JP5140706B2 - 薄膜太陽電池モジュールおよびその製造方法 - Google Patents

薄膜太陽電池モジュールおよびその製造方法 Download PDF

Info

Publication number
JP5140706B2
JP5140706B2 JP2010157900A JP2010157900A JP5140706B2 JP 5140706 B2 JP5140706 B2 JP 5140706B2 JP 2010157900 A JP2010157900 A JP 2010157900A JP 2010157900 A JP2010157900 A JP 2010157900A JP 5140706 B2 JP5140706 B2 JP 5140706B2
Authority
JP
Japan
Prior art keywords
film solar
thin film
thin
solar cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010157900A
Other languages
English (en)
Other versions
JP2010232692A (ja
Inventor
徹 武田
善之 奈須野
雅博 豊川
裕介 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2010157900A priority Critical patent/JP5140706B2/ja
Publication of JP2010232692A publication Critical patent/JP2010232692A/ja
Application granted granted Critical
Publication of JP5140706B2 publication Critical patent/JP5140706B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、薄膜太陽電池モジュールおよびその製造方法に関するものであり、さらに詳しくは、複数の薄膜太陽電池セルにより構成される薄膜太陽電池モジュールおよびその製造方法に関するものである。
図27および図28に示すように、従来の薄膜太陽電池モジュールPmは、絶縁基板上に第1電極層、光電変換層(半導体層)および第2電極層が順次積層されてなる薄膜光電変換素子が複数個互いに電気的に直列接続されたストリングを有する薄膜太陽電池セルPsと2枚の薄膜太陽電池セルPsの外周縁に取り付けられてセル同士を連結し補強するフレームPfとを備えている。フレームPfはアルミニウム製のものが広く使用されている。
より詳しく説明すると、薄膜太陽電池セルPsは、ストリングの直列接続方向の両端側の第1電極層および第2電極層がバスバーaおよび取り出し線bを介して端子ボックスc内の外部端子に接続されると共に、裏面側および端面側が封止部材dによって封止されている。そして、2枚の薄膜太陽電池セルPsの外周およびセル間にフレーム部材Pf1〜Pf5を取り付けることにより、1枚の薄膜太陽電池モジュールPmが作製されている(例えば、非特許文献1)。
株式会社カネカ製品パンフレット「Kaneka Silicon PV」、2006年1月1日発行
このような従来の薄膜太陽電池モジュールPmは、2枚の薄膜太陽電池セルPsの間にもフレーム部材Pf5が使用されているため、フレームの部材増加、モジュール重量の増加、フレーム取付作業の煩雑化、配線取り回しの複雑化等に繋がり、薄膜太陽電池モジュールの製造コストが高くなるという問題がある。
本発明は、このような問題を解消し、製造コストの低減を図ることができる薄膜太陽電池モジュールを提供するものである。
かくして、本発明によれば、複数枚の薄膜太陽電池セルと、支持プレートと、導電性材料からなるフレームとを備え、
前記薄膜太陽電池セルは、少なくとも四辺を有する平面形状の絶縁基板の表面上に第1電極層、光電変換層および第2電極層が順次積層されてなる薄膜光電変換素子が複数個互いに電気的に直列接続されたストリングと、前記絶縁基板の外周端面に付着した導電膜とを有してなり、
前記支持プレート上に複数枚の薄膜太陽電池セルが並べられ固定された状態で、支持プレートの外周縁に前記フレームが取り付けられており、
前記薄膜太陽電池セルにおいて、前記絶縁基板におけるフレームに近接した端面よりも内側に前記ストリングが形成されることによって前記フレームから少なくとも所定絶縁距離内に位置する絶縁基板の表面は非導電性表面領域とされ、かつ、隣接する他の薄膜太陽電池セルと対向する一辺の外周端面における所定絶縁距離内に位置する端部は前記導電膜が存在しない非導電性端面領域とされており、前記非導電性表面領域および前記非導電性端面領域によって所定の絶縁耐電圧性が備えられており、
前記絶縁基板は前記一辺の外周端面の端部が前記支持プレートの内側から外周側へ向うにつれて前記隣接する他の薄膜太陽電池セルから離れる方向に傾斜するように角部を欠いた形状を有し、前記角部を欠いた形状部分に前記非導電性端面領域が形成されている薄膜太陽電池モジュールが提供される。
また、本発明の別の観点によれば、絶縁基板の表面上に第1電極層、光電変換層および第2電極層が順次積層されてなる薄膜光電変換素子が複数個互いに電気的に直列接続されたストリングと、前記ストリングの形成時に前記絶縁基板の外周端面に付着した導電膜とを有する薄膜太陽電池セルを支持プレート上に複数枚設置して絶縁性の封止材料にて封止し固定する封止固定工程と、該複数枚の薄膜太陽電池セルを支持した前記支持プレートの外周縁に導電性材料からなるフレームを取り付けるフレーム取付工程とを備え
さらに、前記封止固定工程の前に、前記複数枚の薄膜太陽電池セルを作製するセル作製工程を備え、このセル作製工程が、
四角形の絶縁基板の少なくとも表面上に前記ストリングを形成するストリング形成工程と、
前記ストリング形成工程で絶縁基板の外周部に形成された前記薄膜光電変換素子を構成する膜を除去する膜除去工程とを含み、
前記膜除去工程において、前記フレームから所定の絶縁耐電圧性を有する絶縁距離内に位置する絶縁基板の表面上の膜を除去することによって非導電性表面領域を形成し、
さらに、前記ストリング形成工程で絶縁基板の外周端面に導電膜が付着した場合に、その後の前記封止固定工程で複数枚の薄膜太陽電池セルを並べたときの隣接する薄膜太陽電池セルと対向する一辺の外周端面の端部に付着した前記導電膜を除去するために、前記一辺の外周端面における所定絶縁距離内に位置する端部が前記支持プレートの内側から外周側へ向うにつれて前記隣接する他の薄膜太陽電池セルから離れる方向に傾斜するように角部を除去して非導電性端面領域を形成する薄膜太陽電池モジュールの製造方法が提供される。
本発明によれば、複数枚の薄膜太陽電池セルを1枚の支持プレートに並べて固定し、その支持プレートの外周縁にフレームを取り付けることにより、強度を保ちながらセル間のフレームを省略した薄膜太陽電池モジュールが得られるため、フレームの部材削減、モジュール重量の軽量化、フレーム取付工数の削減、配線取り回しの簡略化等を図ることができ、その結果、薄膜太陽電池モジュールの製造コストを低減することができる。また、セル間にフレームが無いため、薄膜太陽電池モジュールの美観が向上する利点も得られる。
また、絶縁基板の外周端面に第1電極層および第2電極層からなる導電膜が付着しても、非導電性表面領域と共に非導電性端面領域を形成することで、薄膜太陽電池モジュールとして必要な所定の絶縁耐電圧性を確保することができると共に、成膜装置内において、絶縁基板の外周端面を被覆せずに成膜することができる。なお、絶縁基板を基板専用トレー上に設置し、トレーによって絶縁基板の外周端面を覆うことにより、外周端面に導電膜は付着しないが、多数のトレーが必要となること、絶縁基板をトレーにセッティングする工程が増加すること、トレー表面に付着した膜を除去するメンテナンスが必要なこと等によって製造コストが上昇するが、本発明ではトレーを使用しない成膜工程を採用することができる。
さらにこの場合、薄膜太陽電池セルは、隣接する2つのセルの表面における近接する部分までストリングが形成されるため、有効発電面積が増加する。
ここで、本発明において、上述の非導電性表面領域および非導電性端面領域は、第1電極層、光電変換層および第2電極層が完全に除去されている必要はなく、導電性および絶縁耐電圧性が問題にならない程度であれば部分的にそれらが残っていてもよい。
本発明の薄膜太陽電池モジュールの実施形態1−1を示す図であって、図1(a)は平面図、図1(b)は正面図、図1(c)は右側面図である。 実施形態1−1の薄膜太陽電池モジュールを示す底面図である。 実施形態1−1の薄膜太陽電池モジュールを示す正断面図である。 実施形態1−1の薄膜太陽電池モジュールの分解状態を示す分解図である。 薄膜太陽電池セル10を示す斜視図である。 図6(a)は図5のB−B線断面図であり、図6(b)は図5のA−A線断面図である。 実施形態1−1の2枚の薄膜太陽電池セルを隣接して配置した状態を示す断面図である。 実施形態1−1の2枚の薄膜太陽電池セルを隣接して配置して配線シートを接続した状態を示す斜視図である。 実施形態1−1における配線シートの構成図である。 実施形態1−1の薄膜太陽電池モジュールのフレーム取付部位を示す断面図であって、図10(a)は図6(a)の断面に対応し、図10(b)は図6(b)の断面に対応する。 実施形態1−1におけるセル作製工程にてストリングを形成した状態を示す斜視図である。 図11のA−A線断面図である。 実施形態1−2の薄膜太陽電池モジュールを示す平面図である。 実施形態1−3の薄膜太陽電池モジュールを示す平面図である。 実施形態1−3における薄膜太陽電池セルを配置する状態を示す図である。 実施形態2−1の薄膜太陽電池モジュールを示す部分断面平面図である。 実施形態2−1における薄膜太陽電池セルを示す斜視図である。 実施形態2−1における薄膜太陽電池セルを横並びに配置した断面図であって、図18(a)は並列接続状態を示し、図18(b)は直列接続状態を示す。 実施形態2−1における薄膜太陽電池セルの非導電性端面領域を形成する工程を説明する図である。 実施形態2−2の薄膜太陽電池モジュールを示す部分断面平面図である。 実施形態2−2における薄膜太陽電池セルを示す斜視図である。 実施形態2−2における薄膜太陽電池セルの非導電性端面領域を形成する工程を説明する図である。 実施形態2−3の薄膜太陽電池モジュールを示す部分断面平面図である。 実施形態2−4の薄膜太陽電池モジュールM7を示す平面図である。 実施形態3の薄膜太陽電池モジュールM8を示す平面図である。 実施形態3における薄膜太陽電池セル410を示す斜視図である。 従来の薄膜太陽電池モジュールを示す平面図である。 従来の薄膜太陽電池モジュールを示す正断面図である。
本発明の薄膜太陽電池モジュールは、複数枚の薄膜太陽電池セルと、支持プレートと、導電性材料からなるフレームとを備え、前記薄膜太陽電池セルは、絶縁基板の表面上に第1電極層、光電変換層および第2電極層が順次積層されてなる薄膜光電変換素子が複数個互いに電気的に直列接続されたストリングを有してなり、前記支持プレート上に複数枚の薄膜太陽電池セルが並べられ固定された状態で、支持プレートの外周縁に前記フレームが取り付けられたことを特徴とする。
以下、本明細書において、「薄膜太陽電池セル」を「セル」と略称する場合がある。
本発明において、前記支持プレートとしては、撓まずに複数枚の薄膜太陽電池セルを支持できる強度を有するものであれば特に限定されるものではなく、例えばガラス、プラスチック、セラミック等からなる絶縁性プレート、あるいはアルミニウム、ステンレス等からなる導電性プレート、あるいは導電性プレートを樹脂にてコーティングした複合材プレート等を用いることができる。
導電性プレートおよび複合材プレートを用いる場合、後述するフレームの材質にもよるが、特にフレームが導電性であれば、薄膜太陽電池モジュールとして必要な絶縁耐電圧性が得られるように、フレームと支持プレートの間、フレームと薄膜太陽電池セルの間および支持プレートと薄膜太陽電池セルの間の絶縁抵抗を高くすることが望ましい。
ここで、絶縁耐電圧性とは、フレームと薄膜太陽電池セルとの間に所定の高電圧を印加してもフレームと薄膜太陽電池セルとの間で放電しない特性を意味し、例えば、国際規格(IEC:61646)で定められた絶縁耐電圧試験によって所定の絶縁耐電圧性が得られているか調べることができる。システム電圧が1000Vより低い薄膜太陽電池モジュールの場合、国際規格では雷サージ耐圧6KVに対する絶縁耐電圧性が必要とされている。
したがって、支持プレートとしては、高い絶縁耐電圧性が得られやすい絶縁性プレートが好ましく、中でも強化ガラスまたは強化プラスチックからなる支持プレートがさらに好ましく、耐候性に優れる強化ガラスが特に好ましい。なお、支持プレートの透光性の有無は特に限定されないが、支持プレート側を薄膜太陽電池セルの受光面とする場合は、支持プレートが透光性である必要があり、透光性の点でも強化プラスチックよりも強化ガラスの方が好ましい。
本発明において、前記フレームは、薄膜太陽電池モジュールとしての強度を高める機能を有しており、薄膜太陽電池モジュールを設置場所に取り付ける際の取付部材および支持部材としての機能をさらに有してもよい。
フレームの材料としては、例えば一般的なアルミニウム、ステンレス等の金属等が挙げられる。
本発明の薄膜太陽電池モジュールにおいて、複数枚の薄膜太陽電池セルは、少なくとも前記ストリング全体が封止部材にて封止されて防水されていることが好ましい。封止部材としては、封止樹脂シート(例えばエチレン−酢酸ビニル共重合体(EVA)、等)を用いることができ、ストリングの上に封止樹脂シートを被せ、真空下で加熱、加圧して圧着することにより各薄膜太陽電池セルを防水することができる。さらに封止樹脂シートの上に保護シートを積層してもよい。
さらに、フレームと支持プレートの間およびフレームと薄膜太陽電池セルの間に、絶縁性のクッション材を設けてもよい。このクッション材によって、フレームに対する支持プレートのがたつきを防止することができると共に、上述した絶縁耐電圧性を高めることができる。
薄膜太陽電池セルの前記光電変換層としてはpn接合型、pin接合型、ヘテロ接合型、pnまたはpin接合が複数重ねられたタンデム構造型等が挙げられる。なお、本明細書において、後述の第1導電型はp型またはn型を意味し、第2導電型は第1導電型とは逆の導電型であるn型またはp型を意味している。
本発明において、薄膜太陽電池セルの前記絶縁基板は、薄膜太陽電池セルの基板としての機能の他に、薄膜太陽電池セルを支持プレートへ取り付ける取付板としても機能することができる。この場合、絶縁基板を支持プレート上に載置し、接着あるいはネジ止め等により固定することが可能であり、上述の絶縁耐電圧性の観点から金属部材を用いない接着が好ましい。この接着には、上述の封止樹脂シートを用いることができる。
さらに、本発明の薄膜太陽電池モジュールは、絶縁基板として透光性基板を使用したスーパーストレート型の薄膜太陽電池セルと、非透光性基板を使用したサブストレート型の薄膜太陽電池セルの両方に適用可能である。
支持プレート上に絶縁基板を固定するスーパーストレート型の場合、第1電極側が光入射側となるため、支持プレート、封止樹脂シートおよび絶縁基板は透光性のものが使用される。支持プレート上に絶縁基板を固定するサブストレート型の場合、第2電極側が側が光入射側となるため、支持プレート、封止樹脂シートおよび絶縁基板の透光性の有無は制限されない。しかしながら、第2電極側からの配線作業が好都合であり、サブストレート型では第2電極側にある配線が受光を妨げるため、第1電極側を光入射側とするスーパーストレート型の薄膜太陽電池セルの方が好ましい。
また、本発明の薄膜太陽電池モジュールは、薄膜太陽電池セルの第2電極側を支持プレート上に載置し固定することも可能である。この場合、支持プレート上に前記封止樹脂シートを介して第2電極側を下にして薄膜太陽電池セルを載置し、真空下で加熱、加圧することにより、薄膜太陽電池セルを支持プレート上に接着することができる。このようにすれば、ストリングの封止と支持プレートへの固定を同時に行うことができる利点がある。
このように第2電極が支持プレートに対面したセル取付構造の場合、薄膜太陽電池セルがスーパーストレート型であるときは支持プレートと反対側が側が光入射側となり、薄膜太陽電池セルがサブストレート型であるときは支持プレート側が側が光入射側となる。しかしながら、この場合も、第2電極側からの配線作業が好都合であり、サブストレート型では第2電極側にある配線が受光を妨げるため、第1電極側を受光面とするスーパーストレート型の薄膜太陽電池セルの方が好ましい。
本発明の薄膜太陽電池モジュールは、さらに以下の構成とすることができる。
(1)複数枚の薄膜太陽電池セルにおいて、隣接する2つの薄膜太陽電池セルは離間して配置されている。
(2)複数枚の薄膜太陽電池セルにおいて、隣接する2つの薄膜太陽電池セルの間に、各薄膜太陽電池セルの対向する端縁を保護する保護部材をさらに有する。
薄膜太陽電池モジュールを前記(1)および(2)のように構成する目的は、隣接する2つの薄膜太陽電池セルの絶縁基板の対向する端縁同士が、支持プレートの僅かな撓みによって、あるいは支持プレート上に薄膜太陽電池セルを並べる際に誤ってセル同士を衝突させることによって、絶縁基板の割れが発生することを回避するためである。
なお、薄膜太陽電池セルが基板割れを発生し難い構成、例えば薄膜太陽電池セルの絶縁基板として基板割れし難いポリイミド等の樹脂基板を用いた場合は、隣接する2つの薄膜太陽電池セルの対向する端縁同士を接触させて配置してもよい。
前記構成(1)〜(2)の薄膜太陽電池モジュールにおいて、隣接する2つのセルは、以下のように配置されて互いに直列接続または並列接続が可能である。
)薄膜太陽電池セルにおいて、ストリングの直列接続方向の一端の第2電極は、隣接する薄膜光電変換素子の第1電極用の引き出し電極であると共に、光電変換層は、第1電極側の第1導電型半導体層と第2電極側の第2導電型半導体層を有し、ストリングの直列接続方向に並んだ隣接する2つの薄膜太陽電池セルは、一方の薄膜太陽電池セルの第2電極と他方の薄膜太陽電池セルの前記引き出し電極とが相互に近接する向きに配置されて相互に電気的に接続されることにより、2つの薄膜太陽電池セルのストリングは互いに直列接続される。
)薄膜太陽電池セルにおいて、ストリングの直列接続方向の一端の第2電極は、隣接する薄膜光電変換素子の第1電極用の引き出し電極であると共に、光電変換層は、第1電極側の第1導電型半導体層と第2電極側の第2導電型半導体層を有し、ストリングの直列接続方向に並んだ隣接する2つの薄膜太陽電池セルにおいて、各薄膜太陽電池セルは各引き出し電極が相互に離間する向きまたは各引き出し電極が相互に近接する向きに配置され、かつ各薄膜太陽電池セルの近接する第2電極同士または引き出し電極同士が電気的に接続されることにより、2つの薄膜太陽電池セルのストリングは互いに並列接続される。
以下、図面を参照しながら上述の各種構成の薄膜太陽電池モジュールおよびその製造方法の実施形態を具体的に説明する。
(実施形態1−1:参考例
図1は本発明の薄膜太陽電池モジュールの実施形態1−1を示す図であって、図1(a)は平面図、図1(b)は正面図、図1(c)は右側面図である。図2は実施形態1−1の薄膜太陽電池モジュールを示す底面図である。図3は実施形態1−1の薄膜太陽電池モジュールを示す正断面図である。図4は実施形態1−1の薄膜太陽電池モジュールの分解状態を示す分解図である。
<薄膜太陽電池モジュールの構造の説明>
実施形態1−1の薄膜太陽電池モジュールM1は、支持プレートである強化ガラスG1と、強化ガラスG1上に離間して並べられて固定された2枚の薄膜太陽電池セル10と、2枚の薄膜太陽電池セル10を支持した支持プレートとしての強化ガラスG1の外周縁に取り付けられたフレームF1とを備えている。
薄膜太陽電池モジュールM1は、さらに、強化ガラスG1上に2枚の薄膜太陽電池セル10を接着固定する接着層11と、強化ガラスG1上に固定された2枚の薄膜太陽電池セル10の全体を被覆する被覆層12と、被覆層12を覆う保護層13と、2枚の薄膜太陽電池セル10を電気的に接続する配線接続部14とを備えている。
以下、強化ガラスG1上に2枚の薄膜太陽電池セル10が前記接着層11により固定され、前記被覆層12および保護層13により被覆され、前記配線接続部14が取り付けられてなる構造体を、モジュール本体m1と称する。
強化ガラスG1は、厚み2〜4mm程度の強化ガラスからなり、方形板状に形成されている。
フレームF1は、方形のモジュール本体m1の4辺に取り付けられる4本のアルミニウム製フレーム部材f1〜f4と、隣接するフレーム部材同士を連結するネジ部材(図示省略)とを備える。
フレーム部材f1は、モジュール本体m1の1辺の長さとほぼ同じ長さの板部1aと、板部1aの内面から直角に突出しかつ板部1aの全長に渡って延びる3本の突出片部とからなる。フレーム部材f1の2本の突出片部は、それらの間にモジュール本体m1の一端縁を嵌め込んで挟持するための挟持片1b、1cであり、残りの突出部は設置場所に取り付けるための取付片1dである。さらに、挟持片1b、1cの間における板部1aの内面両端には、ネジ孔を有する筒状のネジ取付部が一体的に設けられている。なお、このフレーム部材f1と対向して配置されるフレーム部材f3は、フレーム部材f1と同じ構成である。
フレーム部材f2は、フレーム部材f1と同様の板部および一対の挟持片を有するが、挟持片の長さは板部よりも短くされていると共に、フレーム部材f1における前記取付片を含むL字形の部分は省略されている。さらに、板部の両端には、フレーム部材f1、f3のネジ取付部と一致する位置にネジ挿入孔が形成されている。なお、このフレーム部材f2と対向して配置されるフレーム部材f4は、フレーム部材f2と同じ構成である。
図5は薄膜太陽電池セル10を示す斜視図であり、図6(a)は図5のB−B線断面図であり、図6(b)は図5のA−A線断面図である。
薄膜太陽電池セル10は、絶縁基板である長方形の透明絶縁基板111と、透明絶縁基板111の表面上に第1電極層112、光電変換層113および第2電極層114が順次積層されてなる薄膜光電変換素子115が複数個互いに電気的に直列接続されたストリングS1を備えたスーパーストレート型の薄膜太陽電池セルである。
透明絶縁基板111としては、以降の膜形成プロセスにおける耐熱性及び透光性を有するガラス基板、ポリイミド等の樹脂基板等が使用可能である。また、第1電極層112は、透明導電膜からなり、好ましくは、ZnOまたはSnO2を含む材料からなる透明導電膜からなる。SnO2を含む材料は、SnO2自体であってもよく、SnO2と別の酸化物の混合物(例えば、SnO2とIn23の混合物であるITO)であってもよい。
光電変換層113を構成する各半導体層の材料は、特に限定されず、例えば、シリコン系半導体、CIS(CuInSe2)化合物半導体、CIGS(Cu(In,Ga)Se2)化合物半導体等からなる。以下、各半導体層がシリコン系半導体からなる場合を例にとって説明を進める。「シリコン系半導体」とは、非晶質又は微結晶シリコン、又は非晶質又は微結晶シリコンに炭素やゲルマニウム又はその他の不純物が添加された半導体(シリコンカーバイド、シリコンゲルマニウム等)を意味する。また、「微結晶シリコン」とは、結晶粒径が小さい(数十から千Å程度)結晶シリコンと、非晶質シリコンとの混合相の状態のシリコンを意味する。微結晶シリコンは、例えば、結晶シリコン薄膜をプラズマCVD法などの非平衡プロセスを用いて低温で作製した場合に形成される。
光電変換層113は、第1電極112側から順にp型半導体層、i型半導体層およびn型半導体層が積層されてなる。
p型半導体層には、ボロン、アルミニウム等のp型不純物原子がドープされており、n型半導体層にはリン等のn型不純物原子がドープされている。i型半導体層は、完全にノンドープである半導体層であってもよく、微量の不純物を含む弱p型又は弱n型で光電変換機能を十分に備えている半導体層であってもよい。なお、本明細書において、「非晶質層」及び「微結晶層」は、それぞれ、非晶質及び微結晶の半導体層を意味する。
第2電極層114の構成や材料は、特に限定されないが、一例では、第2電極114は、透明導電膜と金属膜とが光電変換層上に積層した積層構造を有する。透明導電膜は、SnO2、ITO、ZnOなどからなる。金属膜は、銀、アルミニウム等の金属からなる。
透明導電膜と金属膜は、CVD、スパッタ、蒸着等の方法により形成することができる。
ストリングS1は、表面に複数の分離溝116が形成されている。この複数の分離溝116は、隣接する2つの薄膜光電変換素子115の第2電極114および光電変換層113を電気的に分離するよう直列接続方向と直交する方向(透明絶縁基板111の長辺方向)に延びて形成されている。また、ストリングS1の直列接続方向の一端(図6(b)における右端)の第1電極、光電変換層および第2電極からなる積層膜115aは、直列接続方向の幅が狭く形成されているため実質的に発電に寄与しておらず、そのため、この積層膜115aの第2電極は、隣接する薄膜光電変換層115の第1電極112の引き出し電極114aとして用いられている。
また、セル10のストリングS1は、透明絶縁基板111におけるフレームF1に近接した3つの端面および隣接する他のセル10と対向する1つの端面よりも内側に形成されている。つまり、透明絶縁基板111の表面の外周領域は、第1電極層112、光電変換層113および第2電極層114が付着していない一定の幅Wの非導電性表面領域119とされている。この非導電性表面領域119において、フレームF1に近接する部分は第1の非導電性表面領域119aであり、隣接する他のセル10と近接する部分は第2の非導電性表面領域119bである。なお、この非導電性表面領域119について詳しくは後述する。
また、このセル10は、透明絶縁基板111の外周端面の全面に第1電極層112、光電変換層113および第2電極層114からなる導電膜Dが付着している。この導電膜Dは、透明絶縁基板111の表面にストリングS1を形成する際に外周端面に付着したものであり、厚みは2〜5μm程度である。
このように構成された2枚の薄膜太陽電池セル10は、図7(a)または(b)に示すように相互に離間して、かつストリングS1の直列接続方向に隣接して横並びに配置されている。
図7(a)では、一方のセル10の前記引き出し電極114aと他方のセル10の第2電極115とが近接するように2つのセル10を並べた状態を示し、図7(b)では、一方のセル10の前記引き出し電極114aと他方のセル10の引き出し電極114aとが近接するように2つのセル10を並べた状態を示している。なお、図7では図示省略しているが、各セル10のストリングS1における直列接続方向の両端の第2電極114および引き出し電極114aの上には、それらの長手方向に沿ってバスバー117(図8参照)がろう材にて電気的に接続されている。
これらのセル10は、各絶縁基板111の外周端面における対向する端面間の距離が0.1〜5mm程度となるように離間して配置されており、対向する端面間には被覆層12が入り込んでいる。そのため、絶縁基板111同士が接触して基板割れを生じることが回避される。なお、図7では、各セル10の周囲の被覆層12と強化ガラスG1上の接着層11との境界線は図示されていない。これは、被覆層12と強化ガラスG1上の接着層11は共に樹脂シートからなり、それらは熱融着により一体化しているためであり、詳しくは後述する。
図8は2つのセル10の各バスバー117に取り出し線1118(例えば銅線)を電気的に接続した状態を示し、図9は前記取り出し線1118を有する配線シート1119の構成説明図である。
配線シート1119は、所定長さの4本の取り出し線1118およびこれらを相互に離間させて略平行に配置した状態で挟み込む第1絶縁シート1120および第2絶縁シート1121とを有し、横並びの2つのセル10の上に直列接続方向に設置される。
第1絶縁シート1120は各取り出し線1118の一端を外部に導出するための複数の取り出し孔1120aを有し、第2絶縁シート1121は各取り出し線1118の他端のみを外部に露出する形状に形成されている。これら第1および第2絶縁シート1120、1121は、樹脂シート(例えば、ポリエチレン、ポリプロピレン、PET等)からなり、4本の取り出し線1118を並べて挟み込んだ状態で相互に熱融着されている。
配線シート1119の複数の取り出し孔1120aは相互に近接した位置に配置されており、複数の取り出し線1118の一端は折れ曲って各取り出し孔1120aから外部に引き出されている。なお、被覆層12および保護層13にも、各取り出し線1118の折れ曲った一端を外部に導出するための取り出し孔が形成されている。
また、複数の取り出し線1118は、それらの他端が横並びの2つのセル10の各バスバー117に接触可能な位置に配置される長さに設定されている。
さらに詳しく説明すると、本実施形態1−1では、4本の取り出し線1118のうち、隣接する2本の取り出し線1118は離間した位置の2本のバスバー117に接続され、他の隣接する取り出し線1118は近接した位置の2本のバスバー117に接続される。
上述の配線接続部14は、前記配線シート1119と、配線シート1119の各取り出し線1118の外部に露出した一端と電気的に接続される2本の出力線1122を有する端子ボックス1123とを備えている。
2本の出力線1122の一端には導出端子が設けられており、各導出端子に取り出し線1118が2本ずつ電気的に接続されると共に、2本の出力線1122の他端にはコネクタ1124がそれぞれ設けられている。
端子ボックス1123は、保護層13の表面に、例えばシリコーン樹脂系の接着剤にて固定されており、内部への水の侵入が防止されている。
2枚の薄膜太陽電池セル10は、後述のようにして相互に直列接続または並列接続される。
直列接続する場合、ストリングS1の直列接続方向に並んだ隣接する2つのセル10は、一方のセル10の第2電極114と他方のセル10の引き出し電極114aとが相互に近接する向きに配置されて相互に電気的に接続されることにより、2つのセル10のストリングS1は互いに直列接続される。
具体的には、図7(a)に示すように、2枚のセル10を並べ、かつ前記配線シート1119を用いて配線する際、2枚のセル10における近接する引き出し電極114aと第2電極114とを2本の取り出し線1118同士を接続することにより接続し、かつ離間する第2電極114および引き出し電極114aを他の2本の取り出し線1118を介して2本の出力線1122に接続することにより、2枚の薄膜太陽電池セル10を直列接続する。
並列接続する場合、ストリングS1の直列接続方向に並んだ隣接する2つのセル10において、各セル10は各引き出し電極214aが相互に離間する向きまたは各引き出し電極214aが相互に近接する向きに配置され、かつ各セル10の近接する第2電極214同士または引き出し電極214a同士が電気的に接続されることにより、2つの薄膜太陽電池セルのストリングS1は互いに並列接続される。
具体的には、図7(b)に示すように、2枚のセル10を並べ、かつ前記配線シート1119を用いて配線する際、2枚のセル10における近接する引き出し電極114a同士が2本の取り出し線1118を介して一方の出力線1122に接続し、かつ離間する第2電極114同士が他の2本の取り出し線1118を介して他方の出力線1122に接続することにより、2枚の薄膜太陽電池セル10を並列接続する。なお、並列接続では、図7(b)で示した向きと反対向きに各セル10を並べてもよい。
なお、2つのセル10の各バスバー117に接続された各取り出し線1118を適切に取り扱うことによって、図7(a)のようにセル10を並べて並列接続するまたは図7(b)のようにセル10を並べて直列接続することも可能である。
図10は薄膜太陽電池モジュールM1のフレーム取付部位を示す断面図であり、図10(a)は図6(a)の断面に対応し、図10(b)は図6(b)の断面に対応する。
図10に示すように、フレームF1の一対の挟持片1b、1cの間にモジュール本体m1の外周縁が押し込まれた状態において、フレームF1の板部1aからセル10のストリングS1までの距離Lが上述の所定絶縁距離である。この所定絶縁距離L内における透明絶縁基板111の表面上に、ストリングS1そのもの、あるいは第1電極層112および第2電極層114の少なくとも一方が形成されていると、フレームF1とストリング2の間で所定の絶縁耐電圧性が得られない。つまり、フレームF1とストリング2の直列接続方向端部の第2電極114または引き出し電極114aの間で、例えば6KVもの高電圧を印加すると、フレームF1とストリングの間で放電する。
本発明では、このような放電を防止するための所定の絶縁耐電圧性を得るために、所定絶縁距離L内における透明絶縁基板111の表面上に第1電極層112、光電変換層113および第2電極層114が付着していない幅Wの前記第1の非導電性表面領域119aが形成されている。例えば、国際規格の雷サージ耐圧6KVに対する絶縁耐電圧性を得るために、所定絶縁距離Lを9〜20mmとした場合、第1の非導電性表面領域119aの幅Wは8.4〜20mmであり、8.4〜14mmが好ましく、8.4〜11mmがさらに好ましい。
さらに、隣接するセル10の相互に近接する表面にも同じ幅Wの前記第2の非導電性表面領域119bが形成されている(図1(a)参照)。この場合、隣接するセル10の相互に近接する表面はフレームF1の板部1aから所定絶縁距離Lよりも遠くに離れているが、幅Wの第2の非導電性表面領域119bが必要となる。つまり、透明絶縁基板111の外周端面全体には第1電極層112および第2電極層114からなる導電膜Dが付着しており、付着膜DからフレームF1の最短距離は前記所定絶縁距離Lより近いため、第2の非導電性表面領域119bが無いと導電膜Dを介してフレームF1とストリングS1との間で導通または放電するからであり、この導電膜Dを考慮して第2の非導電性表面領域119bが設けられる。
<薄膜太陽電池モジュールの構造の説明>
上述の薄膜太陽電池モジュールM1は、前記複数枚の薄膜太陽電池セルを作製するセル作製工程と、支持プレート上に並べた複数枚の薄膜太陽電池セルを絶縁性の封止材料にて封止し固定する封止固定工程と、該複数枚の薄膜太陽電池セルを支持した前記支持プレートの外周縁にフレームを取り付けるフレーム取付工程とを備える薄膜太陽電池モジュールの製造方法によって製造することができる。
以下、各工程を工程順に説明する。
〔セル作製工程〕
セル作製工程は、絶縁基板の少なくとも表面上に第1電極層、光電変換層および第2電極層が順次積層されてなる薄膜光電変換素子が複数個互いに電気的に直列接続してなるストリングを形成するストリング形成工程と、前記フレームが導電性材料からなる場合に、前記フレームから所定絶縁距離内に位置する前記絶縁基板の表面の前記第1電極層、光電変換層および第2電極層を除去して第1の非導電性表面領域を形成する膜除去工程とを含む。
さらに、前記膜除去工程において、前記ストリング形成工程で絶縁基板の外周端面に前記第1電極層および第2電極層の少なくとも一方の電極層が付着した場合に、その後の前記封止固定工程で複数枚の薄膜太陽電池セルを並べたときの隣接する2つの薄膜太陽電池セルの互いに近接する表面上の前記第1電極層、光電変換層および第2電極層を除去して、前記第1の非導電性表面領域の幅と同じ幅を有する第2の非導電性表面領域を形成する。
前記ストリング形成工程では、図11および図12に示すストリングSaを以下のようにして作製する。
まず、熱CVD法、スパッタ法等により、透明絶縁基板111上に第1電極層112を膜厚500〜1000nm程度で積層する。この透明絶縁基板111のサイズとしては400〜2000mm×400〜2000mm程度、厚み0.7〜5.0mm程度である。
次に、レーザスクライブ法によって、第1電極層112の一部を所定間隔(7〜18mm程度)で除去して複数の第1の分離溝112aを形成する。
続いて、プラズマCVD法等により、第1の分離溝112aで分離された第1電極層112を覆うように光電変換層113を膜厚300〜3000nm程度で積層する。光電変換層113としては、例えばシリコン系半導体薄膜が挙げられ、p型半導体層、i型半導体層およびn型半導体層を順次第1電極112上に積層する。
その後、レーザスクライブ法により、光電変換層113の一部を所定間隔(7〜18mm程度)で除去することによって、複数の前記コンタクトライン13aを形成する。
続いて、スパッタ法、蒸着法等により、光電変換層113を覆うように透明導電層と金属層をこの順で積層して第2電極層114を形成する。これにより、コンタクトライン113aが第2電極層114で埋められる。透明導電層の厚みは300〜2000nm程度、金属層の厚みは100〜10000nm程度である。
次に、レーザスクライブ法によって、光電変換層113および第2電極層114の一部を所定間隔(7〜18mm程度)で除去することによって分離して、複数の第2の分離溝116を形成する。
なお、第1の分離溝112a、コンタクトライン113aおよび第2の分離溝116を形成するレーザスクライブ法は、各溝を形成する際に除去すべき層に吸収される波長に調整したYAGレーザやYVO4レーザを用いることができる。
例えば、透明導電膜に吸収されるYAGレーザ光の基本波(波長:1064nm)またはYVO4レーザ光の基本波を用いて第1電極層112をパターニングして第1の分離溝112aを形成することができる。
また、例えば、Nd:YAGレーザ第2高調波(波長532nm)により半導体層113をパターニングしてコンタクトライン113aを形成することができる。このとき、Nd:YAGレーザ第2高調波は第1電極層112(透明導電膜)ではほとんど吸収されないため、第1電極層112は除去されない。
また、このNd:YAGレーザ第2高調波(波長532nm)によって半導体層113および第2電極層114を除去して第2の分離溝116を形成することができる。
以上により、透明絶縁基板111の表面全体に複数の帯状の薄膜光電変換素子115が互いに直列接続されたストリングSaが形成される。なお、ストリング形成工程では、図11および図12に示すように、透明絶縁基板111の外周端面に第1電極層112および第2電極層114からなる導電膜Dが付着する。これは、成膜装置内において、透明絶縁基板111の外周端面を被覆せずに成膜しているためである。透明絶縁基板111を基板専用トレー上に設置し、トレーによって透明絶縁基板111の外周端面を覆うことにより、外周端面に導電膜Dは付着しないが、多数のトレーが必要となること、透明絶縁基板111をトレーにセッティングする工程が増加すること、トレー表面に付着した膜を除去するメンテナンスが必要なこと等によって製造コストが上昇するため、本実施形態1−1ではトレーを使用しない成膜工程を採用している。
〔膜除去工程〕
膜除去工程では、透明絶縁基板111の表面における外周領域の第1電極層112、光電変換層113および第2電極層114を光ビームによって除去して、8.4〜11mmの幅Wの非導電性表面領域119を形成する。
これによって、透明絶縁基板111の表面の外周縁に非導電性表面領域119を有し、その内側に上述のストリングS1が形成された薄膜太陽電池セル10が形成される。研磨や粒子吹きつけ等の機械的方法によって膜を除去することも可能であるが、光ビームにより除去する方法が、最もクリーンで実用的な方法であり望ましい。
なお、光ビームとして、YAGレーザ光の基本波(波長:1064nm)またはYVO4レーザ光の基本波を用いることが好ましい。YAGレーザ光の基本波およびYVO4レーザ光の基本波はそれぞれSnO2透明絶縁基板111を透過し、SnO2のような透明な第1電極層112に吸収される傾向にあるため、透明絶縁基板111側からこれらの光ビームを照射することにより、第1電極層112を選択的に加熱することができ、その熱によって第1電極層112、光電変換層113および第2電極層114を蒸散させることができる。
ここで、本発明において、YAGレーザとは、Nd:YAGレーザのことであり、Nd:YAGレーザはネオジムイオン(Nd3+)を含むイットリウムアルミニウムガーネット(Y3Al512)結晶からなる。YAGレーザからはYAGレーザ光の基本波(波長:1064nm)が発振する。
また、YVO4レーザとは、Nd:YVO4レーザのことであり、Nd:YVO4レーザはネオジムイオン(Nd3+)を含むYVO4結晶からなる。YVO4レーザからはYVO4レーザ光の基本波(波長:1064nm)が発振する。
その後、ストリングS1の直列接続方向の第2電極114および引き出し電極114aの表面にろう材を介してバスバー117を電気的に接続する(図8参照)。
〔封止固定工程〕
前記封止固定工程では、強化ガラスG1上に、この強化ガラスG1とほぼ同じサイズで、かつ厚み0.2〜1.0mm程度の接着層用EVAシート11aを載置する。この強化ガラスG1のサイズとしては400〜2000mm×400〜2000mm程度、厚み0.7〜5.0mm程度である。
そして、接着層用EVAシート11a上に、2枚の薄膜太陽電池セル10を0.1〜3.0mm程度離間させて横並びに配置し、その後、配線シート1119の各取り出し線1118を各バスバー117にろう材にて電気的に接続する(図4、図8参照)。
続いて、2枚のセル10の上に被覆層用EVAシート12aを載置し、その上にPET/Al/PETの3層積層フィルムからなる保護層用シート13aを載置する。なお、被覆層用EVAシート12aおよび保護層用シート13aは、配線シート1119の各取り出し線1118の外部に突出した端部を通す取り出し孔が予め形成されている。
そして、これらを真空下で加熱圧着することによって、2枚のセル10は接着層11によって強化ガラスG1上に固定され、かつ被覆層12および保護層13によって樹脂封止される。これにより、2枚のセル10の間に被覆層12が入り込み、かつ各セル10の外周の被覆層12と接着層11が熱融着する。
その後、端子ボックス1123の各出力線1122と各取り出し線1118とを接続し、端子ボックス1123を保護層13の表面上に接着することにより、モジュール本体m1が完成する。
〔フレーム取付工程〕
フレーム取付工程では、4本のフレーム部材f1〜f4をモジュール本体m1の外周縁に嵌め込み、隣接するフレーム部材同士をビスにて固定する(図1〜図4参照)。
これにより、薄膜太陽電池モジュールM1が完成する。
このように製造された薄膜太陽電池モジュールM1によれば、強度を保ちながらセル間のフレームを省略することができ、フレームの部材削減、モジュール重量の軽量化、フレーム取付工数の削減、配線取り回しの簡略化等を図ることができ、その結果、製造コストを低減することができる。
また、セル間にフレームが無いため、美観が向上した薄膜太陽電池モジュールが得られる。
また、1種類のセル10を用いて、図7(a)に示した状態と図7(b)に示した状態のどちらにでも2枚のセル10を隣接して配置することができる。
また、隣接するセル10の透明絶縁基板111同士が接触しないため、複数のセル10を強化ガラスG1上に設置する際に透明絶縁基板111同士を誤って衝突させて基板割れを生じることがない。さらに、透明絶縁基板111同士を接触させていると、モジュール本体m1の運搬時やフレームF1をモジュール本体m1に取り付ける際に、強化ガラスG1が僅かでも撓むと透明絶縁基板111同士に圧力がかかって基板割れを生じるおそれがあるが、本実施形態1−1の薄膜太陽電池モジュールM1ではこのようなこともない。
(実施形態1−1の変形例:参考例
図5および図6で説明した膜除去工程において、分離溝116の長手方向の両端近傍部分の第1の非導電性表面領域119aは、一度に第1電極層112、光電変換層113および第2電極層114を除去して形成するのではなく、以下の工程のように段階的に膜を除去して形成することが望ましい。
すなわち、まず、分離溝116の長手方向の両端近傍部分のストリングS1に対して、YAGレーザ光の第2高調波またはYVO4レーザ光の第2高調波を透明絶縁基板111側から照射し、かつ分離溝116の長手方向と直交する方向に走査することによって、光電変換層113および第2電極層114を蒸散させて溝を形成する。
その後、前記溝のさらに外側の領域に対して、第1レーザ光とは波長の異なるYAGレーザ光の基本波またはYVO4レーザ光の基本波を透明絶縁基板111側から照射し、かつ分離溝116の長手方向に直交する方向に走査することによって、溝のさらに外側の領域に位置する第1電極層112、光電変換層113および第2電極層114を除去する。
このように2段階の光ビーム照射により分離溝116の長手方向の両端近傍部分の第1の非導電性表面領域119aを形成することができる。この場合、第1電極層112が光電変換層113および第2電極層114よりも分離溝116の長手方向に突出している。なお、この突出した第1電極層112が前記溝の底に相当し、非導電性表面領域119aが形成されたことにより溝は消滅している。
上述の1段階目の光ビーム照射では、YAGレーザ光の第2高調波またはYVO4レーザ光の第2高調波の照射領域において、第1電極層112を除去することなく光電変換層113および第2電極層114のみを除去することができる。これにより、溝に光電変換層113および第2電極層114の縦断面が露出する。
2段階目の光ビーム照射では、露出した光電変換層113および第2電極層114の縦断面と、蒸散する第1電極層112との間には、少なくとも溝(1段階目の光ビームの照射領域)の幅の距離がある。したがって、2段階目の光ビーム照射では、周縁部分の第1電極層112、光電変換層113および第2電極層114を一度に蒸散させる方法と比べて、溝の幅の分だけ、蒸散した第1電極層112が光電変換層113の縦断面に再付着しにくくなることから、第1電極層112と第2電極層114の間のリーク電流を低減することができる。
(実施形態1−2:参考例
図13は実施形態1−2の薄膜太陽電池モジュールを示す平面図である。
この実施形態1−2の薄膜太陽電池モジュールM2は、長方形の強化ガラスG2上に、実施形態1−1のセル10を3枚横並び(薄膜光電変換素子の直列接続方向)に設置してモジュール本体m2を作製し、このモジュール本体m2の外周縁の各辺の長さに対応するフレームF2をモジュール本体m2に取り付けたこと以外は、上述の実施形態1−1の薄膜太陽電池モジュールM1と概ね同様の構成である。なお、図13において、実施形態1−1と同様の構成には同一の符号を付している。
実施形態1−2の薄膜太陽電池モジュールM2の場合、使用する強化ガラスG2、フレームF2、EVAシート等のサイズが大きくなるが、実施形態1−1の製造方法に準じて製造することができる。
実施形態1−2の場合も各セル10は相互に離間して配置され、6本の取り出し線を有する配線シート(図8参照)を用いて直列接続または並列接続することができる。このとき、3枚のセル10を全て同じ向きに並べても(図7(a)参照)、あるいは3枚のうち1枚のセル10を異なる向きにして並べても、各バスバーに接続した取り出し線の適切な取り扱いによって直列接続と並列接続のどちらにでも対応することができる。
(実施形態1−3:参考例
図14は実施形態1−3の薄膜太陽電池モジュールを示す平面図である。
この実施形態1−3の薄膜太陽電池モジュールM3は、長方形の強化ガラスG3上に4枚のセル10を横および縦に並べて設置してモジュール本体m3を作製し、このモジュール本体m3の外周縁の各辺の長さに対応するフレームF3をモジュール本体m3に取り付けたこと以外は、上述の実施形態1−1の薄膜太陽電池モジュールM1と概ね同様の構成である。なお、図14において、実施形態1−1と同様の構成には同一の符号を付している。
実施形態1−3の薄膜太陽電池モジュールM3の場合、使用する強化ガラスG3、フレームF3、EVAシート等のサイズが大きくなるが、実施形態1−1の製造方法に準じて製造することができる。この場合も各セル10は相互に離間して配置される。
また、この場合、横並びの各列の2枚のセル10を実施形態1−1と同じ方法で直列接続または並列接続することができる。あるいは、4枚のセル10の各バスバーに接続された8本の取り出し線の適切な取り扱いによって、4枚のセルを直列接続または並列接続することができる。
(実施形態1−4:参考例
図15は実施形態1−4の薄膜太陽電池モジュールの製造工程の一部を説明する工程図である。
前記実施形態1−1〜実施形態1−3では、封止固定工程において、強化ガラスG上の接着用EVAシートの上に複数のセルを相互に離間させて設置し、その後複数のセル全体を被覆用EVAシートにて加熱圧着することにより、セル間に被覆層が入り込んでセル端縁が保護されている。実施形態1−4では、このような方法とは異なる方法でセル間のセル端縁を保護する。
2枚のセル10を用いる場合で説明すると、図15(a)に示すように、封止固定工程において、強化ガラスG1上に接着用EVAシート11aを載置した後、EVAシート11aの所定中間位置に棒状の保護部材11bを設置する。そして、この保護部材11bに端面を突き当てるようにして2枚のセル10をEVAシート11aの上に載置する。図15(b)は2枚のセル10をEVAシート11aの上に載置した状態を示している。その後の工程は、実施形態1−1と同様である。なお、図15において、実施形態1−1と同様の要素には同一の符号を付している。
この保護部材11bは、セル10の絶縁基板よりも柔らかい材質の絶縁材料で構成されていればよいが、接着層および被覆層と熱融着する樹脂材料が好ましく、接着層および被覆層と同じ材料であるEVAがさらに好ましい。保護部材11bの長さは、接触するセル10の端面の長さと同じ程度が適当であるが、それより短くても構わない。また、短い保護部材11bを複数本所定間隔で配置してもよい。また、保護部材11bの太さは、隣接するセル10の離間寸法(例えば0.1〜5.0mm程度)に設定すればよい。
このようにすれば、複数枚のセル10をEVAシート11aの設置すべき位置に迅速に設置することができ、かつセル同士が接触することによる基板割れを防止することができる。
(実施形態2−1)
図16は実施形態2−1の薄膜太陽電池モジュールM4を示す部分断面平面図であり、図17は実施形態2−1における薄膜太陽電池セル210を示す斜視図であり、図18は実施形態2−1における薄膜太陽電池セル210を横並びに配置した断面図であって、図18(a)は並列接続状態を示し、図18(b)は直列接続状態を示す。なお、図16〜図18において、実施形態1−1と同様の要素には同一の符号を付している。
この実施形態2−1の薄膜太陽電池モジュールM4において、薄膜太陽電池セル210は、発電に寄与する有効発電面積が実施形態1−1の薄膜太陽電池セル10(図5参照)よりも増加したものである。実施形態2−1の薄膜太陽電池モジュールM4は、このセル210が異なる以外は、実施形態1−1とほぼ同様の構成である。
実施形態2−1の薄膜太陽電池セル210は、透明絶縁基板211の表面上に第1電極層212、光電変換層213および第2電極層214が順次積層されてなる薄膜光電変換素子215が複数個互いに電気的に直列接続されたストリングS2を備え、ストリングS2は透明絶縁基板211におけるフレームF1に近接した3つの端面よりも内側に形成されている。つまり、フレームF1から少なくとも所定絶縁距離内に位置する透明絶縁基板211の表面は、第1電極層212、光電変換層213および第2電極層214が付着していない非導電性表面領域219aとされている。
さらに、複数枚の薄膜太陽電池セルにおいて、隣接する2つの薄膜太陽電池セル210の対向する端面におけるフレームF1から少なくとも前記所定絶縁距離内に位置する部分は、第1電極層212および第2電極層214が付着していない非導電性端面領域219bとされている。なお、ストリングS2の直列接続方向の一端側の第2電極層は、実施形態1−1と同様に、隣接する薄膜光電素子215の第1電極212の引き出し電極214aとされている。
つまり、実施形態1−1の薄膜太陽電池セル10(図5参照)は、隣接する2つのセル210の表面における近接する部分は第2の非導電性表面領域119bとされていたが、実施形態2−1の薄膜太陽電池セル210は、隣接する2つのセル210の表面における近接する部分までストリングS2が形成されているため有効発電面積が増加している。
この場合、セル210の透明絶縁基板211の外周端面には、実施形態1−1と同様の導電膜Dが付着しているため、隣接する2つの薄膜太陽電池セル210の対向する端面に付着した導電膜Dが、この端面側のストリングS2と接触している。この端面の導電膜Dが、フレームFから前記所定絶縁距離L(図10参照)内にあると、所定の絶縁耐電圧性を試験する6KVもの高電圧が印加されたフレームF1およびストリングS2の間で導電膜Dを介して放電が生じてしまう。
そこで、セル210が所定の絶縁耐電圧性を有するために、隣接する2つの薄膜太陽電池セル210の対向する端面において、フレームF1から少なくとも前記所定絶縁距離L内に位置する端部には、各セル210の透明絶縁基板211の角部を切除することによって前記非導電性端面領域219bが形成されている。
セル210の透明絶縁基板211の角部を切除する方法としては、例えば、図19(a)に示すように、市販のガラスカッターCを用いて透明絶縁基板211の角部近傍の表面(非導電性表面領域219a)に溝状の傷220を付け、この傷220を起点として角部を折ることによって、非導電性表面領域219aの幅Wと同じ幅の非導電性端面領域219bを形成することができる。
実施形態2−1の薄膜太陽電池モジュールM4の製造工程は、セル作製工程における膜除去工程の最後に、透明絶縁基板211の角部を切除することによって非導電性端面領域219bを形成すること、および、後述する接続方法が若干異なる以外は、実施形態1−1の製造工程と同様である。
実施形態2−1の場合も、図18に示すように、隣接する2つのセル210は相互に離間した状態で接着層11を介して強化ガラスG1上に配置されている。そして、図18(a)に示すようにセル210同士を並列接続する、あるいは図18(b)に示すようにセル210同士を直列接続することができる。
作製したセル210が、隣接する2つのセル210の相互に対向する端面側に第2電極層214が配置されたものである場合、図18(a)に示すように、各セル210の近接する第2電極層214同士をろう材を介してインターコネクタ221にて電気的に接続することにより、並列接続することができる。
さらに、各セル210の離間する引き出し電極214a上にろう材を介してバスバー217を電気的に接続し、配線シートの3本の取り出し線(図8および図9参照)をインターコネクタ221および各バスバー217に電気的に接続し、インターコネクタ側の1本の取り出し線を一方の出力線に接続し、バスバー側の2本の取り出し線を他方の出力線に接続することにより、並列接続された2つのセル210にて発電された電流を外部に取り出すことができる。
なお、セル210は、図18(b)の右側のセル210aのように、隣接する2つのセルの相互に対向する端面側に引き出し電極214aが配置されるようにしてもよく、引き出し電極214a同士をインターコネクタにて接続してセル210同士を並列接続してもよい。
このように、並列接続する場合は、1種類のセル210を作製すればよい。
図18(b)に示す直列接続の場合、隣接する2つのセル210において、一方のセル210は対向端面側に第2電極層214が配置され、他方のセル210aは対向端面側に引き出し電極214aが配置され、これら第2電極層214と引き出し電極214aとがインターコネクタ221にて接続されると共に、相互に離間した引き出し電極214aと第2電極214の表面にバスバー217が接続される。この場合、2種類のセル210、210aが必要となる。
直列接続の場合、各セル210のバスバー217に配線シートの2本の取り出し線(図8および図9参照)を電気的に接続し、各取り出し線を各出力線に接続することにより、各セル210にて発電された電流を外部に取り出すことができる。
(実施形態2−2)
図20は実施形態2−2の薄膜太陽電池モジュールM5を示す部分断面平面図であり、図21は実施形態2−2における薄膜太陽電池セル310を示す斜視図である。なお、図20および図21において、実施形態1−1と同様の要素には同一の符号を付している。
上述の実施形態2−1のセル210(図17参照)では、前記非導電性端面領域219bが、透明絶縁基板211の角部を切除することにより形成されているが、実施形態2−2のセル310では、透明絶縁基板311の角部を切除せずに非導電性端面領域319bを形成する点が実施形態2−1とは異なる。なお、実施形態2−2におけるその他の構成は実施形態2−1と同様である。
実施形態2−2のセル310は、隣接する2つの薄膜太陽電池セル310の対向する端面において、フレームF1から少なくとも前記所定絶縁距離L(図10参照)内に位置する端部の端面を研磨またはエッチング処理することによって、非導電性表面領域319aの幅Wと同じ幅の非導電性端面領域319bが形成されている。なお、図21において、符号311は絶縁基板、S3はストリング、315は薄膜光電変換素子を表している。
研磨によって非導電性端面領域319bを形成する場合、例えば図22に示すように、ストリングS3が形成された後に、セル310の非導電性端面領域を形成すべき被研磨端面部分を露出させかつその周辺部分を覆うカバー部材Kをセル310にセットし、被研磨端面部分の導電膜Dに水をかけながらハンディタイプの研磨機Pによって研磨して、透明絶縁基板311が露出するまで導電膜Dを除去する。
この際、水および研磨屑が飛び散ってセル310の表面に付着すると、セル表面を洗浄する必要があるため、カバー部材Kに設けた襟部によって水および研磨屑がセル表面へ飛散するのを防止することが好ましい。さらには、水および研磨屑を吸引しながら研磨することが好ましい。
エッチング処理によって非導電性端面領域319bを形成する場合、エッチング液を用いてセル310の非導電性端面領域を形成すべき端面部分の導電膜Dを除去する。
実施形態2−2の薄膜太陽電池モジュールM5の製造工程は、このような研磨またはエッチング処理により非導電性端面領域219bを形成すること以外は、実施形態2−1の製造工程と同様である。
(実施形態2−3)
図23は実施形態2−3の薄膜太陽電池モジュールを示す部分断面平面図である。
この実施形態2−3の薄膜太陽電池モジュールM6は、長方形の強化ガラスG2上に、実施形態2−1の2枚のセル210と後述のセル210aを3枚横並びに設置してモジュール本体m6を作製し、このモジュール本体m6の外周縁の各辺の長さに対応するフレームF2をモジュール本体m6に取り付けたものである。なお、図23において、実施形態1−1と同様の要素には同一の符号を付している。
この場合、中央に配置されるセル210aは、ストリングの直列接続方向の一方の端面が図18(b)に示す左側のセル210の右端面と同じ構造に形成されていると共に、他方の端面が図18(b)に示す右側のセル210の左端面と同じ構造に形成されている。つまり、このセル210aは、隣接する両側のセル210に近接する端面までストリングが形成されている。換言すると、このセル210aは、フレームF6に近接する辺に沿った表面に2つの非導電性表面領域219aが分離して形成されている。
実施形態2−3では、両側の2枚のセル210と中央のセル210aとは相互に離間した状態で接着層を介して強化ガラスG6上に配置されている。このとき、3枚のセル210、210aは、図18(b)に示すようにインターコネクタにて直列接続される向きに配置されることが、配線構造を簡素化する観点から好ましい。
なお、実施形態2−3は、上述の構成以外は実施形態2−1と同様であり、実施形態1−1の製造工程に準じて製造することができる。
(実施形態2−4)
図24は実施形態2−4の薄膜太陽電池モジュールM7を示す平面図である。
この実施形態2−4の薄膜太陽電池モジュールM7は、長方形の強化ガラスG3上に4枚のセル210を横および縦に並べて設置してモジュール本体m7を作製し、このモジュール本体m7の外周縁の各辺の長さに対応するフレームF3をモジュール本体m7に取り付けたこと以外は、上述の実施形態2−1の薄膜太陽電池モジュールM4と概ね同様の構成である。なお、図24において、実施形態1−1と同様の要素には同一の符号を付している。
実施形態2−4の薄膜太陽電池モジュールM7の場合、使用する強化ガラスG3、フレームF3、EVAシート等のサイズが大きくなるが、実施形態2−1の製造方法に概ね準じて製造することができる。ただし、以下の点を変更する。
実施形態2−4の場合、各セル210Bの外周端面には導電膜D(図17参照)が付着しており、各セル210Bの1つの長辺と1つの短辺がフレームF3に沿って近接し、かつ残りの長辺および短辺はフレームF3から離間する方向に延びている。
したがって、第1に、各セル210Bにおいて、フレームF3に近接する長辺および短辺に沿った表面外側領域に非導電性表面領域219aを形成する。第2に、各セル210Bにおいて、フレームF3から離間する方向に延びる長辺および短辺のフレームF3と近接する角部を切除して非導電性端面領域219bを形成する。このようにすれば、薄膜太陽電池モジュールM7として必要な絶縁耐電圧性を得ることができる。
さらに、第3に、セル210Bの表面において、分離溝の長手方向の隣接するセル210Bと近接する短辺に沿って、電気絶縁分離溝Qを形成する。この電気絶縁分離溝Qは、セル210Bの外周端面に付着した導電膜によってストリングが短絡するのを防止するものである。
電気絶縁分離溝Qの形成方法は、上述の実施形態1−1の変形例で説明した方法と同様であり、まず、1段階目の光ビーム照射で光電変換層および第2電極層を除去して第1の溝を形成し、次に、この第1の溝よりも外側領域の第1段極層、光電変換層および第2電極層を2段階目の光ビーム照射によって除去することにより、第1の溝を含む電気絶縁分離溝Qを形成する。
実施形態2−4の場合も各セル210Bは相互に離間して配置される。また、この場合、横並びの各列の2枚のセル210Bを実施形態2−1と同じ方法で直列接続または並列接続することができる。
(実施形態2−5)
実施形態2−3(図23)で使用した薄膜太陽電池セル210の代りに、実施形態2−2(図21)で説明した薄膜太陽電池セル310を用いてもよい。なお、セルを3枚並べる場合、中央に配置するセルは、実施形態2−3と同様にストリングを直列接続方向の端部一杯まで形成することができる。
また、実施形態2−4(図24)で使用した薄膜太陽電池セル210Bは、非導電性端面領域219bを角部を切除して形成するのではなく、実施形態2−2(図21および図22)で説明したように研磨またはエッチング処理して非導電性端面領域を形成するようにしてもよい。
(実施形態3:参考例
図25は実施形態3の薄膜太陽電池モジュールM8を示す平面図であり、図26は実施形態3における薄膜太陽電池セル410を示す斜視図である。なお、図25および図26において、実施形態1−1と同様の要素には同一の符号を付している。また、図26において、411は絶縁基板、415は薄膜光電変換素子、S4はストリング、419aは非導電性表面領域、419bは非導電性端面領域、m8はモジュール本体を表している。
この薄膜太陽電池モジュールM8における薄膜太陽電池セル410は、実施形態2−2(図21)のセル310と類似するものであるが、透明絶縁基板411の外周端面に導電膜が付着していないことが異なる。
実施形態3のセル410は、ストリング形成工程において、第1電極層、光電変換層および第2電極層を透明絶縁基板411の表面領域にのみ形成する。
このとき、図示省略するが、透明絶縁基板411を基板専用トレー上にセットし、このトレーの周囲壁および周囲壁から内側へ折れ曲った庇部によって透明絶縁基板411のフレームFに近接する幅Wの外周領域および外周端面全体を覆った状態でストリングS4を形成することにより、透明絶縁基板411の表面に幅Wの非導電性表面領域219aが残存し、かつ外周端面全体に非導電性端面領域419bが残存する。
この方法によれば、実施形態2−2で行っていた光ビームによって第1電極層、光電変換層および第2電極層を除去して非導電性表面領域を形成する工程および研磨またはエッチング処理により非導電性端面領域を形成する工程を省略することができる。
(他の実施形態)
1.実施形態2−1〜実施形態3における隣接するセルとセルの間に、実施形態1−4で説明した保護部材を配置して基板端面を保護するようにしてもよい。
2.実施形態3におけるセル410は、外周端面に導電膜が全く形成されないよう透明絶縁基板411の表面上にのみストリングS4を形成し、かつこのストリングS4は隣接するセルに対向する端面との境界まで形成されているものであるが、この境界付近の絶縁基板表面に幅Wより細い非導電性表面領域を形成してもよい。このようにする理由は、基板専用トレーに透明絶縁基板411をセットする際、透明絶縁基板411の前記端面とトレーの周囲壁との間に少しでも隙間があると、端面の全長に渡って前記境界付近に導電膜が付着してしまい、所定の絶縁耐電圧性を確保できなくなるためである。このような不具合は、透明絶縁基板411の端面が丸く加工されている場合はより顕著となる。したがって、周囲壁の全周に沿って庇部が形成されたトレーを用いて透明絶縁基板411の表面にストリングを形成すれば、前記端面に導電膜が付着することを確実に防止することができ、所定の絶縁耐電圧性を確保することができる。
3.上述の実施形態1−1〜実施形態3は、隣接するセル同士が離間して配置された場合を例示したが、例えば基板割れし難いポリイミド基板を用いれば、セル構成はそのままで、隣接したセル同士を接触して配置することができる。
4.上述の実施形態1−1〜実施形態3では、フレームが金属フレームである場合を例示したが、絶縁性フレームを用いてもよい。この場合、セル作製工程における膜除去工程は省略される。さらに、膜除去工程を省略したセル作製工程にて作製した薄膜太陽電池セルとしては市販品を用いることができるため、この場合はセル作製工程全体を省略することができる。
10、210、210a、310、410 薄膜太陽電池セル
11b 保護部材
111、211、311、411 透明絶縁基板(絶縁基板)
112、212 第1電極層
113、213 光電変換層
114、214 第2電極層
114a、214a 引き出し電極
115、215 薄膜光電変換素子
119a、119b、219a、319a、419a 非導電性表面領域
219b、319b、419b 非導電性端面領域
D 導電膜
F1、F2、F3 フレーム
G1、G2、G3 強化ガラス(支持プレート)
L 所定絶縁距離
S1、S2、S3、S4 ストリング

Claims (10)

  1. 複数枚の薄膜太陽電池セルと、支持プレートと、導電性材料からなるフレームとを備え、
    前記薄膜太陽電池セルは、少なくとも四辺を有する平面形状の絶縁基板の表面上に第1電極層、光電変換層および第2電極層が順次積層されてなる薄膜光電変換素子が複数個互いに電気的に直列接続されたストリングと、前記絶縁基板の外周端面に付着した導電膜とを有してなり、
    前記支持プレート上に複数枚の薄膜太陽電池セルが並べられ固定された状態で、支持プレートの外周縁に前記フレームが取り付けられており、
    前記薄膜太陽電池セルにおいて、前記絶縁基板におけるフレームに近接した端面よりも内側に前記ストリングが形成されることによって前記フレームから少なくとも所定絶縁距離内に位置する絶縁基板の表面は非導電性表面領域とされ、かつ、隣接する他の薄膜太陽電池セルと対向する一辺の外周端面における所定絶縁距離内に位置する端部は前記導電膜が存在しない非導電性端面領域とされており、前記非導電性表面領域および前記非導電性端面領域によって所定の絶縁耐電圧性が備えられており、
    前記絶縁基板は前記一辺の外周端面の端部が前記支持プレートの内側から外周側へ向うにつれて前記隣接する他の薄膜太陽電池セルから離れる方向に傾斜するように角部を欠いた形状を有し、前記角部を欠いた形状部分に前記非導電性端面領域が形成されていることを特徴とする薄膜太陽電池モジュール。
  2. 前記支持プレートが強化ガラスである請求項1に記載の薄膜太陽電池モジュール。
  3. 前記複数枚の薄膜太陽電池セルにおいて、隣接する2つの薄膜太陽電池セルは離間して配置されている請求項1または2に記載の薄膜太陽電池モジュール。
  4. 前記複数枚の薄膜太陽電池セルにおいて、隣接する2つの薄膜太陽電池セルの間に、各薄膜太陽電池セルの対向する端縁を保護する保護部材をさらに有する請求項に記載の薄膜太陽電池モジュール。
  5. 前記薄膜太陽電池セルにおいて、前記ストリングの直列接続方向の一端の第2電極は、隣接する薄膜光電変換素子の第1電極用の引き出し電極であると共に、前記光電変換層は、前記第1電極側の第1導電型半導体層と第2電極側の第2導電型半導体層を有し、
    前記ストリングの直列接続方向に並んだ隣接する2つの薄膜太陽電池セルは、一方の薄膜太陽電池セルの第2電極と他方の薄膜太陽電池セルの前記引き出し電極とが相互に近接する向きに配置されて相互に電気的に接続されることにより、2つの薄膜太陽電池セルのストリングは互いに直列接続される請求項1〜4のいずれか1つに記載の薄膜太陽電池モジュール。
  6. 前記薄膜太陽電池セルにおいて、前記ストリングの直列接続方向の一端の第2電極は、隣接する薄膜光電変換素子の第1電極用の引き出し電極であると共に、前記光電変換層は、前記第1電極側の第1導電型半導体層と第2電極側の第2導電型半導体層を有し、
    前記ストリングの直列接続方向に並んだ隣接する2つの薄膜太陽電池セルにおいて、各薄膜太陽電池セルは各引き出し電極が相互に離間する向きまたは各引き出し電極が相互に近接する向きに配置され、かつ各薄膜太陽電池セルの近接する第2電極同士または引き出し電極同士が電気的に接続されることにより、2つの薄膜太陽電池セルのストリングは互いに並列接続される請求項1〜4のいずれか1つに記載の薄膜太陽電池モジュール。
  7. 絶縁基板の表面上に第1電極層、光電変換層および第2電極層が順次積層されてなる薄膜光電変換素子が複数個互いに電気的に直列接続されたストリングと、前記ストリングの形成時に前記絶縁基板の外周端面に付着した導電膜とを有する薄膜太陽電池セルを支持プレート上に複数枚設置して絶縁性の封止材料にて封止し固定する封止固定工程と、該複数枚の薄膜太陽電池セルを支持した前記支持プレートの外周縁に導電性材料からなるフレームを取り付けるフレーム取付工程とを備え
    さらに、前記封止固定工程の前に、前記複数枚の薄膜太陽電池セルを作製するセル作製工程を備え、このセル作製工程が、
    四角形の絶縁基板の少なくとも表面上に前記ストリングを形成するストリング形成工程と、
    前記ストリング形成工程で絶縁基板の外周部に形成された前記薄膜光電変換素子を構成する膜を除去する膜除去工程とを含み、
    前記膜除去工程において、前記フレームから所定の絶縁耐電圧性を有する絶縁距離内に位置する絶縁基板の表面上の膜を除去することによって非導電性表面領域を形成し、
    さらに、前記ストリング形成工程で絶縁基板の外周端面に導電膜が付着した場合に、その後の前記封止固定工程で複数枚の薄膜太陽電池セルを並べたときの隣接する薄膜太陽電池セルと対向する一辺の外周端面の端部に付着した前記導電膜を除去するために、前記一辺の外周端面における所定絶縁距離内に位置する端部が前記支持プレートの内側から外周側へ向うにつれて前記隣接する他の薄膜太陽電池セルから離れる方向に傾斜するように角部を除去して非導電性端面領域を形成することを特徴とする薄膜太陽電池モジュールの製造方法。
  8. 前記封止固定工程において、隣接する2つの薄膜太陽電池セルが離間して配置されるように複数枚の薄膜太陽電池セルを並べる請求項7に記載の薄膜太陽電池モジュールの製造方法。
  9. 前記封止固定工程において、支持プレート上に保護部材を設置し、該保護部材を挟むようにして2枚の薄膜太陽電池セルを支持プレート上に並べる工程をさらに含む請求項8に記載の薄膜太陽電池モジュールの製造方法。
  10. 前記膜除去工程において、前記絶縁基板の表面における外周領域の前記第1電極層、光電変換層および第2電極層を光ビームによって除去して非導電性表面領域を形成する請求項7〜9のいずれか1つに記載の薄膜太陽電池モジュールの製造方法。
JP2010157900A 2010-07-12 2010-07-12 薄膜太陽電池モジュールおよびその製造方法 Expired - Fee Related JP5140706B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010157900A JP5140706B2 (ja) 2010-07-12 2010-07-12 薄膜太陽電池モジュールおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010157900A JP5140706B2 (ja) 2010-07-12 2010-07-12 薄膜太陽電池モジュールおよびその製造方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007254928A Division JP2009088175A (ja) 2007-09-28 2007-09-28 薄膜太陽電池モジュールおよびその製造方法

Publications (2)

Publication Number Publication Date
JP2010232692A JP2010232692A (ja) 2010-10-14
JP5140706B2 true JP5140706B2 (ja) 2013-02-13

Family

ID=43048155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010157900A Expired - Fee Related JP5140706B2 (ja) 2010-07-12 2010-07-12 薄膜太陽電池モジュールおよびその製造方法

Country Status (1)

Country Link
JP (1) JP5140706B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012117891A1 (ja) * 2011-02-28 2012-09-07 三洋電機株式会社 太陽電池モジュールの出力配線、太陽電池モジュール及びその製造方法
KR101921237B1 (ko) 2013-01-16 2018-11-22 엘지전자 주식회사 건물 일체형 태양 전지 모듈
CN114649443B (zh) * 2022-03-03 2024-04-16 浙江爱旭太阳能科技有限公司 背接触太阳能电池串及其制备方法、电池组件及光伏系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181675A (ja) * 1984-09-28 1986-04-25 Sanyo Electric Co Ltd 光起電力装置
JPS61295673A (ja) * 1985-06-24 1986-12-26 Mitsubishi Electric Corp 光電変換装置
JP3408037B2 (ja) * 1995-11-21 2003-05-19 シャープ株式会社 太陽電池モジュールおよびそれを製造する方法、並びにそれを架台に取り付ける方法
JP2000150944A (ja) * 1998-11-12 2000-05-30 Kanegafuchi Chem Ind Co Ltd 太陽電池モジュール
JP4351457B2 (ja) * 2003-03-17 2009-10-28 京セラ株式会社 太陽電池モジュール
JP4791098B2 (ja) * 2005-07-22 2011-10-12 株式会社カネカ 集積型薄膜太陽電池モジュール

Also Published As

Publication number Publication date
JP2010232692A (ja) 2010-10-14

Similar Documents

Publication Publication Date Title
JP2009088175A (ja) 薄膜太陽電池モジュールおよびその製造方法
US7759158B2 (en) Scalable photovoltaic cell and solar panel manufacturing with improved wiring
US7902454B2 (en) Solar cell, solar cell module, and method of manufacturing the solar cell
US20150194552A1 (en) Solar cell module and method for manufacturing the solar cell module
JP5171490B2 (ja) 集積型薄膜太陽電池
US20080276981A1 (en) Solar cell module
US20070199588A1 (en) High voltage solar cell and solar cell module
KR101703829B1 (ko) 다수의 접합 및 다수의 전극을 갖는 광기전력 전지들을 제조하기 위한 방법
JP2007294866A (ja) 太陽電池モジュール
TW201005980A (en) Thin film solar cell module and method of making same
JP4578123B2 (ja) 太陽電池モジュール
JP2019102620A (ja) 太陽電池モジュール
US20230044021A1 (en) Solar cells having junctions retracted from cleaved edges
JP5140706B2 (ja) 薄膜太陽電池モジュールおよびその製造方法
JP2015230985A (ja) 太陽電池セルおよびその製造方法、太陽電池パネル
KR101527878B1 (ko) 박막형 태양전지와 그의 제조 방법 및 제조 시스템
CN102460729A (zh) 太阳能电池模块和太阳能电池模块的制造方法
JP5376873B2 (ja) 集積型薄膜太陽電池
KR101614166B1 (ko) 태양 전지 모듈 및 그 제조 방법
JPH0883919A (ja) 太陽電池モジュール及びその製造方法
US20130154047A1 (en) Photoelectric conversion device and method for fabricating the photoelectric conversion device
JP2001127319A (ja) 太陽電池モジュール及びその製造方法
JP6313005B2 (ja) 光電変換素子及び太陽電池モジュール
JP4904320B2 (ja) 集積型薄膜太陽電池の製造方法
KR20110078963A (ko) 박막태양전지모듈 및 그 제조방법과 모듈 상호간의 연결방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100712

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees