JP5145891B2 - 相対位置検知装置、光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置、画像形成装置 - Google Patents

相対位置検知装置、光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置、画像形成装置 Download PDF

Info

Publication number
JP5145891B2
JP5145891B2 JP2007299701A JP2007299701A JP5145891B2 JP 5145891 B2 JP5145891 B2 JP 5145891B2 JP 2007299701 A JP2007299701 A JP 2007299701A JP 2007299701 A JP2007299701 A JP 2007299701A JP 5145891 B2 JP5145891 B2 JP 5145891B2
Authority
JP
Japan
Prior art keywords
light
relative position
scale
position detection
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007299701A
Other languages
English (en)
Other versions
JP2009128383A (ja
Inventor
拓郎 神谷
宏一 工藤
英之 高山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2007299701A priority Critical patent/JP5145891B2/ja
Publication of JP2009128383A publication Critical patent/JP2009128383A/ja
Application granted granted Critical
Publication of JP5145891B2 publication Critical patent/JP5145891B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Discharging, Photosensitive Material Shape In Electrophotography (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、相対位置検知装置、光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置および画像形成装置に関する。
これら、相対位置検知装置、光学式リニアエンコーダ、ロータリーエンコーダは、光学スケールをセンサで読み取る光学式エンコーダ装置、変位計測装置に適用される。
また、画像形成装置としての、電子写真式複写装置、ファクシミリ、プリンタ、プロッタ、複合機、印刷装置に用いられる感光体ベルト、転写ベルト、用紙搬送ベルト、感光体ドラム、転写ドラムなどの画像形成用の回転体を駆動する回転駆動装置やベルト搬送装置、これら回転体の移動量計測および制御システムに適用される。
従来、感光体ベルトや中間転写ベルトなどの画像形成用の回転体を備えた画像形成装置が広く普及している。このような画像形成装置では、回転体上やその回転体により搬送される転写材上での画像位置合わせを高精度に行うために、その回転体の回転量(移動量)を正確に制御することが要求される。ところが、回転体の回転量は何らかの原因で変動することが多々あり、画像位置の誤差を抑制することは困難である。
カラー画像形成装置では、回転体の回転量の変動により、本来重なるべき位置に画像が重ならず、色間でずれが生ずるという問題が発生する。画像形成装置では、回転体である感光体ベルトや中間転写ベルトなど、ベルトの速度変動(回転量の変動)は、ベルトの厚み変動、ベルトを支持するローラの偏心および駆動モータの速度ムラなどにより発生してしまう。
かかる従来のカラー画像形成装置では、図16に示すように、ベルトの速度変動による位置決め誤差は、複数の周波数成分を有する波形になってしまう。ベルトの速度変動中に各トナー像を重ね合わせて形成された画像は、C(シアン)、M(マゼンタ)、Y(イエロー)、K(ブラック)各色の位置が合わない画像となるため、ベルトの速度変動は色ずれや色変わりなどの画質劣化の原因になっている。
(1) 回転体の速度変動による画像の位置誤差を抑制するために、回転体を駆動する駆動ローラの回転軸やその他の回転軸にロータリーエンコーダを直結し、このエンコーダで検出された回転体の回転角速度に基づいて駆動モータの回転角速度を制御する画像形成装置が提案されている(特許文献1参照)。しかし、このような画像形成装置は、駆動モータの回転角速度を制御することにより、回転体の回転量(移動量)を間接的にしか制御することができず、その回転量を精度よく制御することは困難である。
(2) 回転体であるベルトの表面にマークを形成し、そのマークをセンサで検出して得たパルス間隔からベルト表面速度を算出することで、ベルトの回転量をフィードバック制御する技術が開示されている(特許文献2および特許文献3参照)。このような技術によれば、ベルト表面の挙動を直接観測できるため、ベルトの回転量(移動量)を直接制御することができる。
[課題1]
一般的に、画像形成装置などの用途に使われるベルトは、柔軟性、温湿度変化および変形性を有している。これにより、ベルト表面に形成されたマークのパターン周期が変化してしまい、マークを高精度に計測したとしても正確な位置情報が得られないという問題がある。
そこで、ベルトマークピッチの誤差があっても精度よく表面位置を計測する方法として、タイミングマークを検知するセンサを2つ設け、同一のマークを検出する時間の差「t」とセンサの間隔「D」から、 V=D/t として、ベルト表面速度Vを求める方法が提案されている(特許文献4参照)。
この方法によれば、同一のマークが移動する時間を観測するのでマーク間隔の誤差は計測誤差となりにくい。しかし、逆にセンサ間隔:Dを絶対基準として速度を計算してしまうので、Dの誤差の影響を受けてしまう。この点について、当該特許文献4では、段落[0016]〜[0018]で、次の「」のように記載している。
そこで本発明は、速度検知をV =D /t とせず下記の方法を用いる。
すなわち、先に説明した同一マークが各々のセンサに検知された時間の差の測定を、所定期間、望ましくは駆動ロールの回転周期の整数倍の期間に渡って行い、下式により、通過時間Δtnの平均値taveを求める。
ave=(Δt1+Δt2+Δt3+・・・・・+ΔtN )/N
平均値tave決定後、各々のマークが通過する時間Δtnと前記平均値taveを比較することによりベルト表面の搬送速度を検知する。そしてこの検知搬送速度が一定となるように、制御部8によりベルト3のロール1または2を回転駆動する駆動モータ(図示せず)を制御する。
上述したように、本発明は、同一マークの通過時間Δtnの平均値taveを速度検知の為の基準としている。すなわち、速度検知を行うために基準とする所定速度を、べルトが駆動ロール整数回転分の時間に渡って搬送された場合の平均速度としている。これは、駆動ロール整数回転分の時間に渡るべルトの平均速度が駆動源の回転速度にほぼ等しく、さらに駆動源の回転速度は所定速度のコンマ数%以内の変動に抑えられているという認識に基づくものであり、上記平均速度は所定速度から0.数%の誤差しか含まない。したがって、平均値taveは非常に精度の高い基準となり、この基準に基づいて駆動モータ(図示せず)の回転速度を制御することにより、ベルト3の搬送速度は安定した一定の値となる。
その他にも、2つのセンサを用いた無端移動部材駆動制御装置及び画像形成装置と無端移動部材の移動速度制御方法がある(例えば、特許文献5、6参照)。これら特許文献4乃至6では、2つのセンサ間隔の経時精度の維持が重要になってくる。
[課題2]
上記の方法においても、環境条件の変化、例えば温度変化で2つのセンサ間隔が変わると計測される通過時間Δtnが変化してしまう。この結果、センサ間隔の誤差の分だけ速度計測誤差が生じ、出力画像の劣化につながってしまう。また、上記の記述の中に「駆動源の回転速度は所定速度のコンマ数%以内の変動に抑えられているという認識に基づくものであり、上記平均速度は所定速度から0.数%の誤差しか含まない。」とあるが、カラー画像形成装置における0.数%は、タンデムカラー機の場合には非常に大きい数字で、たとえば感光体ローラのピッチが150mmある時は0.1%は0.15mmのずれに相当するため、色重ねのずれが、はっきり認識できるレベルになってしまう。これは2つのセンサの間隔が温度変化によって変化する場合についても同様のことがいえるため、センサ間隔変化は大きな誤差を生じさせることがわかる。
特開平6−175427号公報 特開平6−263281号公報 特開平9−114348号公報 特許第3344614号 特開2006−139217号公報 特開2004−331288号公報
本発明は、スケールとヘッド部の相対位置変化を高精度に検知する相対位置検知装置及び該相対位置検知装置を用いた光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置、画像形成装置を提供することを課題とする。
前記課題を達成するため請求項1に係る発明は、略一定間隔で光学マークが形成されたスケールと、該スケールに光ビームを照射し前記光学マークによって反射もしくは透過した光を受光し光電変換するヘッド部を有し、前記スケールと前記ヘッド部の相対移動により、前記ヘッド部で検出される受光光量が変化することにより、前記スケールと前記ヘッド部の相対位置変化を検知する相対位置検知装置において、
前記ヘッド部は、光源と、前記光源からの光を整形し前記スケールに照射する光ビームを生成する光整形手段と、前記スケールの光学マークを経由した前記光ビームを受光して光電変換する受光器、をセットにした複数のセンサが複数本の光ビームを出入射するように所定の間隔をおいて一体的に構成されていて、
前記光整形手段は、前記複数本の光ビームに対応して複数設けられており、かつ複数の前記光整形手段同士が、光ビームの位置との関係で前記光源から前記光学マークを経由して前記受光器に至る光路をたどるように間隔をおき、その配置が保持されるように、共通のギャップ保持部材に設置固定されていることとした。
請求項2に係る発明は、請求項1に記載の相対位置検知装置において、前記複数の光ビームによる複数の検知信号により、前記スケールに形成された光学マークの間隔誤差を補正した相対位置信号を生成する、補正演算部を有することとした。
請求項3に係る発明は、請求項1又は2に記載の相対位置検知装置において、前記光整形手段は形成される材料の膨張係数に制限が無いこととした。
請求項4に係る発明は、請求項1乃至3の何れかに記載の相対位置検知装置において、前記ギャップ保持部材は、膨張係数の低い材料で形成されていることとした。
請求項5に係る発明は、請求項4に記載の相対位置検知装置において、前記ギャップ保持部材に使用される膨張係数の低い材料は、ガラス系材料とした。
請求項6に係る発明は、請求項4記載の相対位置検知装置において、前記ギャップ保持部材に使用される膨張係数の低い材料は、金属系材料とした。
請求項7に係る発明は、請求項1乃至6の何れかに記載の相対位置検知装置において、前記光整形手段は入射する1つの光ビームに対応する複数のスリット列とした。
請求項8に係る発明は、請求項1乃至7の何れかに記載の相対位置検知装置において、前記光整形手段に入射させる光ビームは前記光整形手段を構成するスリット列の光通過領域よりも大きいビーム径を有することとした。
請求項9に係る発明は、請求項1乃至8の何れかに記載の相対位置検知装置において、前記光整形手段に入射させる光ビームは光量分布が一様とした。
請求項10に係る発明は、請求項1乃至9の何れかに記載の相対位置検知装置において、前記光整形手段を構成するスリットの周囲には前記スケールに圧接しつつ清掃するための弾性部材が前記ギャップ保持部材上に形成されていることとした。
請求項11に係る発明は、請求項1乃至10の何れかに記載の相対位置検知装置を備えた光学式リニアエンコーダであって、前記スケールには平行線状に光学マークが形成されていることとした。
請求項12に係る発明は、請求項11に記載の光学式リニアエンコーダを搭載した。
請求項13に係る発明は、請求項11に記載の光学式リニアエンコーダを搭載し、前記光学式リニアエンコーダから出力される信号を基にベルトの速度および位置を制御する制御手段を有することとした。
請求項14に係る発明は、請求項12に記載の前記光学式リニアエンコーダを搭載したベルト搬送装置を有することとした。
請求項15に係る発明は、請求項13に記載の前記光学式リニアエンコーダ及び制御手段を有するベルト搬送装置を搭載していることとした。
請求項16に係る発明は、請求項1乃至11の何れかに記載の相対位置検知装置を搭載したロータリーエンコーダであって、前記スケールは円盤状をした基板上に放射状に光学マークが形成されているコードホイールとした。
請求項17に係る発明は、ロータリーエンコーダを有する回転駆動装置であって、前記ロータリーエンコーダが請求項16に記載のロータリーエンコーダとした。
請求項18に係る発明は、回転駆動装置を搭載した画像形成装置であって、前記回転駆動装置が請求項17に記載の回転駆動装置とした。
請求項19に係る発明は、請求項13に記載の光学式リニアエンコーダを搭載した制御手段と、請求項17に記載のロータリーエンコーダを有する回転駆動装置を搭載した搬送装置を具備していることとした。
本発明によれば、スケールとヘッド部の相対位置変化を高精度に検知する相対位置検知装置及び該相対位置検知装置を用いた光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置、画像形成装置を提供することができる。カラー画像形成装置に提供した場合には、高画質なカラー画像を出力することができる。
以下、図面を参照しつつ、この発明の実施の形態につき説明する。
[1] 画像形成装置の概要
例1.直接転写方式のカラー画像形成装置
図1、図2に基づいて説明する。本例の画像形成装置における回転部に対して、本発明を適用することができる。
図1に示すように、本例の画像形成装置1は、記録媒体としての転写用のシート状媒体(以下、用紙という。)2を搬送する回転体である搬送ベルト3に沿ってこの搬送ベルト3の回転方向(搬送方向)の上流側から順に、複数個の電子プロセス部1K(ブラック)、1M(マゼンタ)、1Y(イエロー)、1C(シアン)が配列されて構成されている。この画像形成装置1は、いわゆるタンデムタイプといわれるカラー画像形成装置である。
複数個の電子プロセス部1K、1M、1Y、1Cは画像形成部として機能する。電子プロセス部1Kはブラック、電子プロセス部1Mはマゼンタ、電子プロセス部1Cはシアン、電子プロセス部1Yはイエローの各画像を形成する。
各電子プロセス部1K、1M、1Y、1Cは、形成する画像の色が異なるだけで、それらの内部構成は共通である。以下の説明では、電子プロセス部1Kについて具体的に説明するが、他の電子プロセス部1M、1Y、1Cについては、電子プロセス部1Kにかかる構成要素のKに代えて、M、Y、Cなどの符号を付して図に表示する。
搬送ベルト3はエンドレスベルト(無端状のベルト)から構成されている。搬送ベルト3は、駆動回転させられる搬送ローラ4と従動回転させられる搬送ローラ5に支持され、これら搬送ローラ4、5の回転と共に、図1中の矢印29の向きに回転する。
搬送ベルト3の下方には、用紙2が収納された給紙トレイ6が備えられている。給紙トレイ6に収納された用紙2のうち、最上位置にある用紙2は、画像形成時に送り出されて静電吸着により搬送ベルト3に吸着される。搬送ベルト3に吸着された用紙2は最初の電子プロセス部1Kに搬送され、ここでブラック(黒)の画像が転写される。
電子プロセス部1Kは、像担持体としての感光体ドラム7Kと、この感光体ドラム7Kの周囲に配置された帯電器8K、露光器9K、現像器10K、感光体クリーナ11Kなどから構成されている。露光器9Kとしてはレーザスキャナが用いられる。このレーザスキャナはレーザ光源(図示せず)からのレーザ光をポリゴンミラーで反射させ、fθレンズや偏向ミラーなどを用いた光学系(図示せず)を介して出射する構造になっている。
画像形成に際し、感光体ドラム7Kの周面は、暗中にて帯電器8Kにより一様に帯電された後、露光器9Kからの黒画像に対応した露光光(本例ではレーザ光)12K、により露光され、静電潜像が形成される。この静電潜像は、現像器10Kにおいて黒トナーにより可視像化され、感光体ドラム7K上で黒のトナー像となる。
このトナー像は感光体ドラム7Kと搬送ベルト3上の用紙2とが接する位置、いわゆる転写位置で転写器13Kの働きにより用紙2上に転写され、その用紙2上に単色(黒)の画像が形成される。転写を終えた感光体ドラム7Kは、その周面に残留した不要なトナーが感光体クリーナ11Kにより除去され、次の画像形成に備えられる。
このようにして、電子プロセス部1Kで単色(黒)を転写された用紙2は、搬送ベルト3によって次の電子プロセス部1Mに搬送される。電子プロセス部1Mでは、電子プロセス部1Kと同様のプロセスにより感光体ドラム7M上に形成されたマゼンタのトナー像が用紙2上の黒のトナー像に重ね転写される。
用紙2はさらに次の電子プロセス部1Yに搬送され、同様にして感光体ドラム7Y上に形成されたイエローのトナー像が、用紙2上にすでに形成されている黒およびマゼンタのトナー像に重ね転写される。さらに、次の電子プロセス部1Cでも、同様にしてシアンのトナー像が重ね転写されて、フルカラーのカラー画像が得られる。このフルカラーのカラー画像が形成された用紙2は、電子プロセス部1Cを通過した後、搬送ベルト3から剥離されて定着器14にて定着された後、排紙される。
図2に示すように、搬送ベルト3は、駆動ローラである搬送ローラ4および従動ローラである搬送ローラ5に掛け渡されており、該搬送ベルト3の上面であってこれらローラの軸線方向の端部にスケール21を有している。搬送ローラ4は、減速歯車23を介して駆動モータ24の回転軸に接続されており、駆動モータ24による駆動力によって搬送ベルト3を矢印29の向きに回転駆動する。
スケール21は、矢印で示す搬送ベルト3の回転方向(搬送ベルト3の周面の移動方向)に交互に並ぶ複数の反射マーク21aと複数のスリット21bとから構成されている。これらの反射マーク21a及びスリット21bは、所定の周期パターンであるマーク周期で設けられている。
本例では、反射マーク21aがマークとして機能する。なお、スリット21bを透過した光を検出する場合には、スリット21bも光学マークとして機能する。すなわち、マークとしては、反射率もしくは透過率が変化するマークであればよく、例えば白や黒などの色の違う印刷パターンでもよいし、アルミ蒸着膜などのような全反射パターンでもよい。このような反射マーク21a及びスリット21bは、その数に応じて単一又は連続した反射率変化を生じさせる。
スケール21の反射マーク21aを検知するヘッド部22が設けられている。ヘッド部22は、スケール21に対向した態位で、搬送ベルト3の上面から所定の距離(検出距離)だけ離反した位置に設けられている。ヘッド部22は、スケール21と共に、当該ヘッド部22とスケール21との相対位置変化を検知する相対位置検知装置の一部を構成する。
ヘッド部22は、スケール21に光ビームを照射し、光学マークによって反射もしくは透過した光を受光し光電変換する。ヘッド部22は後述するように、実質的に複数のセンサを備える。例えば、2つのセンサによってマークを検出する構成は従来技術と同様であるが、本発明では、温度などによるセンサ間隔変動(観測位置の変化)が生じにくい特徴を有する。
また、マーク間隔の誤差変動分に着目し、2つのセンサ信号の位相差変動からマークピッチ変化を演算して速度計算に反映させることによって、ベルト上のマークピッチに誤差が生じてもベルトの表面線速を正確に検出し、フィードバック制御することにより高精度なベルト搬送装置を可能にし、より高精度なカラー画像を提供できる。
例2.中間転写方式のカラー画像形成装置
本例のカラー画像形成装置を図3により説明する。本例のカラー画像形成装置におけるベルト搬送装置やその他の移動体には、本発明の相対位置検知装置を適用することができる。
本例の画像形成装置200では、回転体である中間転写ベルト202が設けられ、この中間転写ベルト202の端部に前記図2に示したものと同様のスケール21が設けられ、スケール21に対向する位置に前記図2に示したものと同様のヘッド部22が設けられている。ヘッド部22はスケール21に光ビームを照射し、前記光学マークによって反射もしくは透過した光を受光し光電変換する。
図3に示すように、画像形成装置200は、原稿の画像を読取るスキャナ200aと、この読取った画像に基づいて用紙上に電子写真方式で画像形成を行うプリンタ200bと、マイクロコンピュータを中心に構成され画像形成装置200の全体を集中的に制御する制御部(図示せず)とを備えている。また、スキャナ200a上には、原稿自動搬送装置(ADF)201が設けられており、プリンタ200bは、スキャナ200aの下に位置している。
プリンタ200bは、タンデム型間接転写方式の電子写真装置である。プリンタ200bは、中央に、無端ベルト状の中間転写ベルト202を具備している。像担持体である中間転写ベルト202は、ベース層に、例えば、伸びの少ないフッ素系樹脂や伸びの大きなゴム材料に帆布など、伸びにくい材料で構成された基層を設け、その上に弾性層を設けてなるものである。弾性層は、例えばフッ素系ゴムやアクリロニトリル−ブタジエン共重合ゴムなどでつくる。その弾性層の表面は、例えば、フッ素系樹脂をコーティングして平滑性のよいコート層で被って構成されている。
中間転写ベルト202は、3つの支持ローラ214、215、216に掛け回されて図3中、時計回りに回転搬送可能である。図3において、第2の支持ローラ215の左側には、トナー画像転写後に中間転写ベルト202上に残留する残留トナーを除去する中間転写体クリーニング装置217が設けられている。
中間転写ベルト202上方には、その搬送方向に沿って、イエロー、シアン、マゼンタ、ブラックの各色のトナー画像を形成する4つのプリンタエンジン218Y、218M、218C、218Kを横に並べて配置して構成されたタンデム画像形成装置220が設けられている。各プリンタエンジン218Y、218M、218C、218Kは、いずれも感光体ドラムと、その回りに配置されて帯電装置、現像装置など、電子写真プロセスで各色のトナー画像を形成する各装置とからなる。
タンデム画像形成装置220の上方には、露光装置221が設けられている。露光装置221は、各プリンタエンジン218Y、218M、218C、218Kの感光体ドラム上に静電潜像を光書込みする機能を有している。
中間転写ベルト202を挟んでタンデム画像形成装置220と反対の側には、2次転写装置222が設けられている。この2次転写装置222は、例えば、2つのローラ223、223間に、無端ベルトである2次転写ベルト224を掛けまわした構成であり、その中間部が第3の支持ローラ216により1つのローラ223押し当てられるように配置されて転写部を構成し、この転写部で中間転写ベルト202上のフルカラートナー画像が用紙などのシート状媒体に転写される。
2次転写装置222の左側には、用紙上の転写画像を定着する定着装置225が設けられている。2次転写装置222は、画像転写後の用紙をこの定着装置225へと搬送する用紙搬送機能も兼ねている。さらに、2次転写装置222は転写ローラや非接触のチャージャを備えていてもよい。
画像形成装置200の最下部には複数の給紙カセット244が配置されている。各給紙カセット244は用紙2を収納しており、分離ローラ245はその用紙2を1枚ずつ分離して搬送ローラ247に供給する。搬送ローラ247の下流側である上方延長上にはプリンタ200b本体の給紙路248がある。この給紙路248には、レジストローラ250が設けられている。
次に、画像形成装置200の基本動作について説明する。スタートスイッチ(図示せず)が押されると、スキャナ200aにより原稿の画像が読み取られ、この画像に基づいてプリンタ200bで用紙2上に画像形成が行なわれる。
すなわち、画像形成装置200は、駆動モータ(図示せず)により支持ローラ214、215、216を回転駆動して、中間転写ベルト202を回転搬送する。同時に、各プリンタエンジン218Y、218M、218C、218Kで、これらプリンタエンジンに儲けられた感光体ドラム15K、15M、15C、15Yが回転駆動されて各感光体上にそれぞれ、ブラック、イエロー、マゼンタ、シアンの単色トナー画像が形成される。そして、中間転写ベルト202の回転移動による搬送とともに、これらの単色トナー画像が順次中間転写ベルト202に転写される。こうして、中間転写ベルト202上には各トナー画像が重ね合わせたフルカラー画像が形成される。
2つの給紙カセット244のうちの1つから用紙2を繰り出し、分離ローラ245で1枚ずつ分離して搬送ローラ247に送り出し、さらに該搬送ローラ247で搬送してプリンタ200b本体の給紙路248に導き、中間転写ベルト202上の合成カラー画像にタイミングを合わせてレジストローラ250を回転し、中間転写ベルト202と2次転写装置222との間に用紙2を送り込み、2次転写装置222で転写して用紙2上にカラー画像を記録する。このカラー画像が形成された用紙2は、2次転写ベルト224で搬送されて定着装置225に至り、定着された後、排紙トレイ249に排紙される。
このような画像形成装置200においては、中間転写ベルト202の駆動精度が最終画像の品質に大きく影響しており、より高精度な駆動が望まれる。
図2で説明したとおり、また、図3における中間転写ベルト202部分の構成を抜き出して示した図4に示すように、中間転写ベルト202は3つの支持ローラ214、215、216に掛け回されているが、色重ね画像を担持する無端状ベルトであり、回転移動体であり駆動精度が求められる点で、前記の例1における搬送ベルト3と共通している。そこで、以下の本発明の実施形態例では、図3、図4における中間転写ベルト202及び支持ローラ215、214は、図2における搬送ベルト3及び搬送ローラ4、5に相当するものとして説明する。
図4に示すように、中間転写ベルト202(3)は、駆動側の支持ローラ215(搬送ローラ4)および従動側の支持ローラ214(搬送ローラ5)に掛け渡されており、該中間転写ベルト202(搬送ベルト3)の上面であってこれらローラの軸線方向の端部にスケール21を有している。支持ローラ215(4)は、減速歯車23を介して駆動モータ24の回転軸に接続されており、駆動モータ24による駆動力によって回転駆動されるようになっている。スケール21の光学マークを検知するヘッド部22は図2におけると同じ態様で設けられている。
以下では、図2における搬送ベルト3、ヘッド部22、スケール21等を含む相対位置検知装置、図4における中間転写ベルト202、ヘッド部22、スケール21等を含む相対位置検知装置は共通の技術的特徴を有するものとして説明する。
[2] 相対位置検知装置(請求項1乃至6)
例1.
図5に本発明のスケール及びヘッド部の構成例を示す。図5(a)はスケール及びヘッド部の斜視図、図5(b)はスリット部の断面を示す。図5(a)は図2におけるヘッド部22及びスケール21を有した搬送ベルト3を裏側から見た図として示している。
本発明の相対位置検知装置は、略一定間隔で光学マーク(反射マーク21a、スリット21b)が形成されたスケール21と、該スケール21に光ビームを照射し前記光学マークによって反射もしくは透過した光を受光し光電変換するヘッド部22を有する。
ヘッド部22はケース25に一体的に構成されている。ケース25は画像形成装置の本体の一部に固定されている。スケール21は搬送ベルト3と共に回動する。この回動によりスケール21とヘッド部22とは相対移動する。本発明の相対位置検知装置は、スケール21とヘッド部22との相対移動により、ヘッド部22で検知される受光光量の変化から、スケール21とヘッド部22の相対位置変化を検知する。
ヘッド部22は、光源26Aと、投光レンズ30A、光源26Aからの光を整形しスケール21に照射する光ビームL1を生成する光整形手段27Aと、スケール21の光学マークを経由した光ビームL1を受光する受光器28Aを有する。光整形手段27Aは基材31Aに形成されている。これら光源26A、光整形手段27A、受光器28A、基材31Aはケース25を介して一体的に構成されてセンサAを構成している(図6参照)。
同様に、ヘッド部22は、光源26Bと、投光レンズ30B、光源26Bからの光を整形しスケール21に照射する光ビームL2を生成する光整形手段27Bと、スケール21の光学マークを経由した光ビームL1を受光する受光器28Bを有する。光整形手段27Aは基材31Bに形成されている。これら光源26B、光整形手段27B、受光器28B、基材31Bはケース25を介して一体的に構成されてセンサBを構成している(図6参照)。
センサAとセンサBとは、各光ビームL1とL2とをスケール21上の異なる光学マーク上に照射し、受光するように、スケール21の方向(矢印29の方向)に所定の間隔をおいてケース25に配置されている。
ヘッド部22において、センサAとセンサBの上記配置により、センサAの光源26A、センサBの光源26Bからは、スケール21とヘッド部22の相対移動方向(矢印29の方向)に位置の異なる2つの光ビームL1、L2が射出される。
本例では、矢印29の方向に位置をずらして共通の部材であるケース22にそれぞれ配置された2つの光源26A、26Bからそれぞれ光ビームが射出される結果、2つの光ビームL1、L2を射出するが、1つの光源からの光を分割して2つの光ビームを得ることもできる。もちろん、必要に応じて2つ以上の複数の光ビームを得ることもできる。
光源26A(26B)から射出された各光ビームL1(L2)は、先ず投光レンズ30A(30B)を通り、次いでスリット状の開口からなる光整形手段27A(27B)を通ることにより整形されて、スケール21に至り、反射されて、反射光が受光器28A(28B)に入射される。
光整形手段27A、27Bは互いに独立した部材である2つの基材31A、31B上にそれぞれ形成されている。各基材31A、31Bは、それぞれの光整形手段27A、27B同士が、光ビームL1、L2の位置との関係で所定の光路(光源から光学マークを経由して受光部に至る光路)をたどるように間隔をおき、その配置が保持されるように、共通の部材であるギャップ保持部材32にそれぞれ固定されている。
ギャップ保持部材32はケース25に固定されている。ギャップ保持部材32は光学マークとヘッド部22とのギャップを一定に保つ機能を有する。ギャップ保持部材32のケース25に対する固着面と反対側の面に沿って搬送ベルト3が移動する。ギャップ保持部材32には、光整形手段27よりも大きい2つの貫通孔32aが形成されていて、これら貫通孔32aの内側に光整形手段27A、27Bが位置するように配置され、整形される光パターンを乱さないようにしてある。
受光器28A、28Bは位置の異なる複数の光ビーム、本例では光ビームL1、L2の2本の光ビームに合わせてケース25に2つ配置されている。これら受光器28A、28Bは各光ビームL1、L2を受光して別々の電気信号に光電変換する。
光源26A、26Bとしては、例えば発光ダイオード(LED)が用いられるが、これに限るものではなく、例えば半導体レーザや電球などを用いてもよい。なお、平行度がよい光ビームを用いることが好ましいので、半導体レーザや点光源LEDなどのように発光面積の小さい光源が好ましい。また、光源からの光を効率よく利用するためコリメートレンズ(本例では投光レンズ30)を用いてもよい。
受光器28A、28Bとしては受光素子を用いる。受光素子は、光の強度を電気信号に変換できる素子であればよく、例えばフォトダイオードやフォトトランジスタなどを用いることができる。
スリット状の開口からなる光整形手段27A、27Bは光ビームL1、L2に対応して2つ設けられており、図5に示した例では固定マスクにより形成されている。固定マスクは、基材31A、31BとしてのPET(ポリエチレンテレフタレート)などによる透明フィルムに必要な大きさ及び形状の開口部を残してクロム等の蒸着膜で覆うことにより構成される。この蒸着膜の部位を図5(a)、(b)にハッチングで示す。光整形手段27は、スケール21に照射する照射光を所望の形状にするため、所定のパターン形状で形成された開口部である。
本例では複数の固定マスクがそれぞれ独立した部材(基材31A、31B)上に形成され、それらが必要な間隔をもって一体の保持部材(ギャップ保持部材32)上に固定される構成としており、複数の光整形手段(本例ではスリット状の開口)を有している。
本例では光整形手段としてスリット状の開口の例を示しているが、スケール21に照射すべきビームパターンが得られるようにビームを整形する機能を持てばよいので、光整形手段としてレンズ系の組み合わせ構成することもできる。図5に示したように、2つの受光器28A、28Bは、光ビームL1及びL2をそれぞれ受光し、別々の電気信号に光電変換する。
図6において、光源26A、26Bを含む光源部33から出た光ビームは、投光レンズ30A、30B及びギャップ保持部材32を含む光整形部34で整形されてスケール21に至り、このスケール21の部位で反射され、受光器28A、28Bを含む受光部35に入射されて光電変換される。
受光部35における各受光器28A、28Bでそれぞれ光電変換された電気信号は、それぞれアンプやコンパレータなどを含む比較部36に送られてデジタル化され、さらに、位置演算部37のカウンタでパルス周期が計測される。
位置演算部37で得られるデジタル信号は図7に示すようなパルス波形であり、センサAで得られた信号A、センサBで得られた信号Bで位相差を有している。例えば、スケール21のマークピッチの整数倍の距離もって2つのスリット(光整形手段)が設定されていて、かつ、スケール21のマークピッチが正確であれば、得られる2つの信号は全くの同位相信号となる。スケール21のマークピッチの誤差があれば、位相のずれた信号が観測される。
図6において、位置演算部37のカウンタでパルス周期を計測したデータは補正演算部38に送られる。補正演算部38では図7における、パルス周期「Ta」と2つの信号の位相差「δt」から式(1)に示すようにスケールに形成された光学マークの間隔誤差を補正し相対位置信号を生成し、実速度(Vreal)を得る。補正演算部38からの出力Pに基づき、駆動モータ24を介して搬送ベルト3の速度を制御する。
Figure 0005145891
δt:観測された位相差(s)
PO:スケールピッチ
Ta:信号1における信号周期
L=LO+ΔL:センサ間隔(ΔLは間隔誤差)
V:ベルト走行速度
Vreal:実速度
この速度データを基にヘッド部22とスケール21の相対移動距離が得られる。
本例の説明では光ビームは2つだけの例で説明したが、2つだけではなく、もっと多いビームを使って構成することもできる。
ここでは、2つの信号の位相差からスケールのマークピッチ誤差を補正する方法についての説明を行ったが、従来技術例のように同一マークが2つの検出部で観測される時間から、速度を演算する方法にも適用できる。
以上のように、スケール21のマークピッチを補正してスケールとヘッド部の相対位置変化を観測するので、スケール21のマークピッチに誤差が生じても高精度な位置検知ができる。また、2つの光整形手段が一体的に形成されたギャップ保持部材32に設置固定されていることで、観測位置をスケール21とのギャップも含めて高精度に保つことができるため、2つの信号の位相からマークピッチ誤差の絶対値を求めることができる。従来技術(特許文献5)ではスケールのマークピッチの平均値を基準とするため、絶対位置が分からない。
さらに、一体的に形成されたギャップ保持部材32を線膨張係数の低い材料に形成しておけば、光整形手段30A、30Bを形成した部材(基材31A、31B、蒸着膜など)に環境変化(温度変化)が生じても位置寸法は一体的に形成されたギャップ保持部材にならうので、高精度に計測精度を保つことができる。
ギャップ保持部材32に適する線膨張係数の低い材料を以下に例示する。
(1)線膨張係数の具体値:
絶対値で0〜30×10−6(/°C)とする。これより大きくなると、ハウジングに用いる安価な樹脂等の材質においても保有する線膨張係数でも適用範囲にとなり、ハウジング自体で対応が可能になるので、本発明の効果は低くなる。
(2)具体例[×10−6(/°C)]
・鉄系
鉄鋼/鋳鉄系材料:11〜12
インバー:1〜2
ニレジスト:5〜19
ノビナイト:0〜5
SUS系:16〜20
・ガラス系
青板ガラス:9
パイレックス(登録商標):3〜4
石英:0.5
・アルミ合金:19〜23
・マグネシウム合金:28〜29
ここではギャップ保持部材32の材料として、ガラス系の例では合成石英板、金属系では鋼板の例などを示したが、材料の組み合わせはこれに限らない。適用する環境と必要精度に応じて適宜決めるとよい。高精度エンコーダに使われる線膨張係数が0に近い材料を使えば非常に高精度になる。
一方、光整形手段30A、30Bを形成した部材(基材31A、31B、蒸着膜など)に用いる材料は、前述のように精度がギャップ保持部材32に依存するため、環境等に変化による寸法精度変化が生じても問題とはならない。ここでは例として透明樹脂フィルム+クロム蒸着膜の例を示したが、必要な分解能等に応じて、保持部材同様適宜決めるとよい。
図5には反射型のセンサヘッドの構成を例示しているが、(a)図5におけるケース25、ギャップ保持部材32、光整形手段(基材31A、31B)を一体の筐体上に構成し、この1つの筐体に光源や受光器をレイアウトすることや、(b)光整形手段(基材31A、31B)を持たない2つの筐体を一体のギャップ保持部材でつなぎ合わせる構成、(c)筐体そのものをギャップ保持部材と一体化する、などとしてもよい。
例2.複数のスリット(請求項7)
図5における光整形手段27A、27Bのように1つの入射光ビームに対して1つのスリットが対応する方式の固定マスクを、図8に示すように1つの入射光ビームに対して複スリット列により構成される固定マスクとすることで、複数の光ビームによるマーク検出ができる。図8において、ギャップ保持部材32の1つの貫通孔32aに設けられた固定マスクには光整形手段27A1として3つのスリット列が設けられている。光整形手段27A1についても同様である。このような光整形手段27A1、27B1を用いることにより、1つの入射光ビームを複数の光ビームで出射することができ、かかる複数の光ビームを用いることでスケール21上の複数の光マークを同時に観測することができ、光マークの欠陥や汚れによる検出エラーに強いセンシングが可能となる。
例3.複スリットに対応する光ビーム径(請求項8)
本例では、前記複数列のスリットからなる光整形手段に入射させる光ビームは該スリット列の通過領域よりも大きい径の光ビームとする。比較例として示した図9において、図9(a)に示すように光ビームL1の径が図9(b)に示すように3列のスリット列からなる光整形手段27A1よりも小さいビーム径である場合には、仮に光整形手段27A1を構成する基材やマスク用の蒸着材を環境変化に対して変化の少ない材料で構成したとしても、光源26Aや筐体(ケース25)が通常の材料であれば、環境変化によって光ビームの光整形手段に対する入射位置が、図9(b)に実線や破線で示すように変位する。このため、図9(c)や図9(d)に示すようにスリットを通過する光ビームのパターンも変化してしまい。スケール21の観測位置がずれてしまう。つまり、見かけ上、2つのヘッドの間隔が変化したことになり、高精度な計測ができなくなってしまう。
これに対して図10(a)、図10(b)に示すように光整形手段27A1に入射させる光ビームL1の径が光整形手段27A1のスリット列よりも大きい光ビームを用いると、環境によって光ビームL1の光整形手段27A1に対する入射位置が変化しても図10(c)に示すように同じパターンが射出されるようになる。光ビームの射出パターンが変わらなければ観測される信号に変化が生じないことはいうまでもない。
このように光整形手段に入射させる光ビームはスリット列の通過領域よりも大きいビーム径を有することで、環境変化によっても高精度な計測ができる相対位置計測装置とすることができる。
例4.光ビームの光量分布(請求項9)
光整形手段に入射する光ビームの光量分布は一様とするのがよい。前記例3で述べたようにスケール21を照射する光ビームのパターン変化は計測誤差の原因となってしまう。光整形手段に入射する入射光ビームが、図11(a)(上段)に示すように中心O−Oから左右対称であっても中心から離れるにつれて光強度が低下する傾向を示す不均一な光量分布を有する場合には、図11(a)(中段)に示すようにスリット開口の中心Q−Qが入射光ビームの中心O−Oからずれていると、光整形手段を通過後の射出光ビームの光量分布は、図11(a)(下段)に示すように中心Q−Qに対して左右不均一な光量分布の光ビームとなってしまう。
これに対して、光整形手段に入射する入射光ビームが、図11(b)(上段)に示すように中心O−Oから左右対称でかつ中心から離れても光強度が一定の光量分布を有する場合には、図11(b)(中段)に示すようにスリット開口の中心Q−Qが入射光ビームの中心O−Oからずれていても、光整形手段を通過後の射出光ビームの光量分布は、図11(b)(下段)に示すように中心Q−Qに対して左右均一な光量分布の光ビームとなる。
このように、光ビームに光量分布がある場合は、光源からのビーム位置が変化するとビームパターン内の光強度分布に変化が生じるが、均一な光量分布を持つビームを用いれば、光源からのビーム位置変化によっても射出ビームの強度パターンは変わらない。
例5.清掃部材(請求項10)
図5に示した相対位置検知装置をベルト搬送方向である矢印29の方向から見た断面図である図12において、光整形手段27B(27A)の周囲であってギャップ保持部材32と搬送ベルト3の裏面との間に、スケール21に接しつつ清掃するための弾性部材39を設け、その下端部をギャップ保持部材32に固定し、その上端部を搬送ベルト3の裏面に摺接するように構成する。
弾性部材39として、ブラシやスポンジフエルトなどの材料を用いれば、ギャップ保持部材32と搬送ベルト3の裏面とのギャップの確保を図ると共に、スケール21の清掃を兼ねることができる。微粒子であるトナーを用いる画像形成装置に適用する場合にはスケールへのトナーの付着が問題になるので、かかる構成のスケール清掃手段は有用である。
[3] 光学式リニアエンコーダへの適用(請求項11〜13)
例1
これまで例示したように、スケール21を直線状に構成し、このスケール21に平行線状(ラダー状)に光学マーク(反射マーク21a、スリット21b)を形成したリニアスケールとし、ヘッド部22と組み合わせることにより光学式リニアエンコーダを構成する。さらに、かかる光学式リニアエンコーダを搬送ベルト3に適用することによりベルト搬送装置が構成される。
図4、図13にベルト搬送装置への適用例を示す。搬送状態の制御を行うコントローラとしてはソフトウェア制御を行うようにCPU(central processing unit)やDSP(digital signal processor)を利用することが多いが、位置演算もプログラム上で実行できるので、共通に使えば簡略な構成で実現可能である。
図13に示した例では、ヘッド部22(センサA、センサB)の受光部35で光電変換された信号は信号処理回路40(比較部36、位置演算部37)でデジタル信号化されてパルス周期が計測され、位置検出制御回路41(補正演算部38)で光学マークの間隔誤差を補正し相対位置信号を生成し、実速度(Vreal)を得、これに基づき、搬送ベルト3の速度を制御する制御信号を得て、モータドライバ42を介して駆動モータ24の駆動をフィードバック制御する。
これら光学式リニアエンコーダ及び該光学式リニアエンコーダを搭載したベルト搬送装置、さらに、光学式リニアエンコーダからの出力信号を元にベルトの速度や位置を制御する制御手段である信号処理回路40、位置検出制御回路41、モータドライバ42などの制御手段を有するベルト搬送装置では、前記したように、スケール表面のマークピッチを補正しながら計測することができるので、環境により伸縮が発生するベルト状の走行体や、検出高さが変動しエンコーダヘッドを近接できない円筒面の回転体に対しても有効である。
例2 画像形成装置への適用(請求項14、15)
光学式リニアエンコーダからの出力信号を元にベルトの速度や位置を制御する制御手段である信号処理回路40、位置検出制御回路41、モータドライバ42などの制御手段を有するベルト搬送装置を図1乃至図3に示したカラー電子写真装置において適用できる。カラー電子写真装置における中間転写ベルトと呼ばれる像担持手段では複数のカラー像を順次重ね合わせることから、ベルト搬送速度を一定に保つことが必要とされるため、光学式リニアエンコーダ及び上記制御手段を備えたベルト搬送装置適用が効果的である。
また、インクジェット方式の画像形成装置における紙搬送やノズルヘッドの制御に、本発明の相対位置検出装置を用いた駆動装置を用いると高精度な出力画像が得られる。
[4] ロータリーエンコーダへの適用(請求項16〜19)
例1.
本発明の相対位置検知装置は、ロータリーエンコーダに対しても適用できる。図14に示すような円盤状をした回転基板44に同心円に沿わせて放射状に光学マークを形成して、円形スケール(コードホイール)43をつくる。一般的に低コストなロータリーエンコーダでは円形スケールの取り付け偏心を組み付け時に調整するコストを省略するために、180度対向させた位置にセンサヘッドを2つ取り付け、偏心補正を行っているが、本例では隣接する2つのセンサ(2つの光源を有する光源部45、2つの光整形手段を有する光整形部46、2つの受光部を有する受光部47)を搭載したヘッド48を回転基板44と組み合わせることによりロータリーエンコーダ49を構成する。
例2.
かかるロータリーエンコーダ49を減速歯車51に直結する。減速歯車51には感光体ドラム7が同心で直結されている。また、減速歯車51には駆動モータ50の回転軸と一体的な駆動歯車52が噛み合わされている。かかる構成の回転駆動装置において、図13に示した制御系に準じて、ヘッド部48の受光部で光電変換された信号を信号処理回路40でデジタル信号化してパルス周期を計測し、位置検出制御回路41で光学マークの間隔誤差を補正し相対位置信号を生成し、実速度(Vreal)を得、これに基づき、感光体ドラム7の速度を制御する制御信号を得て、モータドライバ42を介して駆動モータ50の駆動をフィードバック制御するように構成する。これにより、容易にエンコーダ装置を付加した高精度な回転駆動装置が可能となる。
[5] ロータリーエンコーダの画像形成装置への適用(請求項18、19)
図15に示した回転駆動装置は、図1、図3等のカラー電子写真装置等の画像形成装置における感光体ドラムに適用できる。感光体ドラムと呼ばれる作像手段では、複数のカラー画像を重ねる順次重ね合わせることから、色ごとのずれを最小にするため各カラー画像の作像送り精度が必要とされるため、高い回転精度が要求される。以上の場合には前記回転駆動装置の適用が効果的である。
また、図15に示した回転駆動装置における感光体ドラム7に代えて、上記画像形成装置におけるベルト搬送装置の駆動ローラや他の回転駆動装置の回転軸にロータリーエンコーダを同時に適用することは、前述の複数の理由により極めて有効である。これらの発明を同時に使用することにより、安価でありながら極めて色合わせ精度の高く、結果的に高画質な画像形成装置を実現することができる。
以上において、本発明では2つのセンサによってマークを検出する構成は従来技術と同様であるが、温度などによるセンサ間隔変動(観測位置の変化)が生じにくいセンサ構成を新たに構成部材を追加することなく実現することで、高画質なカラー画像を出力できる画像形成装置を提供する。
また、マーク間隔の誤差変動分に着目し、2つのセンサ信号の位相差変動からマークピッチ変化を演算して速度計算に反映させることによって、ベルト上のマークピッチに誤差が生じてもベルトの表面線速を正確に検出し、フィードバック制御することにより高精度なベルト搬送装置に適用することで、より高精度なカラー画像を提供できる。
更には加工、材料いずれにおいても特殊な物を用いることなく、安価に提供することができる。
画像形成装置を概略的に示した縦断側面図である。 図1における画像形成装置の搬送ベルトを示した外観斜視図である。 別例としての画像形成装置を概略的に示した縦断側面図である。 図3における画像形成装置の中間転写ベルト及びその駆動系を示した外観斜視図である。 (a)はスケール及びヘッド部の斜視図、(b)は光整形手段(スリット部)の断面図である。 スケールに形成された光マークのピッチ補正制御系のブロック図である。 スケールのマークピッチ誤差に起因する信号位相差を示した図である。 複数スリットで構成した光整形手段を例示した斜視図である。 (a)は光ビーム、(b)は光整形手段に対する光ビームの変位状態、(c)、(d)は光整形手段通過後における光ビームのパターンを模式的に示した図である。 (a)は光ビーム、(b)は光整形手段に対する光ビームの変位状態、(c)は光整形手段通過後における光ビームのパターンを模式的に示した図である。 (a)は入射光ビームの光量分布が不均一な場合における、入射光ビーム、スリット開口及び射出光ビームの各形状を模式的に示した図、(b)は入射光ビームの光量分布が不均一な場合における、入射光ビーム、スリット開口及び射出光ビームの各形状を模式的に示した図である。 スケール清掃部材を設置した場合におけるヘッド部の断面図である。 光学式リニアエンコーダ及び制御系を示したブロック図である。 ロータリーエンコーダを示した外観斜視図である。 ロータリーエンコーダを用いた回転駆動装置を示した外観斜視図である。 ベルトの速度変動による位置決め誤差が複数の周波数成分を有する波形になることを説明した図である。
符号の説明
1 画像形成装置
1K、1M、1Y、1C 電子プロセス部
2 シート状媒体(用紙)
3 搬送ベルト
4、5 搬送ローラ
6 給紙トレイ
7C、7M、7Y、7K、15C、7M、15Y、15K 感光体ドラム
21 スケール
21a 反射マーク
21b スリット
22、45 ヘッド部
23、51 減速歯車
24、50 駆動モータ
25 ケース
26A、26B 光源
27A、27A1、27B、27B1 光整形手段
28A、28B 受光器
29 矢印
30A、30B 投光レンズ
31A、31B 基材
32 ギャップ保持部材
32a 貫通孔
33、45 光源部
34、46 光整形部
35、47 受光部
36 比較部
37 位置演算部
38 補正演算部
39 弾性部材
40 信号処理回路
41 位置検出制御回路
42 モータドライバ
43 円形スケール
44 回転基板
48 ヘッド
49 ロータリーエンコーダ
200 画像形成装置
202 中間転写ベルト
218Y、218M、218C、218K プリンタエンジン
220 タンデム画像形成装置
A、B センサ
L1、L2 光ビーム

Claims (19)

  1. 略一定間隔で光学マークが形成されたスケールと、該スケールに光ビームを照射し前記光学マークによって反射もしくは透過した光を受光し光電変換するヘッド部を有し、前記スケールと前記ヘッド部の相対移動により、前記ヘッド部で検出される受光光量が変化することにより、前記スケールと前記ヘッド部の相対位置変化を検知する相対位置検知装置において、
    前記ヘッド部は、光源と、前記光源からの光を整形し前記スケールに照射する光ビームを生成する光整形手段と、前記スケールの光学マークを経由した前記光ビームを受光して光電変換する受光器、をセットにした複数のセンサが複数本の光ビームを出入射するように所定の間隔をおいて一体的に構成されていて、
    前記光整形手段は、前記複数本の光ビームに対応して複数設けられており、かつ複数の前記光整形手段同士が、光ビームの位置との関係で前記光源から前記光学マークを経由して前記受光器に至る光路をたどるように間隔をおき、その配置が保持されるように、共通のギャップ保持部材に設置固定されていることを特徴とする相対位置検知装置。
  2. 請求項1に記載の相対位置検知装置において、
    前記複数の光ビームによる複数の検知信号により、前記スケールに形成された光学マークの間隔誤差を補正した相対位置信号を生成する、補正演算部を有することを特徴とする相対位置検知装置。
  3. 請求項1又は2に記載の相対位置検知装置において、
    前記光整形手段は形成される材料の膨張係数に制限が無いことを特徴とする相対位置検知装置。
  4. 請求項1乃至3の何れかに記載の相対位置検知装置において、
    前記ギャップ保持部材は、膨張係数の低い材料で形成されていることを特徴とする相対位置検知装置。
  5. 請求項4に記載の相対位置検知装置において、
    前記ギャップ保持部材に使用される膨張係数の低い材料は、ガラス系材料であることを特徴とする相対位置検知装置。
  6. 請求項4記載の相対位置検知装置において、
    前記ギャップ保持部材に使用される膨張係数の低い材料は、金属系材料であることを特徴とする相対位置検知装置。
  7. 請求項1乃至6の何れかに記載の相対位置検知装置において、
    前記光整形手段は入射する1つの光ビームに対応する複数のスリット列であることを特徴とする相対位置検知装置。
  8. 請求項1乃至7の何れかに記載の相対位置検知装置において、
    前記光整形手段に入射させる光ビームは前記光整形手段を構成するスリット列の光通過領域よりも大きいビーム径を有することを特徴とする相対位置検知装置。
  9. 請求項1乃至8の何れかに記載の相対位置検知装置において、
    前記光整形手段に入射させる光ビームは光量分布が一様であることを特徴とする相対位置検知装置。
  10. 請求項1乃至9の何れかに記載の相対位置検知装置において、
    前記光整形手段を構成するスリットの周囲には前記スケールに圧接しつつ清掃するための弾性部材が前記ギャップ保持部材上に形成されていることを特徴とする相対位置検知装置。
  11. 請求項1乃至10の何れかに記載の相対位置検知装置を備えた光学式リニアエンコーダであって、
    前記スケールには平行線状に光学マークが形成されていることを特徴とする光学式リニアエンコーダ。
  12. 請求項11に記載の光学式リニアエンコーダを搭載したことを特徴とするベルト搬送装置。
  13. 請求項11に記載の光学式リニアエンコーダを搭載し、前記光学式リニアエンコーダから出力される信号を基にベルトの速度および位置を制御する制御手段を有することを特徴とするベルト搬送装置。
  14. 請求項12に記載の前記光学式リニアエンコーダを搭載したベルト搬送装置を有することを特徴とする画像形成装置。
  15. 請求項13に記載の光学式リニアエンコーダ及び制御手段を有するベルト搬送装置を搭載していることを特徴とする画像形成装置。
  16. 請求項1乃至11の何れかに記載の相対位置検知装置を搭載したロータリーエンコーダであって、
    前記スケールは円盤状をした基板上に放射状に光学マークが形成されているコードホイールであることを特徴とするロータリーエンコーダ。
  17. ロータリーエンコーダを有する回転駆動装置であって、
    前記ロータリーエンコーダが請求項16に記載のロータリーエンコーダであることを特徴とする回転駆動装置。
  18. 回転駆動装置を搭載した画像形成装置であって、
    前記回転駆動装置が請求項17に記載の回転駆動装置であることを特徴とする画像形成装置。
  19. 請求項13に記載の光学式リニアエンコーダを搭載した制御手段と、請求項17に記載のロータリーエンコーダを有する回転駆動装置を搭載した搬送装置を具備していることを特徴とする画像形成装置。
JP2007299701A 2007-11-19 2007-11-19 相対位置検知装置、光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置、画像形成装置 Active JP5145891B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007299701A JP5145891B2 (ja) 2007-11-19 2007-11-19 相対位置検知装置、光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置、画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007299701A JP5145891B2 (ja) 2007-11-19 2007-11-19 相対位置検知装置、光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置、画像形成装置

Publications (2)

Publication Number Publication Date
JP2009128383A JP2009128383A (ja) 2009-06-11
JP5145891B2 true JP5145891B2 (ja) 2013-02-20

Family

ID=40819420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007299701A Active JP5145891B2 (ja) 2007-11-19 2007-11-19 相対位置検知装置、光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置、画像形成装置

Country Status (1)

Country Link
JP (1) JP5145891B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6658067B2 (ja) * 2016-02-19 2020-03-04 株式会社リコー ベルト装置及び画像形成装置
CN108022266B (zh) * 2017-12-14 2024-02-02 杭州电子科技大学 面向光伏电池在线位置检测的人工智能图像识别方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3344614B2 (ja) * 1995-12-27 2002-11-11 富士ゼロックス株式会社 ベルト搬送装置
JPH09189574A (ja) * 1996-01-10 1997-07-22 Canon Inc 光学式リニアエンコーダ、及びこれを用いた電子装置、記録装置
JP4021382B2 (ja) * 2003-07-28 2007-12-12 オリンパス株式会社 光学式エンコーダ及びその製造方法並びに光学レンズモジュール

Also Published As

Publication number Publication date
JP2009128383A (ja) 2009-06-11

Similar Documents

Publication Publication Date Title
JP4884151B2 (ja) 位置検知装置、速度検出装置、移動制御装置、ベルト搬送装置、回転体駆動装置、および画像形成装置
US8351830B2 (en) Belt conveying device and image forming apparatus
EP1424609A2 (en) Color shift correcting method, optical writing device and image forming apparatus
US8369725B2 (en) Image forming apparatus and method of correcting image concentration
JP2005070117A (ja) 画像形成装置、および、画像形成装置の色ずれ補正方法
JP4429895B2 (ja) 無端移動部材駆動制御装置及び画像形成装置と無端移動部材の移動速度制御方法
JP2005300953A (ja) カラー画像形成装置、その駆動制御方法及び駆動制御用プログラム
JP5102518B2 (ja) 画像形成装置
JP4264315B2 (ja) レジストローラの回転速度設定方法及び画像形成装置
JP2006017615A (ja) マーク検出装置、回転体駆動装置及び画像形成装置
EP2463108B1 (en) Light emission control device, light emission control method, and image forming apparatus
JP2006171594A (ja) ベルト駆動制御方法、ベルト駆動制御装置、ベルト装置、画像形成装置及びプログラム
JP5145891B2 (ja) 相対位置検知装置、光学式リニアエンコーダ、ロータリーエンコーダ、回転駆動装置、ベルト搬送装置、画像形成装置
JP2006154289A (ja) ベルト搬送装置及び画像形成装置
JP2012166467A (ja) 光書き込み装置、画像形成装置及び光書き込み装置の制御方法
JP2004101769A (ja) 画像調整方法及び画像形成装置
JP6932485B2 (ja) 画像形成装置
JP2007327912A (ja) 相対位置検知装置・ベルト搬送装置・画像形成装置
JP2008298958A (ja) 画像形成装置
JP2018200396A (ja) 画像形成装置、及び二次転写部材の駆動制御方法
JP2008111928A (ja) ベルト移動装置およびこれを用いた画像形成装置
JP2009180884A (ja) 画像形成装置
JP5380824B2 (ja) 駆動制御装置及び画像形成装置
JP5119755B2 (ja) 画像形成装置および制御装置
JP2013064865A (ja) 画像形成装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R151 Written notification of patent or utility model registration

Ref document number: 5145891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3