JP5144579B2 - 眼科観察装置 - Google Patents

眼科観察装置 Download PDF

Info

Publication number
JP5144579B2
JP5144579B2 JP2009090212A JP2009090212A JP5144579B2 JP 5144579 B2 JP5144579 B2 JP 5144579B2 JP 2009090212 A JP2009090212 A JP 2009090212A JP 2009090212 A JP2009090212 A JP 2009090212A JP 5144579 B2 JP5144579 B2 JP 5144579B2
Authority
JP
Japan
Prior art keywords
image
light
photographed image
pair
observation apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009090212A
Other languages
English (en)
Other versions
JP2010240068A5 (ja
JP2010240068A (ja
Inventor
和敏 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2009090212A priority Critical patent/JP5144579B2/ja
Priority to PCT/JP2010/002240 priority patent/WO2010113459A1/ja
Publication of JP2010240068A publication Critical patent/JP2010240068A/ja
Publication of JP2010240068A5 publication Critical patent/JP2010240068A5/ja
Application granted granted Critical
Publication of JP5144579B2 publication Critical patent/JP5144579B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]

Description

この発明は、光コヒーレンストモグラフィ(Optical Coherence Tomography)を用いて被検眼の断層像を形成するとともに、被検眼に照明光を照射して被検眼を撮影する眼科観察装置に関する。
近年、レーザ光源等からの光ビームを用いて被測定物体の表面形態や内部形態を表す画像を形成する光コヒーレンストモグラフィが注目を集めている。光コヒーレンストモグラフィは、X線CT装置のような人体に対する侵襲性を持たないことから、特に医療分野や生物学分野における応用の展開が期待されている。
特許文献1には、光コヒーレンストモグラフィを適用した装置が開示されている。この装置は、測定腕が回転式転向鏡(ガルバノミラー)により物体を走査し、参照腕に参照ミラーが設置されており、その出口に計測腕及び参照腕からの光束の干渉光の強度を分光器で分析する干渉器が設けられている。更に、参照腕は、参照光光束位相を不連続な値で段階的に変えるように構成されている。
特許文献1の装置は、いわゆる「フーリエドメインOCT(Fourier Domain Optical Coherence Tomography)」の手法を用いるものである。すなわち、被測定物体に対して低コヒーレンス光のビームを照射し、その反射光と参照光とを重ね合わせて干渉光を生成し、この干渉光のスペクトル強度分布を取得してフーリエ変換を施すことにより被測定物体の深度方向(z方向)の形態を画像化するものである。なお、このタイプの手法は、スペクトラルドメイン(Spectral Domain)とも呼ばれる。
更に、特許文献1に記載の装置は、光ビーム(信号光)を走査するガルバノミラーを備え、それにより被測定物体の所望の測定対象領域の画像を形成するようになっている。この装置においては、z方向に直交する1方向(x方向)にのみ光ビームを走査するように構成されているので、この装置により形成される画像は、光ビームの走査方向(x方向)に沿った深度方向(z方向)の2次元断層像となる。
特許文献2には、信号光を水平方向(x方向)及び垂直方向(y方向)に走査することにより水平方向の2次元断層像を複数形成し、これら複数の断層像に基づいて測定範囲の3次元の断層情報を取得して画像化する技術が開示されている。この3次元画像化としては、たとえば、複数の断層像を垂直方向に並べて表示させる方法や(スタックデータなどと呼ばれる)、複数の断層像にレンダリング処理を施して3次元画像を形成する方法などが考えられる。
特許文献3、4には、他のタイプのOCT装置が開示されている。特許文献3には、被測定物体に照射される光の波長を走査し、各波長の光の反射光と参照光とを重ね合わせて得られる干渉光に基づいてスペクトル強度分布を取得し、それに対してフーリエ変換を施すことにより被測定物体の形態を画像化するOCT装置が記載されている。このようなOCT装置は、スウェプトソース(Swept Source)タイプなどと呼ばれる。なお、スウェプトソースタイプはフーリエドメインタイプの一例である。
また、特許文献4には、所定のビーム径を有する光を被測定物体に照射し、その反射光と参照光とを重ね合わせて得られる干渉光の成分を解析することにより、光の進行方向に直交する断面における被測定物体の画像を形成するOCT装置が記載されている。このようなOCT装置は、フルフィールド(full−field)タイプ、或いはエンフェイス(en−face)タイプなどと呼ばれる。
特許文献5には、光コヒーレンストモグラフィを眼科分野に適用した装置が開示されている。なお、光コヒーレンストモグラフィが適用される以前の眼底観察用の装置としては、被検眼に照明光を照射して眼底を撮影する眼底カメラが知られている(たとえば特許文献6を参照)。また、光コヒーレンストモグラフィを利用して角膜の断層像を取得する装置も知られている(たとえば特許文献7を参照)。また、角膜の撮影は、眼底カメラやスリットランプ等により行うことができる(たとえば特許文献8を参照)。
特許文献5に記載の装置は、眼底カメラ及びOCT装置の双方の機能を備えている。眼底の撮影画像(眼底像)は、眼底表面の状態を広範囲に亘って把握するのに適している。一方、断層像は、眼底の層構造を詳細に把握するのに適している。
特開平11−325849号公報 特開2002−139421号公報 特開2007−24677号公報 特開2006−153838号公報 特開2008−73099号公報 特開平9−276232号公報 特開平8−206075号公報 特開2008−259544号公報
撮影画像と断層像の双方を参照する場合、断層像が撮影画像中のどの部位に相当しているかを高い確度で把握できなければ、信頼性の高い診断を行うことはできない。
たとえば、眼底の断層像が眼底像中のどこに位置しているか把握できない場合、眼底像を観察しながら治療を行うのが一般的であることを考慮すると、眼底深部に在る疾患部位を治療するための位置決めが困難となる。
また、たとえば経過観察のように被検眼の所定部位を反復して検査する場合、同じ部位を正確に検査することが困難となる。
このように、断層像と撮影画像との位置関係の把握は非常に重要であるにも拘わらず、従来の技術では撮影画像中における断層像の位置を正確に把握することは困難であった。
なお、従来においても、多数の断層像を取得して3次元画像を形成し、その画素値を深度方向に積算して2次元画像(積算画像)を形成し、この積算画像と撮影画像とを比較することによって撮影画像中における断層像の位置を求める手法はあった。
しかし、この手法には、撮影画像と断層像との位置関係を画像処理のみによって求められるというメリットがある一方で、データ処理に長い時間が必要であったり、3次元画像を形成するのに十分な枚数の断層像を取得しなければならなかったりといったデメリットもある。
また、近年では、高性能のデジタルカメラを装置に装着して撮影を行うこともある。この場合、デジタルカメラ側の装着部の形態(サイズや形状)と眼科観察装置側の装着部の形態との微小差や経時変化(ガタ)によって、デジタルカメラの装着位置や装着姿勢が変化することがある。それにより、撮影画像に位置ズレが生じ、撮影画像と断層像との位置関係が変化してしまう。そうすると、過去に取得された画像間の位置関係と、新たに取得された画像間の位置関係とにズレが生じ、経過観察や治療を効果的に行えない可能性がある。
この発明は、以上のような問題を解決するためになされたもので、その目的は、撮影画像と断層像との位置関係を高い確度で把握することが可能な眼科観察装置を提供することにある。
また、この発明は、比較的少数の断層像を取得した場合であっても眼底像と断層像との位置関係を補正することが可能な眼科観察装置を提供することを他の目的とする。
また、この発明は、簡便な処理によって眼底像と断層像との位置関係を補正することが可能な眼科観察装置を提供することを他の目的とする。
上記目的を達成するために、請求項1に記載の発明は、被検眼に照明光を照射する照射手段と、前記被検眼からの前記照明光の反射光を受光する受光手段とを含み、前記反射光の受光結果に基づいて前記被検眼の撮影画像を形成する撮影画像形成部と、光源からの光を信号光と参照光とに分割し、前記被検眼を経由した前記信号光と参照光路を経由した参照光との干渉光を生成して検出する光学系を含み、前記干渉光の検出結果に基づいて前記被検眼の断層像を形成する断層像形成部と、を有する眼科観察装置であって、前記撮影画像形成部は、前記受光手段に対して略共役な位置に設けられ、前記受光手段の位置を表すマークとして前記撮影画像中に写し込まれるマーキング手段を備え、基準位置に配置された前記受光手段を用いて形成された基準撮影画像中に写し込まれた前記マークの位置に基づく基準位置情報をあらかじめ記憶する記憶手段と、前記撮影画像形成部により新たな撮影画像が形成され、前記断層像形成部により断層像が形成されたときに、該撮影画像中に写し込まれた前記マークの位置と前記記憶された基準位置情報とに基づいて、該撮影画像と該断層像との相対位置を補正する補正手段と、を備える、ことを特徴とする。
また、請求項2に記載の発明は、請求項1に記載の眼科観察装置であって、前記撮影画像形成部は、前記受光手段に対して略共役な位置に設けられ、前記反射光の中央部分を透過させる透過領域と周辺部分を遮蔽する遮蔽領域とを有する撮影マスクを含み、前記マーキング手段は、前記撮影マスクの前記遮蔽領域に形成された透光部を含み、前記補正手段は、前記透光部を透過した前記反射光の像として前記基準撮影画像中に写し込まれたマークの位置に基づいて前記基準位置情報をあらかじめ生成し、更に、前記新たな撮影画像及び前記断層像が形成されたときに、該撮影画像中に写し込まれた前記透光部のマークの位置に基づいて前記受光手段の現在位置を表す現在位置情報を生成し、前記現在位置情報と前記基準位置情報とを比較して前記相対位置を補正する、ことを特徴とする。
また、請求項3に記載の発明は、請求項2に記載の眼科観察装置であって、前記マーキング手段は、前記撮影マスクの前記透過領域を挟んだ対向位置に設けられた一対の前記透光部を含み、前記補正手段は、前記撮影画像形成部による撮影画像に基づいて前記一対の透光部に対応する一対の前記マークの中間位置を求め、前記基準撮影画像に基づく前記中間位置と前記新たな撮影画像に基づく前記中間位置との変位に基づいて該撮影画像及び/又は該断層像を平行移動させて前記相対位置を補正する、ことを特徴とする。
また、請求項4に記載の発明は、請求項2に記載の眼科観察装置であって、前記マーキング手段は、前記撮影マスクの前記透過領域を挟んだ対向位置に設けられた一対の前記透光部を含み、前記補正手段は、前記撮影画像形成部による撮影画像に基づいて前記一対の透光部に対応する一対の前記マークを結んだ直線を求め、前記基準撮影画像に基づく前記直線と前記新たな撮影画像に基づく前記直線とが成す角度に基づいて該撮影画像及び/又は該断層像を回転移動させて前記相対位置を補正する、ことを特徴とする。
また、請求項5に記載の発明は、請求項1に記載の眼科観察装置であって、前記マーキング手段は、前記反射光の周辺部分又は前記反射光の外部位置に設けられた発光部材を含み、前記補正手段は、前記発光部材から出力された光の像として前記基準撮影画像中に写し込まれたマークの位置に基づいて前記基準位置情報をあらかじめ生成し、更に、前記新たな撮影画像及び前記断層像が形成されたときに、前記発光部材からの光の像として該撮影画像中に写し込まれたマークの位置に基づいて前記受光手段の現在位置を表す現在位置情報を生成し、前記現在位置情報と前記基準位置情報とを比較して前記相対位置を補正する、ことを特徴とする。
また、請求項6に記載の発明は、請求項5に記載の眼科観察装置であって、前記マーキング手段は、前記反射光を導光する光学系の光軸を挟んだ対向位置に設けられた一対の前記発光部材を含み、前記補正手段は、前記撮影画像形成部による撮影画像に基づいて前記一対の発光部材に対応する一対の前記マークの中間位置を求め、前記基準撮影画像に基づく前記中間位置と前記新たな撮影画像に基づく前記中間位置との変位に基づいて該撮影画像及び/又は該断層像を平行移動させて前記相対位置を補正する、ことを特徴とする。
また、請求項7に記載の発明は、請求項5に記載の眼科観察装置であって、前記マーキング手段は、前記反射光を導光する光学系の光軸を挟んだ対向位置に設けられた一対の前記発光部材を含み、前記補正手段は、前記撮影画像形成部による撮影画像に基づいて前記一対の発光部材に対応する一対の前記マークを結んだ直線を求め、前記基準撮影画像に基づく前記直線と前記新たな撮影画像に基づく前記直線とが成す角度に基づいて該撮影画像及び/又は該断層像を回転移動させて前記相対位置を補正する、ことを特徴とする。
また、請求項8に記載の発明は、請求項1〜請求項7のいずれか一項に記載の眼科観察装置であって、前記マーキング手段は、撮影画像中の異なる位置に複数組の前記マークを写し込むことが可能であり、前記記憶手段は、基準撮影画像中に写し込まれた前記複数組のそれぞれのマークの位置に基づく前記基準位置情報をあらかじめ記憶し、前記補正手段は、前記新たな撮影画像に写し込まれた一組のマークの位置と前記基準位置情報とに基づいて前記相対位置を補正する、ことを特徴とする。
また、請求項9に記載の発明は、請求項1〜請求項8のいずれか一項に記載の眼科観察装置であって、前記撮影画像形成部は、前記反射光を導光する光学系の光軸に沿って移動して撮影倍率を変更する変倍レンズを更に含み、前記補正手段は、前記基準撮影画像が形成されたときの前記変倍レンズの位置と、前記新たな撮影画像が形成されたときの前記変倍レンズの位置とに基づいて、前記基準撮影画像の倍率と前記新たな撮影画像の倍率とを合わせる、ことを特徴とする。
また、請求項10に記載の発明は、請求項1〜請求項8のいずれか一項に記載の眼科観察装置であって、前記撮影画像形成部は、前記反射光を導光する光学系の光軸に沿って移動して撮影倍率を変更する変倍レンズを更に含み、前記補正手段は、前記基準撮影画像に写し込まれたマークのサイズと、前記新たな撮影画像に写し込まれたマークのサイズとに基づいて、前記基準撮影画像の倍率と前記新たな撮影画像の倍率とを合わせる、ことを特徴とする。
また、請求項11に記載の発明は、被検眼に照明光を照射する照射手段と、前記被検眼からの前記照明光の反射光を受光する受光手段とを含み、前記反射光の受光結果に基づいて前記被検眼の撮影画像を形成する撮影画像形成部と、光源からの光を信号光と参照光とに分割し、前記被検眼を経由した前記信号光と参照光路を経由した参照光との干渉光を生成して検出する光学系と、前記被検眼に対して前記信号光を走査する走査手段とを含み、前記干渉光の検出結果に基づいて前記被検眼の断層像を形成する断層像形成部と、を有する眼科観察装置であって、前記撮影画像形成部は、前記受光手段に対して略共役な位置に設けられ、前記受光手段の位置を表すマークとして前記撮影画像中に写し込まれるマーキング手段を備え、基準位置に配置された前記受光手段を用いて形成された基準撮影画像中に写し込まれた前記マークの位置に基づく基準位置情報をあらかじめ記憶する記憶手段と、前記断層像形成部により断層像が形成されたときに、前記走査手段による前記信号光の走査態様と前記記憶された基準位置情報とに基づいて該断層像の位置を補正する補正手段と、を備える、ことを特徴とする。
また、請求項12に記載の発明は、請求項11に記載の眼科観察装置であって、前記撮影画像形成部は、前記受光手段に対して略共役な位置に設けられ、前記反射光の中央部分を透過させる透過領域と周辺部分を遮蔽する遮蔽領域とを有する撮影マスクを含み、前記マーキング手段は、前記撮影マスクの前記遮蔽領域に形成された透光部を含み、前記補正手段は、前記透光部を透過した前記反射光の像として前記基準撮影画像中に写し込まれたマークの位置に基づいて前記基準位置情報をあらかじめ生成し、更に、前記断層像が形成されたときに、前記信号光の走査態様と前記基準位置情報とに基づいて前記位置の補正を行う、ことを特徴とする。
また、請求項13に記載の発明は、請求項12に記載の眼科観察装置であって、前記走査手段は、前記被検眼の所定の走査領域内において前記信号光を走査し、前記マーキング手段は、前記撮影マスクの前記遮蔽領域に形成された一対の前記透光部を含み、前記補正手段は、前記基準撮影画像中に写し込まれた前記一対の透光部に対応する一対の前記マークの中間位置を求めて前記基準位置情報を生成し、更に、前記断層像が形成されたときの前記所定の走査領域の中心位置を求め、該求められた前記中心位置と前記一対のマークの中間位置との変位に基づいて該断層像を平行移動させて前記位置の補正を行う、ことを特徴とする。
また、請求項14に記載の発明は、請求項12に記載の眼科観察装置であって、前記走査手段は、前記被検眼の所定の走査線に沿って前記信号光を走査し、前記マーキング手段は、前記撮影マスクの前記遮蔽領域に形成された一対の前記透光部を含み、前記補正手段は、前記基準撮影画像中に写し込まれた前記一対の透光部に対応する一対の前記マークを結んだ直線を求めて前記基準位置情報を生成し、更に、前記断層像が形成されたときの前記所定の走査線の方向と前記直線とが成す角度に基づいて該断層像を回転移動させて前記位置の補正を行う、ことを特徴とする。
また、請求項15に記載の発明は、請求項11に記載の眼科観察装置であって、前記マーキング手段は、前記反射光の周辺部分又は前記反射光の外部位置に設けられた発光部材を含み、前記補正手段は、前記発光部材から出力された光の像として前記基準撮影画像中に写し込まれたマークの位置に基づいて前記基準位置情報をあらかじめ生成し、更に、前記断層像が形成されたときに、前記信号光の走査態様と前記基準位置情報とに基づいて前記位置の補正を行う、ことを特徴とする。
また、請求項16に記載の発明は、請求項15に記載の眼科観察装置であって、前記走査手段は、前記被検眼の所定の走査領域内において前記信号光を走査し、前記マーキング手段は、前記反射光を導光する光学系の光軸を挟んだ対向位置に設けられた一対の前記発光部材を含み、前記補正手段は、前記基準撮影画像中に写し込まれた前記一対の発光部材に対応する一対の前記マークの中間位置を求めて前記基準位置情報を生成し、更に、前記断層像が形成されたときの前記所定の走査領域の中心位置を求め、該求められた前記中心位置と前記一対のマークの中間位置との変位に基づいて該断層像を平行移動させて前記位置の補正を行う、ことを特徴とする。
また、請求項17に記載の発明は、請求項15に記載の眼科観察装置であって、前記走査手段は、前記被検眼の所定の走査線に沿って前記信号光を走査し、前記マーキング手段は、前記反射光を導光する光学系の光軸を挟んだ対向位置に設けられた一対の前記発光部材を含み、前記補正手段は、前記基準撮影画像中に写し込まれた前記一対の発光部材に対応する一対の前記マークを結んだ直線を求めて前記基準位置情報を生成し、更に、前記断層像が形成されたときの前記所定の走査線の方向と前記直線とが成す角度に基づいて該断層像を回転移動させて前記位置の補正を行う、ことを特徴とする。
また、請求項18に記載の発明は、請求項11〜請求項17のいずれか一項に記載の眼科観察装置であって、前記撮影画像形成部は、前記反射光及び前記信号光を導光する光学系の光軸に沿って移動して撮影倍率を変更する変倍レンズを更に含み、前記補正手段は、前記基準撮影画像が形成されたときの前記変倍レンズの位置と、前記断層像が形成されたときの前記変倍レンズの位置とに基づいて、前記基準撮影画像の倍率と前記断層像の倍率とを合わせる、ことを特徴とする。
また、請求項19に記載の発明は、請求項1〜請求項18のいずれか一項に記載の眼科観察装置であって、前記撮影画像形成部により形成された撮影画像に写し込まれた前記マークを消去する画像処理を施す画像処理手段と、前記マークが消去された前記撮影画像を表示する表示手段と、を更に備える、ことを特徴とする。
この発明に係る眼科観察装置は、受光手段の位置を表すマークを撮影画像中に写り込ませるマーキング手段と、受光手段の基準位置を表す基準位置情報を記憶する記憶手段とを備える。更に、この眼科観察装置は、新たな撮影画像及び断層像を形成すると、この撮影画像中に写し込まれたマークの位置と基準位置情報とに基づいて、この撮影画像とこの断層像との相対位置を補正する補正手段を有する。
このような眼科観察装置によれば、受光手段の装着位置のズレに基づいて撮影画像と断層像との相対位置を補正できるので、撮影画像と断層像との位置関係を高い確度で把握することが可能になる。
また、従来は3次元画像を形成するのに十分な枚数の断層像を取得しなければ撮影画像と断層像との位置補正を行えなかったが、この発明によれば、少数の断層像を取得した場合であっても、従来のような画像処理とは異なり、基準位置情報を参照することで撮影画像と断層像との位置関係を補正することが可能である。
また、この発明によれば、従来の位置補正処理と比較して簡便な処理によって位置補正を行うことが可能である。それにより、処理時間の短縮や演算に掛かるリソースの節約を図ることができる。
また、この発明に係る眼科観察装置は、被検眼に対して信号光を走査しつつ断層像を形成する。また、この眼科観察装置は、受光手段の位置を表すマークを撮影画像中に写り込ませるマーキング手段と、受光手段の基準位置を表す基準位置情報を記憶する記憶手段とを備える。更に、この眼科観察装置は、断層像を形成すると、信号光の走査態様と基準位置情報とに基づいてこの断層像の位置を補正する補正手段を有する。
この発明によれば、断層像の位置ズレに起因する眼底像と断層像との相対位置のズレを補正できるので、眼底像と断層像との位置関係を高い確度で把握することが可能になる。
また、この発明によれば、従来のような画像処理に代えて基準位置情報を参照することで位置補正を行うことができるので、少数の断層像を取得した場合であっても撮影画像と断層像との位置関係を補正することが可能である。
また、この発明によれば、従来の位置補正処理と比較して簡便な処理によって位置補正を行うことが可能である。
この発明に係る眼科観察装置の実施形態の全体構成の一例を表す概略図である。 この発明に係る眼科観察装置の実施形態の撮影マスクの構成の一例を表す概略図である。 この発明に係る眼科観察装置の実施形態におけるOCTユニットの構成の一例を表す概略構成図である。 この発明に係る眼科観察装置の実施形態の制御系の構成の一例を表す概略ブロック図である。 この発明に係る眼科観察装置の実施形態が実行する処理の一例を説明するための概略図である。 この発明に係る眼科観察装置の実施形態が実行する処理の一例を説明するための概略図である。 この発明に係る眼科観察装置の実施形態が実行する処理の一例を説明するための概略図である。 この発明に係る眼科観察装置の実施形態の変形例が実行する処理の一例を説明するための概略図である。 この発明に係る眼科観察装置の実施形態の変形例が実行する処理の一例を説明するための概略図である。
この発明に係る眼科観察装置の実施形態の一例について、図面を参照しながら詳細に説明する。
この発明に係る眼科観察装置は、光コヒーレンストモグラフィを用いて被検眼の断層像を形成する。この眼科観察装置に適用可能な光コヒーレンストモグラフィの種類は、以下に詳述するフーリエドメインタイプに限定されるものではなく、スウェプトソースタイプやフルフィールドタイプ等の任意の種類であってよい。なお、光コヒーレンストモグラフィにより取得される画像をOCT画像と呼ぶことがある。
この実施形態では、特許文献5に開示された装置、つまりフーリエドメインタイプのOCT装置と眼底カメラとを組み合わせた装置、とほぼ同様の構成を具備する眼科観察装置を取り上げる。他の構成を適用する場合においても、この実施形態と同様の構成を適用することで同様の作用及び効果が得られる。
被検眼を撮影するための構成は眼底カメラには限定されず、たとえばスリットランプやSLO(Scanning Laser Ophthalmoscope:走査型レーザ検眼鏡)のように任意の眼科観察装置の構成を、この発明に適用することが可能である。
[構成]
眼科観察装置1は、図1に示すように、眼底カメラユニット1A、OCTユニット150及び演算制御装置200を含んで構成される。眼底カメラユニット1Aは、従来の眼底カメラとほぼ同様の光学系を有する。眼底カメラは、眼底の表面を撮影して2次元画像(撮影画像)を形成する装置である。また、眼底カメラは、眼底血管の形態の撮影に利用される。OCTユニット150は、眼底のOCT画像を取得するための光学系を格納している。演算制御装置200は、各種の演算処理や制御処理等を実行するコンピュータを具備している。
OCTユニット150には、接続線152の一端が取り付けられている。接続線152の他端には、接続線152を眼底カメラユニット1Aに接続するコネクタ部151が取り付けられている。接続線152の内部には光ファイバ152aが導通されている(図3を参照)。OCTユニット150と眼底カメラユニット1Aは、接続線152を介して光学的に接続されている。演算制御装置200は、眼底カメラユニット1A及びOCTユニット150のそれぞれと、電気信号を伝達する通信線を介して接続されている。
〔眼底カメラユニット〕
眼底カメラユニット1Aは、被検眼Eに照明光を照射し、その眼底反射光を受光することにより、眼底表面の形態を表す撮影画像を形成するための光学系を有する。代表的な眼底表面の撮影画像としては、眼底表面を描写するカラー画像やモノクロ画像、更には血管動態を描写する蛍光画像(フルオレセイン蛍光画像、インドシアニングリーン蛍光画像等)などがある。
眼底カメラユニット1Aには、従来の眼底カメラと同様に、照明光学系100と撮影光学系120が設けられている。照明光学系100と撮影光学系120は、この発明の「撮影画像形成部」の一例である。照明光学系100は眼底Efに照明光を照射するもので、この発明の「照明手段」の一例である。撮影光学系120は、この照明光の眼底反射光を撮像装置10、12に導く。また、撮影光学系120は、OCTユニット150からの信号光を眼底Efに導くとともに、眼底Efを経由した信号光をOCTユニット150に導く。
照明光学系100は、従来の眼底カメラと同様に、観察光源101、コンデンサレンズ102、撮影光源103、コンデンサレンズ104、エキサイタフィルタ105及び106、リング透光板107(リングスリット107a)、ミラー108、LCD(Liquid Crystal Display)109、照明絞り110、リレーレンズ111、孔開きミラー112、対物レンズ113を含んで構成される。
観察光源101は、たとえば約700nm〜800nmの範囲の近赤外領域の波長を含む照明光を出力する。この近赤外光は、OCTユニット150で使用する光の波長よりも短く設定されている(後述)。撮影光源103は、たとえば約400nm〜700nmの範囲の可視領域の波長を含む照明光を出力する。
観察光源101から出力された照明光は、コンデンサレンズ102、104、(エキサイタフィルタ105又は106、)リング透光板107、ミラー108、LCD109、照明絞り110、リレーレンズ111を介して孔開きミラー112に到達する。更に、この照明光は、孔開きミラー112により反射され、対物レンズ113を介して被検眼Eに入射して眼底Efを照明する。一方、撮影光源103から出力された照明光は、コンデンサレンズ104から対物レンズ113までを経由して被検眼Eに入射して眼底Efを照明する。
撮影光学系120は、対物レンズ113、孔開きミラー112(の孔部112a)、撮影絞り121、バリアフィルタ122及び123、変倍レンズ124、リレーレンズ125、撮影レンズ126、ダイクロイックミラー134、撮影マスク127、フィールドレンズ(視野レンズ)128、ハーフミラー135、リレーレンズ131、ダイクロイックミラー136、撮影レンズ133、撮像装置10、撮影レンズ137、マウント138、撮像装置12、レンズ139及びLCD140を含んで構成される。撮影光学系120は、従来の眼底カメラとほぼ同様の構成を有する。
ダイクロイックミラー134は、照明光学系100からの照明光の眼底反射光(約400nm〜800nmの範囲に含まれる波長を有する)を反射する。また、ダイクロイックミラー134は、OCTユニット150からの信号光LS(たとえば約800nm〜900nmの範囲に含まれる波長を有する;図3を参照)を透過させる。
ダイクロイックミラー136は、近赤外光(観察光源101からの照明光の眼底反射光等)を反射し、可視光(撮影光源103からの照明光の眼底反射光等)を透過させる。
LCD140は、被検眼Eを固視させるための固視標(内部固視標)を表示する。LCD140からの光は、レンズ139により集光され、ハーフミラー135により反射され、フィールドレンズ128を経由してダイクロイックミラー134に反射される。更に、この光は、撮影レンズ126、リレーレンズ125、変倍レンズ124、孔開きミラー112(の孔部112a)、対物レンズ113等を経由して被検眼Eに入射する。それにより、眼底Efに内部固視標が投影される。
LCD140による内部固視標の表示位置を変更することにより、被検眼Eの固視方向を変更することができる。被検眼Eの固視方向としては、たとえば従来の眼底カメラと同様に、眼底Efの黄斑部を中心とする画像を取得するための固視方向や、視神経乳頭を中心とする画像を取得するための固視方向や、黄斑部と視神経乳頭との間の眼底中心を中心とする画像を取得するための固視方向などがある。
撮像装置10には、撮像素子10aが内蔵されている。撮像装置10は、特に近赤外領域の波長の光を検出可能である。つまり、撮像装置10は、近赤外光を検出する赤外線テレビカメラとして機能する。撮像装置10は、近赤外光を検出して映像信号を出力する。撮像素子10aは、たとえば、CCD(Charge Coupled Devices)やCMOS(Complementary Metal Oxide Semiconductor)等の任意の撮像素子(エリアセンサ)である。
撮像装置12は、マウント138によって眼底カメラユニット1Aの筺体に装着されるデジタルカメラである。マウント138は眼科観察装置1側の装着部であり、撮像装置12側の装着部と係合可能に構成されている。マウント138は、所定の規格に応じた形態を有しており、様々なデジタルカメラを装着/脱着可能に構成されている。それにより、ユーザは、所望のデジタルカメラを撮像装置12として用いることができる。
撮像装置12には、撮像素子12aが内蔵されている。撮像装置12は、特に可視領域の波長の光を検出可能である。つまり、撮像装置12は、可視光を検出するテレビカメラとして機能する。撮像装置12は、可視光を検出して映像信号を出力する。撮像素子12aは、撮像素子10aと同様に、任意の撮像素子(エリアセンサ)により構成される。撮像装置12(撮像素子12a)は、この発明の「受光手段」の一例である。
なお、ダイクロイックミラー136の代わりにハーフミラーを設けるとともに、可視光及び近赤外光を検出可能な各撮像装置10、12を設けることにより、二つの撮像装置10、12を選択的に使用することができる。たとえば、撮像装置10が眼科観察装置1に内蔵されている場合、撮像装置10よりも高性能(高画素数など)のデジタルカメラを撮像装置12としてマウントに装着することにより、特に高詳細が求められる画像を取得する際には撮像装置12を使用し、それ以外の画像を取得する際には撮像装置10を使用することができる。
なお、撮像装置10、12の双方が内蔵タイプであってもよいし(たとえば特許文献5を参照)、双方が眼底カメラユニット1Aの筺体に装着するタイプであってもよい。また、眼科観察装置1に設けられる撮像装置の個数は任意であり、内蔵タイプの個数と装着タイプの個数もそれぞれ任意である。
タッチパネルモニタ11は、撮像素子10aからの映像信号に基づいて眼底像Ef´を表示する。更に、撮像素子10aからの映像信号は演算制御装置200に送られる。また、撮像素子12aからの映像信号は、演算制御装置200や他の装置(表示装置や画像解析装置)に送信される。なお、撮像素子12aからの映像信号に基づく眼底像をタッチパネルモニタ11に表示可能にしてもよい。
撮影マスク127は、各撮像装置10、12により撮影される画像の撮影範囲を決定する部材である。撮影マスク127は、各撮像素子10a、12aに対してほぼ共役な位置に配置されている。なお、眼底Efに対して光学系のアライメント及びピント合わせがなされた状態においては、撮影マスク127は眼底Efともほぼ共役になる。ここで、アライメントやピント合わせは、従来の眼底カメラと同様にして実行できる。
撮影マスク127の構成例を図2に示す。撮影マスク127には、照明光の眼底反射光の(ビーム断面の)中央部分を透過させる透過領域127aと、その周辺部分を遮蔽する遮蔽領域127bとが設けられている。
透過領域127aは、眼底反射光を透過させるように、透明な素材により又は開口部として形成される。透過領域127aは、略円形に形成され、その中心位置が撮影光学系120の光軸を通過するように配置されている。なお、透過領域127aの周縁部に設けられた凸領域は、撮影画像の向きを識別可能にするためのものである。
遮蔽領域127bは、眼底反射光を遮蔽するように、遮光作用を有する素材により形成され、又はその表面が遮光作用を有する色(たとえば黒色)に塗られている。
遮蔽領域127bには、透過領域127aを挟むように互いに対向する位置に形成された一対の透光部127c、127dが設けられている。透光部127c、127dは、この発明の「マーキング手段」の一例である。
各透光部127c、127dは、透過領域127aと同様に、透明な素材により又は開口部として形成される。各透光部127c、127dは、内側(透過領域127a側)を頂点とする二等辺三角形の形状を有する。一対の透光部127c、127dは、これらの内側頂点を結ぶ直線(線分)が透過領域127aの中心位置を通過するように配設される。更に、一対の透光部127c、127dは、この線分の中間位置、つまり2つの内側頂点の中間位置が透過領域127aの中心位置に一致するように配設されることが望ましい。
なお、この線分の所定の内分位置に当該中心位置が一致するように一対の透光部127c、127dを配設してもよい。また、内側頂点の代わりに、各透光部127c、127dの特徴位置(重心位置、他の頂点、辺の中点等)を基準として、一対の透光部127c、127dの位置を定めてもよい。いずれにしても、上記中心位置や上記線分を一義的に特定することが可能な位置に透光部が設けられていればよい。
撮影マスク127は撮像素子12a(の受光面)に対してほぼ共役に配置されているので、各透光部127c、127dを透過した眼底反射光は撮像素子12aにおいて結像する。よって、撮像装置12は、透過領域127aを透過した眼底反射光に基づく眼底像とともに、各透光部127c、127dを透過した眼底反射光に基づく三角形の画像(マーク)を形成する。ここで、一対のマークは、眼底像の周囲の黒色の背景領域(遮蔽領域127bに対応する)内に形成され、かつ、眼底像を挟み込むように互いに対向する位置に形成される。すなわち、上記の共役関係により、一対のマークと眼底像との位置関係は、透過領域127aと透光部127c、127dとの位置関係に対応している。
眼底カメラユニット1Aには、走査ユニット141とレンズ142とが設けられている。走査ユニット141は、OCTユニット150から出力される信号光LSの眼底Efに対する照射位置を走査する。
走査ユニット141は、図1に示すxy平面上において信号光LSを走査する。そのために、走査ユニット141には、たとえば、x方向への走査用のガルバノミラーと、y方向への走査用のガルバノミラーとが設けられている。
〔OCTユニット〕
OCTユニット150の構成について図3を参照しつつ説明する。OCTユニット150は、従来のフーリエドメインタイプのOCT装置と同様の光学系を備えている。すなわち、OCTユニット150は、低コヒーレンス光を参照光と信号光に分割し、被検眼の眼底を経由した信号光と参照物体を経由した参照光とを干渉させて干渉光を生成して検出する光学系を備えている。干渉光の検出結果(検出信号)は演算制御装置200に送られる。なお、この実施形態ではフーリエドメインタイプが適用されているので、干渉計は、生成された干渉光のスペクトル成分を検出するようになっている。
低コヒーレンス光源160は、広帯域の低コヒーレンス光L0を出力する広帯域光源である。この広帯域光源としては、たとえば、スーパールミネセントダイオード(Super Luminescent Diode:SLD)や、発光ダイオード(Light Emitting Diode:LED)などを用いることができる。
低コヒーレンス光L0は、たとえば、近赤外領域の波長の光を含み、かつ、数十マイクロメートル程度の時間的コヒーレンス長を有する。低コヒーレンス光L0は、眼底カメラユニット1Aの照明光(波長約400nm〜800nm)よりも長い波長、たとえば約800nm〜900nmの範囲の波長を含んでいる。
低コヒーレンス光源160から出力された低コヒーレンス光L0は、光ファイバ161を通じて光カプラ162に導かれる。光ファイバ161は、たとえばシングルモードファイバやPMファイバ(Polarization maintaining fiber;偏波面保持ファイバ)等により構成される。光カプラ162は、低コヒーレンス光L0を参照光LRと信号光LSとに分割する。
なお、光カプラ162は、光を分割する手段(スプリッタ;splitter)、及び、光を重畳する手段(カプラ;coupler)の双方の作用を有するが、ここでは慣用的に「光カプラ」と称する。
光カプラ162により生成された参照光LRは、シングルモードファイバ等からなる光ファイバ163により導光されてそのファイバ端面から出射される。更に、参照光LRは、コリメータレンズ171により平行光束とされ、ガラスブロック172及び濃度フィルタ173を経由し、参照ミラー174により反射される。
参照ミラー174により反射された参照光LRは、再び濃度フィルタ173及びガラスブロック172を経由し、コリメータレンズ171によって光ファイバ163のファイバ端面に集光され、光ファイバ163を通じて光カプラ162に導かれる。
ガラスブロック172と濃度フィルタ173は、参照光LRと信号光LSの光路長(光学距離)を合わせるための遅延手段として作用する。また、ガラスブロック172と濃度フィルタ173は、参照光LRと信号光LSの分散特性を合わせるための分散補償手段として作用する。
濃度フィルタ173は、参照光LRの光量を減少させる減光フィルタとして作用する。濃度フィルタ173は、たとえば、回転型のND(Neutral Density)フィルタにより構成される。濃度フィルタ173は、図示しない駆動機構によって回転駆動されて、干渉光LCの生成に寄与する参照光LRの光量を変更する。
また、参照ミラー174は、図示しない駆動機構により、参照光LRの進行方向(図3に示す両側矢印方向)に移動される。それにより、被検眼Eの眼軸長やワーキングディスタンス(対物レンズ113と被検眼Eとの間の距離)などに応じて、参照光LRの光路長を確保できる。なお、参照光LRの光路(参照光路)上には、偏光状態を調整するための偏光素子が設けられていてもよい。
他方、光カプラ162により生成された信号光LSは、シングルモードファイバ等からなる光ファイバ164により接続線152の端部まで導光される。ここで、光ファイバ164と光ファイバ152aは、単一の光ファイバから形成されていてもよいし、各々の端面同士を接合するなどして一体的に形成されていてもよい。
信号光LSは、光ファイバ152aにより導光されて眼底カメラユニット1Aに案内される。更に、信号光LSは、レンズ142、走査ユニット141、ダイクロイックミラー134、撮影レンズ126、リレーレンズ125、変倍レンズ124、撮影絞り121、孔開きミラー112の孔部112a、対物レンズ113を経由して被検眼Eに入射して眼底Efに照射される。なお、信号光LSを眼底Efに照射させるときには、バリアフィルタ122、123は事前に光路から退避される。
被検眼Eに入射した信号光LSは、眼底Ef上にて結像し反射される。このとき、信号光LSは、眼底Efの表面で反射されるだけでなく、眼底Efの深部領域にも到達して屈折率境界において散乱される。したがって、眼底Efを経由した信号光LSは、眼底Efの表面形態を反映する情報と、眼底Efの深層組織の屈折率境界における後方散乱の状態を反映する情報とを含んでいる。この光を単に「信号光LSの眼底反射光」と呼ぶことがある。
信号光LSの眼底反射光は、被検眼Eに向かう信号光LSと同じ経路を逆方向に案内されて光ファイバ152aの端面に集光される。更に、信号光LSの眼底反射光は、光ファイバ152aを通じてOCTユニット150に入射し、光ファイバ164を通じて光カプラ162に戻ってくる。
光カプラ162は、眼底Efを経由して戻ってきた信号光LSと、参照ミラー174にて反射された参照光LRとを重ね合わせて干渉光LCを生成する。干渉光LCは、シングルモードファイバ等からなる光ファイバ165を通じてスペクトロメータ180に導かれる。
スペクトロメータ(分光計)180は、干渉光LCのスペクトル成分を検出する。スペクトロメータ180は、コリメータレンズ181、回折格子182、結像レンズ183、CCD184を含んで構成される。回折格子182は、透過型でも反射型でもよい。また、CCD184に代えて、CMOS等の他の光検出素子(ラインセンサ又はエリアセンサ)を用いることも可能である。
スペクトロメータ180に入射した干渉光LCは、コリメータレンズ181により平行光束とされ、回折格子182によって分光(スペクトル分解)される。分光された干渉光LCは、結像レンズ183によってCCD184の受光面上に結像される。CCD184は、分光された干渉光LCの各スペクトル成分を検出して電荷に変換する。CCD184は、この電荷を蓄積して検出信号を生成する。更に、CCD184は、この検出信号を演算制御装置200に送る。
なお、この実施形態ではマイケルソン型の干渉計を採用しているが、たとえばマッハツェンダー型など任意のタイプの干渉計を適宜に採用することが可能である。
〔演算制御装置〕
演算制御装置200の構成について説明する。演算制御装置200は、CCD184から入力される検出信号を解析して眼底EfのOCT画像を形成する。そのための演算処理は、従来のフーリエドメインタイプのOCT装置と同様である。
また、演算制御装置200は、眼底カメラユニット1A及びOCTユニット150の各部を制御する。
眼底カメラユニット1Aの制御として、演算制御装置200は、観察光源101や撮影光源103による照明光の出力制御、エキサイタフィルタ105、106やバリアフィルタ122、123の光路上への挿入/退避動作の制御、LCD140等の表示装置の動作制御、照明絞り110の移動制御(絞り値の制御)、撮影絞り121の絞り値の制御、変倍レンズ124の移動制御(倍率/画角の制御)などを行う。更に、演算制御装置200は、走査ユニット141を制御して信号光LSを走査させる。
また、OCTユニット150の制御として、演算制御装置200は、低コヒーレンス光源160による低コヒーレンス光L0の出力制御、参照ミラー174の移動制御、濃度フィルタ173の回転動作(参照光LRの光量の減少量の変更動作)の制御、CCD184による電荷蓄積時間や電荷蓄積タイミングや信号送信タイミングの制御などを行う。
演算制御装置200は、従来のコンピュータと同様に、マイクロプロセッサ、RAM、ROM、ハードディスクドライブ、キーボード、マウス、ディスプレイ、通信インターフェイスなどを含んで構成される。ハードディスクドライブには、眼科観察装置1を制御するためのコンピュータプログラムが記憶されている。また、演算制御装置200は、CCD184からの検出信号に基づいてOCT画像を形成する専用の回路基板を備えていてもよい。
〔制御系〕
眼科観察装置1の制御系の構成について図4を参照しつつ説明する。
(制御部)
眼科観察装置1の制御系は、演算制御装置200の制御部210を中心に構成される。制御部210は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、通信インターフェイス等を含んで構成される。
制御部210には、主制御部211と記憶部212が設けられている。主制御部211は、前述した各種の制御を行う。
記憶部212は、各種のデータを記憶する。記憶部212に記憶されるデータとしては、たとえば、OCT画像の画像データ、眼底像Ef´の画像データ、被検眼情報などがある。被検眼情報は、患者IDや氏名などの被検者に関する情報や、左眼/右眼の識別情報などの被検眼に関する情報を含む。主制御部211は、記憶部212にデータを書き込む処理や、記憶部212からデータを読み出す処理を行う。
また、記憶部212には基準位置情報213が記憶されている。記憶部212は、この発明の「記憶手段」の一例である。基準位置情報213は、所定の基準位置に配置された撮像装置12(撮像素子12a)を用いて形成された撮影画像に基づいて生成される。この生成処理は画像処理部230が実行する。
基準位置情報213を生成する処理について図5を参照しつつ説明する。図5に示す画像(基準撮影画像)Tは、基準位置に配置された撮像装置12により撮影されたものである。基準撮影画像Tには実際の眼底の画像が描写されている必要はなく、一対のマークF1、F2が描写されていれば十分である。また、模型眼の眼底を撮影して基準撮影画像Tを取得してもよい。
基準撮影画像Tは、たとえば装置の出荷前、メンテナンス時、装置の電源投入時、各被検者に対する検査開始前、各被検眼に対する検査開始前など、補正対象となる眼底像や断層像を形成する前に取得される。
基準位置は、特別な意味を持った位置である必要はない。基準位置は、基準撮影画像Tが取得されたときの撮像装置12の位置、つまりマウント138に対する撮像装置12の装着位置や装着姿勢である。
この実施形態は、基準撮影画像Tが取得されたときの撮像装置12の位置(基準位置)と、被検眼Eの実際の眼底像や断層像が取得されたときの撮像装置12(又は撮像装置10)の位置(現在位置)とを比較することによって、当該眼底像と当該断層像との位置関係を補正するものである。
なお、基準撮影画像Tを取得する撮像装置と、実際の眼底像を取得する撮像装置とは、同じ装置である必要はない。たとえば、出荷時やメンテナンス時には、専用の撮像装置(工具カメラなどと呼ばれる)が用いられるので、基準撮影画像Tは工具カメラによって取得され、実際の眼底像は検査用の撮像装置により取得されることになる。また、電源投入時や各被検眼の検査前に基準撮影画像Tを取得する場合には、基準撮影画像Tも実際の眼底像も同じ撮像装置によって取得してもよい。
基準撮影画像Tが取得されたら、画像処理部230は、一対のマークF1、F2を結ぶ線分(基準線)H0を求める。この処理は、たとえば次のようにして実行できる。なお、以下の処理は、基準撮影画像Tを形成する画素の位置を表す座標系など、任意の2次元座標系を用いて実行される。
まず、基準撮影画像Tの画素値を解析し、基準撮影画像T中における各マークF1、F2の位置を特定する。次に、各マークF1、F2中の特徴位置(たとえば上記の内側頂点に相当する位置や重心位置など)を特定する。続いて、マークF1の特徴位置とマークF2の特徴位置とを結ぶ基準線H0を求める。
基準線H0が得られたら、画像処理部230は、この線分の中間位置(基準中心)K0を求める。前述のように、二つの透光部127c、127dを結ぶ線分の中間位置は透過領域127aの中心位置に一致されていること、更に、撮影マスク127と撮像装置12とはほぼ共役に配置されていることから、二つのマークF1、F2を結ぶ線分の中間位置である基準中心K0は、透過領域127aを通過して受光された光の像(ほぼ円形である)の中心位置にほぼ一致する。
画像処理部230は、このようにして得られた基準線H0及び基準中心K0のそれぞれの位置情報(座標値)を制御部210に送る。主制御部211は、これら位置情報を基準位置情報213として記憶部212に記憶させる。
このとき、基準撮影画像Tが取得されたときの撮影倍率(撮影画角)を基準位置情報213に含めて記憶させてもよい。なお、撮影倍率は、基準撮影画像Tが取得されるときの変倍レンズ124の位置から得られる。
基準位置情報213は、上記のデータ形態に限定されるものではない。たとえば、二つのマークF1、F2の位置を表す座標値を基準位置情報213として記憶してもよい。この場合、基準線H0や基準中心K0を求める処理は、眼底Efの実際の撮影時などに実行される。また、基準線H0の座標値のみを基準位置情報213として記憶し、実際の撮影時などに基準中心K0を求めるようにしてもよい。また、基準撮影画像T自体を基準位置情報213として記憶し、実際の撮影時などに基準線H0や基準中心K0を求めるようにしてもよい。
基準位置情報213を取得する際に、信号光LSを走査する走査ユニット141(ガルバノミラー)の調整も行うことが望ましい。この調整作業は、たとえば、対物レンズ113の前面側に走査調整用スケールを配置して行う。走査調整用スケールには、たとえば、縦線と横線が網目状に設けられている。また、走査調整用スケールには、中心位置を示す印が設けられている。走査調整用スケールは、この印が撮影光学系120の光軸に一致するように、かつ、横線がx方向に沿うように、そして縦線がy方向に沿うように、対物レンズ113の前に配置される。
まず、双方のガルバノミラーがニュートラルな位置(原点位置:たとえば、駆動用の電圧が印加されていない状態における位置)にあるときに、信号光LSが走査調整用スケールの中心位置に投影されるように、双方のガルバノミラーの位置を調整する。
更に、信号光LSをx方向に走査させたときに、つまりx方向への走査用のガルバノミラーを駆動したときに、その走査線が横線に対して平行になるように当該ガルバノミラーの位置を調整する。同様に、信号光LSをy方向に走査させたときに、つまりy方向への走査用のガルバノミラーを駆動したときに、その走査線が縦線に対して平行になるように当該ガルバノミラーの位置を調整する。以上の作業により、走査中心と、x方向及びy方向への走査の向きが補正される。
このような位置調整が為されると、位置ズレはあまり発生しない。少なくとも、走査ユニット141の位置ズレは、撮像装置12の位置ズレのような頻度では発生しない。
(画像形成部)
画像形成部220は、CCD184からの検出信号に基づいて眼底Efの断層像の画像データを形成する。この処理には、従来のフーリエドメインタイプの光コヒーレンストモグラフィと同様に、ノイズ除去(ノイズ低減)、フィルタ処理、FFT(Fast Fourier Transform)などの処理が含まれている。
画像形成部220は、たとえば、前述の回路基板や通信インターフェイス等を含んで構成される。画像形成部220は、OCTユニット150内の光学系や、信号光LSを導光する眼底カメラユニット1A内の光学系とともに、この発明の「断層像形成部」を構成する。なお、この明細書では、「画像データ」と、それに基づいて呈示される「画像」とを同一視することがある。
(画像処理部)
画像処理部230は、画像形成部220により形成された画像に対して各種の画像処理や解析処理を施す。たとえば、画像処理部230は、画像の輝度補正や分散補正等の各種補正処理などを実行する。また、画像処理部230は、基準撮影画像Tに対する上記の処理を実行する。
また、画像処理部230は、画像形成部220により形成された断層像の間の画素を補間する補間処理等を実行することにより、眼底Efの3次元画像の画像データを形成する。
なお、3次元画像の画像データとは、3次元座標系により画素の位置が定義された画像データを意味する。3次元画像の画像データとしては、3次元的に配列されたボクセルからなる画像データがある。この画像データは、ボリュームデータ或いはボクセルデータなどと呼ばれる。ボリュームデータに基づく画像を表示させる場合、画像処理部230は、このボリュームデータに対してレンダリング処理(ボリュームレンダリングやMIP(Maximum Intensity Projection:最大値投影)など)を施して、特定の視線方向から見たときの擬似的な3次元画像の画像データを形成する。表示部240等の表示デバイスには、この擬似的な3次元画像が表示される。
また、3次元画像の画像データとして、複数の断層像のスタックデータを形成することも可能である。スタックデータは、複数の走査線に沿って得られた複数の断層像を、走査線の位置関係に基づいて3次元的に配列させることで得られる画像データである。すなわち、スタックデータは、元々個別の2次元座標系により定義されていた複数の断層像を、一つの3次元座標系により表現する(つまり一つの3次元空間に埋め込む)ことにより得られる画像データである。
画像処理部230には、変位補正部231と回転補正部232が設けられている。これら補正部231、232を含む画像処理部230は、この発明の「補正手段」の一例である。
変位補正部231は、撮像装置12(又は撮像装置10)による撮影画像に基づいて、一対の透光部127c、127dに対応する一対のマークの中間位置を求める。基準撮影画像Tについては、前述のように、マークF1、F2の基準中心K0を求める。
また、図6に示すように眼底Efを撮影して得られた眼底像Ef´については、基準撮影画像Tと同様の処理を実行することにより、眼底像Ef´に写し込まれた一対のマークM1、M2の中間位置Kを求める。中間位置Kは、眼底像Ef´において眼底Efの表面を描写した画像の中心位置を表す。以下、中間位置Kを画像中心Kと称することがある。
図6に示す符号Rは、眼底Efにおける信号光LSの走査領域を表す。この矩形状の走査領域Rは3次元スキャン(後述)である。3次元スキャンでは、それぞれが水平方向(x方向)に直線状に延びる複数の走査線に沿って信号光LSを走査する。複数の走査線は垂直方向(y方向)に配列されている。が設定される。なお、図6においては、横方向がx方向に相当し、縦方向がy方向に相当する。信号光LSの走査領域は、一般に眼底像Ef´の取得範囲よりも狭い。図6の走査領域Rは、たとえば6mm×6mmの正方形状である。
変位補正部231は、基準中心K0と画像中心Kとの変位に基づいて、眼底像Ef´及び/又は断層像を平行移動させて、これら二つの画像の相対位置を補正する。この処理について図7を参照しつつ説明する。
なお、図7に示すXY座標系は、画像を形成する画素の位置を表す座標系などの前述の2次元座標系である。ここで、基準撮影画像Tの撮影倍率と眼底像Ef´の撮影倍率とが異なる場合、画像処理部230は、倍率が同じになるように一方又は双方の画像を拡大/縮小して両画像のスケールを合わせる。それにより、両画像の倍率が一致される。ここで、各画像T、Ef´の撮影倍率は、たとえば、その画像が取得されたときの変倍レンズ124の位置から得られる。
また、各画像T、Ef´に写し込まれたマークのサイズ(面積、高さ、辺の長さ等、マークの大きさを表す物理量)を求め、双方の画像T、Ef´のマークのサイズを等しくするように両画像の倍率を合わせることも可能である。
変位補正部231は、基準中心K0の座標値(X0、Y0)と、画像中心Kの座標値(X、Y)とに基づいて、X方向の変位ΔX=X−X0と、Y方向の変位ΔY=Y−Y0を求める。この変位Δ=(ΔX、ΔY)は、基準撮影画像Tの基準中心K0に対する、眼底像Ef´の画像中心KのXY平面における変位を表す。なお、画像中心Kの座標値(X、Y)は、この発明の「現在位置情報」の一例である。現在位置情報は撮像装置12の現在位置を表す情報であり、これは、撮像装置12の装着位置や装着姿勢によって撮像素子12aと透光部127c、127dとの相対位置が変化することによるものである。
続いて、変位補正部231は、この変位Δを打ち消すように、眼底像Ef´を平行移動させる。この処理は、たとえば、眼底像Ef´を(−ΔX、−ΔY)だけ移動させるものである。前述のように走査ユニット141の位置調整がなされているので、基準中心K0と走査中心(走査領域Rの中心位置)とが一致している。よって、このような変位補正により、画像中心Kと走査中心とが一致され、それにより、眼底像Ef´と各断層像とのX方向及びY方向における相対位置が補正される。
なお、眼底像Ef´を平行移動させる代わりに、各断層像の位置を(ΔX、ΔY)だけ移動させるようにしても同様の効果が得られる。また、変位Δを打ち消すように眼底像Ef´と各断層像の双方を平行移動させるようにしても同様である。
続いて、図7を参照しつつ回転補正部232について説明する。回転補正部232は、撮像装置12(又は撮像装置10)による撮影画像に基づいて、一対の透光部127c、127dに対応する一対のマークを結ぶ直線(線分)を求める。なお、変位補正部231によって既に直線が求められている場合には、これをそのまま利用してもよい。逆に、回転補正部232が先に直線を求めた場合、変位補正部231は、これをそのまま利用してもよい。
基準撮影画像Tについては、前述のように、マークF1、F2を結んだ基準線H0を求める。また、図6に示すように眼底Efを撮影して得られた眼底像Ef´については、基準撮影画像Tと同様の処理を実行することにより、眼底像Ef´に写し込まれた一対のマークM1、M2を結んだ直線(中心線)Hを求める。なお、中心線Hの位置は、この発明の「現在位置情報」の一例である。
次に、回転補正部232は、基準線H0と中心線Hとが成す角度(交差角度)Δθを求める。交差角度Δθは、XY座標系で双方の直線を表現することにより容易に演算できる。
更に、回転補正部232は、交差角度Δθを打ち消すように、眼底像Ef´を回転移動させる。この処理は、たとえば、眼底像Ef´を−Δθだけ回転させるものである。このときの回転中心は、たとえば画像中心Kである。前述のように走査ユニット141の位置調整がなされているので、基準線H0と走査のx方向とが平行になっている。よって、このような回転補正により、眼底像Ef´の中心線Hと、x方向に沿った断層像の向きとが一致され、それにより、眼底像Ef´と各断層像との回転方向における相対位置が補正される。
なお、x方向以外の方向に沿った断層像についても同様に回転補正を施すことが可能である。すなわち、任意方向の断層像は、xy平面内に断面を有しているので、当該断層像の断面方向をxy座標系で表現することができ、更に、回転補正によってx方向とX方向とが一致され、y方向とY方向とが一致されるので、XY座標系で当該断面方向を表現することができ、それにより、回転補正を施すことができる。たとえば、y方向に沿った断層像については、その断面方向が基準線H0に直交するように回転補正が施される。
また、眼底像Ef´を平行移動させる代わりに、各断層像をΔθだけ回転させるようにしても同様の効果が得られる。また、交差角度Δθを打ち消すように眼底像Ef´と各断層像の双方を回転させるようにしても同様である。
また、断層像を形成するための計測が行われたとき、つまり信号光LSが被検眼Eに照射されたときの変倍レンズ124の位置と、基準撮影画像Tが取得されたときの変倍レンズ124の位置とに基づいて、断層像と基準撮影画像Tとの倍率を合わせることができる。それにより、眼底像Ef´と断層像との倍率を合わせることが可能となる。
また、断層像に描写された眼底Efの特徴部位のサイズと、基準撮影画像Tに描写された当該特徴部位のサイズとを同じにするように、断層像と基準撮影画像Tとの倍率合わせを行うことも可能である。
以上の説明において断層像の位置補正について説明したが、複数の断層像に基づく3次元画像や任意断面の断層像についても同様に位置補正を行うことが可能である。
画像処理部230は、たとえば、前述のマイクロプロセッサ、RAM、ROM、ハードディスクドライブ、回路基板等を含んで構成される。
(表示部、操作部)
表示部240は、ディスプレイを含んで構成される。操作部250は、キーボードやマウス等の入力デバイスや操作デバイスを含んで構成される。又、操作部250には、眼科観察装置1の筐体や外部に設けられた各種のボタンやキーが含まれていてもよい。
なお、表示部240と操作部250は、それぞれ個別のデバイスとして構成される必要はない。たとえばタッチパネル方式のLCDのように、表示部240と操作部250とが一体化されたデバイスを用いることも可能である。
〔信号光の走査及びOCT画像について〕
ここで、信号光LSの走査及びOCT画像について説明しておく。
眼科観察装置1による信号光LSの走査態様としては、たとえば、水平スキャン、垂直スキャン、十字スキャン、放射スキャン、円スキャン、同心円スキャン、螺旋(渦巻)スキャンなどがある。これらの走査態様は、眼底の観察部位、解析対象(網膜厚など)、走査に要する時間、走査の精密さなどを考慮して適宜に選択的に使用される。
水平スキャンは、信号光LSを水平方向(x方向)に走査させるものである。水平スキャンには、垂直方向(y方向)に配列された複数の水平方向に延びる走査線に沿って信号光LSを走査させる態様も含まれる。この態様においては、隣接する走査線の間隔を任意に設定することが可能である。走査線の間隔を十分に狭くすることにより、前述の3次元画像を形成することができる(3次元スキャン)。垂直スキャンについても同様である。
十字スキャンは、互いに直交する2本の直線状の軌跡(直線軌跡)からなる十字型の軌跡に沿って信号光LSを走査するものである。放射スキャンは、所定の角度を介して配列された複数の直線軌跡からなる放射状の軌跡に沿って信号光LSを走査するものである。なお、十字スキャンは放射スキャンの一例である。
円スキャンは、円形状の軌跡に沿って信号光LSを走査させるものである。同心円スキャンは、所定の中心位置の周りに同心円状に配列された複数の円形状の軌跡に沿って信号光LSを走査させるものである。円スキャンは同心円スキャンの特殊例と考えられる。螺旋スキャンは、回転半径を次第に小さく(又は大きく)させながら螺旋状(渦巻状)の軌跡に沿って信号光LSを走査するものである。
走査ユニット141は、前述のような構成により、信号光LSをx方向及びy方向にそれぞれ独立に走査できるので、xy面上の任意の軌跡に沿って信号光LSを走査することが可能である。それにより、上記のような各種の走査態様を実現できる。
上記のような態様で信号光LSを走査することにより、走査線(走査軌跡)に沿った深度方向(x方向)の断層像を形成することができる。また、特に走査線の間隔が狭い場合には、前述の3次元画像を形成することができる。
[作用・効果]
以上のような眼科観察装置1の作用及び効果について説明する。
眼科観察装置1は、眼底Efの撮影画像(眼底像Ef´)を形成する機能と、眼底Efの断層像を形成する機能とを有する。
また、撮影光学系120は、撮像装置12の位置を表すマークとして撮影画像中に写し込まれる透光部127c、127dを備えている。透光部127c、127dは、撮像装置12(撮像素子12a)に対して略共役な位置に設けられている。
また、記憶部212は、基準撮影画像T中に写し込まれたマークF1、F2の位置に基づく基準位置情報213を記憶している。基準位置情報213には、基準中心K0及び基準線H0の位置情報が含まれている。
眼底Efの眼底像Ef´及び断層像が形成されると、画像処理部230は、眼底像Ef´中に写し込まれたマークM1、M2の位置と基準位置情報213とに基づいて、眼底像Ef´と断層像との相対位置を補正する。このとき、マークM1、M2に基づく画像中心Kと基準中心K0に基づいて眼底像Ef´や断層像を平行移動させる。また、マークM1、M2に基づく中心線Hと基準線H0に基づいて眼底像Ef´や断層像を回転移動させる。
このような眼科観察装置1によれば、撮像装置12の装着位置のズレに基づいて眼底像Ef´と断層像との相対位置を補正できるので、眼底像Ef´と断層像との位置関係を高い確度で把握することが可能である。
また、従来は3次元画像を形成するのに十分な枚数の断層像を取得しなければ眼底像Ef´と断層像との位置補正を行えなかったが、眼科観察装置1によれば、少数(1枚でもよい)の断層像を取得した場合でも眼底像Ef´と断層像との位置関係を補正することができる。
また、従来の位置補正では、3次元画像を形成したり、積算画像を生成したり、積算画像と眼底像との画像相関を求めたり、といった処理が必要であったが、眼科観察装置1によれば、簡便な処理によって位置補正を行えるので、処理時間の短縮や演算に掛かるリソースの節約を図ることができる。
[変形例]
以上に説明した構成は、この発明を好適に実施するための一例に過ぎない。よって、この発明の要旨の範囲内における任意の変形を適宜に施すことが可能である。
〔変形例1〕
上記の実施形態では、撮影マスクに一対の透光部を設けることにより撮影画像にマークを写し込んでいるが、マーキング手段はこれに限定されるものではない。たとえば、単一の透光部を用いて同様の位置補正を行うことが可能である。
一例として、線状や長方形状の透光部を設け、その中心位置と傾き(後者では長辺の傾き等)を利用することにより、上記実施形態と同様の位置補正を実現できる。
〔変形例2〕
複数組のマークを撮影画像に写し込むようなマーキング手段を適用することが可能である。ここで、「組」は、位置補正を実行可能なマークの単位である。たとえば、上記実施形態のように一対のマークを用いる場合には、一対が一組となる。また、上記のように単一のマークを用いる場合には、1つが一組となる。
この変形例は、位置補正が可能なマークを複数組写り込ませることを可能にすることで、撮影画像中において検出できないマークがある場合でも位置補正を行えるようにするものである。なお、マークの検出ができなくなるケースとしては、フレアが発生した場合や、被検眼の混濁ないし小瞳孔等によって眼底反射光の一部が欠けてしまう場合などがある。
この変形例は、たとえば次のようにして実現可能である。上記の実施形態のような透光部を複数対設ける。たとえば、図2に示すように横方向の対向位置に配設された一対の透光部とともに、縦方向の対向位置に配設された一対の透光部を設ける。それにより、たとえば横方向の一対の透光部の一方又は双方が検出できなかったとしても、縦方向の一対の透光部に基づいて位置補正を行うことができる。
この変形例では、基準撮影画像中に写し込まれた複数組のそれぞれのマークの位置に基づいて基準位置情報を生成して記憶しておく。そして、被検眼の眼底像に写し込まれた一組のマークの位置と基準位置情報とに基づいて、眼底像と断層像の相対位置を補正する。
〔変形例3〕
マーキング手段は、撮影マスクに設けられた透光部には限定されない。たとえば、マーキング手段として、眼底反射光の周辺部分又は眼底反射光の外部位置に発光部材を設けることができる。発光部材としては、たとえばLED等の発光素子を用いることができる。また、たとえば上記の実施形態の透光部127c、127dと同様の三角形状で面発光が可能な発光素子を用いることも可能である。
画像処理部230は、発光部材から出力された光の像として基準撮影画像中に写し込まれたマークの位置に基づいて基準位置情報を生成する。更に、発光部材からの光のとして被検眼の眼底像中に写し込まれたマークの位置に基づいて、撮像装置12の現在位置を表す現在位置情報を生成する。そして、この現在位置情報と基準位置情報とを比較して、眼底像と断層像との相対位置を補正する。
具体例として、上記の実施形態と同様に一対の発光部材を設ける場合を説明する。一対の発光部材は、眼底反射光を導光する光学系の光軸を挟んだ対向位置に設けられる。画像処理部230は、撮影画像に基づいて一対の発光部材に対応する一対のマークの中間位置を求める。そして、基準撮影画像に基づく中間位置と、被検眼の眼底像に基づく中間位置との変位に基づいて、眼底像や断層像を平行移動させて、これら画像の相対位置を補正する。
また、画像処理部230は、撮影画像に基づいて一対の発光部材に対応する一対のマークを結んだ直線を求める。そして、基準撮影画像に基づく直線と、被検眼の眼底像に基づく直線とが成す角度に基づいて、眼底像や断層像を回転移動させて、これら画像の相対位置を補正する。
この変形例によれば、上記の実施形態と同様に、眼底像と断層像との位置関係を高い確度で把握することが可能である。また、少数の断層像を取得した場合でも眼底像と断層像との位置関係を補正することができる。また、処理時間の短縮や演算に掛かるリソースの節約を図ることができる。
また、この変形例によれば、撮影マスクを用いる代わりに、撮影画像のフレーム中の周辺領域(遮蔽領域127bに対応する画像領域)を黒く塗りつぶす画像処理を施して画像の提示範囲を制限する方法(電子マスクなどと呼ばれる:たとえば特開2007−143671号広報を参照)を用いる場合であっても、撮影画像にマークを写り込ませて補正を実行することが可能である。
〔変形例4〕
上記実施形態と異なる手法で断層像の位置を補正する変形例を説明する。この変形例では、被検眼(眼底)の所定の走査領域内において信号光を走査することにより断層像が形成される。信号光の走査は、走査手段(走査ユニット141)が行う。撮影画像形成部と断層像形成部は、たとえば上記の実施形態と同様の構成を有する。
また、上記の実施形態や変形例と同様にして基準撮影画像を形成し、この基準撮影画像に写し込まれたマークの位置に基づいて基準位置情報を生成する。生成された基準位置情報は、記憶手段(記憶部212)に記憶される。マークを写り込ませるマーキング手段は、たとえば、上記の実施形態や変形例と同様に、撮影マスクの透光部であってもよいし、発光部材であってもよい。また、撮影画像にマークを写り込ませることが可能であれば、これら以外の形態のマーキング手段を設けてもよい。
断層像が形成されると、眼科観察装置の補正手段(画像処理部230)は、信号光の走査態様と基準位置情報とに基づいて、この断層像の位置を補正する。以下、図8及び図9を参照しつつ、断層像の位置補正処理の例を説明する。
まず、断層像を平行移動させる補正処理について説明する。上記実施形態と同様に、基準撮影画像Tには一対のマークF1,F2が写り込んでいる。画像処理部230は、マークF1とマークF2との中間位置(基準中心)K0を求めて基準位置情報を生成する。走査領域R内の各走査線Riに沿った断層像が形成されると、画像処理部230は、走査領域Rの中心位置(走査中心)Cを求める。ここで、信号光の走査の制御内容(つまり制御部210による走査ユニット141の制御内容)に基づいて走査領域Rを求めて走査中心Cを求めてもよいし、眼底Efの観察画像(観察光源101からの照明光を用いて撮影される画像)に写り込まれた走査軌跡に基づいて走査領域Rを求めて走査中心Cを求めてもよい。更に、画像処理部230は、走査中心Cと基準中心K0との変位に基づいて断層像を平行移動させる。すなわち、画像処理部230は、走査中心Cを基準中心K0に一致させるように断層像を平行移動させる。
次に、断層像を回転移動させる補正処理について説明する。画像処理部230は、基準撮影画像T中のマークF1、F2を結んだ直線(基準線)H0を求めて基準位置情報を生成する。走査領域R内の各走査線Riに沿った断層像が形成されると、画像処理部230は、走査線Riの方向と基準線H0とが成す角度(交差角度)を求め、この交差角度に基づいて断層像を回転移動させる。このとき、走査領域R内の複数の走査線Riが平行である場合には、1つの走査線について交差角度を求めれば十分である。なお、信号光の走査の制御内容に基づいて走査線Riの方向を求めてもよいし、眼底Efの観察画像に写り込まれた走査軌跡に基づいて走査線Riの方向を求めてもよい。
図8に示すような走査領域Rに対して上記のような平行移動と回転移動を施すことにより、走査中心Cが基準中心K0に一致し、かつ、走査線Riが基準線H0に平行になるように、断層像の位置が補正される(図9を参照)。このような位置補正を行うことにより、断層像の位置ズレを補正することができる。また、断層像の位置ズレに起因する眼底像と断層像との相対位置のズレを補正できるので、眼底像と断層像との位置関係を高い確度で把握することが可能となる。
また、この眼科観察装置によれば、少数(1枚でもよい)の断層像を取得した場合でも眼底像と断層像との位置関係を補正することができる。また、断層像のみを取得する場合であっても、断層像の位置補正を行えるというメリットもある。
また、この眼科観察装置によれば、従来のような画像処理を行う場合と比較して簡便な処理によって位置補正を行えるので、処理時間の短縮や演算に掛かるリソースの節約を図ることができる。
上記においては3次元スキャンについて特に詳しく説明したが、他の走査態様についても同様の手法が適用可能である。たとえば、水平スキャン、垂直スキャン、十字スキャン及び放射スキャンは、直線的な走査線を組み合わせたものであるから、交差角度を用いる手法が適用可能である。
また、一本の走査線の中点位置を走査中心とみなしたり、複数本の走査線のそれぞれの端部を境界とする領域を走査領域とみなして走査中心を求めたりすることにより、走査中心を用いる手法を適用することが可能である。たとえば、水平スキャンを形成する一本の走査線の両端の中点位置を特定して走査中心とみなし、この走査中心と基準中心との変位に基づいて補正を行うことが可能である。また、十字スキャンを形成する二本の走査線(互いに直交している)のそれぞれの両端位置を特定し、これら四つの両端位置を結んで形成される四角形を走査領域とし、この走査領域の中心位置を走査中心とみなし、この走査中心と基準中心との変位に基づいて補正を行うことが可能である。
円スキャンや同心円スキャンについては、円形状の走査線に沿って信号光が走査されるので、この走査線により囲まれる領域を走査領域とみなし、その中心位置を走査中心として補正を行うことができる。また、円形の走査線上の特定位置(走査開始位置、捜査終了位置など)における接線方向を求め、この接線方向と基準線との交差角度に基づいて補正を行うことが可能である。また、当該特定位置と上記走査中心とを結ぶ直線を求め、この直線と基準線との交差角度に基づいて補正を行うことが可能である。
螺旋スキャンについては、たとえば、螺旋状の軌跡に基づいて中心位置(走査中心)を演算し、この走査中心と基準中心との変位に基づいて補正を行うことができる。また、螺旋状の軌跡における走査開始位置と走査終了位置とを結ぶ直線を求め、この直線と基準線との交差角度に基づいて補正を行うことも可能である。
上記以外の走査態様についても同様の補正を行うことが可能である。たとえば、或る走査態様に基づいて走査中心や走査線の方向を定義可能であれば、この走査態様について上記と同様の手法で補正を施すことができる。
また、走査中心や走査線の方向以外にも、信号光の走査態様に基づく特徴的な対象(位置、方向、面積、長さ等の物理量として表現される対象)を定義可能である場合には、当該対象を参照して補正を行うことが可能である。なお、適用される特徴的な対象に応じた基準位置情報をマークに基づいてあらかじめ取得しておく。一例として、走査線が閉曲線の場合には、この走査線により囲まれる領域の重心位置を走査中心とみなして補正を行うことができる。
また、複数の走査態様のそれぞれの基準位置情報をあらかじめ記憶しておく場合、各基準位置情報に対して走査態様の識別情報を関連付けておく。そして、実際の検査において一の走査態様が指定されたときに、この指定された走査態様の識別情報に基づいて基準位置情報を選択的に使用することが可能である。
〔変形例5〕
上記の実施形態や変形例において、写し込まれたマークを消去して撮影画像を表示させることが可能である。マークを消去する方法としては、たとえば、前述の電子マスクと同様に、撮影画像に写し込まれたマークを黒く塗りつぶす方法がある。
マークは前述のような補正処理に用いられるものであり、観察の対象ではないので、表示時には消去してもよい。なお、表示時には消去されていても、マークの位置を表す情報まで消去する必要はない。
この変形例において、マークを塗りつぶす処理は画像処理部230により実行される。このとき画像処理部230は、この発明の「画像処理手段」として機能する。また、撮影画像は、制御部210の制御の下に表示部240に表示される。このとき表示部240は、この発明の「表示手段」として機能する。
〔その他の変形例〕
上記の実施形態においては、参照ミラー174の位置を変更して信号光LSの光路と参照光LRの光路との光路長差を変更しているが、光路長差を変更する手法はこれに限定されるものではない。たとえば、被検眼Eに対して眼底カメラユニット1AやOCTユニット150を移動させて信号光LSの光路長を変更することにより光路長差を変更することができる。また、特に被測定物体が生体部位でない場合などには、被測定物体を深度方向(z方向)に移動させることにより光路長差を変更することも有効である。
上記の実施形態に係る補正処理を実行するためのコンピュータプログラムを、コンピュータのドライブ装置によって読み取り可能な任意の記録媒体に記憶させることができる。この記録媒体としては、たとえば、光ディスク、光磁気ディスク(CD−ROM/DVD−RAM/DVD−ROM/MO等)、磁気記憶媒体(ハードディスク/フロッピー(登録商標)ディスク/ZIP等)などを用いることが可能である。また、ハードディスクドライブやメモリ等の記憶装置に記憶させることも可能である。更に、インターネットやLAN等のネットワークを通じてこのプログラムを送受信することも可能である。
1 眼科観察装置
1A 眼底カメラユニット
127 撮影マスク
127a 透過領域
127b 遮蔽領域
127c、127d 透光部
141 走査ユニット
150 OCTユニット
160 低コヒーレンス光源
174 参照ミラー
180 スペクトロメータ
184 CCD
200 演算制御装置
210 制御部
213 基準位置情報
220 画像形成部
230 画像処理部
231 変位補正部
232 回転補正部
240 表示部
250 操作部
T 基準撮影画像
K0 基準中心
H0 基準線
Ef´ 眼底像
K 画像中心
H 中心線
R 走査領域
Ri 走査線
C 走査中心
F1、F2、M1、M2 マーク

Claims (19)

  1. 被検眼に照明光を照射する照射手段と、前記被検眼からの前記照明光の反射光を受光する受光手段とを含み、前記反射光の受光結果に基づいて前記被検眼の撮影画像を形成する撮影画像形成部と、
    光源からの光を信号光と参照光とに分割し、前記被検眼を経由した前記信号光と参照光路を経由した参照光との干渉光を生成して検出する光学系を含み、前記干渉光の検出結果に基づいて前記被検眼の断層像を形成する断層像形成部と、
    を有する眼科観察装置であって、
    前記撮影画像形成部は、前記受光手段に対して略共役な位置に設けられ、前記受光手段の位置を表すマークとして前記撮影画像中に写し込まれるマーキング手段を備え、
    基準位置に配置された前記受光手段を用いて形成された基準撮影画像中に写し込まれた前記マークの位置に基づく基準位置情報をあらかじめ記憶する記憶手段と、
    前記撮影画像形成部により新たな撮影画像が形成され、前記断層像形成部により断層像が形成されたときに、該撮影画像中に写し込まれた前記マークの位置と前記記憶された基準位置情報とに基づいて、該撮影画像と該断層像との相対位置を補正する補正手段と、
    を備える、
    ことを特徴とする眼科観察装置。
  2. 前記撮影画像形成部は、前記受光手段に対して略共役な位置に設けられ、前記反射光の中央部分を透過させる透過領域と周辺部分を遮蔽する遮蔽領域とを有する撮影マスクを含み、
    前記マーキング手段は、前記撮影マスクの前記遮蔽領域に形成された透光部を含み、
    前記補正手段は、前記透光部を透過した前記反射光の像として前記基準撮影画像中に写し込まれたマークの位置に基づいて前記基準位置情報をあらかじめ生成し、更に、前記新たな撮影画像及び前記断層像が形成されたときに、該撮影画像中に写し込まれた前記透光部のマークの位置に基づいて前記受光手段の現在位置を表す現在位置情報を生成し、前記現在位置情報と前記基準位置情報とを比較して前記相対位置を補正する、
    ことを特徴とする請求項1に記載の眼科観察装置。
  3. 前記マーキング手段は、前記撮影マスクの前記透過領域を挟んだ対向位置に設けられた一対の前記透光部を含み、
    前記補正手段は、前記撮影画像形成部による撮影画像に基づいて前記一対の透光部に対応する一対の前記マークの中間位置を求め、前記基準撮影画像に基づく前記中間位置と前記新たな撮影画像に基づく前記中間位置との変位に基づいて該撮影画像及び/又は該断層像を平行移動させて前記相対位置を補正する、
    ことを特徴とする請求項2に記載の眼科観察装置。
  4. 前記マーキング手段は、前記撮影マスクの前記透過領域を挟んだ対向位置に設けられた一対の前記透光部を含み、
    前記補正手段は、前記撮影画像形成部による撮影画像に基づいて前記一対の透光部に対応する一対の前記マークを結んだ直線を求め、前記基準撮影画像に基づく前記直線と前記新たな撮影画像に基づく前記直線とが成す角度に基づいて該撮影画像及び/又は該断層像を回転移動させて前記相対位置を補正する、
    ことを特徴とする請求項2に記載の眼科観察装置。
  5. 前記マーキング手段は、前記反射光の周辺部分又は前記反射光の外部位置に設けられた発光部材を含み、
    前記補正手段は、前記発光部材から出力された光の像として前記基準撮影画像中に写し込まれたマークの位置に基づいて前記基準位置情報をあらかじめ生成し、更に、前記新たな撮影画像及び前記断層像が形成されたときに、前記発光部材からの光の像として該撮影画像中に写し込まれたマークの位置に基づいて前記受光手段の現在位置を表す現在位置情報を生成し、前記現在位置情報と前記基準位置情報とを比較して前記相対位置を補正する、
    ことを特徴とする請求項1に記載の眼科観察装置。
  6. 前記マーキング手段は、前記反射光を導光する光学系の光軸を挟んだ対向位置に設けられた一対の前記発光部材を含み、
    前記補正手段は、前記撮影画像形成部による撮影画像に基づいて前記一対の発光部材に対応する一対の前記マークの中間位置を求め、前記基準撮影画像に基づく前記中間位置と前記新たな撮影画像に基づく前記中間位置との変位に基づいて該撮影画像及び/又は該断層像を平行移動させて前記相対位置を補正する、
    ことを特徴とする請求項5に記載の眼科観察装置。
  7. 前記マーキング手段は、前記反射光を導光する光学系の光軸を挟んだ対向位置に設けられた一対の前記発光部材を含み、
    前記補正手段は、前記撮影画像形成部による撮影画像に基づいて前記一対の発光部材に対応する一対の前記マークを結んだ直線を求め、前記基準撮影画像に基づく前記直線と前記新たな撮影画像に基づく前記直線とが成す角度に基づいて該撮影画像及び/又は該断層像を回転移動させて前記相対位置を補正する、
    ことを特徴とする請求項5に記載の眼科観察装置。
  8. 前記マーキング手段は、撮影画像中の異なる位置に複数組の前記マークを写し込むことが可能であり、
    前記記憶手段は、基準撮影画像中に写し込まれた前記複数組のそれぞれのマークの位置に基づく前記基準位置情報をあらかじめ記憶し、
    前記補正手段は、前記新たな撮影画像に写し込まれた一組のマークの位置と前記基準位置情報とに基づいて前記相対位置を補正する、
    ことを特徴とする請求項1〜請求項7のいずれか一項に記載の眼科観察装置。
  9. 前記撮影画像形成部は、前記反射光を導光する光学系の光軸に沿って移動して撮影倍率を変更する変倍レンズを更に含み、
    前記補正手段は、前記基準撮影画像が形成されたときの前記変倍レンズの位置と、前記新たな撮影画像が形成されたときの前記変倍レンズの位置とに基づいて、前記基準撮影画像の倍率と前記新たな撮影画像の倍率とを合わせる、
    ことを特徴とする請求項1〜請求項8のいずれか一項に記載の眼科観察装置。
  10. 前記撮影画像形成部は、前記反射光を導光する光学系の光軸に沿って移動して撮影倍率を変更する変倍レンズを更に含み、
    前記補正手段は、前記基準撮影画像に写し込まれたマークのサイズと、前記新たな撮影画像に写し込まれたマークのサイズとに基づいて、前記基準撮影画像の倍率と前記新たな撮影画像の倍率とを合わせる、
    ことを特徴とする請求項1〜請求項8のいずれか一項に記載の眼科観察装置。
  11. 被検眼に照明光を照射する照射手段と、前記被検眼からの前記照明光の反射光を受光する受光手段とを含み、前記反射光の受光結果に基づいて前記被検眼の撮影画像を形成する撮影画像形成部と、
    光源からの光を信号光と参照光とに分割し、前記被検眼を経由した前記信号光と参照光路を経由した参照光との干渉光を生成して検出する光学系と、前記被検眼に対して前記信号光を走査する走査手段とを含み、前記干渉光の検出結果に基づいて前記被検眼の断層像を形成する断層像形成部と、
    を有する眼科観察装置であって、
    前記撮影画像形成部は、前記受光手段に対して略共役な位置に設けられ、前記受光手段の位置を表すマークとして前記撮影画像中に写し込まれるマーキング手段を備え、
    基準位置に配置された前記受光手段を用いて形成された基準撮影画像中に写し込まれた前記マークの位置に基づく基準位置情報をあらかじめ記憶する記憶手段と、
    前記断層像形成部により断層像が形成されたときに、前記走査手段による前記信号光の走査態様と前記記憶された基準位置情報とに基づいて該断層像の位置を補正する補正手段と、
    を備える、
    ことを特徴とする眼科観察装置。
  12. 前記撮影画像形成部は、前記受光手段に対して略共役な位置に設けられ、前記反射光の中央部分を透過させる透過領域と周辺部分を遮蔽する遮蔽領域とを有する撮影マスクを含み、
    前記マーキング手段は、前記撮影マスクの前記遮蔽領域に形成された透光部を含み、
    前記補正手段は、前記透光部を透過した前記反射光の像として前記基準撮影画像中に写し込まれたマークの位置に基づいて前記基準位置情報をあらかじめ生成し、更に、前記断層像が形成されたときに、前記信号光の走査態様と前記基準位置情報とに基づいて前記位置の補正を行う、
    ことを特徴とする請求項11に記載の眼科観察装置。
  13. 前記走査手段は、前記被検眼の所定の走査領域内において前記信号光を走査し、
    前記マーキング手段は、前記撮影マスクの前記遮蔽領域に形成された一対の前記透光部を含み、
    前記補正手段は、前記基準撮影画像中に写し込まれた前記一対の透光部に対応する一対の前記マークの中間位置を求めて前記基準位置情報を生成し、更に、前記断層像が形成されたときの前記所定の走査領域の中心位置を求め、該求められた前記中心位置と前記一対のマークの中間位置との変位に基づいて該断層像を平行移動させて前記位置の補正を行う、
    ことを特徴とする請求項12に記載の眼科観察装置。
  14. 前記走査手段は、前記被検眼の所定の走査線に沿って前記信号光を走査し、
    前記マーキング手段は、前記撮影マスクの前記遮蔽領域に形成された一対の前記透光部を含み、
    前記補正手段は、前記基準撮影画像中に写し込まれた前記一対の透光部に対応する一対の前記マークを結んだ直線を求めて前記基準位置情報を生成し、更に、前記断層像が形成されたときの前記所定の走査線の方向と前記直線とが成す角度に基づいて該断層像を回転移動させて前記位置の補正を行う、
    ことを特徴とする請求項12に記載の眼科観察装置。
  15. 前記マーキング手段は、前記反射光の周辺部分又は前記反射光の外部位置に設けられた発光部材を含み、
    前記補正手段は、前記発光部材から出力された光の像として前記基準撮影画像中に写し込まれたマークの位置に基づいて前記基準位置情報をあらかじめ生成し、更に、前記断層像が形成されたときに、前記信号光の走査態様と前記基準位置情報とに基づいて前記位置の補正を行う、
    ことを特徴とする請求項11に記載の眼科観察装置。
  16. 前記走査手段は、前記被検眼の所定の走査領域内において前記信号光を走査し、
    前記マーキング手段は、前記反射光を導光する光学系の光軸を挟んだ対向位置に設けられた一対の前記発光部材を含み、
    前記補正手段は、前記基準撮影画像中に写し込まれた前記一対の発光部材に対応する一対の前記マークの中間位置を求めて前記基準位置情報を生成し、更に、前記断層像が形成されたときの前記所定の走査領域の中心位置を求め、該求められた前記中心位置と前記一対のマークの中間位置との変位に基づいて該断層像を平行移動させて前記位置の補正を行う、
    ことを特徴とする請求項15に記載の眼科観察装置。
  17. 前記走査手段は、前記被検眼の所定の走査線に沿って前記信号光を走査し、
    前記マーキング手段は、前記反射光を導光する光学系の光軸を挟んだ対向位置に設けられた一対の前記発光部材を含み、
    前記補正手段は、前記基準撮影画像中に写し込まれた前記一対の発光部材に対応する一対の前記マークを結んだ直線を求めて前記基準位置情報を生成し、更に、前記断層像が形成されたときの前記所定の走査線の方向と前記直線とが成す角度に基づいて該断層像を回転移動させて前記位置の補正を行う、
    ことを特徴とする請求項15に記載の眼科観察装置。
  18. 前記撮影画像形成部は、前記反射光及び前記信号光を導光する光学系の光軸に沿って移動して撮影倍率を変更する変倍レンズを更に含み、
    前記補正手段は、前記基準撮影画像が形成されたときの前記変倍レンズの位置と、前記断層像が形成されたときの前記変倍レンズの位置とに基づいて、前記基準撮影画像の倍率と前記断層像の倍率とを合わせる、
    ことを特徴とする請求項11〜請求項17のいずれか一項に記載の眼科観察装置。
  19. 前記撮影画像形成部により形成された撮影画像に写し込まれた前記マークを消去する画像処理を施す画像処理手段と、
    前記マークが消去された前記撮影画像を表示する表示手段と、
    を更に備える、
    ことを特徴とする請求項1〜請求項18のいずれか一項に記載の眼科観察装置。
JP2009090212A 2009-04-02 2009-04-02 眼科観察装置 Active JP5144579B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009090212A JP5144579B2 (ja) 2009-04-02 2009-04-02 眼科観察装置
PCT/JP2010/002240 WO2010113459A1 (ja) 2009-04-02 2010-03-29 眼科観察装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009090212A JP5144579B2 (ja) 2009-04-02 2009-04-02 眼科観察装置

Publications (3)

Publication Number Publication Date
JP2010240068A JP2010240068A (ja) 2010-10-28
JP2010240068A5 JP2010240068A5 (ja) 2012-07-19
JP5144579B2 true JP5144579B2 (ja) 2013-02-13

Family

ID=42827769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009090212A Active JP5144579B2 (ja) 2009-04-02 2009-04-02 眼科観察装置

Country Status (2)

Country Link
JP (1) JP5144579B2 (ja)
WO (1) WO2010113459A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5917004B2 (ja) 2011-03-10 2016-05-11 キヤノン株式会社 撮像装置及び撮像装置の制御方法
JP6188297B2 (ja) * 2012-01-25 2017-08-30 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
JP6429447B2 (ja) * 2013-10-24 2018-11-28 キヤノン株式会社 情報処理装置、比較方法、位置合わせ方法及びプログラム
JP6243957B2 (ja) * 2016-04-18 2017-12-06 キヤノン株式会社 画像処理装置、眼科システム、画像処理装置の制御方法および画像処理プログラム

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245699A (ja) * 1998-12-30 2000-09-12 Canon Inc 眼科装置
JP3664937B2 (ja) * 2000-03-27 2005-06-29 株式会社ニデック 眼科装置
JP4584912B2 (ja) * 2003-04-11 2010-11-24 ボシュ・アンド・ロム・インコーポレイテッド 眼のデータ取得ならびに整列および追跡のためのシステムおよび方法
JP4578994B2 (ja) * 2005-02-02 2010-11-10 株式会社ニデック 眼科撮影装置
JP5007114B2 (ja) * 2006-12-22 2012-08-22 株式会社トプコン 眼底観察装置、眼底画像表示装置及びプログラム
JP5058627B2 (ja) * 2007-02-26 2012-10-24 株式会社トプコン 眼底観察装置

Also Published As

Publication number Publication date
WO2010113459A1 (ja) 2010-10-07
JP2010240068A (ja) 2010-10-28

Similar Documents

Publication Publication Date Title
JP5404078B2 (ja) 光画像計測装置
JP5058627B2 (ja) 眼底観察装置
JP4971872B2 (ja) 眼底観察装置及びそれを制御するプログラム
JP5340636B2 (ja) 眼底観察装置
JP4855150B2 (ja) 眼底観察装置、眼科画像処理装置及び眼科画像処理プログラム
JP4971864B2 (ja) 光画像計測装置及びそれを制御するプログラム
JP5324839B2 (ja) 光画像計測装置
JP4864516B2 (ja) 眼科装置
JP5543171B2 (ja) 光画像計測装置
JP5916110B2 (ja) 画像表示装置、画像表示方法、及びプログラム
JP2008237237A (ja) 眼底観察装置、眼科画像表示装置及びプログラム
JP5941761B2 (ja) 眼科撮影装置及び眼科画像処理装置
JP6624641B2 (ja) 眼科装置
JP2010256294A (ja) 光画像計測装置
JP5390371B2 (ja) 光画像計測装置及び光アッテネータ
JP5996959B2 (ja) 眼底解析装置
US10045691B2 (en) Ophthalmologic observation apparatus using optical coherence tomography
JP5144579B2 (ja) 眼科観察装置
WO2013085042A1 (ja) 眼底観察装置
JP5584345B2 (ja) 光画像計測装置及び撮影装置
JP5919175B2 (ja) 光画像計測装置
JP2022060588A (ja) 眼科装置、及び眼科装置の制御方法
JP2019154764A (ja) 涙液層厚み測定装置及び方法
JP2021191552A (ja) 眼科検査装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120531

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5144579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250