JP5143543B2 - ポンプの軸受診断装置及びその方法 - Google Patents

ポンプの軸受診断装置及びその方法 Download PDF

Info

Publication number
JP5143543B2
JP5143543B2 JP2007330483A JP2007330483A JP5143543B2 JP 5143543 B2 JP5143543 B2 JP 5143543B2 JP 2007330483 A JP2007330483 A JP 2007330483A JP 2007330483 A JP2007330483 A JP 2007330483A JP 5143543 B2 JP5143543 B2 JP 5143543B2
Authority
JP
Japan
Prior art keywords
pressure
bearing
air
detected
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007330483A
Other languages
English (en)
Other versions
JP2009074530A (ja
Inventor
祐治 兼森
和彦 本崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Torishima Pump Manufacturing Co Ltd
Original Assignee
Torishima Pump Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torishima Pump Manufacturing Co Ltd filed Critical Torishima Pump Manufacturing Co Ltd
Priority to JP2007330483A priority Critical patent/JP5143543B2/ja
Publication of JP2009074530A publication Critical patent/JP2009074530A/ja
Application granted granted Critical
Publication of JP5143543B2 publication Critical patent/JP5143543B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ポンプのケーシング内に配置されて主軸を支持する軸受の診断装置及びその方法に関する。
従来、吸水槽に短時間かつ多量に流入する雨水に対処するために、種々の先行待機型立軸ポンプが提案されている(例えば、特許文献1参照)。この先行待機型立軸ポンプは、降雨情報等に基づいて予め始動しておいて吸水槽への雨水流入と同時に排水を開始し、かつ吸水槽内の水位が低下しても運転状態を維持する。この先行待機型立軸ポンプではケーシング内に水が存在しない状態での運転(気中運転)を行う必要があるので、主軸を支持する軸受として無注水軸受を採用したものがある。
無注水軸受の磨耗や破損の発生を監視する方法としては、熱電対を備える温度センサを軸受に取り付け、温度センサにより検出された軸受温度により磨耗や破損の発生を間接的に監視する方法が知られている。また、振動センサで軸受に発生する振動を検出し、この振動により軸受の磨耗等の発生を間接的に監視する方法も知られている。
しかし、温度センサを使用する監視方法では、熱電対の断線によって検出温度自体に異常が発生して磨耗や破損を正確に判定することが困難となること、温度センサの故障により検出自体が不可能となること等の問題がある。また、先行待機型立軸ポンプでは、ケーシング内の羽根車より下方の領域に空気だまりが形成され、羽根車より上方の領域には水柱が形成された運転状態(エアロック運転状態)があり、このエアロック運転状態及びその前後は空気の混入により激しい振動が発生する。従って、振動センサを使用する監視方法では、無注水軸受の磨耗や破損を正確に監視することができない。
本発明者は、軸受とポンプの主軸との間の隙間に供給される空気流量と、この隙間への空気供給圧とポンプの吐出圧との差圧に基づいてポンプの主軸を支持する軸受の監視方法を提案している(特許文献2参照)。この軸受監視方法は、差圧計と流量計を使用するので、温度センサを備える温度センサを軸受に取り付けた場合に懸念される断線による異常信号の発生や故障を回避できる。また、エアロック運転前後の振動の影響を受けることなく軸受の異常発生を正確に判定できる。
しかし、この特許文献2に記載の軸受監視方法は、隙間への空気供給圧とポンプの吐出圧との差圧の制御が必要であるため、隙間への空気供給圧の制御がやや煩雑となる傾向がある。
特開平11−315795号公報(図1) 特許第3933586号明細書
本発明は、ポンプの主軸を支持する軸受における異常発生を正確かつ簡易に判定することができる、軸受診断装置及びその方法を提供することを課題としている。
本発明の第1の態様は、ポンプのケーシング内に配置されて主軸を支持する軸受の診断装置であって、前記ポンプのケーシング外に配置された圧力容器と、前記圧力容器内に圧縮空気を供給する空気供給源と、前記圧力容器を前記軸受と前記主軸の隙間に連通させる空気供給管路と、前記空気供給管路に設けられた開閉可能な遮断弁と、前記圧力容器内の空気圧を検出する第1の圧力計と、前記空気供給管路内の空気圧を検出する第2の圧力計と、前記空気供給管路に設けられて前記圧力容器から前記隙間に供給される空気の流量を検出する空気流量計と、前記第1の圧力計の検出圧力が予め定められた第1の圧力に上昇するまで前記空気供給源から前記圧力容器に圧縮空気を供給させ、前記第1の圧力計の検出圧力が前記第1の圧力に達すると、前記空気供給源から前記圧力容器への圧縮空気の供給を停止すると共に、前記遮断弁を閉弁状態から開弁状態に切り換えて前記軸受と前記主軸の隙間に前記空気供給管路を介して空気を供給し、前記第2の圧力計の検出圧力が予め定められた第2の圧力からこの第2の圧力より低圧の予め定められた第3の圧力に低下するまでの時間である圧力低下時間を測定し、前記遮断弁を開弁状態に切り換えてから、前記第2の圧力計の検出圧力が前記第2の圧力より低圧の予め定められた第4の圧力に低下した時の前記空気流量計の検出流量を取得する計測制御部と、前記計測制御部によって測定された前記圧力低下時間と前記検出流量とに基づいて前記軸受の異常を判定する判定部とを備え、前記第2、第3、及び第4の圧力は臨界圧力以上である、ポンプの軸受診断装置を提供する。
遮断弁の開放により圧力容器内の空気(第1の圧力)を軸受と主軸の隙間を介してポンプケーシング内に開放し、空気供給管路内の空気圧が第2の圧力から第3の圧力まで低下するのに要する時間(圧力低下時間)に基づいて軸受の異常を判定する。従って、センサないし検出機器としては、少なくとも第1及び第2の圧力計があればよく、温度センサや振動センサは必要ないので、正確な判定が可能となる。詳細には、温度センサとして熱電対を使用すると断線による異常信号の発生や故障の可能性が高いが、容器内圧力計を使用するので、その可能性が低い。また、振動の影響を受けない点でも、異常判定の精度が高い。さらに、圧力容器内の空気を第1の圧力まで昇圧した後は、遮断弁が開放すると圧力容器内の圧力は単にポンプケーシング内に開放することにより減圧される。言い換えれば、圧力容器から軸受と主軸の隙間へ空気供給圧について、煩雑な制御が必要なく、簡易に軸受の異常を判定できる。
本発明の軸受診断装置は、圧力容器内の圧縮空気を軸受と主軸の隙間に供給できるので、本来の軸受診断機能のみでなく、軸受と主軸の隙間に存在する夾雑物、砂、塵等を除去する清掃機能や、気中運転時の軸受冷却機能を有する。
例えば、前記判定部は、前記圧力低下時間が予め定められた閾値を下回ると、前記軸受に異常が発生していると判定する。
前記第2、第3、及び第4の圧力は臨界圧力以上、特にゲージ圧で3kgf/cm2以上であることが好ましい。この場合、軸受が水没しているか否か及び夾雑物等の有無にかかわらず異常判定が可能である。
本発明の第2の態様は、ポンプのケーシング内に配置されて主軸を支持する軸受の診断方法であって、圧力容器内の空気圧を検出する第1の圧力計の検出圧力が予め定められた第1の圧力に上昇するまで、空気供給源から圧力容器に圧縮空気を供給し、前記第1の圧力計の検出圧力が前記第1の圧力に達すると、前記空気供給源から前記圧力容器への圧縮空気の供給を停止すると共に、前記圧力容器から前記軸受と前記主軸の隙間に空気供給管路を介して空気を供給し、前記空気供給管路の空気圧を検出する第2の圧力計の検出圧力が予め定められた第2の圧力から予め定められた第3の圧力に低下するまでに要する時間である圧力低下時間を測定し、前記遮断弁を開弁状態に切り換えてから、前記第1の圧力計の検出圧力が前記第2の圧力より低圧の予め定められた第4の圧力に低下した時の前記空気流量計の検出流量を取得し、前記圧力低下時間と前記検出流量とに基づいて前記軸受の異常を判定し、前記第2、第3、及び第4の圧力は臨界圧力以上である、ポンプの軸受診断方法を提供する。
本発明にかかるポンプの軸受診断装置及びその方法によれば、圧力容器内の空気(第1の圧力)を軸受と主軸の隙間に空気供給管路を介して供給してポンプケーシング内に開放し、空気供給管路内の空気圧が第2の圧力から第3の圧力まで低下するのに要する圧力低下時間に基づいて軸受の異常を判定するので、軸受の異常を正確かつ簡易に判定できる。
図1から図3は、本発明の実施形態にかかる軸受診断装置1を備える先行待機型立軸ポンプ(以下、単に立軸ポンプという)2を示す。後述する空気孔17a、空気注入配管21A〜21C、圧縮空気供給系25、制御盤26、端末27、及び第2差圧検出用配管40が軸受診断装置1を構成している。
立軸ポンプ2は、図示しない流入側管路から排水ポンプ場の吸水槽3内に流入する雨水等の水を下流側に排水するためのものであり、鉛直方向に延びるケーシング4を備えている。ケーシング4は、直管状の揚水管4a,4b、揚水管4bの下端に連結されたインペラケーシング4c,4d、インペラケーシング4dの下端に連結された吸込ベル4e、揚水管4aの上端に連結されて鉛直方向から水平方向に湾曲した吐出ケーシング4fを備えている。吐出ケーシング4fには仕切弁5を設けた吐出管6が連結されている。インペラケーシング4d内にインペラ7が配設されている
インペラ7が下端に固定されている主軸8は、鉛直方向に延びてケーシング4の外部に突出している。9は主軸8のスラスト軸受、10は軸封装置である。主軸8の上端側は概略的に示すモータ又は内燃機関、減速機構等からなるポンプ駆動機構11に連結されている。
図1において、13A,13B,13Cは主軸8のラジアル軸受として機能する水中軸受としての無注水軸受である。図2及び図3を併せて参照すると、1個の無注水軸受13Aは揚水管4bの内面から突出するリブ14Aに取り付けられ、2個の無注水軸受13B,13Cはインペラケーシング4cの内面から突出するリブ14Bに取り付けられている。
3個の無注水軸受13A〜13Bは同様構造を有するので、無注水軸受13Aについて説明する。無注水軸受13Aは両端開口の軸受ホルダ15を備え、この軸受ホルダ15がリブ14Aに固定されている。軸受ホルダ15内には、主軸8の軸線方向に配列されたセラミックからなる2個の摺動体16A,16Bを保持した軸受ケーシング17が収容されている。摺動体16A,16Bは主軸8の軸線方向に間隔をあけて配置されているので、軸受ケーシング17内には摺動体16A,16B間に円筒状の空気室18が形成されている。軸受ケーシング17を貫通する空気孔17aが設けられており、この空気孔17aによって空気室18が無注水軸受7Aの外部と連通している。
3本の空気注入配管21A,21B,21Cは、それぞれ下端側が無注水軸受13A〜13Bの空気孔17aに接続され、上端側は立軸ポンプ2が設置されている吸水槽3の据付床3aの上方に位置している。個々の空気注入配管21A〜21Cの上端は、後述する圧縮空気供給系25の第1ホース34を着脱可能に接続するためのコネクタを備える。第1差圧測定用配管22は、一端がケーシング4内のインペラ7の吐出側である吐出ケーシング4f内に連通し、他端が据付床3aの上方に位置している。第1差圧測定用配管22の他端側には、仕切弁V4と、第2ホース39を着脱可能に接続するためのコネクタとを備える。
圧縮空気供給系25と制御盤(計測制御部)26は吸水槽3の据付床3a又はその付近に設置されており、後に詳述するように端末(判定部)27は可搬型で制御盤26に必要に応じて接続される。
図1及び図4を参照すると、圧縮空気供給系25は、圧力タンク(圧力容器)31と、この圧力タンク31に圧縮空気を供給するためのコンプレッサ(空気供給源)32を備える。コンプレッサ32と圧力タンク31を接続する管路には逆止弁V7が設けられている。また、圧力タンク31は減圧のためのドレン弁V5を備える。さらに、圧力タンク31内の空気圧を検出するタンク内圧力計(第1の圧力計)PS1が設けられている。
圧縮空気供給系25は、一端が圧力タンク31に接続された金属製の硬質な配管である空気供給管33を備える。空気供給管33の他端は可撓性を有する配管である第1ホース34の一端に接続されている。第1ホース34の他端にはコネクタが設けられており、このコネクタを空気注入配管21A〜21Cのいずれかのコネクタに接続できる。図1では無注水軸受13Aの空気注入配管21Aに第1ホース34が接続されている。第1ホース34を空気注入配管21A〜21Cのいずれかに接続することで、無注水軸受13A〜13Bのいずれかの空気室18に、空気供給管33、第1ホース34、及び空気孔17aを介して圧縮空気を供給できる。図2及び図3を参照すると、空気室18に供給された空気は、各摺動体16A,16Bとスリーブ19が取り付けられた主軸5の外周面との間の僅かな隙間及び摺動体16A,16Bを構成するセラミック片間の隙間(以下、これらを併せて無注水軸受13A〜13Bと主軸8との間の隙間という。)を通ってケーシング4内に流出し、吐出ケーシング4fへ排出される。
空気供給管33には、圧力タンク31側から順に、減圧弁V8、開閉可能な電磁弁(遮断弁)V1、圧力計(第2の圧力計)PS2が接続されて仕切弁V2が介設された分岐管路36、空気流量計FS、温度計TSが接続された分岐管37、差圧計PS3が接続されて仕切弁V3が介設された分岐管路38、及び大気圧開放弁V6が設けられている。
減圧弁V8は圧力タンク31内の圧力を減圧して空気供給管33に供給するレギュレータとして機能する。電磁弁V1は圧力タンク31から空気供給管33へ圧縮空気を供給する状態と、圧縮空気の供給を停止する状態とを切り換える機能を有する。圧力計PS2は空気供給管33内の圧縮空気の空気圧を検出する。空気流量計FSは圧力タンク31から空気供給管33及び第1ホース34を介して無注水軸受13A〜13Bと主軸8の隙間に供給される圧縮空気の流量を検出する。温度計TSは空気供給管33内の圧縮空気の温度を検出する。差圧計PS3には第2差圧測定用配管40の一端が接続されており、この第2差圧測定用配管40の他端は可撓性を有する配管である第2ホース39に接続されている。第1差圧測定用配管22、第2ホース39、及び第2差圧測定用配管40を介してケーシング4内の無注水軸受13A〜13Bよりも下流側の領域の圧力が差圧計PS3に導入されている。差圧計33は、この圧力と空気供給管33内の圧縮空気の圧力(圧力タンク31から無注水軸受13A〜13Bと主軸8の隙間への圧縮空気の供給圧)の差圧を検出する。
圧縮空気供給系25が備える弁のうち、仕切弁V2〜V4、ドレン弁V5、及び大気圧開放弁V6は手動で開閉され、電磁弁V1は制御盤26から入力される駆動信号により開閉する。
制御盤26は、圧縮空気供給系25のタンク内圧力計PS1、圧力計PS2、差圧計PS3、空気流量計FS、及び温度計TSから入力される検出信号、端末27に記憶されたプログラムからの指令、端末27から入力されるオペレータの指令等に基づいて、圧縮空気供給系25のコンプレッサ32や電磁弁1の動作を制御して無注水軸受13A〜13Cの異常検出のための診断手順を実行する。本実施形態において、診断手順は「軸受清掃」、「軸受診断1」、及び「軸受診断2」に大別される。
端末27は、ノート型PC、各種の携帯情報端末等である。端末27に要求される機能としては、軸受診断のためのプログラムを記憶及び実行可能であること、オペレータが制御盤にアクセスするためのインターフェースを提供すること、オペレータに対して診断結果等を視覚的に表示できること、制御盤26と有線又は無線で通信可能であること等がある。
以下、診断手順について具体的に説明する。まず、オペレータは端末27を立軸ポンプ1が設置された吸水槽3に持参し、制御盤26と端末27の通信を確立する。また、圧縮空気供給系25の第1ホース34を無注水軸受13A〜13Cのいずれかに対応する空気注入配管21A〜21Cに接続する。以下の説明では、図1に示すように、第1ホース34を無注水軸受13Aの空気注入配管21Aに接続したものとする。また、圧縮空気供給系25の第2ホース39を第1差圧測定用配管22に接続する。
診断の対象となる無注水軸受13Aは気中に位置していることが望ましい。ケーシング4内の水位が無注水軸受13Aまで達している場合には、ケーシング4内の水を排水して少なくとも無注水軸受13Aの下方までケーシング4内の水位を低下させる必要がある。仕切弁5を閉弁した状態で圧縮空気供給系25から空気注入配管21Aを介してケーシング4内に圧縮空気を供給すれば、吸込ベル4eの下端を介してケーシング4内の水を吸水槽3に排出してケーシング4内の水位を低下させることができる。
軸受清掃は、実際の軸受診断の前に圧縮空気を無注水軸受13A内に供給し、無注水軸受13Aと主軸8の隙間に存在する夾雑物、砂、塵等を除去する動作である。
図5を参照すると、仕切弁V4が開弁し、かつ電磁弁V1、仕切弁V2,V3、ドレン弁V5、大気開放弁V6が閉弁していることを確認した後(ステップS5−1)、オペレータにより端末27に軸受清掃開始指令が入力される(ステップS5−2)。この軸受清掃開始指令が入力されると、コンプレッサ32が作動する(ステップS5−3)。タンク内圧力計PS1の検出圧力が予め定められた閾値Pclean以上になるまでコンプレッサ32は作動を継続する(ステップS5−4)。タンク内圧力計PS1の検出圧力が閾値Pclean以上となると、コンプレッサ32が停止すると共に(ステップS5−5)、電磁弁V1が開弁する(ステップS5−6)。電磁弁V1が開弁すると、圧力タンク31内の圧縮空気(圧力Pclean)が空気供給管33、第1ホース34、及び空気孔17aを介して無注水軸受13Aの空気室18に送出される。この圧縮空気によって無注水軸受13Aの隙間から夾雑物、砂、塵等が排除される。電磁弁V1からの経過時間が予め定められた清掃時間Tcleanとなると、電磁弁V1が閉弁して軸受清掃が終了する(ステップS5−7,S5−8)。
軸受清掃に続いて、軸受診断1が実行される。軸受診断1は、無注水軸受13Aの摩耗や破損による主軸8との隙間の拡大を診断するための動作である。この軸受診断1は、空気圧制御の分野で知られているように容器に封入したある圧力の空気をオリフィスや機器を介して大気に開放した場合、減圧に要する時間はオリフィス等の隙間の寸法(有効断面積)に依存することを軸受診断に適用したものである。本実施形態では、圧力タンク32に封入した空気を無注水軸受13Aの隙間を介して大気に開放した場合の一定圧力から他の圧力まで低下するのに要する時間を測定する。この時間が短い程、隙間が大きく、摩耗や破損が進行していることになる。また、本実施形態では、圧力タンク32に封入した空気を無注水軸受13Aの隙間を介して大気に開放した場合の、ある圧力まで低下した際の隙間に供給される圧縮空気の流量を測定する。この流量が大きい程、隙間が大きく、摩耗や破損が進行していることになる。
図6を参照すると、電磁弁V1、ドレン弁V5、大気開放弁V6が閉弁し、かつ仕切弁V2〜V4が開弁していることを確認した後(ステップS6−1)、オペレータS5−2により端末27に軸受診断1開始指令が入力される(ステップS6−2)。この軸受診断1開始指令が入力されると、コンプレッサ32が作動する(ステップS6−3)。タンク内圧力計PS1の検出圧力が予め定められた閾値(第1の圧力)P1になるまでコンプレッサ32は作動を継続する(ステップS6−4)。タンク内圧力計PS1の検出圧力が閾値P1に達すると、コンプレッサ32が停止すると共に(ステップS6−5)、電磁弁V1が開弁して軸受診断1が開始される(ステップS6−6)。電磁弁V1が開弁すると、圧力タンク31内の圧縮空気(圧力P1)が空気供給管33、第1ホース34、及び空気孔17aを介して無注水軸受13Aの隙間(空気室18)に送出される。
圧力計PS2により検出される空気供給管33内の圧縮空気の空気圧、すなわち無注水軸受13Aに供給される圧縮空気の圧力が予め定められた閾値(第2の圧力)P2まで低下すると、制御盤27による計時が開始される(ステップS6−7、S6−8)。圧力計PS2の検出圧力がさらに低下して予め定められた閾値(第4の圧力)P3に達すると(ステップS6−9)、制御盤27はその時点の空気流量計FSの検出流量、すなわち圧力計PSの検出圧力が閾値P3に低下した時点の無注水軸受13Aに供給される圧縮空気の流量(瞬時値)を取得する(ステップS6−10)。
圧力計PS2の検出圧力がさらに低下して予め定められた閾値(第3の圧力)P4に達すると(ステップS6−11)、制御盤27による計時が取得される(ステップS6−12)。この計時終了により、制御盤27は圧力計PS2の検出圧力が閾値PS2からPS4に低下するまでに要した時間(圧力低下時間)を取得する。
その後、電磁弁V1が閉弁して、軸受診断1が終了する(ステップS6−13)。圧力計PS2の検出圧力が閾値P3となった時点の空気量流量計FSの検出流量と、圧力低下時間は端末27に保存される。
軸受診断1に続いて軸受診断2が実行される。軸受診断2も、無注水軸受13Aの摩耗や破損により主軸8との隙間の拡大を診断するための動作であるが、診断の原理が軸受診断1と相違する。具体的には、軸受診断2は無注水軸受13Aと主軸8の隙間に圧縮空気を供給した際の、無注水軸受13Aの前後の空気圧の差圧と、隙間に供給される空気の流量との関係から軸受診断を行うものである。
図7を参照すると、電磁弁V1、ドレン弁V5、大気開放弁V6が閉弁し、かつ仕切弁V2〜V4が開弁していることを確認した後(ステップS7−1)、オペレータにより端末27に軸受診断2開始指令が入力される(ステップS7−2)。この軸受診断2開始指令が入力されると、ステップS7−3〜S7−5の処理によりタンク内圧力計PS1の検出圧力が閾値P5となるように、コンプレッサ32の動作が制御される。具体的には、ステップS7−3においてタンク内圧力計PS1の検出圧力が閾値P5未満であれば、ステップS7−4でコンプレッサ32が作動する。タンク内圧力計PS1の検出圧力が閾値P5に達するまで、コンプレッサ32は作動を継続する(ステップS7−3,S7−5)。タンク内圧力計PS1の検出圧力が閾値P5に達すると(ステップS7−5)、コンプレッサ32が停止する(ステップS7−6)。また、電磁弁V1が開弁して制御盤26による計時が開始され、軸受診断2が開始される(ステップS7−7)。
制御盤26は、ステップS7−7〜S7−13の処理により、予め定められた診断時間Tdigの間、タンク内圧力計PS1の検出圧力を閾値P5に維持しつつ、差圧計PS3の検出差圧と、空気流量計FSの検出流量を取得する。具体的には、ステップS7−8において、差圧計PS3の検出差圧と、空気流量計FSの検出流量を取得する。また、ステップS7−9でタンク内圧力計PS1の検出圧力が閾値PS5未満であれば、ステップS7−10でコンプレッサ32を作動させる。また、ステップS7−11でタンク内圧力計PS1の検出圧力が閾値P5以上であれば、ステップS7−12でコンプレッサ32を停止する。これらの処理を繰り返しつつ、予め定められたサンプリングレートで差圧計PS3の検出差圧と、空気流量計FSの検出流量を取得し、計時開始からの経過時間が診断時間Tdiagになると(ステップS7−13)、電磁弁V1が閉弁し、計時を停止すると共に、コンプレッサ32を停止し、軸受診断2が終了する(ステップS7−14)。差圧計PS3の検出差圧と、空気流量計FSの検出流量は端末27に保存される。
無注水軸受13Aについて軸受清掃、軸受診断1、及び軸受診断2が終了した後、残りの無注水軸受13B,13Cについて軸受診断を実行しない場合には、仕切弁V4を閉弁する。また、ドレン弁V5と大気開放弁V6を開弁して圧力タンク31と空気供給管33内を減圧した後、ドレン弁V5と大気開放弁V6を閉弁する。
次に、端末27で実行される無注水軸受13Aの異常判定について説明する。まず、軸受診断1に基づく異常判定について説明する。図8は圧力計PSの検出圧力と時間経過の関係を模式的に示す。図8において、符号a1は無注水軸受13Aの隙間が設計値である場合、符号a2は隙間が摺動体16A,16Bの交換を要する程度まで拡大している場合、a3は摺動体16A,16Bが破損して隙間が大きく拡大している場合を示している。隙間の拡大に伴って圧力低下時間t1〜t3が短くなっている。従って、立軸ポンプ1の製造時に隙間が設計値である場合の圧力低下時間t1等を予め測定し、端末27に記憶しておき、この測定値に対して実際の軸受診断1で得られた圧力低下時間と比較することで、無注水軸受13Aの異常発生の有無及び/又は前記軸受の異常発生の兆候を判定できる。例えば、異常発生やその兆候に対応する圧力低下時間の閾値を予め定めて端末27に記憶させておき、実際の軸受診断1で得られた圧力低下時間が閾値を下回ると、端末27が無注水軸受13Aに異常発生又はその兆候があると判定することが考えられる。
図8において符号b1〜b3は、圧力計PSの検出圧力が閾値P3に低下した時点を示す。端末27は、前述の圧力低下時間に代えて又は圧力低下時間に加えて、このb1〜b3に対応する空気流量計FSの検出流量(瞬時値)に基づいて、無注水軸受13Aの異常判定を実行できる。b1〜b3に対応する空気流量計FSの検出流量は、無注水軸受13Aの隙間が大きくなる程増加する傾向がある。従って、無注水軸受13Aの異常発生又はその兆候に対応する空気流量の閾値を予め定めて端末27に記憶させておき、実際の軸受診断1で得られた検出圧力P3に対応する空気流量がこの閾値を上回ると、端末27が無注水軸受13Aに異常発生又はその兆候があると判定することが考えられる。
次に、軸受診断2に基づく異常判定について説明する。図9は差圧計PS3により検出される差圧と空気流量計FSにより検出される空気流量の関係を模式的に示す。符号c1は無注水軸受13Aの隙間が設計値である場合、符号c2は隙間が摺動体16A,16Bの交換を要する程度まで拡大している場合、c3は摺動体16A,16Bが破損して隙間が大きく拡大している場合を示している。隙間の拡大に伴って同一の差圧に対する空気流流が増加する傾向がある。具体的には、ある差圧dpに対する空気流量はc1,c2,c3の順で大きい。従って、立軸ポンプ1の製造時に隙間が設定値の場合の1又は複数の差圧に対する空気流量を予め測定し、端末27に記憶しておき、この測定値に対して実際の軸受診断2で得られた同一差圧に対する空気流量を比較することで、無注水軸受13Aの異常発生の有無及び/又は前記軸受の異常発生の兆候を判定できる。例えば、特定の差圧に対して異常発生やその兆候に対応する空気流量の閾値を予め定めて端末27に記憶させておき、実際の軸受診断2で得られた当該差圧に対する空気流量が閾値を上回ると、端末27が無注水軸受13Aに異常発生又はその兆候があると判定することが考えられる。
図10に概念的に示すように、端末27は複数回実行した軸受診断1,2のそれぞれについて無注水軸受13Aの隙間量を推定し、推定した隙間量に基づいて隙間量の今後の推移を最小自乗法等の統計的に手段で求めてもよい。図10において、符号dは推定した隙間量の推移を模式的に示している。また、端末27は隙間量の閾値THを予め記憶しておき、この閾値THと推定した隙間量の推移dに基づいて、無注水軸受13Aに異常発生又はその兆候があると判定してもよい。
軸受診断1,2(図6,図7)の際に、適切なタイミングで温度計TSで検出された空気供給管33中の圧縮空気の温度を制御盤26が取得し、この取得した検出温度に基づいて、端末27が軸受診断1における圧力低下時間と検出流量や、軸受診断2における検出差圧や検出流量を補正してもよい。この温度補正を行うことにより、より高精度で無注水軸受13Aの異常発生又はその兆候をより高精度で判定できる。
空気がオリフィスやノズルを通過する際の流速が音速に達するときのオリフィス等の上流と下流の圧力比(臨界圧力比)は概ね0.528であることが知られている。図6及び図8を参照すると、軸受診断1では、圧力タンク31への圧縮空気の充填圧を規定する閾値P1を十分高圧に設定し、圧力計PS2と空気流量計FSにより圧力と流量の測定中は無注水軸受13A〜13Cへの空気の供給圧の大気圧Pに対する比が臨界圧力比以上になるように設定することが好ましい。無注水軸受13A〜13Cの隙間を通過する空気の流速が音速なると、無注水軸受13A〜13Cが水没していても高速の空気流によって水が瞬間的に吹き飛ばされる(軸受と主軸の隙間に夾雑物、砂、塵等が存在する場合も水と共に瞬間的に吹き飛ばされる)ので、無注水軸受13A〜13Cが水没しているか否か及び夾雑物等の有無にかかわらず、軸受診断1に基づく異常判定が可能である。
大気圧Pを近似的に1kgf/cm2とし、吐出ケーシング6内の圧力が大気圧Paとすると、無注水軸受13A〜13Cの隙間を通過する空気が音速となるには、無注水軸受13A〜13Cへの空気の供給圧の最低圧力は絶対圧力で1.893kgf/cm2(=1/0.528kgf/cm2)、ゲージ圧力で0.893kgf/cm2(1/0.528−1kgf/cm2)となる(臨界圧力P)。
図11は軸受13A〜13Cの5種類の隙間量(c=0.35mm、0.49mm、0.87mm、1.51mm、25mm)について、無次元化した供給圧と臨界圧力に対する供給圧の比との関係を示す(軸受内径は175mmである。)。この図11から臨界圧力に対する比が1未満の場合、すなわち供給圧が臨界圧力未満の場合には、供給圧と比とが一対一に対応せず、軸受診断1に基づく異常判定ができないことが分かる。例えば、c=0.35mmの場合、供給圧が臨界圧力P未満の領域では、無注水軸受13A〜13Cの水没深度が0(空気中)、50cm、100cmの場合で無次元化した供給圧と臨界圧力に対する供給圧の比の関係が大きく異なり、軸受診断1に基づく異常判定の精度が確保できないことが分かる。一方、臨界圧力Pに対する比が1以上の場合、すなわち供給圧が臨界圧力P以上の場合には、無次元化した供給圧と臨界圧力に対する供給圧の比がほぼ一対一に対応しており、無注水軸受13A〜13Bが水没しているか否かにかかわらず軸受診断1に基づく異常判定が可能であることが分かる。
無注水軸受13A〜13Cが水没している際の水頭圧や配管抵抗を考慮する必要があることと、図11において特に臨界圧力に対する供給圧の比が3以上の領域で供給圧と比との対応関係が良好であることから、供給圧をゲージ圧力で3kgf/cm2以上に設定することが好ましい。逆に言えば、供給圧を臨界圧力P(ゲージ圧力で0.893kgf/cm2)以上に設定すれば、無注水軸受13A〜13Bが水没しているか否かにかかわらず軸受診断1に基づく異常判定が可能であり、特にゲージ圧力で3kgf/cm2以上に設定すればより高精度での異常判定が可能である。軸受診断1の実行中の供給圧を臨界圧力P以上(好ましくはゲージ圧力で3kgf/cm2以上)に維持するには、軸受診断開始のタイミングを規定する閾値P2、空気流量測定のタイミングを規定する閾値P3、及び計時終了のタイミングを規定する閾値P4が臨界圧力P以上(好ましくはゲージ圧力で3kgf/cm2以上)となるように、圧力タンク31への圧縮空気の充填圧を規定する閾値P1を十分高圧に設定すればよい。
本実施形態の軸受診断装置は軸受冷却機能を有する。例えば無注水軸13Aが気中に位置している状態でポンプ駆動装置11により主軸8が回転駆動されて気中運転している場合、圧縮空気供給系25により無注水軸受13Aの隙間に圧縮空気を供給することにより、無注水軸受13Aを冷却して焼き付き等を防止できる。また、空気注入配管21A〜21Cから第1ホース34を取り外し、コネクタから空気注入配管21A〜21Cをガイドパイプとして内視鏡を挿入することで、無注水軸受13A〜13Cの摩耗や破損の状態を視覚的に確認できる。
先行待機型立軸ポンプの無注水軸受を例に本発明を説明したが、本発明は他の立軸ポンプや横軸ポンプが備える水中軸受にも適用でき、無注水軸受以外の水中軸受にも適用可能である。また、診断対象の軸受はセラミック軸受に限定されない。さらに、圧縮空気供給系25の構成は図1及び図3に図示されたものに限定されない。例えば、ポンプ駆動機構11が原動機としてディーゼルエンジンを備える場合、コンプレッサ32の代わりの空気供給源としてディーゼルエンジンが備えるエンジン起動用タンク内部の圧搾空気を使用してもよい。さらにまた、端末27の前部又は一部の機能を制御盤26に組み込んでもよく、逆に制御盤26の機能の一部を端末27に組み込んでもよい。
本発明の実施形態にかかる軸受診断装置を備える先行待機型立軸ポンプを示す縦断面図。 図1のII部の拡大図。 図1のIII部の拡大図。 軸受診断装置の模式図。 清掃動作を説明するためのフローチャート。 軸受診断1を説明するためのフローチャート。 軸受診断2を説明するためのフローチャート。 軸受診断1における圧力タンク内の圧力と時間の関係を示す模式的な線図。 軸受診断2における空気流量と差圧の関係を示す模式的な線図。 軸受診断1,2の結果から得られた軸受と隙間の推移の一例を示す模式的な線図。 無次元化した供給圧と臨界圧力に対する供給圧の比との関係を示す線図。
符号の説明
1 軸受診断装置
2 先行待機型立軸ポンプ
3 吸水槽
3a 据付床
4 ケーシング
4a,4b 揚水管
4c,4d インペラケーシング
4e 吸込ベル
4f 吐出ケーシング
5 仕切弁
6 吐出管
7 インペラ
8 主軸
9 スラスト軸受
10 軸封装置
11 ポンプ駆動機構
13A,13B,13C 無注水軸受
14A,14B リブ
15 軸受ホルダ
16A,16B 摺動体
17 軸受ケーシング
17a 空気孔
18 空気室
19 スリーブ
21A,21B,21C 空気注入配管
22 第1差圧測定用配管
25 圧縮空気供給系
26 制御盤
27 端末
31 圧力タンク
32 コンプレッサ
33 空気供給管
34 第1ホース
36,37,38 分岐管路
39 第2ホース
40 第2差圧検出用配管
V1 電磁弁
V2〜V4 仕切弁
V5 ドレン弁
V6 大気開放弁
V7 逆止弁
V8 減圧弁
PS1 タンク内圧力計
PS2 圧力計
PS3 差圧計
FS 空気流量計
TS 温度計

Claims (4)

  1. ポンプのケーシング内に配置されて主軸を支持する軸受の診断装置であって、
    前記ポンプのケーシング外に配置された圧力容器と、
    前記圧力容器内に圧縮空気を供給する空気供給源と、
    前記圧力容器を前記軸受と前記主軸の隙間に連通させる空気供給管路と、
    前記空気供給管路に設けられた開閉可能な遮断弁と、
    前記圧力容器内の空気圧を検出する第1の圧力計と、
    前記空気供給管路内の空気圧を検出する第2の圧力計と、
    前記空気供給管路に設けられて前記圧力容器から前記隙間に供給される空気の流量を検出する空気流量計と、
    前記第1の圧力計の検出圧力が予め定められた第1の圧力に上昇するまで前記空気供給源から前記圧力容器に圧縮空気を供給させ、前記第1の圧力計の検出圧力が前記第1の圧力に達すると、前記空気供給源から前記圧力容器への圧縮空気の供給を停止すると共に、前記遮断弁を閉弁状態から開弁状態に切り換えて前記軸受と前記主軸の隙間に前記空気供給管路を介して空気を供給し、前記第2の圧力計の検出圧力が予め定められた第2の圧力からこの第2の圧力より低圧の予め定められた第3の圧力に低下するまでの時間である圧力低下時間を測定し、前記遮断弁を開弁状態に切り換えてから、前記第2の圧力計の検出圧力が前記第2の圧力より低圧の予め定められた第4の圧力に低下した時の前記空気流量計の検出流量を取得する計測制御部と、
    前記計測制御部によって測定された前記圧力低下時間と前記検出流量とに基づいて前記軸受の異常を判定する判定部とを備え、
    前記第2、第3、及び第4の圧力は臨界圧力以上である、ポンプの軸受診断装置。
  2. 前記判定部は、前記圧力低下時間が予め定められた閾値を下回ると、前記軸受に異常が発生していると判定する、請求項1に記載の軸受診断装置。
  3. 前記第2、第3、及び第4の圧力はゲージ圧で3kgf/cm2以上である、請求項2に記載の軸受診断装置。
  4. ポンプのケーシング内に配置されて主軸を支持する軸受の診断方法であって、
    圧力容器内の空気圧を検出する第1の圧力計の検出圧力が予め定められた第1の圧力に上昇するまで、空気供給源から圧力容器に圧縮空気を供給し、
    前記第1の圧力計の検出圧力が前記第1の圧力に達すると、前記空気供給源から前記圧力容器への圧縮空気の供給を停止すると共に、前記圧力容器から前記軸受と前記主軸の隙間に空気供給管路を介して空気を供給し、
    前記空気供給管路の空気圧を検出する第2の圧力計の検出圧力が予め定められた第2の圧力から予め定められた第3の圧力に低下するまでに要する時間である圧力低下時間を測定し、
    前記遮断弁を開弁状態に切り換えてから、前記第2の圧力計の検出圧力が前記第2の圧力より低圧の予め定められた第4の圧力に低下した時の前記空気流量計の検出流量を取得し、
    前記圧力低下時間と前記検出流量とに基づいて前記軸受の異常を判定し、
    前記第2、第3、及び第4の圧力は臨界圧力以上である、ポンプの軸受診断方法。
JP2007330483A 2007-08-30 2007-12-21 ポンプの軸受診断装置及びその方法 Active JP5143543B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007330483A JP5143543B2 (ja) 2007-08-30 2007-12-21 ポンプの軸受診断装置及びその方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007223688 2007-08-30
JP2007223688 2007-08-30
JP2007330483A JP5143543B2 (ja) 2007-08-30 2007-12-21 ポンプの軸受診断装置及びその方法

Publications (2)

Publication Number Publication Date
JP2009074530A JP2009074530A (ja) 2009-04-09
JP5143543B2 true JP5143543B2 (ja) 2013-02-13

Family

ID=40609727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007330483A Active JP5143543B2 (ja) 2007-08-30 2007-12-21 ポンプの軸受診断装置及びその方法

Country Status (1)

Country Link
JP (1) JP5143543B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5312211B2 (ja) * 2009-06-09 2013-10-09 株式会社酉島製作所 水中軸受
JP5411889B2 (ja) * 2011-04-07 2014-02-12 株式会社酉島製作所 ポンプの軸受診断装置およびその方法
JP6320208B2 (ja) * 2014-07-14 2018-05-09 株式会社荏原製作所 立軸ポンプ
JP6491215B2 (ja) * 2014-08-22 2019-03-27 株式会社荏原製作所 立軸ポンプ
JP6976179B2 (ja) * 2018-01-17 2021-12-08 株式会社酉島製作所 ポンプ
JP7261123B2 (ja) * 2019-08-23 2023-04-19 株式会社酉島製作所 ポンプ

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0776694B2 (ja) * 1993-08-26 1995-08-16 エスエムシー株式会社 目詰まり測定器
JP3580645B2 (ja) * 1996-08-12 2004-10-27 忠弘 大見 圧力式流量制御装置
JP3933586B2 (ja) * 2003-01-16 2007-06-20 株式会社酉島製作所 ポンプの軸受監視装置及びその方法

Also Published As

Publication number Publication date
JP2009074530A (ja) 2009-04-09

Similar Documents

Publication Publication Date Title
JP5143543B2 (ja) ポンプの軸受診断装置及びその方法
JP4140733B2 (ja) リチャージ工法、その注水制御方法及び注水制御システム
US20170260820A1 (en) Method and Apparatus for Suction Monitoring and Control in Rig Pumps
KR100897410B1 (ko) 오일펌프 스틸 링에 부착되는 시일 링 검사장치
JP2009121464A (ja) 掘削機用エンジン回転数制御装置及びその制御方法
JP2013104369A (ja) プランジャポンプの故障診断装置
JP5404859B2 (ja) ポンプの軸受清掃装置およびその方法
JP3933586B2 (ja) ポンプの軸受監視装置及びその方法
JP4819028B2 (ja) ポンプの軸受診断装置及びその方法
JP5051703B2 (ja) エンジンテストベンチ用燃料配管の構造及びエンジンテストベンチの運転方法
JP5136299B2 (ja) 二重殻タンクの漏洩検知装置
JP2016040443A (ja) 止水栓装置、下水管の排水システム、及び下水の排水方法
US7950266B2 (en) Method and apparatus for fluid pressure testing
JP5411889B2 (ja) ポンプの軸受診断装置およびその方法
JP4254961B2 (ja) 過流量阻止弁の作動検査方法
JP5028398B2 (ja) ポンプ設備とその運転方法
KR100844006B1 (ko) 오일펌프의 누설 검사 장치
JP5921085B2 (ja) ポンプ装置及びポンプ装置を搭載した作業車
JP6647893B2 (ja) ポンプ機場、フラップ弁健全度確認システム、および、フラップ弁の健全度確認方法
JP5694594B1 (ja) 止水栓装置、下水管の排水システム、及び下水の排水方法
JP2011038981A (ja) リーク検査装置
JP5390471B2 (ja) 既存温泉井戸の再生装置およびその再生方法
JP2009255156A (ja) 減圧鋳造装置
KR20230164920A (ko) 수중펌프의 유압제어시스템 및 그 유압제어방법
KR20060010305A (ko) 가스누설검출장치를 갖는 반도체 제조설비

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110921

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120619

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20120725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5143543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250