JP5148531B2 - 沸騰水型原子炉のジェットポンプ - Google Patents

沸騰水型原子炉のジェットポンプ Download PDF

Info

Publication number
JP5148531B2
JP5148531B2 JP2009041677A JP2009041677A JP5148531B2 JP 5148531 B2 JP5148531 B2 JP 5148531B2 JP 2009041677 A JP2009041677 A JP 2009041677A JP 2009041677 A JP2009041677 A JP 2009041677A JP 5148531 B2 JP5148531 B2 JP 5148531B2
Authority
JP
Japan
Prior art keywords
jet pump
water
throat
inlet mixer
boiling water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009041677A
Other languages
English (en)
Other versions
JP2010196567A (ja
Inventor
久道 井上
直行 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2009041677A priority Critical patent/JP5148531B2/ja
Publication of JP2010196567A publication Critical patent/JP2010196567A/ja
Application granted granted Critical
Publication of JP5148531B2 publication Critical patent/JP5148531B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Jet Pumps And Other Pumps (AREA)

Description

本発明はジェットポンプに係り、特に沸騰水型原子炉に好適なジェットポンプに関する。
従来の沸騰水型原子炉(BWR)は、原子炉圧力容器内に複数のジェットポンプを設置している。ジェットポンプは、ノズル、ベルマウス、スロート及びディフューザを有し、一体に設けたノズル、ベルマウス及びスロートを、ディフューザに着脱自在に接合している。スロートはスロート直管とその下部に設けられたインレットミキサーから構成される。原子炉圧力容器に接続された再循環系配管に設けられた再循環ポンプの駆動によって昇圧された冷却水は、再循環系配管を通り、駆動水としてノズルからジェットポンプ内に噴出される。ノズルは駆動水の速度を増加させ、噴出された駆動水によってノズルの周囲に存在する冷却水である被駆動水を吸い込み、ベルマウスからスロート内に流入させる。スロートを経てディフューザから排出された冷却水は、下部プレナムを経て炉心に供給される(特許文献1参照)。
特許文献1には、スロート下部のインレットミキサーとディフューザとの接合部に板バネ等の弾性体を設け、接合部からの漏洩水を減少させると共に振動を抑制する構造の記載がある。特許文献2には、インレットミキサーとディフューザとの接合部にラビリンスシール機構を設け、接合部からの漏洩水を減少させると共に振動を抑制する構造の記載がある。特許文献3には、インレットミキサーとディフューザとの接合上部にシールリングを設け、接合部からの漏洩水を減少させると共に振動を抑制する構造の記載がある。
また、特許文献4には、スロートの内圧が負である部位にスリップジョイントを設け、ジエットポンプからのリークをなくし反対に吸込む構造とした記載がある。
特許文献5には、ジェットポンプのスロートの内面に軸方向に伸びる複数の細い縦溝を形成し、圧力損失を低減することの記載がある。
ここで、特許文献1〜3は、いずれも特別な構造によって接合部からの漏洩水を減少させると共に振動を抑制するものである。特許文献4は吸込み水を増やし効率上昇を図るもので、特許文献5は複雑な構造により圧力損失を低減して効率上昇を図るものである。
特開2008−170272号公報 特公昭59−48360号公報 特開2002−221589号公報 特開昭58−15798号公報 特開平8−135600号公報
従来のジェットポンプを備えた沸騰水型原子炉(BWR)の概略の構造を、図8を用いて以下に説明する。BWRは、原子炉圧力容器1内に炉心シュラウド2を設置している。複数の燃料集合体(図示せず)が装荷された炉心3が、炉心シュラウド2内に配置される。気水分離器4及び蒸気乾燥器5が原子炉圧力容器1内で炉心3の上方に配置される。
ジェットポンプ6が、原子炉圧力容器1と炉心シュラウド2の間に形成されたダウンカマ7内に配置される。ジェットポンプ6は、ノズル11、ベルマウス17、スロート18、ディフューザ19を有する。原子炉圧力容器1には再循環系配管8及び再循環ポンプ9を有する再循環系が設けられる。再循環系配管8の一端は、原子炉圧力容器1に接続されてダウンカマ7に連絡され、他端はダウンカマ7内に配置されたライザ管10を介してジェットポンプ6のノズル11に接続される。主蒸気配管12及び給水配管13が原子炉圧力容器1に接続される。
原子炉圧力容器1内の上部に存在する被駆動流体である冷却水14は、給水配管13から原子炉圧力容器1に供給された給水15と混合されてダウンカマ7内を下降する。冷却水14は、再循環ポンプ9の駆動によって再循環系配管8内に流入し、再循環ポンプ9によって昇圧される。この昇圧された冷却水を便宜的に駆動水16と称する。
駆動水16は、再循環系配管8、ライザ管10を介してジェットポンプ6に設けた多孔のノズル11から噴出される。ノズル11の周囲に存在する冷却水14は、駆動水16によって吸引され、ベルマウス17からスロート18内に吸い込まれる。冷却水14は、駆動水16と共にスロート18内を下降し、ディフューザ19から吐出される。ディフューザ19から吐出される冷却水14及び駆動水16を含む冷却水を、冷却水20と称する。
冷却水20は下部プレナム21を経て炉心3に供給され、炉心3を通過する際に加熱されて水及び蒸気を含む二相流となる。気水分離器4は蒸気と水を分離し、分離された蒸気は、更に蒸気乾燥器5で湿分を除去されて主蒸気配管12に排出される。この蒸気は蒸気タービン(図示せず)に導かれ、蒸気タービンを回転させる。蒸気タービンから排出された蒸気は、復水器(図示せず)で凝縮されて水となり、給水15として再び給水配管13より原子炉圧力容器1内に供給される。気水分離器4及び蒸気乾燥器5で分離された冷却水は、落下して再び冷却水14となる。
ジェットポンプ6は、再循環ポンプ9の動力を駆動水16から冷却水14に効果的に伝え、ジェットポンプ6から吐出される冷却水20の流量を駆動水16の流量よりも増大させる。再循環ポンプ9によって与えられた駆動水16の運動エネルギーが冷却水14に有効に作用して、ベルマウス17内に吸い込まれる冷却水14の流量が増加し、冷却水20の流量が更に増加する。そのため、駆動水16の運動エネルギーが増加するようにノズル11の出口における駆動水16の流速を増加させると共に、スロート18の入口部で流路面積をベルマウス17のそれよりも小さくすることにより冷却水14の速度を増加して静圧を減圧させる。これにより冷却水14をスロート18に吸い込み、少ない動力で必要な炉心流量を確保することができる。
図9は、原子炉内のジェットポンプ取付状況の詳細を示す破断斜視図である。ジェットポンプ6は、2台一組で構成され、多孔のノズル11、ベルマウス17、スロート直管24とインレットミキサー25を有するスロート18及びディフューザ19で構成される。駆動水16はライザ管10の上部で分岐管22により二手に分けられ、それぞれが各ジェットポンプ6のノズル11に供給される。ノズル11は、ベルマウス17の上部開口に対向して配置される。
ノズル11とベルマウス17との間には、ノズル11の周囲に存在する冷却水14をベルマウス17内に導く冷却水吸引流路が形成される。ノズル11から噴出する駆動水16により吸引される冷却水14は、冷却水吸引流路を通りスロート直管24に流入する。Qaは駆動水16の流量、Qbは冷却水14の流量である。冷却水吸引流路には固定板23が設けられ、ノズル11をベルマウス17に固定している。ノズル11から噴出した駆動水16は、ベルマウス17から下方に位置する流路断面積が最も狭いスロート直管24を経由して、内壁が下方にテーパ面で広がったインレットミキサー25に向かって流入する。インレットミキサー25の下端においてスロート18とディフューザ19とはスリップジョイント26で接続される。ディフューザ19は、スリップジョイント26を有する上端部で流路断面積が狭く、下方に向かうにしたがって流路断面積が徐々に増大するテーパ面を形成している。
ジエットポンプ6は、分岐管22からディフューザ19下端まで約6mの長さがあり熱変形が大きいため、上記スリップジョイント26が熱膨張吸収機構として設けられており、またノズル11側の分解メンテナンスを容易にしている。
図10および図11は、従来例におけるノズル11を用いたジエットポンプの構成を示す断面図である。図10において、多孔ノズル11からの噴出水27(駆動水16の一部)はベルマウス17内に噴出し、冷却水14を吸引し、スロート18を構成するスロート直管24、インレットミキサー25、スリップジョイント26、ディフューザ19を経由して炉心に供給する冷却水20を生成する。スリップジョイント26の構造の詳細を図11に示す。スリップジョイント26のインレットミキサー25とディフューザ19の対向面に各々ステライト層28が設けられ、スリップジョイント26の磨耗を軽減する。L3はスリップジョイント26の隙間である。
従来例では、インレットミキサー25内壁テーパ面の広がり角度θ1は約1.5°と小さいため、スリップジョイント26部分の内径において、短い距離L1で約6°の広がり角度θ2で急激に角度を広げた構造としていた。この構造では、インレットミキサー25端部において内径D1が小さくなり、ディフューザ上部内壁19aとの距離L2が大きくなるため、拡大流による冷却水20の圧力損失が大きくなる。また、インレットミキサー25の下端流線29により発生する減圧域30が広くなることによっても圧力損失が大きくなる。
さらに、減圧域30の圧力変動が大きく漏洩水の脈動も大きくなるため、スロート18の振動が増大しスロート18上部が破損する可能性がある。スロート18の振動にはスリップジョイント26の長さも大きく関与し、スリップジョイント26の長さが短いとスリップジョイント26での圧力損失が小さくなり、漏洩水の水量Qrが増えて振動に悪影響を及ぼす流体力が大きくなる。
ジェットポンプの性能は、一般に以下に示すようなM比、N比、効率によって表される。M比は、駆動水16の流量Qaに対する、被駆動水(冷却水14)の流量Qbの比であり、(1)式で表される。
M比 = Qb/Qa ……(1)
N比は、駆動水に対する被駆動水の全水頭比であり、(2)式で表される。
N比 = (Hc−Hb)/(Ha−Hc) ……(2)
ここで、図9に示すように、Haはノズルの駆動水入口における全水頭、Hbはジェットポンプの被駆動水入口における全水頭、Hcはジェットポンプ出口における全水頭である。
効率は、駆動水に対する被駆動水のエネルギーの比であり、M比とN比の積として(3)式で表される。
効率 = M比 × N比 ……(3)
ジェットポンプとしては、M比、N比及び効率がより高いことが望ましい。効率の高い小容量の再循環ポンプを用いて、ジェットポンプから吐出される冷却水流量を増加させることができれば、再循環系をコンパクト化することができ、かつ再循環系の設置スペースを低減できる。
例えば、BWRのような既設の原子炉で出力向上を行う場合には、冷却水の炉心流量を増加することにより原子炉出力の向上幅を拡大することができる。また、炉心流量の制御幅の拡大によって、炉心内のボイド率の変化幅が増大し燃料経済性を高めることができる。炉心流量を増加させるためには再循環ポンプ、給水ポンプ及びジェットポンプを改良するとよいが、出力向上を目的とした既設原子炉の改造では、再循環ポンプ及び給水ポンプなどの大型機器の改造や交換に比べて、小規模な改造ですむジェットポンプの改良が有効である。ジェットポンプの改良における新たな課題を以下に説明する。
第一に、既存のジェットポンプを有するBWRで出力向上を行うためには、ジェットポンプの効率を増大させる必要がある。同一出力の再循環ポンプを用い且つN比が同じ場合、ジェットポンプの効率増大はM比の向上によって達成できるが、M比を増大させると最小口径スロート部分の圧力損失が大きくなりN比の減少をもたらす。したがって、M比及びN比が高い状態でジェットポンプの効率を増大させるためには、スロートの圧力損失を低減する必要がある。
第二に、出力向上を行う既存のBWRに設置されているジェットポンプはスリップジョイントを採用しており、ジェットポンプ内の冷却水がスリップジョイントの隙間から外部に漏洩してジェットポンプの損失となる。さらに漏洩水に基づいて流力振動が発生し、ディフューザとスロートの接続部が磨耗する原因となっている。さらにジェットポンプの性能を向上させるとスロート及びディフューザの内圧が上昇し漏洩水も増加する。したがって、ジェットポンプの健全性を確保するためには、漏洩水を少なくして損失を低減するとともに流力振動によるディフューザとスロートの接続部での磨耗を抑える必要がある。
上記した課題は、原子炉の出力向上及び振動低減を達成するために、従来のジェットポンプを検討することによって新たに見出されたものである。
従来のジェットポンプは、その内径を単純に大きくした場合には、ディフューザの外径を全長にわたって大きくする必要があり、大掛かりな改造工事が必要となるため、スロート下端部の接合部における内径を大きくすることができない。
本発明の目的は、ジェットポンプの圧力損失と流力振動による磨耗を抑制して、大掛かりな改造を必要とせずに効率を更に増大できるジェットポンプ及びこれを用いた原子炉を提供することにある。
本発明は特に、ジェットポンプで交換可能なスロートの形状を改良すれば性能向上が可能であることを新たに見出した。
本発明は、駆動流体を噴出するノズルと、前記駆動流体及び駆動流体により吸引された被駆動流体が流入するベルマウスと、駆動流体と被駆動流体を混合するスロート直管およびインレットミキサーで構成されるスロートと、前記インレットミキサー下端で前記スロートとスリップジョイントにより接続されるディフューザとを備えたジエットポンプにおいて、スリップジョイントを形成する前記インレットミキサー下端に、内外とも垂直面を持つ円筒部を設けたことを特徴とする。
また、インレットミキサーの内壁テーパ面の広がり傾斜角度を1.6〜2.0°とすることを特徴とする。
また、インレットミキサー下端部の円筒部下方に延長部を設け、該延長部の内壁には下方に緩やかに広がるテーパ面を設け、延長部の外壁はスロート下端のスリップジョイント部外径より若干小さい垂直円筒面を設けたことを特徴とする。
さらに、沸騰水型原子炉において、原子炉容器内に設置され、前記原子炉容器内に形成される炉心に冷却材を供給する複数のジェットポンプが、上述のジェットポンプであることを特徴とする。
本発明によれば、ジェットポンプの効率を向上させるため、スロートの広がり角度を圧力損失が少ない最適な傾斜角度とし、スリップジョイントに挿入するスロート下端に垂直に延長した円筒部を設け、さらにディフューザ上端内壁に向け緩やかに内壁が拡大するテーパ面を持つ延長部を円筒部に設け、圧力損失の低減を図ることができる。また、上記円筒部に付加した延長部の外径をディフューザ上端のスリップジョイント部内径より若干小径の円筒として微小隙間を流路とする漏洩水の圧力損失を増大させ、漏洩水量を削減させるとともに、漏洩水の圧力変動に起因するスロートの振動を低減して磨耗を回避することができる。
本実施例におけるジェットポンプの断面図である。 図1におけるD部拡大図である。 本実施例のインレットミキサーの特性図である。 ジェットポンプの漏洩水量と圧力損失の関係を示すグラフである。 M比と効率の関係を示すグラフである。 インレットミキサー下端の減圧域での変動圧力の周波数特性図である。 スロート振動特性図である。 従来例の沸騰水型原子炉の模式図である。 図8に示すジェットポンプの破断斜視図である。 従来例によるジェットポンプの断面図である。 図10におけるA部拡大図である。
本発明に係るジェットポンプの実施形態の詳細を以下に説明する。
本発明の実施例について図2を基に説明する。図1は従来例における図10と同じく多孔のノズル11を用いたジエットポンプの構成を示す断面図である。
ここで、ノズル11からの噴出水27(駆動水16)は、同様にベルマウス17内に噴出し、冷却水14の一部を吸引し、スロート直管24とインレットミキサー25Aからなるスロート18A、スリップジョイント26、ディフューザ19を経由して炉心の冷却水20を形成する。
本実施例のジエットポンプの構造は、従来のジエットポンプで用いられているスロート18と交換可能なスロート18Aについてのもので、互換性の点からベルマウス17からディフューザ19上端までの距離L0は従来と同じ値に固定されている。したがって他の部分で最適化を図っている。
図2に、本発明のポイントとなるスリップジョイント26近傍の構造を示す。なお図2には、従来例によるインレットミキサー25の下部形状を点線31で示している。
本実施例でのインレットミキサー25Aの内壁テーパ面の広がり角度θ1aは、圧力損失が最小で効率が最大となる最適傾斜角度を採用する。図3に示すように、最大効率を与える広がり角度は実験で約1.8°近傍にあることを確認した。さらに、広がり角度θ1aは1.6〜2.0°間においては最大効率にさほど大きな差がないことから、この範囲を最適傾斜角度として採用した。これは、従来使用されているインレットミキサー25の広がり角度約1.5°より大きな傾斜角度となる。
この最適傾斜角度を採用して、仮にインレットミキサーを従来例の様に構成したとすると、インレットミキサー25Aの下端外径がディフューザ19上部の内径D0より大きくなり、互換性が維持できない。したがって、インレットミキサー25Aの下端部には傾斜させずに垂直な内外壁を持つ円筒部Cを設ける。インレットミキサー25Aの広がり角度を従来より大きく設定し、ディフューザ19と接合する下端に円筒部Cを形成することにより、インレットミキサー25Aの下端内径D1aを従来例の点線31で示すインレットミキサー25Aの下端最小内径D1より大きくでき、さらに、ディフューザ上部内壁19aとの距離L2を小さくできるため、拡大流の発生による圧力損失を軽減できる。
さらに従来例ではステライト層28がインレットミキサー25の最終下端であるのに対し、本実施例では、さらに円筒部Cの下方に延長部としてテーパ面からなる内壁を持つスカート部32を設けた。スカート部32の長さL1は既設圧力導管33と干渉を避けるため圧力導管33位置より上方とし、その内壁は緩やかにテーパ面として傾斜させ、先端に半径2mm程度の丸みを与えディフューザ19への挿入を容易にする。スカート部32の外壁は垂直な円筒面32aを設け、その外径D3はインレットミキサー25Aに設けたステライト層28部外径D2より直径で0.2〜0.3mm程度若干小さくし、ディフューザ上部内壁19aとの接触による損傷を避ける。
スカート部32内壁の緩やかなテーパ面で拡大流損失と摩擦損失を軽減し、先端のディフューザ上部内壁19aとの距離L3を短くすることにより放出部の拡大損失を軽減する。さらに、先端で発生する減圧域30を狭くして漏洩水の圧力変動を軽減する。さらに、ディフューザ上部内壁19aとスカート部32のとの円筒面32aとの間に微小隙間34を新たに設けることで漏洩水の圧力損失を増大させ、漏洩水流量Qrを削減し漏洩削減分の水量を有効利用して効率上昇に寄与する。
図4には、ディフューザ上部内壁19aとスカート部32の円筒面32aとの隙間34を0.3mmとし、スカート部32の長さを従来のスリップジョイントの7倍とした場合の本実施例と従来例の漏洩流量と圧力損失の関係を示す。これから、漏洩水圧力損失が同じとした場合(1点鎖線)、漏洩水流量Qrは従来例の漏洩流量zの約1/3となる。これから明らかなように、本実施例は従来例における漏洩水量の2/3が有効利用でき効率上昇に寄与する。
図5には、本実施例によるジェットポンプのM比と効率の関係を示す。これから、本実施例を採用することで、最大効率を従来例の効率Y1をY2まで上昇させることができる。また、M比は、従来例による使用点X1をX2まで上昇させることができることから、出力向上時のジェットポンプ流量増加に寄与できる。
次に、本実施例におけるジェットポンプのスロート18Aの振動低減について説明する。スロートの振動はインレットミキサー下端の減圧域における圧力変動に起因し、漏洩水が流力振動することでスロートに振動が発生する。したがって、圧力変動が大きく、漏洩水量も多い場合が最も振動が大きくなる。
これらのことを解決するため本実施例では、前述したようにインレットミキサー25A下端の減圧域30を小さくし、変動範囲を小さくすることで漏洩水の流力振動を小さくした。また、インレットミキサー25A下端を長くディフューザに挿入し、その挿入部分において、ディフューザ上部内壁19aとスカート部32の円筒面32aとの隙間34を微小隙間とすることで、漏洩水の圧力損失を増大させて流量を削減し、さらにダンパー(振動減衰)効果を持たせることで、スロート18の振動低減を図った。
図6には、インレットミキサー25A下端の減圧域30における変動圧力の周波数特性を示す。これから、減圧域30ではノズルからの噴出流が持つ圧力変動成分とインレットミキサー25A出口部分で誘発される圧力変動があり、本実施例によれば、減圧域30の縮小および漏洩水量Qrの減少により、圧力変動が小さくなる。このように漏洩水に係わる圧力変動が小さくなると、図7に示すように、スロート18の振動加速度も小さくなる。
6…ジェットポンプ、11…ノズル、16…駆動水、17…ベルマウス、18A…スロート、19…ディフューザ、24…スロート直管、25A…インレットミキサー、26…スリップジョイント、32…スカート部、32a…円筒面、C…円筒部

Claims (4)

  1. 駆動流体を噴出するノズルと、前記駆動流体及び駆動流体により吸引された被駆動流体が流入するベルマウスと、駆動流体と被駆動流体を混合するスロート直管および内壁に下方に広がるテーパ面を持つインレットミキサーで構成されるスロートと、前記インレットミキサー下端で前記スロートとスリップジョイントにより接続されるディフューザとを備えた沸騰水型原子炉のジェットポンプにおいて、
    スリップジョイントを形成する前記インレットミキサー下端に、内外壁とも垂直面を持つ円筒部を設けたことを特徴とする沸騰水型原子炉のジェットポンプ。
  2. 請求項1に記載された沸騰水型原子炉のジェットポンプにおいて、前記インレットミキサー内壁のテーパ面の広がり傾斜角度を1.6°〜2.0°とすることを特徴とする沸騰水型原子炉のジェットポンプ。
  3. 請求項1又は2に記載された沸騰水型原子炉のジェットポンプにおいて、前記インレットミキサー下端部の円筒部下方に延長部を設け、該延長部の内壁には下方に緩やかに広がるテーパ面を設け、前記延長部の外壁は前記インレットミキサー下端のスリップジョイント部外径より若干小さい垂直な円筒面を設けたことを特徴とする沸騰水型原子炉のジェットポンプ。
  4. 原子炉容器内に設置され、前記原子炉容器内に形成される炉心に冷却材を供給する複数のジェットポンプが、請求項1乃至3のいずれか1項に記載されたジェットポンプであることを特徴とする沸騰水型原子炉。
JP2009041677A 2009-02-25 2009-02-25 沸騰水型原子炉のジェットポンプ Active JP5148531B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009041677A JP5148531B2 (ja) 2009-02-25 2009-02-25 沸騰水型原子炉のジェットポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009041677A JP5148531B2 (ja) 2009-02-25 2009-02-25 沸騰水型原子炉のジェットポンプ

Publications (2)

Publication Number Publication Date
JP2010196567A JP2010196567A (ja) 2010-09-09
JP5148531B2 true JP5148531B2 (ja) 2013-02-20

Family

ID=42821532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009041677A Active JP5148531B2 (ja) 2009-02-25 2009-02-25 沸騰水型原子炉のジェットポンプ

Country Status (1)

Country Link
JP (1) JP5148531B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578333B (zh) * 2014-09-25 2017-04-11 東芝股份有限公司 Boiling water type nuclear reactor and jet boiling nuclear reactor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55133395U (ja) * 1979-03-16 1980-09-20
US4285770A (en) * 1979-07-12 1981-08-25 General Electric Company Jet pump with labyrinth seal

Also Published As

Publication number Publication date
JP2010196567A (ja) 2010-09-09

Similar Documents

Publication Publication Date Title
JP4961439B2 (ja) ジェットポンプ及び原子炉
JP4966873B2 (ja) ジェットポンプ及び原子炉
JP6001696B2 (ja) スワーリング冷却チャネルを備えたタービンブレードおよびその冷却方法
JP4546489B2 (ja) ジェットポンプ及び原子炉
JP6173939B2 (ja) ジェットポンプの振動抑制装置およびジェットポンプ
US11073124B2 (en) Hydraulic turbine
JP5148531B2 (ja) 沸騰水型原子炉のジェットポンプ
JP5439445B2 (ja) ジェットポンプ及び原子炉
JP5587843B2 (ja) 沸騰水型原子炉のジェットポンプ
JP5089550B2 (ja) ジェットポンプ及び原子炉
JP4801882B2 (ja) ジェットポンプ
JP2011069691A (ja) 沸騰水型原子炉のジェットポンプ
JP2010168984A (ja) ジェットポンプ及び原子炉
JP2011196887A (ja) 原子炉用ジェットポンプ
JP5089485B2 (ja) ジェットポンプ及び原子炉
JP6523888B2 (ja) 沸騰水型原子炉のジェットポンプおよび沸騰水型原子炉
JP2008082752A (ja) ジェットポンプ及び原子炉
JP4739366B2 (ja) ジェットポンプ及び原子炉
JP2008292396A (ja) ジェットポンプ及び原子炉
JP2010261962A (ja) ジェットポンプ及び原子炉
JP2008180687A (ja) ジェットポンプ及び原子炉
JP2020204362A (ja) 弁装置、発電設備および弁装置の弁座
JP2006207397A (ja) 遠心型エジェクタ及び流体の圧縮方法、冷熱生成システム並びに真空ポンプシステム
JP2012031751A (ja) ジェットポンプ及び原子炉
JP2007064115A (ja) 水力機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R150 Certificate of patent or registration of utility model

Ref document number: 5148531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3