the trench structures and the side surface and the bottom surface of the concave region of the trench structure. Thus, the structure in which the polycrystalline silicon film 12 doped with impurities is formed is prepared.

ここから先は、図3のゲート長さ方向の断面模式図にて後続の工程フローを説明する。
図3(A)は、不純物添加された多結晶シリコン膜12をゲート電極とするためのパターニングをレジスト膜13でおこなう。
From here on, the subsequent process flow will be described with reference to the schematic sectional view in the gate length direction of FIG.
In FIG. 3A, patterning is performed on the resist film 13 in order to use the doped polycrystalline silicon film 12 as a gate electrode.

次に図3(B)に示すように、ゲート電極14を形成した後、セルフアライン法でソース領域およびドレイン領域を形成するための不純物添加を行う。なお、ここでのセルフアライン法の適用は本発明の本質とは関係ない。ソース領域およびドレイン領域の不純物添加は例えば導電型がN型なら例えば砒素あるいは燐を好ましくは1×1015atom/cm2から1×1016atom/cm2のドーズ量でイオン注入する。さらに、ここでのソース領域およびドレイン領域への不純物添加は、トレンチ6を有しない同一チップ内のMOSトランジスタと同一条件で同時におこなうことが可能である。 Next, as shown in FIG. 3B, after forming the gate electrode 14, an impurity is added to form a source region and a drain region by a self-alignment method. The application of the self-alignment method here is not related to the essence of the present invention. For example, if the conductivity type is N-type, for example, arsenic or phosphorus is preferably ion-implanted at a dose of 1 × 10 15 atoms / cm 2 to 1 × 10 16 atoms / cm 2 . Further, the addition of impurities to the source region and the drain region here can be performed simultaneously under the same conditions as those of the MOS transistor in the same chip that does not have the trench 6.

その後、図3(C)に示すように、800℃〜1000℃で数時間熱処理することで、第2導電型ソース高濃度拡散層14および第2導電型ドレイン高濃度拡散層15を形成させる。   Thereafter, as shown in FIG. 3C, heat treatment is performed at 800 ° C. to 1000 ° C. for several hours to form the second conductivity type source high concentration diffusion layer 14 and the second conductivity type drain high concentration diffusion layer 15.

以上で、トレンチ構造6間の凸部領域の上面、およびトレンチ構造6の凹部領域の側面と底面に第1導電型不純物拡散層10例えばボロン系不純物が均一に不純物添加されたトレンチ構造を有するMOSトランジスタが製造される。   As described above, the first conductivity type impurity diffusion layer 10, for example, a MOS having a trench structure in which boron-based impurities are uniformly added to the upper surface of the convex region between the trench structures 6 and the side surface and the bottom surface of the concave region of the trench structure 6. A transistor is manufactured.

1 第1導電型半導体基板
2 LOCOS酸化膜
3、4 ハードマスク
5、9、13 レジスト膜
6 トレンチ構造
7 犠牲酸化膜
8 第1導電型ドープドポリシリコン膜
10 第1導電型不純物拡散層
11 ゲート絶縁膜
12 多結晶シリコン膜
14 ゲート電極
15 第2導電型ソース高濃度拡散層
16 第2導電型ドレイン高濃度拡散層
17 トレンチ構造間の凸部領域
18 トレンチ構造の凹部領域
DESCRIPTION OF SYMBOLS 1 1st conductivity type semiconductor substrate 2 LOCOS oxide film 3, 4 Hard mask 5, 9, 13 Resist film 6 Trench structure 7 Sacrificial oxide film 8 1st conductivity type doped polysilicon film 10 1st conductivity type impurity diffusion layer 11 Gate Insulating film 12 Polycrystalline silicon film 14 Gate electrode 15 Second conductivity type source high-concentration diffusion layer 16 Second conductivity type drain high-concentration diffusion layer 17 Convex region 18 between trench structures Concave region of trench structure

Claims (3)

第1導電型半導体基板にトレンチ構造を用いて形成されたゲート幅方向に断続的に深さが変化する凹部領域と凸部領域を有し、前記トレンチ構造の表面に成膜されたゲート絶縁膜を介して形成されたゲート電極と、前記ゲート電極の一方の側に形成された第2導電型ソース高濃度拡散層と、前記ゲート電極の他方の側に形成された第2導電型ドレイン高濃度拡散層を備えた半導体装置の製造方法であり、
前記トレンチ構造の表面に沿って犠牲酸化膜を成膜する工程と、
第1導電型ドープドポリシリコン膜を前記凹部領域に前記犠牲酸化膜を介して埋め込む工程と、
熱処理により、前記第1導電型ドープドポリシリコン膜から前記ゲート幅方向に断続的に深さが変化するトレンチ構造の凹部領域の側面と底面、およびトレンチ構造間の凸部領域上面へ、第1導電型の不純物を拡散する工程と、
を含むことを特徴とする半導体装置の製造方法。
A gate insulating film formed on the surface of the trench structure, having a concave region and a convex region, the depth of which is intermittently changed in the gate width direction, formed on the first conductivity type semiconductor substrate using the trench structure. A second conductivity type source high concentration diffusion layer formed on one side of the gate electrode, and a second conductivity type drain high concentration formed on the other side of the gate electrode. A method for manufacturing a semiconductor device including a diffusion layer,
Depositing a sacrificial oxide film along the surface of the trench structure;
Burying a first conductivity type doped polysilicon film in the recess region via the sacrificial oxide film;
By the heat treatment, the first conductivity type doped polysilicon film has a first side surface and a bottom surface of the concave region of the trench structure whose depth is intermittently changed in the gate width direction, and an upper surface of the convex region between the trench structures. Diffusing impurities of conductive type;
A method for manufacturing a semiconductor device, comprising:
前記第1導電型の不純物はP型の不純物であり、前記第1導電型の不純物を拡散する工程は850℃から950℃であることを特徴とする請求項1に記載の半導体装置の製造方法。   2. The method of manufacturing a semiconductor device according to claim 1, wherein the first conductivity type impurity is a P type impurity, and the step of diffusing the first conductivity type impurity is 850 ° C. to 950 ° C. 3. . 前記半導体装置のゲート幅方向に断続的に深さが変化する凹部領域と凸部領域のトレンチ構造の凹部領域の底面の幅と隣接するトレンチ構造間の凸部領域の上面の幅を合わせたトレンチピッチは、0.6umから1.2umで、前記凹部領域を形成するトレンチ構造の深さに関しては、1umから2umであることを特徴とする請求項1に記載の半導体装置の製造方法。   A trench in which the width of the bottom surface of the concave region of the trench structure of the concave region and the convex region of the concave region whose depth changes intermittently in the gate width direction of the semiconductor device is matched to the width of the upper surface of the convex region between the adjacent trench structures 2. The method of manufacturing a semiconductor device according to claim 1, wherein the pitch is 0.6 μm to 1.2 μm, and the depth of the trench structure forming the recessed region is 1 μm to 2 μm.
JP2010076376A 2010-03-29 2010-03-29 Method for manufacturing semiconductor device Pending JP2011210905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010076376A JP2011210905A (en) 2010-03-29 2010-03-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010076376A JP2011210905A (en) 2010-03-29 2010-03-29 Method for manufacturing semiconductor device

Publications (1)

Publication Number Publication Date
JP2011210905A true JP2011210905A (en) 2011-10-20

Family

ID=44941658

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010076376A Pending JP2011210905A (en) 2010-03-29 2010-03-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2011210905A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247127A (en) * 2012-05-23 2013-12-09 Renesas Electronics Corp Transistor and method of manufacturing the same
CN104037228A (en) * 2013-03-05 2014-09-10 美格纳半导体有限公司 Semiconductor Device And Method For Fabricating The Same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013247127A (en) * 2012-05-23 2013-12-09 Renesas Electronics Corp Transistor and method of manufacturing the same
CN104037228A (en) * 2013-03-05 2014-09-10 美格纳半导体有限公司 Semiconductor Device And Method For Fabricating The Same

Similar Documents

Publication Publication Date Title
JP6341074B2 (en) Manufacturing method of semiconductor device
JP4860929B2 (en) Semiconductor device and manufacturing method thereof
JP2008103563A (en) Superjunction semiconductor device manufacturing method
JP5567711B2 (en) Semiconductor device
JP2009088005A (en) Semiconductor device and method of manufacturing the same
TWI229941B (en) High voltage metal-oxide semiconductor device
JP2010114152A (en) Semiconductor device, and method of manufacturing the same
JP2009200300A (en) Semiconductor device, and method of manufacturing the same
JP2019175930A (en) Semiconductor device and method for manufacturing the same
EP1826824B1 (en) Semiconductor device and method of manufacturing the same
JP2012094920A (en) Semiconductor device
JP2006287127A (en) Semiconductor device and its manufacturing method
JP2009272453A (en) Transistor, semiconductor apparatus, and method of manufacturing the same
WO2015008444A1 (en) Semiconductor device
JP2010010408A (en) Semiconductor device and method of manufacturing the same
JP2012049466A (en) Semiconductor device and manufacturing method therefor
JP5975543B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2010118622A (en) Semiconductor device and method of manufacturing the same
JP5719899B2 (en) Semiconductor device
JP2011210905A (en) Method for manufacturing semiconductor device
JP5386120B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5437602B2 (en) Semiconductor device and manufacturing method thereof
JP2009032905A (en) Semiconductor device and its manufacturing method
JPWO2007034547A1 (en) Trench gate power MOSFET
JP2007115791A (en) Semiconductor device and method of manufacturing same